EP0514337B1 - Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 - Google Patents

Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 Download PDF

Info

Publication number
EP0514337B1
EP0514337B1 EP92810343A EP92810343A EP0514337B1 EP 0514337 B1 EP0514337 B1 EP 0514337B1 EP 92810343 A EP92810343 A EP 92810343A EP 92810343 A EP92810343 A EP 92810343A EP 0514337 B1 EP0514337 B1 EP 0514337B1
Authority
EP
European Patent Office
Prior art keywords
pressure
process according
bar
dyeing
textile material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92810343A
Other languages
English (en)
French (fr)
Other versions
EP0514337A1 (de
Inventor
Wolfgang Saus
Dierk Dr. Knittel
Eckhard Prof. Dr. Schollmeyer
Hans-Jürgen Dr. Buschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0514337A1 publication Critical patent/EP0514337A1/de
Application granted granted Critical
Publication of EP0514337B1 publication Critical patent/EP0514337B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/94General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in solvents which are in the supercritical state
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/10Processes in which the treating agent is dissolved or dispersed in organic solvents; Processes for the recovery of organic solvents thereof
    • D06M23/105Processes in which the solvent is in a supercritical state
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0004General aspects of dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/90General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in organic solvents or aqueous emulsions thereof
    • D06P1/92General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in organic solvents or aqueous emulsions thereof in organic solvents
    • D06P1/928Solvents other than hydrocarbons
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S8/00Bleaching and dyeing; fluid treatment and chemical modification of textiles and fibers
    • Y10S8/92Synthetic fiber dyeing
    • Y10S8/922Polyester fiber

