EP0515295A1 - Nozzle with internal profile adapted to high-temperature flat-bed tests of specimens or the like. - Google Patents

Nozzle with internal profile adapted to high-temperature flat-bed tests of specimens or the like. Download PDF

Info

Publication number
EP0515295A1
EP0515295A1 EP92450006A EP92450006A EP0515295A1 EP 0515295 A1 EP0515295 A1 EP 0515295A1 EP 92450006 A EP92450006 A EP 92450006A EP 92450006 A EP92450006 A EP 92450006A EP 0515295 A1 EP0515295 A1 EP 0515295A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
generator
section
superelliptic
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92450006A
Other languages
German (de)
French (fr)
Other versions
EP0515295B1 (en
Inventor
René Gabriel Germain Moise Leroux
Gilles Pierre Taquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
Airbus Group SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Group SAS filed Critical Airbus Group SAS
Publication of EP0515295A1 publication Critical patent/EP0515295A1/en
Application granted granted Critical
Publication of EP0515295B1 publication Critical patent/EP0515295B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3484Convergent-divergent nozzles

Definitions

  • the present invention relates to a so-called "high temperature” nozzle and in particular to a plasma nozzle, the internal profile of which is specially designed to allow tests of the flat board type of test tubes, in particular of materials having to withstand high stresses, in particular thermal stresses. and under pressure.
  • the invention relates more particularly to the testing of materials intended to constitute the hot parts of spacecraft called upon to face the severe conditions of atmospheric reentry which result in high temperatures (1100 to 1900 ° C.) and low pressures for a period of time. relatively large (about half an hour).
  • test board consists in placing a test tube made up of a monolithic block or of several elements of one or more materials to be tested, parallel to the jet coming from a nozzle and to be measured at different points of the wall of the specimen or of the assembly the static pressure as well as the temperature for incidences of the wall with respect to the jet of the nozzle ranging from 0 to a few degrees.
  • tests are carried out using an installation comprising a plasma generator generating a flow at high temperature, a nozzle disposed downstream of the generator and transforming the flow to adapt it to the desired test conditions, a test chamber into which the nozzle opens and where are installed the devices for presenting the test pieces or the like as well as the various means of measurement essential for the tests, a diffuser for downstream of the chamber intended to recover the flow after it has passed over the test pieces, a heat exchanger to cool the flow and a vacuum system downstream intended to maintain the low pressure level required, for this type in the room.
  • test pieces in the "flat board" tests requires a nozzle of appropriate configuration comprising a straight downstream end edge capable of being connected to one of the straight edges of the test piece.
  • the "square tube” nozzle has a divergent whose section, at the outlet, is in fact slightly rectangular with rounded angles, while the semi-circular nozzle is an axisymmetric nozzle whose divergence is reduced by half along a plane containing the axis of the nozzle.
  • the object of the invention is to propose a hypersonic nozzle intended for this type of test in "flat board", that is to say having at the outlet a flat part and capable of delivering a flow such that at least at right of said flat part the pressure profile is as uniform as possible.
  • the subject of the invention is a nozzle with an internal profile suitable for high-temperature tests of test pieces or the like of the "flat board" type, characterized in that it consists, on the one hand, of a converge and of an axisymmetric neck region and, on the other hand, of a divergence of superelliptic section based on two rectilinear generatrices taken in two perpendicular planes, one, called a minor axis, whose slope is around 1 ° and the other, called major axis, whose slope is of the order of 10 °, the downstream ends of the corresponding circular generators of the neck region being connected to said generators of minor and major axes by a curve whose equation is such that the derivatives first and second are continuous and the third derivative is monotonous, in order to avoid or reduce the problems of recompression and possibly of shock formation.
  • the superelliptical exponent thus chosen ensures, on the one hand, the desired flatness at the outlet of the nozzle and, on the other hand, a good connection between the divergent and the neck region.
  • the latter is offset by a value ⁇ and the curve connecting the upstream ends of said generator respectively before offset (E0) and after offset (E1), is determined from a degree 4 polynomial of the type :
  • F (X) A (X-X1) 4 + B (X-X1) 3 + aX + b - ⁇ in which A and B are constants and aX + b - ⁇ is the equation of the generator of major axis after shift, the origin of the abscissa being counted from the neck, the value X0, abscissa of the upstream end of said generator, before shifting, being chosen and the values ⁇ , X and X1, abscissa of the upstream end of said generator, after shift, being
  • this property of the evolution curve of N (X) is also found at the outlet of the nozzle and that, in general, said variation curve has first and second derivatives substantially zero at both. extreme values of the exponent, being monotonically increasing and presenting an intermediate inflection point.
  • the invention thus makes it possible to produce a nozzle, the outlet of which has two practically rectilinear parallel edges connected at the ends by two curves approximately in the form of half-ellipses and in which the outlet flow has a great homogeneity characterized by a small variation in the pressure, of the order of 1%, along the flat part.
  • FIGS. 1 to 4 illustrate an embodiment of a nozzle according to the invention comprising a conical convergent 1, a neck 2 of circular section and a divergent 3 very elongated relative to the length of the convergent 1.
  • the divergent section has a superelliptic section supported by two rectilinear generators taken in two perpendicular planes containing the axis X′X of the nozzle and constituting two planes of symmetry of the latter.
  • Figures 3 and 4 are partial views in the form of meshes of the nozzle of Figures 1 and 2.
  • the generator G1 has a slope of about 1 ° relative to the axis X′X, while the generator G2 has a slope of the order of 10 °, always relative to the axis X′X.
  • the outlet section of the nozzle is delimited by two practically rectilinear and parallel edges (only one being partially represented at 4 in FIGS. 3 and 4) connected at the ends by substantially elliptical curves (5, Figures 3 and 4).
  • the two practically straight edges have a length of between 0.30 and 0.40 m and the minor axis of the outlet section has a length of between 0.05 and 0.08 m.
  • the nozzle is intended for heat flow tests on flat plates, one of which is shown diagrammatically at 6 in FIG. 1.
  • These flat plates consist of test pieces of materials to be tested or assemblies, the upper face of which is arranged in the extension of the lower straight edge.
  • nozzle outlet means being provided to optionally give a slight inclination of said exposed face of the flat plate 6 by lifting the latter around the edge contiguous to the outlet of the nozzle.
  • the diverging part 3 has been shaped so as to pass continuously from a circular axisymmetric geometry at the level of the neck 2, to a superelliptic geometry at the nozzle outlet in order to obtain a practically rectilinear outlet edge of sufficient length and with a pressure profile as uniform as possible.
  • N (X) evolve progressively towards a high value, for example 10, by forcing it to follow a variation curve having a shape such that it presents first and second derivatives substantially zero at the two extreme values of the exponent, while being monotonous increasing by presenting an intermediate point of inflection, one obtains a section of nozzle which deforms continuously to result in exit in a profile of the type described above and represented in figure 3.
  • FIG. 5 illustrates three sections of nozzle at three different abscissa of the divergent.
  • the sections S1, S2 and S3 correspond to a section S1 / section section of the neck 2 equal to 30, 25 and 20 respectively.
  • a virtually straight part 4 is thus obtained at the outlet of the nozzle.
  • This part is not strictly rectilinear because the exit section is of superelliptic type but one can tend towards an increasingly accentuated flatness by increasing the value of said superelliptic exponent N (X).
  • N (X) can be made to evolve between the values 2 and 20, while respecting said evolution curve, which will make it possible to obtain a flatness compatible with the test specifications required for a plasma nozzle.
  • This line is shifted in the direction of the axis X′X by a distance ⁇ and translated from the point of origin E0 of abscissa X0 to the point of origin E1 of abscissa X1, so that the connection curve between the point E0 of line G2 and the point of origin E1 of line G′2 satisfy the equation:
  • F (X) A (X-X1) 4 + B (X-X1) 3 + aX + b - ⁇
  • a and B are constants.
  • the abscissa X0 being determined by the point of tangency between the generatrix of major axis, before shift, and the corresponding circular generatrix of the neck, the values ⁇ , X and X1 are calculated from the above equation so as to ensure the continuity of the first and second derivatives at the point EO as well as the strict monotony of the third derivative between the points E0 and E1.
  • this property of the evolution curve of N (X) is also found at the outlet of the nozzle and that, in general, said variation curve has first and second derivatives substantially zero at both. extreme values of the exponent, being monotonically increasing and presenting an intermediate inflection point.
  • connection zone between the points E0 and E1 is very small compared to the total length of the divergent and of the order of a centimeter and that the superelliptical section of the nozzle, in this connection zone, also satisfies the same equation, stated above, as in the downstream part of the divergent.
  • Nozzles were produced from the above indications having in their outlet section a remarkably homogeneous flow, the relative pressure differences on the flat part 4 remaining less than 1.5%.
  • a first calculation game was carried out using a non-viscous flow code allowing the calculation of the cervix at chemical and vibrational equilibrium and of the divergent, either at equilibrium, or in imbalance, or in condition frozen.
  • the results show that the flow freezes quickly after the cervix for all test conditions.
  • the length of the diverging element while increasing the ratio between the outlet section of the nozzle and the neck section, this ratio being for example between 25 and 45, increasing the slope of the generator G1 which can be between 0.75 ° and 1.3 ° as well as that of the generator G′2 which nevertheless remains less than or equal to 10 °, for example between 6 and 10 °.
  • test pieces 6 namely a static pressure between 7.5 mb and 22 mb and a heat flux between 100 Kw / m2 and 350 Kw / m2 at the wall temperature of 1200 ° K and generating conditions relating to the plasma, namely a reduced enthalpy (Hi / RTo) of between 50 and 135 and a pressure Pi of between 1b and 14b
  • a nozzle having a divergent length of 0.9 m was designed counted from the neck, with, at the exit, a small axis of 0.07 m and a major axis of about 0.35 m, with a generator of small axis G1 having a slope of 1.3 °, a generator of major axis G′2 having a slope of 7.735 °, with an outlet section / neck section ratio equal to 33.9 for a neck section of 7 cm2.
  • FIG. 6 represents (in quarter section) the outlet S′1 of such a nozzle, in S′2 the section of the diverging part corresponding to a ratio of 9.45 with respect to the section of the neck, in S′3 a report section 2 and at S′4 a circular report section 2.8 produced in the converging part of the nozzle.
  • Sections S′1 to S′4 are taken respectively on the abscissa along the X′X axis of the nozzle of 0.90 m, 0.35 m, 0.07 m and -0.02 m.
  • the length of the divergent is not a critical value and depends on the dimensions of the test chamber and the test pieces; on the other hand, the values of the slopes of the generators of small axis and of long axis, as well as the ratio output section / section of neck are values characteristics and determinants of the nozzle according to the invention, as well as of course the equations determining the superelliptic sections of the divergent, including in the zone of connection with the axisymmetric region of the neck.
  • the invention is obviously not limited to the embodiments shown and described above, but on the contrary covers all variants thereof, in particular with regard to the dimensional parameters characteristic of the divergent, in particular the generators of minor axis and of major axis, the length of the diverging portion and the ratio of the outlet section to the section of the neck, which parameters can vary appreciably according to the test specifications in particular, without thereby departing from the scope of the invention.

