EP0553608A1 - Detergent compositions inhibiting dye transfer in washing - Google Patents

Detergent compositions inhibiting dye transfer in washing Download PDF

Info

Publication number
EP0553608A1
EP0553608A1 EP92870019A EP92870019A EP0553608A1 EP 0553608 A1 EP0553608 A1 EP 0553608A1 EP 92870019 A EP92870019 A EP 92870019A EP 92870019 A EP92870019 A EP 92870019A EP 0553608 A1 EP0553608 A1 EP 0553608A1
Authority
EP
European Patent Office
Prior art keywords
dye transfer
composition according
metallo
transfer inhibiting
inhibiting composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92870019A
Other languages
German (de)
French (fr)
Other versions
EP0553608B1 (en
Inventor
Christiaan Arthur Jacques Kamiel Thoen
Abdennaceur Fredj
Regine Labeque
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP19920870019 priority Critical patent/EP0553608B1/en
Priority to US08/307,735 priority patent/US5474576A/en
Priority to JP5513361A priority patent/JPH07503278A/en
Priority to TR6993A priority patent/TR26405A/en
Priority to CA 2127096 priority patent/CA2127096C/en
Priority to PCT/US1993/000626 priority patent/WO1993015176A1/en
Priority to PH45615A priority patent/PH30907A/en
Priority to MX9300514A priority patent/MX9300514A/en
Priority to CN 93102396 priority patent/CN1075502A/en
Publication of EP0553608A1 publication Critical patent/EP0553608A1/en
Priority to AU48626/93A priority patent/AU4862693A/en
Application granted granted Critical
Publication of EP0553608B1 publication Critical patent/EP0553608B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0021Dye-stain or dye-transfer inhibiting compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/168Organometallic compounds or orgometallic complexes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/349Organic compounds containing sulfur additionally containing nitrogen atoms, e.g. nitro, nitroso, amino, imino, nitrilo, nitrile groups containing compounds or their derivatives or thio urea
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38654Preparations containing enzymes, e.g. protease or amylase containing oxidase or reductase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/3472Organic compounds containing sulfur additionally containing -COOH groups or derivatives thereof