Definitions

  • the present invention relates to a method for dyeing from supercritical CO2.
  • the object of the present invention was to improve this known method. This object is achieved by the method according to the invention.
  • the present invention thus relates to a process for dyeing hydrophobic textile material with disperse dyes by heating the textile material and the disperse dye in supercritical carbon dioxide at a pressure of 73 to 400 bar to a temperature of 80 to 300 ° C and then the pressure and the temperature lowered to below the critical pressure and the critical temperature, characterized in that the pressure reduction is carried out in several stages and the pressure in each stage is reduced by 0.1 to 20 bar and after each stage is waited until a practically constant pressure has stopped.
  • the dyeing of textile substrates from supercritical CO2 has a number of advantages over dyeing processes from an aqueous liquor. Due to the fact that the CO2 used does not get into the wastewater, but is preferably used again after dyeing, no wastewater pollution occurs. Furthermore, the dyeing of supercritical CO2 required for dyeing the textile substrate Mass transfer processes take place much faster compared to aqueous systems. This in turn means that the textile substrate to be dyed can be flowed through particularly well and quickly. When using dyeing from supercritical CO2, there are no irregularities with regard to the flow through the winding body during the coloring of winding bodies, which are to be regarded as causes for edge runs or length runs, for example, in the conventional method for tree coloring of flat structures.
  • no disperse dyes can undesirably agglomerate, as is sometimes the case with conventional dispersion dyeings, so that the use of dyeing from supercritical CO2 avoids the brightening of disperse dyes known in conventional dyeing processes in aqueous systems, and thus the formation of corresponding stains.
  • Another advantage of dyeing from supercritical CO2 is that you can use disperse dyes that consist exclusively of the actual dye and do not contain the usual dispersants and agents. For many dyes, there is also no need to grind the dyes.
  • supercritical CO2 means CO2 in which the pressure and the temperature of the CO2 are above the critical pressure and the critical temperature.
  • the supercritical CO2 has approximately the viscosity of the corresponding gas and a density that is approximately comparable with the density of the correspondingly liquefied gas.
  • the dyeing process according to the invention is carried out, for example, in such a way that the textile material to be dyed is placed together with the disperse dye in a pressure-resistant dyeing apparatus and heated to the dyeing temperature under CO2 pressure or by heating and then adjusting the desired CO2 pressure.
  • the dyeing temperature used in the process according to the invention depends essentially on the substrate to be dyed. Usually it is between about 80 and 300 ° C, preferably between about 100 and 150 ° C.
  • the pressure to be applied must be at least so high that the CO2 is in a supercritical state. The higher the pressure, the greater the solubility of the dyes in CO2 in general, but the greater the expenditure on equipment.
  • the pressure is preferably between about 73 and 400 bar, in particular between about 150 and 250 bar. At the preferred dyeing temperature for polyester material of approximately 130 ° C., the pressure is approximately 200 bar.
  • the liquor ratio (mass ratio of textile material: CO2) when dyeing by the process according to the invention depends on the goods to be treated and their presentation.
  • polyester yarns which are wound onto corresponding packages are to be dyed using the process according to the invention, this is preferably done with relatively short liquor ratios, i.e. Fleet ratios between 1: 2 to 1: 5.
  • Such short liquor ratios generally cause difficulties in the conventional dyeing process in the aqueous system, since there is often the risk that the finely dispersed systems agglomerate due to the high dye concentration. However, this does not occur in the method according to the invention.
  • the desired pressure is set, if this has not already been reached due to the temperature increase.
  • the temperature and pressure are then kept for some time, e.g. Kept constant for 1 to 60 minutes, taking suitable measures, e.g. Stirring or shaking, or above all by circulation of the "dye liquor" ensures intensive mixing of the textile material and "dye liquor".
  • the length of time is generally not critical, but it has been shown that times of more than 10 minutes usually do not improve the dyeing yield.
  • the pressure is then reduced in several stages, preferably in 2 to 100 stages, which is done most simply by opening a valve and releasing a portion of CO2.
  • the rapid expansion results in cooling, that is, it is quasi-adiabatically expanded.
  • the density of the CO2 is changed by lowering the pressure. After closing the valve, heating to the Ambient temperature instead, the pressure rises isochorically again. After approx. 30 seconds to a few minutes, when the pressure and temperature practically no longer rise, the pressure is reduced again and the process described above is repeated.
  • This mode of operation is preferably controlled automatically by a pressure and / or density and / or temperature program.
  • the pressure in each stage is preferably reduced by 1 to 10 bar and especially by 2 to 5 bar.
  • the textile material is then removed from the dyeing machine and can often be used without further cleaning. In particular, it should be noted that no drying is required.
  • the CO2 can then be collected and used again after coloring to the supercritical state for the coloring of other substrates.
  • the dyes separate out as liquid or solid dyes, which can be collected accordingly and used for further dyeings.
  • the method according to the invention is suitable for dyeing semi-synthetic and in particular synthetic hydrophobic fiber materials, especially textile materials.
  • Textile materials from blended fabrics which contain such semi-synthetic or synthetic hydrophobic textile materials can also be dyed by the process according to the invention.
  • Cellulose-21 ⁇ 2-acetate and cellulose triacetate are particularly suitable as semi-synthetic textile materials.