Abstract

The invention relates to a nozzle with internal profile adapted to high-temperature tests of specimens or the like of "flat plate" type, characterised in that it consists, on the one hand, of an axisymmetric convergent portion (1) and of an axisymmetric throat region (2) and, on the other hand, of a divergent portion (3) with superelliptic cross-section, based on two straight generatrices lying in two perpendicular planes, one the so-called minor axis generatrix (G1), the slope of which is of the order of 1 DEG , and the other the so-called major axis generatrix (G2), the slope of which is of the order of 10 DEG , the downstream ends of the corresponding circular generatrices of the throat region being joined to the said minor axis and major axis generatrices by a curve whose equation is such that the first and second derivatives are continuous and the third derivative is monotonic, with a view to avoiding or reducing problems of recompression and possibly of shock formation. <??>Application in particular to elevated-temperature tests of materials for spacecraft. <IMAGE>

Description

La présente invention a trait à une tuyère dite "haute température" et notamment à plasma, dont le profil interne est spécialement conçu pour permettre les essais du type planche plane d'éprouvettes, en particulier de matériaux devant résister à de fortes sollicitations, notamment thermiques et en pression.The present invention relates to a so-called "high temperature" nozzle and in particular to a plasma nozzle, the internal profile of which is specially designed to allow tests of the flat board type of test tubes, in particular of materials having to withstand high stresses, in particular thermal stresses. and under pressure.

L'invention vise plus particulièrement les essais de matériaux destinés à constituer les parties chaudes d'engins spatiaux appelés à affronter les sévères conditions de rentrée atmosphérique qui se traduisent par des températures élevées (1100 à 1900 °C) et des pressions basses pendant une durée relativement importante (environ une demi-heure).The invention relates more particularly to the testing of materials intended to constitute the hot parts of spacecraft called upon to face the severe conditions of atmospheric reentry which result in high temperatures (1100 to 1900 ° C.) and low pressures for a period of time. relatively large (about half an hour).

Le type d'essai dit "planche plane" consiste à disposer une éprouvette constituée d'un bloc monolithique ou de plusieurs éléments d'un ou plusieurs matériaux à tester, parallèlement au jet issu d'une tuyère et à mesurer en différents points de la paroi de l'éprouvette ou de l'assemblage la pression statique ainsi que la température pour des incidences de la paroi par rapport au jet de la tuyère allant de 0 à quelques degrés.The type of test known as "flat board" consists in placing a test tube made up of a monolithic block or of several elements of one or more materials to be tested, parallel to the jet coming from a nozzle and to be measured at different points of the wall of the specimen or of the assembly the static pressure as well as the temperature for incidences of the wall with respect to the jet of the nozzle ranging from 0 to a few degrees.

Ces essais sont pratiqués à l'aide d'une installation comprenant un générateur de plasma engendrant un écoulement à haute température, une tuyère disposée à l'aval du générateur et transformant l'écoulement pour l'adapter aux conditions d'essais souhaitées, une chambre d'essais dans laquelle débouche la tuyère et où sont installés les dispositifs de présentation des éprouvettes ou analogues ainsi que les divers moyens de mesure indispensables aux essais, un diffuseur à l'aval de la chambre destiné à récupérer l'écoulement après son passage sur les éprouvettes, un échangeur de chaleur pour refroidir l'écoulement et un système de vide à l'aval destiné à maintenir le bas niveau de pression requis, pour ce genre d'essai, dans la chambre.These tests are carried out using an installation comprising a plasma generator generating a flow at high temperature, a nozzle disposed downstream of the generator and transforming the flow to adapt it to the desired test conditions, a test chamber into which the nozzle opens and where are installed the devices for presenting the test pieces or the like as well as the various means of measurement essential for the tests, a diffuser for downstream of the chamber intended to recover the flow after it has passed over the test pieces, a heat exchanger to cool the flow and a vacuum system downstream intended to maintain the low pressure level required, for this type in the room.

La forme particulière des éprouvettes dans les essais en "planche plane" nécessite une tuyère de configuration appropriée comportant un bord d'extrémité aval rectiligne susceptible de se raccorder à l'un des bords rectilignes de l'éprouvette.The particular shape of the test pieces in the "flat board" tests requires a nozzle of appropriate configuration comprising a straight downstream end edge capable of being connected to one of the straight edges of the test piece.

Actuellement, deux types de tuyère sont utilisés pour des essais en "planche plane", à savoir une tuyère dite "tube carré" et une tuyère dite "semi-circulaire".Currently, two types of nozzle are used for tests in "flat board", namely a nozzle called "square tube" and a nozzle called "semi-circular".

La tuyère "tube carré" comporte un divergent dont la section, en sortie, est en fait légèrement rectangulaire avec des angles arrondis, cependant que la tuyère semi-circulaire est une tuyère axisymétrique dont le divergent est réduit de moitié suivant un plan contenant l'axe de la tuyère.The "square tube" nozzle has a divergent whose section, at the outlet, is in fact slightly rectangular with rounded angles, while the semi-circular nozzle is an axisymmetric nozzle whose divergence is reduced by half along a plane containing the axis of the nozzle.