Definitions

  • the present invention relates to a composition and a process for inhibiting dye transfer between fabrics during washing.
  • Suspended or solubilized dyes can to some degree be oxidized in solution by employing known bleaching agents.
  • GB 2 101 167 describes a stable liquid bleaching composition containing a hydrogen peroxide precursor which is activated to yield hydrogen peroxide on dilution.
  • U.S. Patent 4,077,768 describes a process for inhibiting dye transfer by the use of an oxidizing bleaching agent together with a catalytic compound such as iron porphins.
  • Copending EP Patent Application 91202655.6 filed October 9, 1991, relates to dye transfer inhibiting compositions comprising an enzymatic system capable of generating hydrogen peroxide and porphin catalysts.
  • a dye transfer inhibiting composition which exhibits optimum dye transfer inhibiting properties.
  • the invention provides an efficient process for laundering operations involving colored fabrics.
  • the present invention relates to inhibiting dye transfer compositions comprising :
  • a process is also provided for laundering operations involving colored fabrics.
  • the present invention provides a dye transfer inhibiting composition comprising :
  • the oxidizing agent, hydrogen peroxide is generated in situ by using an enzymatic hydrogen peroxide generation system.
  • the use of an enzymatic hydrogen peroxide generating system allows the continuous generation of low levels of hydrogen peroxide and provides a practical way of controlling a low steady-state level of hydrogen peroxide. Maximum effectiveness occurs when the component levels are such that the hydrogen peroxide is replenished at a rate similar to its removal due to the oxidation of dyes in the wash water.
  • the enzyme used in the present invention is an oxidase.
  • the oxidase is present by 0.1 - 20000 units, preferably 0.5 to 5000 units per gram of the composition. One unit is the amount of enzyme needed to convert 1 ⁇ mole of substrate per minute.
  • Suitable oxidases are urate oxidase, galactose oxidase, alcohol oxidases, amine oxidases, amino acid oxidases, cholesterol oxidase and glucose oxidase, malate oxidase, glycollate oxidase, hexose oxidase, aryl alcohol oxidase, L-gulonolactose oxidase, pyranose oxidase, L-sorbose oxidase, pyridoxine 4-oxidase, 2-2-hydroxyacid oxidase, choline oxidase, ecdysone oxidase.
  • the preferred enzymatic systems are alcohol and aldehyde oxidases, glucose oxidase.
  • the more preferred systems for granular detergent application would have solid alcohols, e.g. glucose whose oxidation is catalysed by glucose oxidase to glucoronic acid with the formation of hydrogen peroxide.
  • solid alcohols e.g. glucose whose oxidation is catalysed by glucose oxidase to glucoronic acid with the formation of hydrogen peroxide.
  • liquid alcohols which could for example, also act as solvents.
  • An example is ethanol/ethanol oxidase.
  • the quantity of oxidase to be employed in compositions according to the invention should be at least sufficient to provide in the wash a constant generation of 0.005 to 10 ppm AvO per minute.
  • this can be achieved at room temperature and at pH 6 to 11, preferentially 7 to 9 with 1-20000 U/l glucose oxidase, 0.005 to 0.5 % glucose under constant aeration in the washing process.
  • the preferred usage range of the catalyst in the wash is 10 ⁇ 8 molar to 10 ⁇ 3 molar, more preferred 10 ⁇ 6 - 10 ⁇ 4 molar.
  • the essential metallo porphin structure may be visualized as indicated in Formula I in the accompanying drawings.
  • Formula I the atom positions of the porphin structure are numbered conventionally and the double bonds are put in conventionally. In other formula, the double bonds have been omitted in the drawings, but are actually present as in I.
  • Preferred metallo porphin structures are those substituted at one or more of the 5, 10, 15 and 20 carbon positions of Formula I (Meso positions), with a phenyl or pyridyl substituent selected from the group consisting of wherein n and m may be 0 or 1; A may be sulfate, sulfonate, phosphate or carboxylate groups; and B is C1-C10 alkyl, polyethoxy alkyl or hydroxy alkyl.
  • Preferred molecules are those in which the substituents on the phenyl or pyridyl groups are selected from the group consisting of -CH3, -C2H5, -CH2CH2CH2SO3-, -CH2--, and -CH2CH(OH)CH2SO3-, - SO3
  • a particularly preferred metallo phorphin is one in which the molecule is substituted at the 5, 10 15, and 20 carbon positions with the substituent
  • This preferred compound is known as metallo tetrasulfonated tetraphenylporphin.
  • the symbol X2 of Formula I represents an anion, preferably OH ⁇ or Cl ⁇ .
  • the compound of Formula I may be substituted at one or more of the remaining carbon positions with C1-C10 alkyl, hydroxyalkyl or oxyalkyl groups.
  • Porphin derivatives also include chlorophyls, chlorines, i.e. isobacterio chlorines and bacteriochlorines.
  • Metallo porphyrin and water-soluble or water-dispersable derivatives thereof have a structure given in formula II.
  • X can be alkyl, alkyl carboxy, alkyl hydroxyl, vinyl, alkenyl, alkyl sulfate, alkylsulfonate, sulfate, sulfonate, aryl.
  • X2 of Formula II represents an anion, preferably OH ⁇ or Cl ⁇ .
  • the symbol X i can be alkyl, alkylcarboxy, alkylhydroxyl, vinyl, alkenyl, alkylsulfate, alkylsulfonate, sulfate, sulfonate.