  • Synthetic hydrophobic textile materials consist primarily of linear, aromatic polyesters, for example those made of terephthalic acid and glycols, especially ethylene glycol or condensation products made of terephthalic acid and 1,4-bis (hydroxymethyl) cyclohexane; from polycarbonates, e.g. from ⁇ , ⁇ -dimethyl-4,4'-dihydroxy-diphenylmethane and phosgene, from fibers based on polyvinyl chloride, polypropylene or polyamide, e.g. Polyamide 6.6, polamide 6.10, polyamide 6, polyamide 11 or poly (1,4-phenylene terephthalamide).
  • Microfilament fibers made of polyester e.g. Color polyethylene terephthalate with very good levelness.
  • Suitable dyes for the process according to the invention are, above all, dispersion dyes, i.e. dyes which are sparingly soluble or almost insoluble in water.
  • dyes from the following classes are possible: Nitro dyes, for example nitrodiphenylamine dyes, methine dyes, quinoline dyes, amino naphthoquinone dyes, coumarin dyes and in particular anthraquinone dyes, tricyanovinyl dyes and azo dyes such as monoazo and disazo dyes.
  • Nitro dyes for example nitrodiphenylamine dyes, methine dyes, quinoline dyes, amino naphthoquinone dyes, coumarin dyes and in particular anthraquinone dyes, tricyanovinyl dyes and azo dyes such as monoazo and disazo dyes.
  • a strip of polyester fabric and 1.5% by weight, based on the polyester fabric, of the dye of the formula are placed in an autoclave
  • the autoclave is flushed with CO2 gas and heated to 130 ° C under 10 bar CO2 pressure at a heating rate of 2 ° C per minute, the stirrer running at approx. 100 revolutions per minute. Then the pressure is increased to 250 bar within 1.5 to 2.5 minutes and the stirrer speed is increased to about 700 revolutions per minute.
  • the pressure is reduced by 5 bar within 5 to 15 seconds by releasing CO2, the temperature in the autoclave falling by about 2 ° C. After closing the valve, the pressure rises again by about 2 bar within the next minute and the temperature returns to the original value.
  • the pressure is again reduced by 7 bar within 5 to 15 seconds by releasing CO2, the valve is closed and the system waits for 1 minute to set a constant temperature and pressure. This process is repeated until the pressure has dropped to 180 bar. (approx. 15 minutes) The residual pressure in the autoclave is then released and the polyester fabric is removed from the hot autoclave.
  • a red-dyed polyester fabric of similar quality to that obtained by dyeing by customary methods from an aqueous liquor is obtained.
  • Example 1 If one works as described in Example 1, but after reaching 130 ° C. and a pressure of 250 bar and a stirrer speed of 700 revolutions per minute, these conditions are kept constant for 25 minutes, then the pressure in the autoclave is released within 30 seconds, cools and removes the dyed polyester fabric, the color depth is only approx. 1 10th the color depth obtained in Example 1.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Färben aus überkritischem CO₂.
  • Aus der DE-A-3 906 724 ist bereits bekannt, dass man textile Substrate aus überkritischem CO₂ mit Dispersionsfarbstoffen färben kann, indem man das Textilmaterial und den Dispersionsfarbstoff unter einem CO₂-Druck von etwa 190 bar während etwa 10 Minuten auf etwa 130°C erhitzt und anschliessend das Volumen vergrössert, wodurch das CO₂ expandiert. Dieses Verfahren liefert jedoch nicht immer vollständig befriedigende Ergebnisse, da die Farbausbeute, vor allem bei höheren Farbstoffkonzentrationen, zum Teil zu wünschen übrig lässt.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, dieses bekannte Vertahren zu verbessern. Diese Aufgabe wird durch das erfindungsgemässe Verfahren gelöst.
  • Die vorliegende Erfindung betrifft somit ein Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen, indem man das Textilmaterial und den Dispersionsfarbstoff in überkritischem Kohlendioxid bei einem Druck von 73 bis 400 bar auf eine Temperatur von 80 bis 300°C erhitzt und anschliessend den Druck und die Temperatur bis unterhalb des kritischen Druckes und der kritischen Temperatur erniedrigt, dadurch gekennzeichnet, dass man die Druckerniedrigung in mehreren Stufen durchführt und dabei den Druck in jeder Stufe um 0,1 bis 20 bar erniedrigt und nach jeder Stufe abwartet, bis sich wieder ein praktisch konstanter Druck eingestellt hat.
  • Überraschenderweise erhält man bei dieser Arbeitsweise erheblich tiefere Färbungen als in dem bekannten Verfahren, bei dem die Druckerniedrigung in 1 Stufe durchgeführt wird.
  • Das Färben von textilen Substraten aus überkritischem CO₂ weist eine Reihe von Vorteilen gegenüber Färbeverfahren aus wässriger Flotte auf. Bedingt dadurch, dass das eingesetzte CO₂ nicht ins Abwasser gelangt, sondern bevorzugt nach der Färbung erneut eingesetzt wird, treten keine Abwasserbelastungen auf. Ferner laufen beim Färben aus überkritischem CO₂ die für die Färbung des textilen Substrates erforderlichen Stoffaustauschvorgänge im Vergleich zu wässrigen Systemen wesentlich schneller ab. Dies wiederum führt dazu, dass das zu färbende textile Substrat besonders gut und schnell durchströmt werden kann. Bei Anwendung des Färbens aus überkritischem CO₂ treten bei der Färbung von Wickelkörpern keine Ungleichmässigkeiten bezüglich der Durchströmung des Wickelkörpers auf, welche beispielsweise bei dem herkömmlichen Verfahren bei der Baumfärbung von Flächengebilden als Ursachen für Kantenabläufe bzw. Längenabläufe anzusehen sind. Ebenfalls können keine Dispersionsfarbstoffe unerwünscht agglomerieren, wie dies bei den herkömmlichen Dispersionsfärbungen bisweilen der Fall ist, so dass somit durch Anwendung des Färbens aus überkritischem CO₂ die bei herkömmlichen Färbeverfahren in wässrigen Systemen bekannten Aufhellungen von Dispersionsfarbstoffen und damit entsprechende Fleckenbildungen vermieden werden.
  • Darüber hinaus kann bei Färbungen mit Dispersionsfarbstoffen durch Anwendung des Färbens aus überkritischem CO₂ auch bei mittleren und dunklen Farbtönen auf eine reduktive Nachreinigung verzichtet werden, ohne dass hierdurch die Farbechtheiten, insbesondere die Reib- und Waschechtheiten, verschlechtert werden.
  • Ein weiterer Vorteil des Färbens aus überkritischem CO₂ besteht darin, dass man Dispersionsfarbstoffe einsetzen kann, die ausschliesslich aus dem eigentlichen Farbstoff bestehen und nicht die üblichen Dispergatoren und Stellmittel enthalten. Bei vielen Farbstoffen kann zudem auf eine Mahlung der Farbstoffe verzichtet werden.
  • Unter dem Begriff überkritisches CO₂ versteht man CO₂, bei dem der Druck und die Temperatur des CO₂ oberhalb des kritischen Druckes und der kritischen Temperatur liegen. Hierbei weist das überkritische CO₂ annähernd die Viskosität des entsprechenden Gases und eine Dichte auf, die näherungsweise mit der Dichte des entsprechend verflüssigten Gases vergleichbar ist.