Les essais avec ces types de tuyère ne donnent pas pleinement satisfaction car ces dernières génèrent en sortie un écoulement tourbillonnaire très perturbé incompatible avec la nécessité pour des essais en "planche plane" d'avoir une très bonne homogénéité de l'écoulement du gaz chaud en vue d'obtenir une répartition aussi uniforme que possible des pressions statiques et des flux thermiques sur la face exposée de l'éprouvette.The tests with these types of nozzle are not fully satisfactory because the latter generate at the outlet a very disturbed vortex flow incompatible with the need for tests in "flat board" to have a very good homogeneity of the flow of hot gas in in order to obtain a distribution as uniform as possible of the static pressures and the thermal fluxes on the exposed face of the test piece.

Le but de l'invention est de proposer une tuyère hypersonique destinée à ce type d'essai en "planche plane", c'est-à-dire présentant en sortie une partie plate et apte à délivrer un écoulement tel qu'au moins au droit de ladite partie plate le profil de pression soit le plus uniforme possible.The object of the invention is to propose a hypersonic nozzle intended for this type of test in "flat board", that is to say having at the outlet a flat part and capable of delivering a flow such that at least at right of said flat part the pressure profile is as uniform as possible.

A cet effet, l'invention a pour objet une tuyère à profil interne adapté aux essais à haute température d'éprouvettes ou analogues du type "planche plane", caractérisée en ce qu'elle est constituée, d'une part, d'un convergent et d'une région du col axisymétriques et, d'autre part, d'un divergent de section superelliptique s'appuyant sur deux génératrices rectilignes prises dans deux plans perpendiculaires, l'une, dite de petit axe, dont la pente est de l'ordre de 1° et, l'autre, dite de grand axe, dont la pente est de l'ordre de 10°, les extrémités aval des génératrices circulaires correspondantes de la région du col étant raccordées auxdites génératrices de petit axe et de grand axe par une courbe dont l'équation est telle que les dérivés première et seconde sont continues et la dérivée troisième est monotone, en vue d'éviter ou réduire les problèmes de recompression et éventuellement de formation de chocs.To this end, the subject of the invention is a nozzle with an internal profile suitable for high-temperature tests of test pieces or the like of the "flat board" type, characterized in that it consists, on the one hand, of a converge and of an axisymmetric neck region and, on the other hand, of a divergence of superelliptic section based on two rectilinear generatrices taken in two perpendicular planes, one, called a minor axis, whose slope is around 1 ° and the other, called major axis, whose slope is of the order of 10 °, the downstream ends of the corresponding circular generators of the neck region being connected to said generators of minor and major axes by a curve whose equation is such that the derivatives first and second are continuous and the third derivative is monotonous, in order to avoid or reduce the problems of recompression and possibly of shock formation.

Avantageusement ladite section superelliptique est une courbe d'équation : [Y/R₁(X)]² + [Z/R₂(X)] N(X) = 1

Figure imgb0001

dans laquelle :

  • R₁(x) et R₂(x) sont les distances radiales à l'abscisse X desdites génératrices de petit axe et de grand axe respectivement ;
  • Y et Z sont les coordonnées d'un point du divergent ;
  • N(X) est l'exposant superelliptique, cet exposant présentant une courbe de variation ayant une forme évoluant de façon croissante depuis la valeur 2 jusqu'à une valeur supérieure permettant d'obtenir la planéité recherchée en sortie de tuyère.
Advantageously, said superelliptic section is an equation curve: [Y / R₁ (X)] ² + [Z / R₂ (X)] N (X) = 1
Figure imgb0001

in which :
  • R₁ (x) and R₂ (x) are the radial distances at the abscissa X of said generators of minor axis and major axis respectively;
  • Y and Z are the coordinates of a point of the divergent;
  • N (X) is the superelliptic exponent, this exponent exhibiting a variation curve having a shape progressively increasing from the value 2 to a higher value making it possible to obtain the desired flatness at the nozzle outlet.

L'exposant superelliptique ainsi choisi assure, d'une part, la planéité recherchée en sortie de tuyère et, d'autre part, un bon raccordement entre le divergent et la région du col.The superelliptical exponent thus chosen ensures, on the one hand, the desired flatness at the outlet of the nozzle and, on the other hand, a good connection between the divergent and the neck region.

En vue d'améliorer encore le raccord entre le divergent et la région du col et de s'assurer que le passage de la géométrie axisymétrique du col à la géométrie superelliptique du divergent se fasse avec la plus grande monotonie, en particulier au droit de la génératrice de grand axe, cette dernière est décalée d'une valeur ε et la courbe reliant les extrémités amont de ladite génératrice respectivement avant décalage (E₀) et après décalage (E₁), est déterminée à partir d'un polynôme de degré 4 du type : F(X) = A(X-X₁)⁴ + B(X-X₁)³ + aX + b - ε

Figure imgb0002

dans lequel A et B sont des constantes et aX + b - ε est l'équation de la génératrice de grand axe après décalage, l'origine des abscisses étant comptée à partir du col, la valeur X₀, abscisse de l'extrémité amont de ladite génératrice, avant décalage, étant choisie et les valeurs ε, X et X₁, abscisse de l'extrémité amont de ladite génératrice, après décalage, étant calculées d'après le polynôme ci-dessus, afin d'assurer la continuité des dérivées première et seconde au point E₀ ainsi que la stricte monotonie de la dérivée troisième entre E₀ et E₁.In order to further improve the connection between the diverging part and the neck region and to ensure that the transition from the axisymmetric geometry of the neck to the superelliptic geometry of the diverging part takes place with the greatest monotony, in particular at the level of the generator of major axis, the latter is offset by a value ε and the curve connecting the upstream ends of said generator respectively before offset (E₀) and after offset (E₁), is determined from a degree 4 polynomial of the type : F (X) = A (X-X₁) ⁴ + B (X-X₁) ³ + aX + b - ε
Figure imgb0002

in which A and B are constants and aX + b - ε is the equation of the generator of major axis after shift, the origin of the abscissa being counted from the neck, the value X₀, abscissa of the upstream end of said generator, before shifting, being chosen and the values ε, X and X₁, abscissa of the upstream end of said generator, after shift, being calculated according to the above polynomial, in order to ensure the continuity of the first and second derivatives at the point E₀ as well as the strict monotony of the third derivative between E₀ and E₁.

Il est également important, pour que le passage de la géométrie axisymétrique du col à la géométrie superelliptique du divergent se fasse avec la plus grande monotonie, que ladite courbe de variation de l'exposant superelliptique N(X) présente, en outre, des propriétés de continuité de ses dérivées première et seconde au niveau du raccord avec la surface axisymétrique du col et qu'en particulier au point de raccord E0 les dérivées première et seconde soient nulles.It is also important, so that the transition from the axisymmetric geometry of the neck to the superelliptic geometry of the divergent takes place with the greatest monotony, that said curve of variation of the superelliptic exponent N (X) has, in addition, properties of continuity of its first and second derivatives at the connection with the axisymmetric surface of the neck and that in particular at the connection point E0 the first and second derivatives are zero.

Il est enfin préférable que cette propriété de la courbe d'évolution de N(X) se retrouve également à la sortie de la tuyère et que, d'une manière générale, ladite courbe de variation présente des dérivées première et seconde sensiblement nulles aux deux valeurs extrêmes de l'exposant, en étant monotone croissante et en présentant un point d'inflexion intermédiaire.It is finally preferable that this property of the evolution curve of N (X) is also found at the outlet of the nozzle and that, in general, said variation curve has first and second derivatives substantially zero at both. extreme values of the exponent, being monotonically increasing and presenting an intermediate inflection point.

L'invention permet de réaliser ainsi une tuyère dont la sortie présente deux bords parallèles pratiquement rectilignes raccordés aux extrémités par deux courbes approximativement en forme de demi-ellipses et dans laquelle l'écoulement de sortie présente une grande homogénéité caractérisée par une faible variation de la pression, de l'ordre de 1%, le long de la partie plane.The invention thus makes it possible to produce a nozzle, the outlet of which has two practically rectilinear parallel edges connected at the ends by two curves approximately in the form of half-ellipses and in which the outlet flow has a great homogeneity characterized by a small variation in the pressure, of the order of 1%, along the flat part.