  • Metallo phthalocyanine and derivatives have the structure indicated in Formula III, wherein the atom positions of the phthalocyanine structure are numbered conventionally.
  • the anionic groups in the above structures contain cations selected from the group consisting of sodium and potassium cations or other non-interfering cations which leave the structures water-soluble.
  • Preferred phthalocyanine derivatives are metallo phthalocyanine trisulfonate and metallo phthalocyanine tetrasulfonate.
  • Another form of substitution possible for the present invention is substitution of the central metal by Fe, Mn, Co Rh, Cr, Ru, Mo or other transition metals.
  • the choice of the substituent groups can be used to control the solubility of the catalyst in water or in detergent solutions. Yet again, especially where it is desired to avoid attacking dyes attached to solid surfaces, the substituents can control the affinity of the catalyst compound for the surface.
  • strongly negatively charged substituted compounds for instance the tetrasulfonated porphin, may be repelled by negatively charged stains or stained surfaces and are therefore most likely not to cause attack on fixed dyes, whereas the cationic or zwitterionic compounds may be attracted to, or at least not repelled by such stained surfaces.
  • the dye transfer inhibiting benefits can be optimized by adding small amounts of catalyst stabilizers.
  • catalyst e.g. metallo porphins are susceptible to self-destruction.
  • the level of catalyst should be such that sufficient active catalyst is present to bleach the dyes throughout the total wash cycle.
  • the stability of metallo catalyst used in the present invention is improved by adding amine base catalyst stabilizers capable of binding the 5th ligand of the central atom in the metallo porphin structure.
  • Preferred heterocyclic compounds suitable for the present invention are imidazole compounds of the formula : wherein Y is hydrogen or oxygen or a C1-C12 alkyl, R i , R1 and R2 are selected independently hydrogen or C1-C30 alkyl or alkenyl groups, and X is selected from the group of : ⁇ R3 ⁇ ⁇ R3 ⁇ O ⁇ wherein R3 is a C1-C5 alkanediyl group, or is with n being an integer from 0 to 10, and m is an integer from 0 to 2, n+m>1, and R4 being a C1 ⁇ 4 alkyl group or hydrogen.
  • imidazole derivatives including histidine, purines, hipoxanthine, imidazolidicarboxylic acid, histamine, polyhistidine, alkylated imidazole.
  • heterocyclic compounds suitable for the present invention are pyridine and alkylated pyridines and derivatives thereof, pyrole and derivatives thereof.
  • Non heterocyclic compounds capable of binding the 5th ligand of the central atom in the porphin structure are suitable for the present invention.
  • non heterocyclic compounds include non heterocyclic amines, having the formula (C2H5)3N, C3H7NH2, (C6H11)2NH, 1,5 - diazabicyclo[4.3.0]non-5-ene.
  • the catalyst stabilizers of the present invention reduce the deposition of the porphin catalyst onto the fabric, resulting in better whiteness maintenance of white fabrics. Also, it has been found that the addition of the catalyst stabilizers mentioned hereinabove not only results in less self-destruction of the structure but also results in less deposition of oxidized or non oxidized porphin.
  • the rate of dye oxidation by the porphin catalyst is greatly enhanced by the presence of the said catalyst stabilizers. This results in an increased dye bleaching.
  • the amine base catalyst stabilizer is present in a molar ratio of iron porphin to amine base catalyst from 1:1 to 1:5000, preferably from 1:1 to 1:2500.
  • the present compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations.
  • the present invention also encompasses dye transfer inhibiting compositions which will contain detergent ingredients and thus serve as detergent compositions.
  • a wide range of surfactants can be used in the detergent compositions.
  • anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
  • Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C12-C18 fatty source preferably from a C16-C18 fatty source.
  • the cation is an alkali metal, preferably sodium.
  • Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
  • alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and C14 ⁇ 15 alkyl sulphates.
  • the cation in each instance is again an alkali metal cation, preferably sodium.
  • One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
  • HLB hydrophilic-lipophilic balance
  • the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C9-C15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C14-C15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C12-C14 primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
  • Nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
  • nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula wherein R1 is H, or R1 is C1 ⁇ 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R2 is C5 ⁇ 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R1 is methyl
  • R2 is a straight C11 ⁇ 15 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • the compositions according to the present invention may further comprise a builder system.
  • Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid.
  • phosphate builders can also be used herein. Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na2Si2O5).