  • Das erfindungsgemässe Färbeverfahren wird beispielsweise in der Art durchgeführt, dass man das zu färbende Textilmaterial zusammen mit dem Dispersionsfarbstoff in eine druckfeste Färbeapparatur gibt und unter CO₂-Druck auf die Färbetemperatur aufheizt oder indem man aufheizt und dann den gewünschten CO₂-Druck einstellt.
  • Die bei dem erfindungsgemässen Verfahren angewendete Färbetemperatur richtet sich im wesentlichen nach dem zu färbenden Substrat. Normalerweise liegt sie etwa zwischen 80 und 300°C, vorzugsweise zwischen etwa 100 und 150°C.
  • Der anzuwendende Druck muss mindestens so gross sein, dass das CO₂ in überkritischem Zustand vorliegt. Je höher der Druck, desto grösser ist im allgemeinen die Löslichkeit der Farbstoffe im CO₂, desto grösser ist jedoch auch der apparative Aufwand. Vorzugsweise liegt der Druck zwischen etwa 73 und 400 bar, insbesondere zwischen etwa 150 und 250 bar. Bei der bevorzugten Färbetemperatur für Polyestermaterial von ca. 130°C beträgt der Druck etwa 200 bar.
  • Das Flottenverhältnis (Massenverhältnis Textilmaterial: CO₂) beim Färben nach dem erfindungsgemässen Verfahren richtet sich nach der zu behandelnden Ware und deren Aufmachung.
  • Üblicherweise variiert es zwischen einem Wert von 1:2 bis 1:100, vorzugsweise etwa 1:5 bis 1:75. Sollen beispielsweise Polyestergarne, die auf entsprechende Kreuzspulen aufgewickelt sind, nach dem erfindungsgemässen Verfahren gefärbt werden, so geschieht dies vorzugsweise bei relativ kurzen Flottenverhältnissen, d.h. Flottenverhältnissen zwischen 1:2 bis 1:5. Derartige kurze Flottenverhältnisse bereiten in der Regel bei dem herkömmlichen Färbeverfahren im wässrigen System Schwierigkeiten, da hierbei bedingt durch die hohe Farbstoffkonzentration häufig die Gefahr besteht, dass die feindispersen Systeme agglomerieren. Dies tritt jedoch bei dem erfindungsgemässen Verfahren nicht auf.
  • Nach Erreichen der Färbetemperatur wird der gewünschte Druck eingestellt, falls dieser nicht schon infolge der Temperaturerhöhung erreicht wurde. Die Temperatur und der Druck werden dann für einige Zeit, z.B. 1 bis 60 Minuten konstant gehalten, wobei man durch geeignete Massnahmen, z.B. Rühren oder Schütteln, oder vor allem durch Zirkulation der "Färbeflotte" für eine intensive Durchmischung von Textilmaterial und "Färbeflotte" sorgt. Die Zeitdauer ist im allgemeinen nicht kritisch, doch hat sich gezeigt, dass Zeiten von mehr als 10 Minuten meist keine Verbesserung der färberischen Ausbeute bringen.
  • Anschliessend wird der Druck in mehreren Stufen, vorzugsweise in 2 bis 100 Stufen, erniedrigt, was am einfachsten durch Öffnen eines Ventils und Ablassen eines CO₂-Anteils geschieht. Durch die schnelle Expansion erfolgt eine Abkühlung, d.h., es wird quasi adiabatisch expandiert. Ausserdem wird durch die Druckerniedrigung die Dichte des CO₂ verändert. Nach Schliessen des Ventils findet wieder Erwärmung auf die Umgebungstemperatur statt, der Druck steigt also isochor wieder an. Nach ca. 30 Sekunden bis wenigen Minuten, wenn Druck und Temperatur praktisch nicht mehr steigen, wird der Druck erneut erniedrigt und der oben beschriebene Vorgang wiederholt. Vorzugsweise steuert man diese Arbeitsweise automatisch durch ein Druck- und/oder Dichte- und/oder Temperaturprogramm.
  • Vorzugsweise wird der Druck in jeder Stufe um 1 bis 10 bar und vor allem um 2 bis 5 bar erniedrigt.
  • Ausserdem ist es bevorzugt, den Druck in Stufen von einem Druck zwischen 200 und 300 bar auf 100 bis 130 bar zu erniedrigen. Anschliessend kann man den Restdruck in einer Stufe entspannen. Da bei tieferen Temperaturen bei Verminderung des Druckes die Dichte des überkritischen CO₂ stärker abnimmt, hat es sich als günstig erwiesen, diesen Umstand durch Verkleinern der Druckstufen zu berücksichtigen.
  • Das Textilmaterial wird danach dem Färbeapparat entnommen und ist häufig ohne weitere Reinigung gebrauchsfähig. Insbesondere ist zu beachten, dass keine Trocknung erforderlich ist.
  • Zur Reinigung des CO₂ nach der Färbung bestehen mehrere Möglichkeiten. Man kann z.B. den in dem CO₂ verbleibenden Farbstoffrest über entsprechende Filter ad- bzw. absorbieren. Hierfür eignen sich insbesondere die an sich bekannten Kieselgel-, Kieselgur-, Kohle-, Zeolith- und Aluminiumoxidfilter.
  • Darüber hinaus besteht die Möglichkeit, die nach der Färbung in dem CO₂ verbleibenden Farbstoffe durch eine Temperaturerhöhung und/oder Druckerniedrigung und/oder eine Volumenvergrösserung zu entfernen. Hierbei erfolgt eine Dichteerniedrigung
  • Das CO₂ kann dann aufgefangen und erneut nach Überführung in den überkritischen Zustand zur Färbung von weiteren Substraten verwendet werden. Hierbei scheiden sich die Farbstoffe als flüssige oder feste Farbstoffe ab, die entsprechend gesammelt und für weitere Färbungen weiterverwendet werden können.
  • Das erfindungsgemässe Verfahren eignet sich zum Färben von halbsynthetischen und insbesondere synthetischen hydrophoben Fasermaterialien, vor allem Textilmaterialien.
  • Textilmaterialien aus Mischgeweben, die derartige halbsynthetische bzw. synthetische hydrophobe Textilmaterialien enthalten, können ebenfalls nach dem erfindungsgemässen Verfahren gefärbt werden.
  • Als halbsynthetische Textilmaterialien kommen vor allem Cellulose-2½-Acetat und Cellulosetriacetat in Frage.
  • Synthetische hydrophobe Textilmaterialien bestehen vor allem aus linearen, aromatischen Polyestern, beispielsweise solchen aus Terephthalsäure und Glykolen, besonders Ethylenglykol oder Kondensationsprodukten aus Terephthalsäure und 1,4-Bis-(hydroxymethyl)-cyclohexan; aus Polycarbonaten, z.B. aus α,α-Dimethyl-4,4'-dihydroxy-diphenylmethan und Phosgen, aus Fasern auf Polyvinylchlorid-, Polypropylen- oder Polyamid-Basis, z.B. Polyamid 6.6, Polamid 6.10, Polyamid 6, Polyamid 11 oder Poly(1,4-phenylenterephthalamid).
  • Nach dem erfindungsgemässen Verfahren lassen sich auch Mikrofilament-Fasern aus Polyester, z.B. Polyethylenterephthalat, mit sehr guter Egealität färben. Ausserdem ist es auch möglich, Folien oder Drähte aus diesem Material zu färben.
  • Als Farbstoffe kommen für das erfindungsgemässe Verfahren vor allem Dispersionsfarbstoffe, d.h., in Wasser schwerlösliche oder nahezu unlösliche Farbstoffe in Betracht.
  • Es kommen z.B. Farbstoffe aus folgenden Klassen in Frage:
    Nitrofarbstoffe, z.B. Nitrodiphenylaminfarbstoffe, Methinfarbstoffe, Chinolinfarbstoffe, Aminonaphthochinonfarbstoffe, Cumarinfarbstoffe und insbesondere Anthrachinonfarbstoffe, Tricyanvinylfarbstoffe und Azofarbstoffe, wie Monoazo und Disazofarbstoffe.
  • Die nachfolgenden Beispiele erläutern die Erfindung, ohne sie darauf zu beschränken.
  • Beispiel 1
  • In einen Autoklaven gibt man einen Streifen Polyestergewebe sowie 1,5 Gew.%, bezogen auf das Polyestergewebe, des Farbstoffs der Formel
    Figure imgb0001