D'autres caractéristiques et avantages ressortiront de la description qui va suivre d'un mode de réalisation d'une tuyère conforme à l'invention, description donnée à titre d'exemple uniquement et en regard des dessins annexés sur lesquels :

  • Figure 1 représente schématiquement une coupe axiale suivant une génératrice de petit axe (demi-coupe inférieure) et une génératrice de grand axe (demi-coupe supérieure) d'une tuyère selon l'invention ;
  • Figure 2 est une vue agrandie du convergent, de la région du col et du début du divergent de la tuyère de la figure 1 ;
  • Figure 3 est une vue en perspective plongeante partielle d'un quart de la tuyère, côté sortie ;
  • Figure 4 est une vue en perspective d'un quart du divergent ;
  • Figure 5 représente trois coupes radiales d'un quart-du divergent de la figure 4 au voisinage de la sortie
  • Figure 6 représente quatre coupes radiales d'un quart d'une autre tuyère selon l'invention, et
  • Figure 7 est un diagramme illustrant le raccordement entre la région du col de la tuyère et le divergent.
Other characteristics and advantages will emerge from the following description of an embodiment of a nozzle according to the invention, description given by way of example only and with reference to the appended drawings in which:
  • Figure 1 schematically shows an axial section along a generator of small axis (lower half-section) and a generator of large axis (upper half-section) of a nozzle according to the invention;
  • Figure 2 is an enlarged view of the convergent, the neck region and the start of the diverging nozzle of Figure 1;
  • Figure 3 is a partial plunging perspective view of a quarter of the nozzle, outlet side;
  • Figure 4 is a perspective view of a quarter of the divergent;
  • Figure 5 shows three radial sections of a quarter of the divergent of Figure 4 in the vicinity of the outlet
  • FIG. 6 represents four radial sections of a quarter of another nozzle according to the invention, and
  • Figure 7 is a diagram illustrating the connection between the region of the nozzle neck and the divergent.

Les figures 1 à 4 illustrent un mode de réalisation d'une tuyère selon l'invention comprenant un convergent conique 1, un col 2 de section circulaire et un divergent 3 très allongé par rapport à la longueur du convergent 1.FIGS. 1 to 4 illustrate an embodiment of a nozzle according to the invention comprising a conical convergent 1, a neck 2 of circular section and a divergent 3 very elongated relative to the length of the convergent 1.

Le divergent présente une section superelliptique s'appuyant sur deux génératrices rectilignes prises dans deux plans perpendiculaires contenant l'axe X′X de la tuyère et constituant deux plans de symétrie de cette dernière.The divergent section has a superelliptic section supported by two rectilinear generators taken in two perpendicular planes containing the axis X′X of the nozzle and constituting two planes of symmetry of the latter.

L'une de ces génératrices, G1, dite de petit axe, se trouve dans un plan dénommé φ = 0° définissant le plan de référence XY de la figure 4, cependant que l'autre génératrice, G2, dite de grand axe, se trouve dans le plan dénommé φ = 90° définissant le plan de référence XZ de ladite figure 4.One of these generators, G1, called the minor axis, is in a plane called φ = 0 ° defining the reference plane XY of FIG. 4, while the other generator, G2, called the major axis, is found in the plane called φ = 90 ° defining the XZ reference plane of said figure 4.

Les figures 3 et 4 sont des visualisations partielles sous forme de maillages de la tuyère des figures 1 et 2.Figures 3 and 4 are partial views in the form of meshes of the nozzle of Figures 1 and 2.

La génératrice G1 présente une pente de l'ordre de 1° par rapport à l'axe X′X, cependant que la génératrice G2 présente une pente de l'ordre de 10°, toujours par rapport à l'axe X′X.The generator G1 has a slope of about 1 ° relative to the axis X′X, while the generator G2 has a slope of the order of 10 °, always relative to the axis X′X.

La section de sortie de la tuyère, dont on peut en voir le quart sur la figure 3, est délimitée par deux bords pratiquement rectilignes et parallèles (un seul étant représenté en partie en 4 sur les figures 3 et 4) raccordés aux extrémités par des courbes sensiblement de type elliptique (5, figures 3 et 4). Par exemple, les deux bords pratiquement rectilignes ont une longueur comprise entre 0,30 et 0,40 m et le petit axe de la section de sortie a une longueur comprise entre 0,05 et 0,08 m.The outlet section of the nozzle, a quarter of which can be seen in FIG. 3, is delimited by two practically rectilinear and parallel edges (only one being partially represented at 4 in FIGS. 3 and 4) connected at the ends by substantially elliptical curves (5, Figures 3 and 4). For example, the two practically straight edges have a length of between 0.30 and 0.40 m and the minor axis of the outlet section has a length of between 0.05 and 0.08 m.

La tuyère est destinée à des essais de flux de chaleur sur des plaques planes dont une est représentée schématiquement en 6 sur la figure 1.The nozzle is intended for heat flow tests on flat plates, one of which is shown diagrammatically at 6 in FIG. 1.

Ces plaques planes sont constituées par des éprouvettes de matériaux à tester où des assemblages, dont la face supérieure est disposée dans le prolongement du bord rectiligne inférieur de sortie de la tuyère, des moyens étant prévus pour donner éventuellement une légère inclinaison de ladite face exposée de la plaque plane 6 par relevage de cette dernière autour du bord contigu à la sortie de la tuyère.These flat plates consist of test pieces of materials to be tested or assemblies, the upper face of which is arranged in the extension of the lower straight edge. nozzle outlet, means being provided to optionally give a slight inclination of said exposed face of the flat plate 6 by lifting the latter around the edge contiguous to the outlet of the nozzle.

Ces plaques planes d'essais ont habituellement une largeur de 30 cm, aussi la longueur du bord rectiligne de sortie 4 de la tuyère doit être d'au moins 30 cm.These flat test plates are usually 30 cm wide, so the length of the straight outlet edge 4 of the nozzle must be at least 30 cm.

Conformément à l'invention, le divergent 3 a été conformé de façon à passer de manière continue d'une géométrie axisymétrique circulaire au niveau du col 2, à une géométrie superelliptique en sortie de tuyère afin d'obtenir un bord de sortie pratiquement rectiligne de longueur suffisante et présentant un profil de pression aussi uniforme que possible.In accordance with the invention, the diverging part 3 has been shaped so as to pass continuously from a circular axisymmetric geometry at the level of the neck 2, to a superelliptic geometry at the nozzle outlet in order to obtain a practically rectilinear outlet edge of sufficient length and with a pressure profile as uniform as possible.

Il a été constaté que l'on obtenait un profil de pression remarquablement uniforme en adoptant, comme courbe du type superellipse d'une section quelconque du divergent 3, une courbe satisfaisant à l'équation : [Y/R₁(x)]² + [z/R₂(X)] N(X) = 1

Figure imgb0003

dans laquelle :

  • R₁(X) et R₂(X) sont les distances radiales, à l'abscisse X prise à partir du col 2, desdites génératrices G1 et G2 ;
  • Y et Z sont les coordonnées d'un point de la section du divergent à l'abscisse X ;
  • N(X) est l'exposant superelliptique.
It has been observed that a remarkably uniform pressure profile is obtained by adopting, as a superellipse type curve of any section of the divergent 3, a curve satisfying the equation: [Y / R₁ (x)] ² + [z / R₂ (X)] N (X) = 1
Figure imgb0003

in which :
  • R₁ (X) and R₂ (X) are the radial distances, at the abscissa X taken from the neck 2, of said generatrices G1 and G2;
  • Y and Z are the coordinates of a point in the section of the divergent at the abscissa X;
  • N (X) is the superelliptic exponent.

Au col 2, l'abscisse X est nulle et R₁(X) = R₂(X) = rayon du col 2, en affectant à N(X) la valeur 2.At neck 2, the abscissa X is zero and R₁ (X) = R₂ (X) = radius of neck 2, assigning the value 2 to N (X).

En faisant ensuite évoluer N(X) de façon croissante vers une valeur élevée, par exemple 10, en l'astreignant à suivre une courbe de variation ayant une forme telle qu'elle présente des dérivées première et seconde sensiblement nulles aux deux valeurs extrêmes de l'exposant, tout en étant monotone croissante en présentant un point d'inflexion intermédiaire, on obtient une section de tuyère qui se déforme continuement pour aboutir en sortie à un profil du type décrit ci-dessus et représenté en figure 3.Then by making N (X) evolve progressively towards a high value, for example 10, by forcing it to follow a variation curve having a shape such that it presents first and second derivatives substantially zero at the two extreme values of the exponent, while being monotonous increasing by presenting an intermediate point of inflection, one obtains a section of nozzle which deforms continuously to result in exit in a profile of the type described above and represented in figure 3.