  • Suitable polycarboxylates builders for use herein include citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is C10-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents.
  • lauryl succinate myristyl succinate, palmityl succinate2-dodecenylsuccinate, 2-tetradecenyl succinate.
  • Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
  • suitable polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US 4,663,071.
  • suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as the corresponding soaps. Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain.
  • the preferred unsaturated fatty acid is oleic acid.
  • Another preferred builder system for liquid compositions is based on dodecenyl succinic acid.
  • Preferred builder systems for use in granular compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
  • Other builder materials that can form part of the builder system for use in granular compositions for the purposes of this invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-1,596,756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
  • compositions of the present invention should be free from conventional bleaching agents.
  • Other components used in detergent compositions may be employed, such as suds boosting or depressing agents, enzymes and stabilizers or activators therefore, soil-suspending agents soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and perfumes.
  • soil-suspending agents soil-release agents such as soil-suspending agents soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and perfumes.
  • enzyme technologies which also provide a type of color care benefit. Examples are cellulase for color maintenance/rejuvenation.
  • These components, particularly the enzymes, optical brighteners, coloring agents, and perfumes should preferably be chosen such that they are compatible with the bleach component of the composition.
  • the detergent compositions according to the invention can be in liquid, paste or granular forms.
  • Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l; in such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt.
  • the present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • the process comprises contacting fabrics with a laundering solution as hereinbefore described.
  • the process of the invention is conveniently carried out in the course of the washing process.
  • the washing process is preferably carried out at 5°C to 90°C, especially 20 to 60, but the catalysts are effective at up to 95°C.
  • the pH of the treatment solution is preferably from 7 to 11, especially from 7.0 to 9.0.
  • the process and compositions of the invention can also be used as additive during laundry operations.
  • composition A A detergent solution (100mL) containing dyes (40 ppm final concentration), glucose (0.1% by weight) and a ferric tetrasulfonated tetraphenylporphin catalyst (1 x 10 ⁇ 5 M) was prepared and its pH value adjusted to 8.0.
  • Composition B A detergent solution (100mL) containing dyes (40 ppm final concentration), glucose (0.1% by weight), and ferric tetrasulfonated tetraphenylporphin catalyst (2.5 x 10 ⁇ 6 M) and imidazole (10 mM) was prepared and its pH value adjusted to pH 8.0.
  • the absorbance spectrum was recorded (350-750 nm). This region encompasses the wavelength maximum of the dyes (as noted in the table below) and the Soret band of the catalyst (414 nm). Glucose oxidase (final concentration 0.1U/mL) was then added to the stirred solution to initiate the reaction. After 30 min the absorbance spectrum was recorded and the decrease in the absorbance maximum of the dyes noted. Blank experiments indicated that no oxidation of the dyes occurred over the same period in the absence of catalyst or glucose oxidase.
  • the stability of different porphyrins and phthalocyanines was determined in the presence of imidazole as amine base catalyst.
  • a detergent solution (100mL) of glucose (0.1% by weight) and different metallo catalysts (10 x 10 ⁇ 5 M) was prepared and the pH adjusted to 8.0.
  • different levels of glucose oxidase were added.
  • the destruction of the catalyst was measured in each case by quantifying the decrease in absorption of the Soret band (414 nm). The catalyst destruction was compared with and without imidazole at different time intervals.
  • FeTPPS ferric tetrasulfonated tetraphenylporphin catalyst
  • a liquid dye transfer inhibiting composition according to the present invention is prepared, having the following compositions : % Linear alkylbenzene sulfonate 10 Alkyl sulphate 4 Fatty alcohol (C12-C15) ethoxylate 12 Fatty acid 10 Oleic acid 4 Citric acid 1 NaOH 3.4 Propanediol 1.5 Ethanol 5 Ethanoloxidase 5 u/ml Ferric tetrasulfonated tetraphenylporphin 0.1 imidazole 3 Minors up to 100
  • a compact granular dye transfer inhibiting composition according to the present invention is prepared, having the following formulation: % Linear alkyl benzene sulphonate 11.40 Tallow alkyl sulphate 1.80 C45 alkyl sulphate 3.00 C45 alcohol 7 times ethoxylated 4.00 Tallow alcohol 11 times ethoxylated 1.80 Dispersant 0.07 Silicone fluid 0.80 Trisodium citrate 14.00 Citric acid 3.00 Zeolite 32.50 Maleic acid actylic acid copolymer 5.00 DETMPA 1.00 Cellulase (active protein) 0.03 Alkalase/BAN 0.60 Lipase 0.36 Sodium silicate 2.00 Sodium sulphate 3.50 Ferric tetrasulfonated tetraphenylporphin 0.025 Glucose 10.00 Glucose oxidase 100 u/ml imidazole 3 Minors up to 100