    Der Autoklav wird mit CO₂-Gas gespült und unter 10 bar CO₂-Druck mit einer Aufheizgeschwindigkeit von 2°C pro Minute auf 130°C aufgeheizt, wobei der Rührer mit ca. 100 Umdrehungen pro Minute läuft. Dann erhöht man den Druck innerhalb von 1,5 bis 2,5 Minuten auf 250 bar und steigert die Rührergeschwindigkeit auf ca. 700 Umdrehungen pro Minute.
  • Nach 1 Minute wird der Druck innerhalb von 5 bis 15 Sekunden durch Ablassen von CO₂ um 5 bar erniedrigt, wobei die Temperatur im Autoklaven um etwa 2°C sinkt. Nach Schliessen des Ventils steigt der Druck innerhalb der nächsten Minute wieder um etwa 2 bar an und die Temperatur erreicht wieder den ursprünglichen Wert.
  • Jetzt wird erneut der Druck innerhalb von 5 bis 15 Sekunden durch Ablassen von CO₂ um 7 bar erniedrigt, das Ventil geschlossen und 1 Minute zur Einstellung einer konstanten Temperatur und eines konstanten Druckes gewartet. Dieser Vorgang wird so oft wiederholt, bis der Druck auf 180 bar abgesunken ist. (ca. 15 Minuten) Danach wird der Restdruck im Autoklaven abgelassen und das Polyestergewebe aus dem heissen Autoklaven entnommen.
  • Man erhält ein rot gefärbtes Polyestergewebe in ähnlicher Qualität wie beim Färben nach üblichen Methoden aus wässriger Flotte.
  • Beispiel 2
  • Arbeitet man wie im Beispiel 1 beschrieben, verwendet jedoch anstelle des dort eingesetzten Farbstoffes eine äquivalente Menge des Farbstoffes der Formel
    Figure imgb0002