La figure 5 illustre trois sections de tuyère à trois abscisses différentes du divergent.FIG. 5 illustrates three sections of nozzle at three different abscissa of the divergent.

Les sections S1, S2 et S3 correspondent à un rapport section S1/section du col 2 égal à 30, 25 et 20 respectivement.The sections S1, S2 and S3 correspond to a section S1 / section section of the neck 2 equal to 30, 25 and 20 respectively.

On obtient ainsi en sortie de tuyère une partie 4 pratiquement rectiligne. Cette partie n'est pas rigoureusement rectiligne car la section de sortie est de type superelliptique mais on peut tendre vers une planéité de plus en plus accentuée en augmentant la valeur dudit exposant superelliptique N(X).A virtually straight part 4 is thus obtained at the outlet of the nozzle. This part is not strictly rectilinear because the exit section is of superelliptic type but one can tend towards an increasingly accentuated flatness by increasing the value of said superelliptic exponent N (X).

Dans la pratique, on pourra faire évoluer N(X) entre les valeurs 2 et 20, en respectant ladite courbe d'évolution, ce qui permettra d'obtenir une planéité compatible avec les spécifications des essais requises pour une tuyère à plasma.In practice, N (X) can be made to evolve between the values 2 and 20, while respecting said evolution curve, which will make it possible to obtain a flatness compatible with the test specifications required for a plasma nozzle.

Par ailleurs, pour éviter des problèmes de recompression et éventuellement de formation de chocs immédiatement en aval du col 2, il faut s'assurer, en outre, que le passage de la géométrie axisymétrique du col 2 à la géométrie superelliptique du divergent 3 se fasse avec la plus grande monotonie. En particulier, dans le plan φ = 90° le passage entre la génératrice circulaire du col 2 et la génératrice G2 inclinée à 10° environ s'accompagne d'une discontinuité des dérivées secondes qui pourrait occasionner d'éventuelles recompressions.Furthermore, to avoid problems of recompression and possibly the formation of shocks immediately downstream of the neck 2, it must be ensured, moreover, that the transition from the axisymmetric geometry of the neck 2 to the superelliptic geometry of the diverging part 3 takes place with the greatest monotony. In particular, in the plane φ = 90 ° the passage between the circular generator of the neck 2 and the generator G2 inclined at approximately 10 ° is accompanied by a discontinuity of the second derivatives which could cause possible recompressions.

Pour éviter cela on va, conformément à l'invention, considérer une nouvelle génératrice G′2 décalée de la précédente d'une certaine valeur ε et chercher une courbe F(X) permettant de relier la génératrice circulaire du col à la nouvelle génératrice G′2 tout en assurant la continuité des dérivées première et seconde ainsi que la monotonie de la dérivée troisième.To avoid this, we will, in accordance with the invention, consider a new generator G′2 shifted from the previous one by a certain value ε and seek a curve F (X) making it possible to connect the circular generator of the neck to the new generator G ′ 2 while ensuring the continuity of the first and second derivatives as well as the monotony of the third derivative.

Sur la figure 7 on a représenté en 7 une génératrice circulaire du col 2 raccordée tangentiellement à une droite y = aX + b au point E₀. Cette droite est décalée en direction de l'axe X′X d'une distance ε et translatée du point d'origine E₀ d'abscisse X₀ au point d'origine E₁ d'abscisse X₁, en sorte que la courbe de raccordement entre le point E₀ de la droite G2 et le point d'origine E₁ de la droite G′2 satisfasse à l'équation : F(X) = A(X-X₁)⁴ + B(X-X₁)³ + aX + b - ε

Figure imgb0004
In Figure 7 there is shown at 7 a circular generator of the neck 2 tangentially connected to a line y = aX + b at point E₀. This line is shifted in the direction of the axis X′X by a distance ε and translated from the point of origin E₀ of abscissa X₀ to the point of origin E₁ of abscissa X₁, so that the connection curve between the point E₀ of line G2 and the point of origin E₁ of line G′2 satisfy the equation: F (X) = A (X-X₁) ⁴ + B (X-X₁) ³ + aX + b - ε
Figure imgb0004

Dans cette équation, A et B sont des constantes. L'abscisse X₀ étant déterminée par le point de tangence entre la génératrice de grand axe, avant décalage, et la génératrice circulaire correspondante du col, les valeurs ε , X et X₁ sont calculées à partir de l'équation ci-dessus en sorte d'assurer la continuité des dérivées première et seconde au point EO ainsi que la stricte monotonie de la dérivée troisième entre les points E₀ et E₁.In this equation, A and B are constants. The abscissa X₀ being determined by the point of tangency between the generatrix of major axis, before shift, and the corresponding circular generatrix of the neck, the values ε, X and X₁ are calculated from the above equation so as to ensure the continuity of the first and second derivatives at the point EO as well as the strict monotony of the third derivative between the points E₀ and E₁.

Il est donc préférable de prendre comme génératrice de grand axe la droite G′2 plutôt que la droite G2. Il n'est pas nécessaire par contre-d'effectuer un décalage analogue sur la génératrice de petit axe G1, compte-tenu de sa très faible pente par rapport à l'axe X′X (inférieure ou égale à 1°) qui rend les risques de recompression peu probables.It is therefore preferable to take the line G′2 as the long axis generator rather than the line G2. On the other hand, it is not necessary to effect a similar offset on the generator of minor axis G1, given its very slight slope relative to the axis X′X (less than or equal to 1 °) which makes the risks of recompression unlikely.

Par ailleurs, il est également important, pour que le passage de la géométrie axisymétrique du col à la géométrie superelliptique du divergent se fasse avec la plus grande monotonie, que ladite courbe de variation de l'exposant superelliptique N (X) présente, en outre, des propriétés de continuité de ses dérivées première et seconde au niveau du raccord avec la surface axisymétrique du col et qu'en particulier au point de raccord E₀ les dérivées première et seconde soient nulles.Furthermore, it is also important, so that the transition from the axisymmetric geometry of the neck to the superelliptic geometry of the divergent is made with the greatest monotony, that said variation curve of the superelliptic exponent N (X) has, in addition , continuity properties of its first and second derivatives at the connection with the axisymmetric surface of the neck and that in particular at the connection point E₀ the first and second derivatives are zero.

Il est enfin préférable que cette propriété de la courbe d'évolution de N(X) se retrouve également à la sortie de la tuyère et que, d'une manière générale, ladite courbe de variation présente des dérivées première et seconde sensiblement nulles aux deux valeurs extrêmes de l'exposant, en étant monotone croissante et en présentant un point d'inflexion intermédiaire.It is finally preferable that this property of the evolution curve of N (X) is also found at the outlet of the nozzle and that, in general, said variation curve has first and second derivatives substantially zero at both. extreme values of the exponent, being monotonically increasing and presenting an intermediate inflection point.

C'est ainsi que l'on pourrait prendre, comme courbe de variation de N(X), un polynôme de degré 5 dans la mesure où seraient satisfaites les diverses conditions énoncées ci-dessus.Thus one could take, as the variation curve of N (X), a polynomial of degree 5 insofar as the various conditions set out above are satisfied.

Bien entendu de nombreuses autres fonctions du même type ou d'autres types satisfaisant auxdites conditions fixées pourraient également convenir en assurant les propriétés requises de continuité des dérivées première et seconde desdites fonctions au niveau du raccord (E₀) entre le divergent 3 et la surface axisymétrique du col 2 ainsi qu'à la sortie de la tuyère.Of course, numerous other functions of the same type or of other types satisfying said fixed conditions could also be suitable by ensuring the required properties of continuity of the first and second derivatives of said functions at the connection (E₀) between the divergent 3 and the axisymmetric surface. neck 2 and at the outlet of the nozzle.