Abstract

A dye transfer inhibiting compositions are disclosed, comprising:
  • A. an metallo catalyst selected from
    • a) metallo porphin and water-soluble or water-dispersable derivatives thereof;
    • b) metallo porphyrin and water-soluble or water-dispersable derivatives thereof;
    • c) metallo phthalocyanine and water-soluble or water-dispersable derivatives thereof;
  • B. an amine base catalyst stabilizer capable of binding to the 5th ligand of the metallo catalyst.
  • C. an enzymatic system capable of generating hydrogen peroxide.

Description

    Field of the Invention
  • The present invention relates to a composition and a process for inhibiting dye transfer between fabrics during washing.
  • Background of the Invention
  • One of the most persistent and troublesome problems arising during modern fabric laundering operations is the tendency of some colored fabrics to release dye into the laundering solutions. The dye is then transferred onto other fabrics being washed therewith.
  • One way of overcoming this problem would be to bleach the fugitive dyes washed out of dyed fabrics before they have the opportunity to become attached to other articles in the wash.
  • Suspended or solubilized dyes can to some degree be oxidized in solution by employing known bleaching agents.
  • GB 2 101 167 describes a stable liquid bleaching composition containing a hydrogen peroxide precursor which is activated to yield hydrogen peroxide on dilution.
  • However it is important at the same time not to bleach the dyes actually remaining on the fabrics, that is, not to cause color damage.
  • U.S. Patent 4,077,768 describes a process for inhibiting dye transfer by the use of an oxidizing bleaching agent together with a catalytic compound such as iron porphins.
  • Copending EP Patent Application 91202655.6 filed October 9, 1991, relates to dye transfer inhibiting compositions comprising an enzymatic system capable of generating hydrogen peroxide and porphin catalysts.
  • It has now been found that certain amine base catalyst stabilizers when added to said enzymatic dye transfer inhibiting compositions enhances the overall performance of said compositions.
    The addition of said catalyst stabilizers reduces the rate of self-destruction of the porphin catalyst resulting in improved through-the-wash stability of the porphin catalyst.
    Also, improved whiteness benefits are obtained in the presence of catalyst stabilizers, due to a substantial reduction in the amount of porphin catalyst deposited onto the fabrics.
    Furthermore, it has been found that said catalyst stabilizers accelerate the oxidation reactivity of the porphin catalyst thereby increasing the rate of the dye bleaching.
  • Accordingly, a dye transfer inhibiting composition is provided which exhibits optimum dye transfer inhibiting properties.
  • According to another embodiment, the invention provides an efficient process for laundering operations involving colored fabrics.
  • Summary of the Invention
  • The present invention relates to inhibiting dye transfer compositions comprising :
    • A. a metallo catalyst selected from
      • a) metallo porphin and water-soluble or water-dispersable derivatives thereof;
      • b) metallo porphyrin and water-soluble or water-dispersable derivatives thereof;
      • c) metallo phthalocyanine and water-soluble or water-dispersable derivatives thereof;
    • B. an amine base catalyst stabilizer capable of binding to the 5th ligand of the metallo catalyst.
    • C. an enzymatic system capable of generating hydrogen peroxide.
  • According to another embodiment of this invention a process is also provided for laundering operations involving colored fabrics.
  • Detailed description of the invention
  • The present invention provides a dye transfer inhibiting composition comprising :