    so erhält man gelb gefärbtes Polyestergewebe in ähnlicher Qualität wie beim Färben nach üblichen Methoden aus wässriger Flotte.
  • Beispiel 3 (Vergleichsbeispiel)
  • Arbeitet man wie im Beispiel 1 beschrieben, hält man jedoch nach Erreichen von 130°C und einem Druck von 250 bar und einer Rührergeschwindigkeit von 700 Umdrehungen pro Minute diese Bedingungen während 25 Minuten konstant, lässt dann den Druck im Autoklaven innerhalb von 30 Sekunden ab, kühlt ab und entnimmt das gefärbte Polyestergewebe, so beträgt die Farbtiefe nur ca. 1 10
    Figure imgb0003
    der im Beispiel 1 erhaltenen Farbtiefe.

Claims (12)

  1. Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen, indem man das Textilmaterial und den Dispersionsfarbstoff in überkritischem Kohlendioxid bei einem Druck von 73 bis 400 bar auf eine Temperatur von 80 bis 300°C erhitzt und anschliessend den Druck und die Temperatur bis unterhalb des kritischen Druckes und der kritischen Temperatur erniedrigt, dadurch gekennzeichnet, dass man die Druckerniedrigung in mehreren Stufen durchführt und dabei den Druck in jeder Stufe um 0,1 bis 20 bar erniedrigt und nach jeder Stufe abwartet, bis sich wieder ein praktisch konstanter Druck eingestellt hat.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man die Druckerniedrigung in 2 bis 100 Stufen durchführt.
  3. Verfahren gemäss Anspruche 1 oder 2, dadurch gekennzeichnet, dass man den Druck in jeder Stufe um 1 bis 10 bar, vorzugsweise 2 bis 5 bar erniedrigt.
  4. Verfahren gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man den Druck in Stufen von einem Druck zwischen 200 und 300 bar auf 100 bis 130 bar erniedrigt und den Restdruck in einer Stufe entspannt.
  5. Verfahren gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Druckerniedrigung durch ein Druck- und/oder Dichte- und/oder Temperaturprogramm steuert.
  6. Verfahren gemäss Anspruch 5, dadurch gekennzeichnet, dass man die Druckerniedrigung so steuert, dass die Abnahme der Dichte in konstanten Stufen erfolgt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man einen Dispersionsfarbstoff einsetzt, der frei von Zusätzen, insbesondere frei von Stellmitteln und Dispergiermitteln, ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man das Textilmaterial auf Temperaturen zwischen etwa 100°C und etwa 150°C erhitzt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man bei einem Druck zwischen etwa 150 bar und etwa 250 bar arbeitet.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man das Substrat zu Beginn in einem Flottenverhältnis zwischen etwa 1:2 bis etwa 1:100, vorzugsweise zwischen etwa 1:5 und etwa 1:75, färbt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man nach der Färbung den nicht verbrauchten Farbstoff erneut zum Färben verwendet.
  12. Anwendung des Verfahrens gemäss einem der Ansprüche 1 bis 11 zum Färben von Textilmaterial aus Polyester.
EP92810343A 1991-05-17 1992-05-08 Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 Expired - Lifetime EP0514337B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH147591 1991-05-17
CH1475/91 1991-05-17

Publications (2)

Publication Number Publication Date
EP0514337A1 EP0514337A1 (de) 1992-11-19
EP0514337B1 true EP0514337B1 (de) 1995-11-22

Family

ID=4211357

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92810343A Expired - Lifetime EP0514337B1 (de) 1991-05-17 1992-05-08 Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2

Country Status (4)