Il est à noter que la zone de raccordement entre les points E₀ et E₁ est très réduite par rapport à la longueur totale du divergent et de l'ordre du centimètre et que la section superelliptique de la tuyère, dans cette zone de raccordement, satisfait également à la même équation, énoncée plus haut, que dans la partie aval du divergent.It should be noted that the connection zone between the points E₀ and E₁ is very small compared to the total length of the divergent and of the order of a centimeter and that the superelliptical section of the nozzle, in this connection zone, also satisfies the same equation, stated above, as in the downstream part of the divergent.

On a réalisé à partir des indications ci-dessus des tuyères présentant dans leur section de sortie un écoulement remarquablement homogène, les écarts relatifs de pression sur la partie plane 4 restant inférieurs à 1,5 %.Nozzles were produced from the above indications having in their outlet section a remarkably homogeneous flow, the relative pressure differences on the flat part 4 remaining less than 1.5%.

Divers calculs de simulation ont été effectués et ont permis de vérifier cette excellente homogénéité de l'écoulement.Various simulation calculations have been made and have made it possible to verify this excellent flow homogeneity.

Un premier jeu de calcul a été effectué à l'aide d'un code d'écoulement non visqueux permettant le calcul du col à l'équilibre chimique et vibrationnel et du divergent, soit à l'équilibre, soit en déséquilibre, soit en condition figée. Les résultats montrent que l'écoulement se fige rapidement après le col pour toutes les conditions d'essai.A first calculation game was carried out using a non-viscous flow code allowing the calculation of the cervix at chemical and vibrational equilibrium and of the divergent, either at equilibrium, or in imbalance, or in condition frozen. The results show that the flow freezes quickly after the cervix for all test conditions.

Des calculs tridimensionnels ont été effectués avec le code d'écoulement visqueux dans le cas d'un gaz parfait (γ = 1,4). L'accord avec les calculs monodimensionnels est excellent. L'écoulement dans la section de sortie est très homogène, les écarts relatifs de pression sur la partie plane restant inférieurs à 1,5 %.Three-dimensional calculations were carried out with the viscous flow code in the case of an ideal gas (γ = 1.4). The agreement with one-dimensional calculations is excellent. The flow in the outlet section is very homogeneous, the relative pressure differences on the flat part remaining less than 1.5%.

Des calculs tridimensionnels effectués en écoulement visqueux avec simulation en gaz parfait (γ = 1,2) d'un gaz réel à l'équilibre, conduisent aux mêmes conclusions d'un écoulement peu perturbé et homogène dans la section de sortie (Δ P/P = 1% le long de la partie plane).Three-dimensional calculations carried out in viscous flow with simulation in perfect gas (γ = 1.2) of a real gas at equilibrium, lead to the same conclusions of a slightly disturbed and homogeneous flow in the outlet section (Δ P / P = 1% along the flat part).

Ces calculs visqueux ont été complétés en imposant à l'entrée du convergent un tourbillon initial simulant celui généré par le fonctionnement du générateur de plasma. L'effet du vortex est annulé par l'accélération de la vitesse longitudinale et on retrouve un écoulement très homogène dans le plan de sortie (Δ P/P = 1% le long de la partie plane).These viscous calculations were completed by imposing on the entry of the convergent an initial vortex simulating that generated by the operation of the plasma generator. The effect of the vortex is canceled by the acceleration of the longitudinal speed and there is a very homogeneous flow in the exit plane (Δ P / P = 1% along the flat part).

Des calculs de couche limite turbulente ont complété et confirmé les résultats précédents. Ces calculs ont été effectués pour différentes hypothèses d'écoulement, soit à l'équilibre (γ = 1,2), soit figé (γ= 1,4) et des modélisations plaque plane et axisymétrique.Turbulent boundary layer calculations completed and confirmed the previous results. These computations were carried out for various assumptions of flow, either with the balance (γ = 1,2), or fixed (γ = 1,4) and modelizations plate plane and axisymmetric.

Une comparaison avec l'hypothèse d'une couche limite laminaire plaque plane à l'équilibre, permet de confirmer l'existence d'une couche limite dont l'épaisseur est fonction de l'abscisse X, qui diminue ainsi la section de passage du fluide dans la tuyère, ce qui a pour effet d'augmenter les niveaux de pression et de température dans le noyau non visqueux.A comparison with the hypothesis of a flat plate laminar boundary layer at equilibrium, confirms the existence of a boundary layer whose thickness is a function of the abscissa X, which thus decreases the cross-section of the fluid in the nozzle, which has the effect of increasing the pressure and temperature levels in the non-viscous nucleus.

S'il s'avère que l'épaisseur de la couche limite devient trop importante à la sortie de la tuyère compte-tenu notamment des spécifications d'essais des éprouvettes, il peut être avantageux de réduire la longueur du divergent tout en augmentant le rapport entre la section de sortie de la tuyère et la section du col, ce rapport se situant par exemple entre 25 et 45, en augmentant la pente de la génératrice G1 qui peut se situer entre 0,75° et 1,3° ainsi que celle de la génératrice G′2 laquelle demeure néanmoins inférieure ou égale à 10°, par exemple entre 6 et 10°.If it turns out that the thickness of the boundary layer becomes too great at the outlet of the nozzle, taking into account in particular the test specifications of the test pieces, it may be advantageous to reduce the length of the diverging element while increasing the ratio between the outlet section of the nozzle and the neck section, this ratio being for example between 25 and 45, increasing the slope of the generator G1 which can be between 0.75 ° and 1.3 ° as well as that of the generator G′2 which nevertheless remains less than or equal to 10 °, for example between 6 and 10 °.

Compte-tenu des conditions d'essais des éprouvettes 6, à savoir une pression statique comprise entre 7,5 mb et 22 mb et un flux thermique compris entre 100 Kw/m² et 350 Kw/m² à la température de paroi de 1200°K et des conditions génératrices relatives au plasma, à savoir une enthalpie réduite (Hi/RTo) comprise entre 50 et 135 et une pression Pi comprise entre 1b et 14b, on a conçu une tuyère présentant un divergent d'une longueur de 0,9 m comptée à partir du col, avec, en sortie, un petit axe de 0,07 m et un grand axe d'environ 0,35 m, avec une génératrice de petit axe G1 présentant une pente de 1,3°, une génératrice de grand axe G′2 présentant une pente de 7,735°, avec un rapport section de sortie/section de col égal à 33,9 pour une section de col de 7 cm².Taking into account the test conditions of test pieces 6, namely a static pressure between 7.5 mb and 22 mb and a heat flux between 100 Kw / m² and 350 Kw / m² at the wall temperature of 1200 ° K and generating conditions relating to the plasma, namely a reduced enthalpy (Hi / RTo) of between 50 and 135 and a pressure Pi of between 1b and 14b, a nozzle having a divergent length of 0.9 m was designed counted from the neck, with, at the exit, a small axis of 0.07 m and a major axis of about 0.35 m, with a generator of small axis G1 having a slope of 1.3 °, a generator of major axis G′2 having a slope of 7.735 °, with an outlet section / neck section ratio equal to 33.9 for a neck section of 7 cm².

La figure 6 représente (en quart de section) la sortie S′1 d'une telle tuyère, en S′2 la section du divergent correspondant à un rapport de 9,45 vis à vis de la section du col, en S′3 une section de rapport 2 et en S′4 une section circulaire de rapport 2,8 réalisée dans la partie convergente de la tuyère. Les sections S′1 à S′4 sont prises respectivement à des abscisses le long de l'axe X′X de la tuyère de 0,90 m, 0,35 m, 0,07 m et -0,02 m.FIG. 6 represents (in quarter section) the outlet S′1 of such a nozzle, in S′2 the section of the diverging part corresponding to a ratio of 9.45 with respect to the section of the neck, in S′3 a report section 2 and at S′4 a circular report section 2.8 produced in the converging part of the nozzle. Sections S′1 to S′4 are taken respectively on the abscissa along the X′X axis of the nozzle of 0.90 m, 0.35 m, 0.07 m and -0.02 m.