    • A. a metallo catalyst selected from
      • a) metallo porphin and water-soluble or water-dispersable derivatives thereof;
      • b) metallo porphyrin and water-soluble or water-dispersable derivatives thereof;
      • c) metallo phthalocyanine and water-soluble or water-dispersable derivatives thereof;
    • B. an amine base catalyst stabilizer capable of binding to the 5th ligand of the metallo catalyst.
    • C. an enzymatic system capable of generating hydrogen peroxide.
    The Hydrogen Peroxide Precursor
  • The oxidizing agent, hydrogen peroxide is generated in situ by using an enzymatic hydrogen peroxide generation system.
  • The use of an enzymatic hydrogen peroxide generating system allows the continuous generation of low levels of hydrogen peroxide and provides a practical way of controlling a low steady-state level of hydrogen peroxide. Maximum effectiveness occurs when the component levels are such that the hydrogen peroxide is replenished at a rate similar to its removal due to the oxidation of dyes in the wash water.
    The enzyme used in the present invention is an oxidase.
    The oxidase is present by 0.1 - 20000 units, preferably 0.5 to 5000 units per gram of the composition. One unit is the amount of enzyme needed to convert 1 µmole of substrate per minute.
  • Suitable oxidases are urate oxidase, galactose oxidase, alcohol oxidases, amine oxidases, amino acid oxidases, cholesterol oxidase and glucose oxidase, malate oxidase, glycollate oxidase, hexose oxidase, aryl alcohol oxidase, L-gulonolactose oxidase, pyranose oxidase, L-sorbose oxidase, pyridoxine 4-oxidase, 2-2-hydroxyacid oxidase, choline oxidase, ecdysone oxidase.
  • The preferred enzymatic systems are alcohol and aldehyde oxidases, glucose oxidase.
  • The more preferred systems for granular detergent application would have solid alcohols, e.g. glucose whose oxidation is catalysed by glucose oxidase to glucoronic acid with the formation of hydrogen peroxide.
  • The more preferred systems for liquid detergent application would involve liquid alcohols which could for example, also act as solvents. An example is ethanol/ethanol oxidase.
  • The quantity of oxidase to be employed in compositions according to the invention should be at least sufficient to provide in the wash a constant generation of 0.005 to 10 ppm AvO per minute. For example, with the glucose oxidase , this can be achieved at room temperature and at pH 6 to 11, preferentially 7 to 9 with 1-20000 U/l glucose oxidase, 0.005 to 0.5 % glucose under constant aeration in the washing process.
  • Metallo catalyst
  • The preferred usage range of the catalyst in the wash is 10⁻⁸ molar to 10⁻³ molar, more preferred 10⁻⁶ - 10⁻⁴ molar.
  • The essential metallo porphin structure may be visualized as indicated in Formula I in the accompanying drawings. In Formula I the atom positions of the porphin structure are numbered conventionally and the double bonds are put in conventionally. In other formula, the double bonds have been omitted in the drawings, but are actually present as in I.
  • Preferred metallo porphin structures are those substituted at one or more of the 5, 10, 15 and 20 carbon positions of Formula I (Meso positions), with a phenyl or pyridyl substituent selected from the group consisting of
    Figure imgb0001

    wherein n and m may be 0 or 1; A may be sulfate, sulfonate, phosphate or carboxylate groups; and B is C₁-C₁₀ alkyl, polyethoxy alkyl or hydroxy alkyl.
  • Preferred molecules are those in which the substituents on the phenyl or pyridyl groups are selected from the group consisting of
    -CH₃, -C₂H₅, -CH₂CH₂CH₂SO₃-, -CH₂--, and -CH₂CH(OH)CH₂SO₃-, - SO₃
  • A particularly preferred metallo phorphin is one in which the molecule is substituted at the 5, 10 15, and 20 carbon positions with the substituent
    Figure imgb0002