Country Link
US (1) US5250078A (de)
EP (1) EP0514337B1 (de)
JP (1) JPH05132880A (de)
DE (1) DE59204395D1 (de)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2259525B (en) * 1991-09-11 1995-06-28 Ciba Geigy Ag Process for dyeing cellulosic textile material with disperse dyes
EP0543779A1 (de) * 1991-11-20 1993-05-26 Ciba-Geigy Ag Verfahren zum optischen Aufhellen von hydrophobem Textilmaterial mit dispersen optischen Aufhellern in überkritischem CO2
NL1000581C2 (nl) * 1995-06-16 1996-12-17 Dsm Nv Werkwijze voor het verven van een hooggeoriënteerde hoogmoleculaire polyetheen vormdelen en artikelen.
ES2163042T3 (es) * 1995-10-06 2002-01-16 Amann & Soehne Procedimiento para teñir un sustrato textil.
TR199800667T1 (xx) * 1995-10-16 1998-06-22 Krupp Uhde Gmbh Tekstil temel maddelerinin fazla s�v�yla boyanmas�nda uygulanan i�lem ve sistem.
ES2179951T3 (es) * 1995-10-17 2003-02-01 Amann & Soehne Procedimiento para teñir un sustrato textil en al menos un fluido supercritico.
US5783082A (en) * 1995-11-03 1998-07-21 University Of North Carolina Cleaning process using carbon dioxide as a solvent and employing molecularly engineered surfactants
FR2752462B1 (fr) * 1996-08-14 1998-10-23 Essilor Int Procede d'incorporation d'additifs dans un article ophtalmique au moyen d'un fluide a l'etat supercritique
US20020006469A1 (en) * 1996-08-14 2002-01-17 Gilles Baillet Method for incorporating additives in an ophthalmic article by means of a supercritical fluid
US5881577A (en) * 1996-09-09 1999-03-16 Air Liquide America Corporation Pressure-swing absorption based cleaning methods and systems
US5938794A (en) * 1996-12-04 1999-08-17 Amann & Sohne Gmbh & Co. Method for the dyeing of yarn from a supercritical fluid
US6500605B1 (en) 1997-05-27 2002-12-31 Tokyo Electron Limited Removal of photoresist and residue from substrate using supercritical carbon dioxide process
TW539918B (en) 1997-05-27 2003-07-01 Tokyo Electron Ltd Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process
US6306564B1 (en) 1997-05-27 2001-10-23 Tokyo Electron Limited Removal of resist or residue from semiconductors using supercritical carbon dioxide
EP0986667B1 (de) 1997-05-30 2009-01-07 Micell Integrated Systems, Inc. Oberflächebehandlung
US6344243B1 (en) 1997-05-30 2002-02-05 Micell Technologies, Inc. Surface treatment
US6165560A (en) * 1997-05-30 2000-12-26 Micell Technologies Surface treatment
US6287640B1 (en) 1997-05-30 2001-09-11 Micell Technologies, Inc. Surface treatment of substrates with compounds that bind thereto
US6010542A (en) * 1997-08-29 2000-01-04 Micell Technologies, Inc. Method of dyeing substrates in carbon dioxide
US6048369A (en) * 1998-06-03 2000-04-11 North Carolina State University Method of dyeing hydrophobic textile fibers with colorant materials in supercritical fluid carbon dioxide
US7064070B2 (en) * 1998-09-28 2006-06-20 Tokyo Electron Limited Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process
US6277753B1 (en) 1998-09-28 2001-08-21 Supercritical Systems Inc. Removal of CMP residue from semiconductors using supercritical carbon dioxide process
EP1234322A2 (de) 1999-11-02 2002-08-28 Tokyo Electron Limited Verfahren und vorrichtungen zur überkritischen verarbeitung von werkstücken
US6748960B1 (en) 1999-11-02 2004-06-15 Tokyo Electron Limited Apparatus for supercritical processing of multiple workpieces
JP2001172524A (ja) * 1999-12-20 2001-06-26 Toray Ind Inc 染料組成物および繊維構造物の染色方法
JP2001181986A (ja) * 1999-12-22 2001-07-03 Du Pont Toray Co Ltd パラ系アラミド繊維の染色方法およびその方法で染色したパラ系アラミド繊維
US6261326B1 (en) 2000-01-13 2001-07-17 North Carolina State University Method for introducing dyes and other chemicals into a textile treatment system
AU2001255656A1 (en) * 2000-04-25 2001-11-07 Tokyo Electron Limited Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
US6676710B2 (en) 2000-10-18 2004-01-13 North Carolina State University Process for treating textile substrates
US20040016450A1 (en) * 2002-01-25 2004-01-29 Bertram Ronald Thomas Method for reducing the formation of contaminants during supercritical carbon dioxide processes
US6924086B1 (en) 2002-02-15 2005-08-02 Tokyo Electron Limited Developing photoresist with supercritical fluid and developer
JP2006508521A (ja) * 2002-02-15 2006-03-09 東京エレクトロン株式会社 溶剤浴と超臨界co2を用いたレジストの乾燥
AU2003220039A1 (en) * 2002-03-04 2003-09-22 Supercritical Systems Inc. Method of passivating of low dielectric materials in wafer processing
US20050227187A1 (en) * 2002-03-04 2005-10-13 Supercritical Systems Inc. Ionic fluid in supercritical fluid for semiconductor processing
AU2003220443A1 (en) * 2002-03-22 2003-10-13 Supercritical Systems Inc. Removal of contaminants using supercritical processing
US7169540B2 (en) * 2002-04-12 2007-01-30 Tokyo Electron Limited Method of treatment of porous dielectric films to reduce damage during cleaning
US20040177867A1 (en) * 2002-12-16 2004-09-16 Supercritical Systems, Inc. Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal
US20040231707A1 (en) * 2003-05-20 2004-11-25 Paul Schilling Decontamination of supercritical wafer processing equipment
US7307019B2 (en) 2004-09-29 2007-12-11 Tokyo Electron Limited Method for supercritical carbon dioxide processing of fluoro-carbon films
US7491036B2 (en) 2004-11-12 2009-02-17 Tokyo Electron Limited Method and system for cooling a pump
US7291565B2 (en) 2005-02-15 2007-11-06 Tokyo Electron Limited Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid
US20060185693A1 (en) * 2005-02-23 2006-08-24 Richard Brown Cleaning step in supercritical processing
US20060186088A1 (en) * 2005-02-23 2006-08-24 Gunilla Jacobson Etching and cleaning BPSG material using supercritical processing
US20060185694A1 (en) * 2005-02-23 2006-08-24 Richard Brown Rinsing step in supercritical processing
US7550075B2 (en) 2005-03-23 2009-06-23 Tokyo Electron Ltd. Removal of contaminants from a fluid
US20060223899A1 (en) * 2005-03-30 2006-10-05 Hillman Joseph T Removal of porogens and porogen residues using supercritical CO2
US7442636B2 (en) * 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US7399708B2 (en) * 2005-03-30 2008-07-15 Tokyo Electron Limited Method of treating a composite spin-on glass/anti-reflective material prior to cleaning
US7789971B2 (en) 2005-05-13 2010-09-07 Tokyo Electron Limited Treatment of substrate using functionalizing agent in supercritical carbon dioxide
US20070000519A1 (en) * 2005-06-30 2007-01-04 Gunilla Jacobson Removal of residues for low-k dielectric materials in wafer processing
CN103339316B (zh) * 2011-02-02 2015-11-25 Ykk株式会社 清洗方法和清洗装置
CN106757915B (zh) * 2016-12-02 2019-03-26 青岛即发集团股份有限公司 一种筒纱无水染色设备、染色方法及产品
WO2018237027A1 (en) 2017-06-22 2018-12-27 Zimmerman Keith TISSUE PROCESSING COMPOSITIONS AND ASSOCIATED METHODS
CN110565415A (zh) * 2019-10-11 2019-12-13 上海复璐帝流体技术有限公司 一种超临界二氧化碳印染工艺及其印染系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906724C2 (de) * 1989-03-03 1998-03-12 Deutsches Textilforschzentrum Verfahren zum Färben von textilen Substraten
DE59103972D1 (de) * 1990-09-03 1995-02-02 Ciba Geigy Ag Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen in überkritischem CO2.
ATE116018T1 (de) * 1990-09-03 1995-01-15 Ciba Geigy Ag Verfahren zum färben von hydrophobem textilmaterial mit dispersionsfarbstoffen aus überkritischem co2.
US5199956A (en) * 1990-09-03 1993-04-06 Ciba-Geigy Corporation Process for dyeing hydrophobic textile material with disperse dyes from super-critical carbon dioxide
EP0474599B1 (de) * 1990-09-03 1995-04-05 Ciba-Geigy Ag Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen in überkritischem CO2