La longueur du divergent n'est pas une valeur critique et dépend des dimensions de la chambre d'essais et des éprouvettes ; par contre, les valeurs des pentes des génératrices de petit axe et de grand axe, ainsi que le rapport section de sortie/section de col sont des valeurs caractéristiques et déterminantes de la tuyère selon l'invention, ainsi bien entendu que les équations déterminant les sections superelliptiques du divergent, y compris dans la zone de raccordement avec la région axisymétrique du col.The length of the divergent is not a critical value and depends on the dimensions of the test chamber and the test pieces; on the other hand, the values of the slopes of the generators of small axis and of long axis, as well as the ratio output section / section of neck are values characteristics and determinants of the nozzle according to the invention, as well as of course the equations determining the superelliptic sections of the divergent, including in the zone of connection with the axisymmetric region of the neck.

Des essais effectués avec une telle tuyère pour différents couples de conditions génératrices (Pi et Hi/RTo) ont donné une bonne concordance avec les spécifications d'essai imposées, pour ce qui concerne les niveaux de pression obtenus en sortie de tuyère et un niveau satisfaisant pour ce qui concerne les flux de chaleur à la paroi.Tests carried out with such a nozzle for different pairs of generating conditions (Pi and Hi / RTo) gave good agreement with the test specifications imposed, with regard to the pressure levels obtained at the nozzle outlet and a satisfactory level for the heat flows to the wall.

Enfin, l'invention n'est évidemment pas limitée aux modes de réalisation représentés et décrits ci-dessus mais en couvre au contraire toutes les variantes notamment en ce qui concerne les paramètres dimensionnels caractéristiques du divergent, en particulier les génératrices de petit axe et de grand axe, la longueur du divergent et le rapport de la section de sortie à la section du col, lesquels paramètres peuvent varier sensiblement selon les spécifications d'essai notamment, sans sortir pour autant du cadre de l'invention.Finally, the invention is obviously not limited to the embodiments shown and described above, but on the contrary covers all variants thereof, in particular with regard to the dimensional parameters characteristic of the divergent, in particular the generators of minor axis and of major axis, the length of the diverging portion and the ratio of the outlet section to the section of the neck, which parameters can vary appreciably according to the test specifications in particular, without thereby departing from the scope of the invention.

Claims (7)

Tuyère à profil interne adapté aux essais à haute température d'éprouvettes ou analogues du type "planche plane", caractérisée en ce qu'elle est constituée, d'une part, d'un convergent (1) et d'une région du col (2) axisymétriques et, d'autre part, d'un divergent (3) de section superelliptique s'appuyant sur deux génératrices rectilignes prises dans deux plans perpendiculaires, l'une (G1), dite de petit axe, dont la pente est de l'ordre de 1° et, l'autre (G2), dite de grand axe, dont la pente est de l'ordre de 10°, les extrémités aval des génératrices circulaires correspondantes de la région du col étant raccordées auxdites génératrices de petit axe et de grand axe par une courbe dont l'équation est telle que les dérivées première et seconde sont continues et la dérivée troisième est monotone, en vue d'éviter ou réduire les problèmes de recompression et éventuellement de formation de chocs.Nozzle with internal profile suitable for high temperature tests of test pieces or the like of the "flat board" type, characterized in that it consists, on the one hand, of a convergent (1) and of a region of the neck (2) axisymmetric and, on the other hand, a divergent (3) of superelliptic section supported by two rectilinear generators taken in two perpendicular planes, one (G1), called of small axis, whose slope is of the order of 1 ° and the other (G2), said to be of major axis, the slope of which is of the order of 10 °, the downstream ends of the corresponding circular generatrices of the neck region being connected to said generatrices of minor axis and major axis by a curve whose equation is such that the first and second derivatives are continuous and the third derivative is monotonous, in order to avoid or reduce the problems of recompression and possibly of shock formation. Tuyère suivant la revendication 1, caractérisée en ce que ladite section superelliptique est une courbe d'équation : [Y/R₁(X)]² + [Z/R₂(X)] N(X) = 1
Figure imgb0005
dans laquelle : - R₁(X) et R₂(X) sont les distances radiales à l'abscisse X desdites génératrices de petit axe (G1) et de grand axe (G2) respectivement ; - Y et Z sont les coordonnées d'un point du divergent (3); - N(X) est l'exposant superelliptique, cet exposant présentant une courbe de variation ayant une forme évoluant de façon croissante depuis la valeur 2 jusqu'à une valeur supérieure permettant d'obtenir la planéité recherchée en sortie de tuyère.
Nozzle according to claim 1, characterized in that said superelliptic section is an equation curve: [Y / R₁ (X)] ² + [Z / R₂ (X)] N (X) = 1
Figure imgb0005
in which : - R₁ (X) and R₂ (X) are the radial distances at the abscissa X of said generators of minor axis (G1) and major axis (G2) respectively; - Y and Z are the coordinates of a point of the divergent (3); - N (X) is the superelliptic exponent, this exponent having a variation curve having a shape progressively increasing from the value 2 to a higher value making it possible to obtain the desired flatness at the nozzle outlet.
Tuyère suivant la revendication 1 ou 2, caractérisée en ce qu'au moins la génératrice de grand axe est décalée (G′2) d'une valeur ε et la courbe reliant les extrémités amont de ladite génératrice respectivement avant décalage (E₀) et après décalage (E₁) est déterminée à partir d'un polynôme de degré 4 du type : F(X) = A(X-X₁)⁴ + B(X-X₁)³ + aX + b - ε
Figure imgb0006
dans lequel A et B sont des constantes et aX + b - ε est l'équation de la génératrice de grand axe (G′2) après décalage, l'origine des abscisses étant comptée à partir du col (2), la valeur X₀, abscisse de l'extrémité amont de ladite génératrice, avant décalage, étant choisie et les valeurs ε , X et X₁, abscisse de l'extrémité amont de ladite génératrice, après décalage, étant calculées d'après le polynôme ci-dessus, afin d'assurer la continuité des dérivées première et seconde au point E₀ ainsi que la stricte monotonie de la dérivée troisième entre EO et E₁.
Nozzle according to claim 1 or 2, characterized in that at least the generator of major axis is offset (G′2) by a value ε and the curve connecting the upstream ends of said generator respectively before offset (E₀) and after offset (E₁) is determined from a polynomial of degree 4 of the type: F (X) = A (X-X₁) ⁴ + B (X-X₁) ³ + aX + b - ε
Figure imgb0006
in which A and B are constants and aX + b - ε is the equation of the long axis generator (G′2) after shift, the origin of the abscissa being counted from the neck (2), the value X₀ , abscissa of the upstream end of said generator, before shift, being chosen and the values ε, X and X₁, abscissa of the upstream end of said generator, after shift, being calculated according to the above polynomial, so to ensure the continuity of the first and second derivatives at point E₀ as well as the strict monotony of the third derivative between E O and E₁.
Tuyère suivant l'une des revendications 1 à 3, caractérisée en ce que la courbe de variation de l'exposant superelliptique N(X) présente des dérivées première et seconde sensiblement nulles aux deux valeurs extrêmes de l'exposant et étant monotone croissante en comportant un point d'inflexion intermédiaire.Nozzle according to one of claims 1 to 3, characterized in that the variation curve of the superelliptic exponent N (X) has first and second derivatives substantially zero at the two extreme values of the exponent and being monotonically increasing by comprising an intermediate inflection point. Tuyère suivant la revendication 4, caractérisée en ce que la courbe de variation de l'exposant superelliptique N(X) est un polynôme de degré 5.Nozzle according to claim 4, characterized in that the variation curve of the superelliptic exponent N (X) is a polynomial of degree 5. Tuyère suivant l'une des revendications 1 à 5, caractérisée en ce que l'exposant superelliptique varie entre les valeurs 2 et 20.Nozzle according to one of claims 1 to 5, characterized in that the superelliptical exponent varies between the values 2 and 20. Tuyère suivant l'une des revendications 1 à 6, caractérisée par les valeurs dimensionnelles suivantes : - divergent de section superelliptique s'appuyant sur une génératrice de petit axe de pente comprise entre 0,75 et 1,3° et sur une génératrice de grand axe de pente comprise entre 6 et 10°. - rapport de la section de sortie sur la section de col compris entre 25 et 45 ; - section de sortie comprenant deux parties pratiquement rectilignes de longueur comprise entre 0,30 et 0,40 m raccordées par des courbes sensiblement semi-elliptiques, le petit axe de la section de sortie ayant une longueur comprise entre 0,05 et 0,8 m. Nozzle according to one of claims 1 to 6, characterized by the following dimensional values: - divergent superelliptic section based on a generator with a small axis of slope between 0.75 and 1.3 ° and on a generator with a large axis of slope between 6 and 10 °. - ratio of the outlet section to the neck section of between 25 and 45; - outlet section comprising two practically rectilinear parts of length between 0.30 and 0.40 m connected by substantially semi-elliptical curves, the minor axis of the outlet section having a length between 0.05 and 0.8 m.
EP92450006A 1991-05-23 1992-05-20 Nozzle with internal profile adapted to high-temperature flat-bed tests of specimens or the like. Expired - Lifetime EP0515295B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9106423A FR2676816B1 (en) 1991-05-23 1991-05-23 NOZZLE WITH INTERNAL PROFILE SUITABLE FOR HIGH TEMPERATURE TESTING OF TEST PANES OR THE LIKE "PLANE BOARD".
FR9106423 1991-05-23

Publications (2)

Publication Number Publication Date
EP0515295A1 true EP0515295A1 (en) 1992-11-25
EP0515295B1 EP0515295B1 (en) 1996-01-17

Family

ID=9413210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92450006A Expired - Lifetime EP0515295B1 (en) 1991-05-23 1992-05-20 Nozzle with internal profile adapted to high-temperature flat-bed tests of specimens or the like.

Country Status (6)

Country Link
US (1) US5207388A (en)
EP (1) EP0515295B1 (en)
JP (1) JP3155350B2 (en)
CA (1) CA2069250A1 (en)
DE (1) DE69207647T2 (en)
FR (1) FR2676816B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653887C1 (en) * 1996-12-21 1997-10-30 Deutsche Forsch Luft Raumfahrt Extremely high energy gas jet simulating effects of high Mach number on test samples

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189321A (en) * 1961-05-23 1965-06-15 Codeco Ets Nozzle and its applications, especially for the supply of turbines
US3239130A (en) * 1963-07-10 1966-03-08 Cons Vacuum Corp Gas pumping methods and apparatus
US4577461A (en) * 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583726A (en) * 1948-01-26 1952-01-29 Chalom Joseph Aaron Nozzle
FR1156742A (en) * 1956-09-14 1958-05-20 Pillard Chauffage Improvement of liquid fuel burners with mechanical atomization and variable flow rate to increase the magnitude of their flow rate variation
US3130920A (en) * 1961-03-28 1964-04-28 Codeco Nozzle having a converging inlet zone followed by a diverging outlet zone
DE2046415C3 (en) * 1970-09-19 1974-01-17 Sser Griesheim Gmbh, 6000 Frankfurt Cutting torch
DE2626420C3 (en) * 1976-06-12 1979-11-29 Ibm Deutschland Gmbh, 7000 Stuttgart Process for the simultaneous etching of several through holes
US4300723A (en) * 1980-02-29 1981-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled overspray spray nozzle
US4548033A (en) * 1983-06-22 1985-10-22 Cann Gordon L Spacecraft optimized arc rocket
DE3525527A1 (en) * 1985-07-17 1987-01-29 Vsr Eng Foerdertechnik HIGH-SPEED BLOW-OUT NOZZLE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3189321A (en) * 1961-05-23 1965-06-15 Codeco Ets Nozzle and its applications, especially for the supply of turbines
US3239130A (en) * 1963-07-10 1966-03-08 Cons Vacuum Corp Gas pumping methods and apparatus
US4577461A (en) * 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
1969 EUROPEAN MICROWAVE CONFERENCE 1970, IEE, LONDON,UK pages 277 - 280; T. LARSEN: 'SUPERELLIPTIC BROADBAND TRANSITION BETWEEN RECTANGULAR AND CIRCULAR WAVEGUIDES' *
APPLIED MATHEMATICAL MODELLING vol. 7, no. 2, Avril 1983, UK pages 123 - 127; RIZK ET AL.: 'SEMI-ELLIPTIC COMPUTATION OF AN AXISYMMETRIC TRANSONIC NOZZLE FLOW' *
JOURNAL OF AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS vol. 23, no. 10, Octobre 1985, NEW YORK US pages 1497 - 1505; MARCUM ET AL.: 'CALCULATION OF THREE-DIMENSIONAL FLOWFIELDS BY THE UNSTEADY METHOD OF CHARACTERISTICS' *
RECHERCHE AEROSPATIALE no. 5, 9 Octobre 1974, FRANCE pages 261 - 276; FENAIN ET AL.: 'FLOW CALCULATION OF CONVERGENT PROPULSIVE NOZZLES - COMPARISON WITH EXPERIMENT' *

Also Published As

Publication number Publication date
US5207388A (en) 1993-05-04
FR2676816A1 (en) 1992-11-27
CA2069250A1 (en) 1992-11-24
JP3155350B2 (en) 2001-04-09
JPH05187985A (en) 1993-07-27
FR2676816B1 (en) 1993-09-17
DE69207647D1 (en) 1996-02-29
DE69207647T2 (en) 1996-10-02
EP0515295B1 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
EP1936354B1 (en) Apparatus and method for thermo-erosive testing of materials used as thermal shields for solid propellant rockets.
BE1014254A3 (en) TUBULAR STRUCTURE THIN partitioned AND MANUFACTURING METHOD THEREOF.
EP0538930A1 (en) Apparatus for measuring the speed of a flowable medium
FR3080683A1 (en) MEANS OF MEASURING FLUID
FR3046850A1 (en) IMPROVED OPTICAL GUIDE AND OPTICAL SYSTEM COMPRISING SUCH AN OPTICAL GUIDE
FR2764694A1 (en) DEVICE FOR MEASURING NOISE IN A CONDUIT BROUGHT BY A FLUID
EP0515295B1 (en) Nozzle with internal profile adapted to high-temperature flat-bed tests of specimens or the like.
FR2601198A1 (en) FOLDED CARBON GAS LASER
EP1489359A1 (en) Annular combustion chamber for turbomachine
FR2935774A1 (en) High pressure gas e.g. natural gas, cylinder filling device for motor vehicle, has injection head including expansion unit that simultaneously assures supersonic acceleration of gas flow and cooling of gas at level of orifice of cylinder
WO1996006333A1 (en) Ultrasonic device with enhanced acoustic properties for measuring a volume amount of fluid
CH662417A5 (en) CONSTRAINT WAVE TRANSDUCER.
EP1634021A1 (en) Annular combustion chamber for a turbomachine
FR2942037A1 (en) Radiative and convective heat flow measuring device for wall of heating unit, has fluxmeters with upper surfaces covered with respective paint layers, where fluxmeters are placed side-by-side on wall so as to be located in same flux
Pereira Prediction de l'erosion de cavitation: approche energetique
FR3069485A1 (en) PNEUMATIC TIRE WITH TREAD COMPRISING AN EVOLVING SCULPTURE WITH INCISIONS
EP2652484B1 (en) Optical probe for measuring physical and chemical characteristics of a flowing medium
EP0517638B1 (en) Water-film-cooled modular nozzle especially for high-temperature tests of specimens or the like
WO2021084201A1 (en) Equipment and method for depositing particles using laser shockwaves
FR2827318A1 (en) Apparatus for evaluating mechanical resistance of soil has probe containing incompressible liquid linked to hollow cylindrical recipient
Arndt Control of Stationary and Traveling Cross-Flow Modes in a Mach 6 Boundary Layer Using Passive Patterned Roughness and Unsteady Plasma Excitation
EP3066463B1 (en) Item of ultrasonic non-destructive control equipment
EP0019527B1 (en) Alarm triggering device associated with a conduit in which circulates a fluid carrying solid particles with it
EP3658377A1 (en) Method and device for temperature inspection during an additive manufacturing process
EP1403510A1 (en) High pressure fuel injection system with means for pressure wave damping

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE GB IT NL

17P Request for examination filed

Effective date: 19930505

17Q First examination report despatched

Effective date: 19940831

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE GB IT NL

REF Corresponds to:

Ref document number: 69207647

Country of ref document: DE

Date of ref document: 19960229

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960410

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010430

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010531

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020520

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050502

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110525

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *AEROSPATIALE SOC. NATIONALE INDUSTRIELLE

Effective date: 20120520