Also Published As

Publication number Publication date
EP0514337A1 (de) 1992-11-19
DE59204395D1 (de) 1996-01-04
JPH05132880A (ja) 1993-05-28
US5250078A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
EP0514337B1 (de) Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2
DE3906724C2 (de) Verfahren zum Färben von textilen Substraten
DE4230325A1 (de) Verfahren zum faerben von textilmaterial aus cellulose mit dispersionsfarbstoffen
DE4332219A1 (de) Verfahren zum Färben von Textilmaterial aus Wolle oder Cellulose mit Dispersionsfarbstoffen
EP0474599B1 (de) Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen in überkritischem CO2
EP0320701B1 (de) Verfahren und Vorrichtung zur diskontinuierlichen Nassbehandlung von gestricktem oder gewirktem Textilgut
DE19631603A1 (de) Verfahren zum Färben eines textilen Substrates
EP0260495A1 (de) Verfahren zum Färben von Textilien aus Polyesterfaser/Wolle-Mischungen auf Jet-Färbemaschinen
DE4206956A1 (de) Vorrichtung zur behandlung von textilen substraten
DE2009469A1 (en) Continuous dyeing of polyester textiles
DE2727112B2 (de) Verfahren zum Vorreinigen und Färben von textlien Materialien
EP0090272A2 (de) Verfahren zum gleichmässigen Färben von Polyesterfasern nach der Ausziehmethode
DE2402830C3 (de) Verfahren und Vorrichtung zum Färben von strangförmigem Textilgut aus Cellulosefasern
DE1918340A1 (de) Faerbeverfahren
DE4207109C2 (de) Nachbehandlungsmittel für Färbungen und Drucke mit Dispersionsfarbstoffen auf textilen Materialien und Verfahren zum Nachbehandeln
DE2009468A1 (en) Continuous dyeing of polyester textiles
DE2009465A1 (en) Continuous dyeing of polyester textiles
DE4237823A1 (de) Verfahren zum Färben eines Substrates in einem überkritischen Fluid
DE2506466A1 (de) Emulgiermittel fuer faerbebeschleuniger auf basis von alkylnaphthalinen
DE2345875C3 (de)
EP0613929A1 (de) Reaktivfarbstoffgrünmischung mit verringertem Dichroismus
DE2422968C3 (de) Verfahren zum Färben von^ynthetischen Fasermaterialien aus extrem kurzem Flottenverhältnis nach der Ausziehmethode
DE2049344C (de) Verfahren zur Behandlung von cellulosehaltigen Materialien
DE2233261A1 (de) Verfahren zum faerben von textilgut
DE2712196C3 (de) Verfahren zum Färben von Materialien, die aus Polyester- oder Polyamidfasern oder -fäden bestehen oder solche enthalten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19930423

17Q First examination report despatched

Effective date: 19940808

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19951122

Ref country code: GB

Effective date: 19951122

Ref country code: FR

Effective date: 19951122

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19951122

REF Corresponds to:

Ref document number: 59204395

Country of ref document: DE

Date of ref document: 19960104

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19951122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960531

Ref country code: CH

Effective date: 19960531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BECN Be: change of holder's name

Effective date: 19961129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990413

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990728

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

BERE Be: lapsed

Owner name: CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301