       This preferred compound is known as metallo tetrasulfonated tetraphenylporphin. The symbol X¹ is (=CY-) wherein each Y, independently, is hydrogen, chlorine, bromine or meso substituted alkyl, cycloalkyl, aralkyl, aryl, alkaryl or heteroaryl.
  • The symbol X² of Formula I represents an anion, preferably OH⁻ or Cl⁻. The compound of Formula I may be substituted at one or more of the remaining carbon positions with C₁-C₁₀ alkyl, hydroxyalkyl or oxyalkyl groups.
    Figure imgb0003

       Porphin derivatives also include chlorophyls, chlorines, i.e. isobacterio chlorines and bacteriochlorines.
  • Metallo porphyrin and water-soluble or water-dispersable derivatives thereof have a structure given in formula II.
    Figure imgb0004

    where X can be alkyl, alkyl carboxy, alkyl hydroxyl, vinyl, alkenyl, alkyl sulfate, alkylsulfonate, sulfate, sulfonate, aryl.
  • The symbol X² of Formula II represents an anion, preferably OH⁻ or Cl⁻.
  • The symbol Xi can be alkyl, alkylcarboxy, alkylhydroxyl, vinyl, alkenyl, alkylsulfate, alkylsulfonate, sulfate, sulfonate.
  • Metallo phthalocyanine and derivatives have the structure indicated in Formula III, wherein the atom positions of the phthalocyanine structure are numbered conventionally. The anionic groups in the above structures contain cations selected from the group consisting of sodium and potassium cations or other non-interfering cations which leave the structures water-soluble. Preferred phthalocyanine derivatives are metallo phthalocyanine trisulfonate and metallo phthalocyanine tetrasulfonate.
    Figure imgb0005

       Another form of substitution possible for the present invention is substitution of the central metal by Fe, Mn, Co Rh, Cr, Ru, Mo or other transition metals.
  • Still a number of considerations are significant in selecting variants of or substituents in the basic porphin or azaporphin structure. In the first place, one would choose compounds which are available or can be readily synthesized.
  • Beyond this, the choice of the substituent groups can be used to control the solubility of the catalyst in water or in detergent solutions. Yet again, especially where it is desired to avoid attacking dyes attached to solid surfaces, the substituents can control the affinity of the catalyst compound for the surface. Thus, strongly negatively charged substituted compounds, for instance the tetrasulfonated porphin, may be repelled by negatively charged stains or stained surfaces and are therefore most likely not to cause attack on fixed dyes, whereas the cationic or zwitterionic compounds may be attracted to, or at least not repelled by such stained surfaces.
  • Amine base catalyst stabilizer
  • The dye transfer inhibiting benefits can be optimized by adding small amounts of catalyst stabilizers.
    It is well known in art that catalyst e.g. metallo porphins are susceptible to self-destruction. As a result of said selfdestruction, the level of catalyst should be such that sufficient active catalyst is present to bleach the dyes throughout the total wash cycle.
    It has now been found that the stability of metallo catalyst used in the present invention is improved by adding amine base catalyst stabilizers capable of binding the 5th ligand of the central atom in the metallo porphin structure. Preferred heterocyclic compounds suitable for the present invention are imidazole compounds of the formula :
    Figure imgb0006

    wherein Y is hydrogen or oxygen or a C₁-C₁₂ alkyl, Ri, R₁ and R₂ are selected independently hydrogen or C₁-C₃₀ alkyl or alkenyl groups, and X is selected from the group of :
    Figure imgb0007
    Figure imgb0008

    ―R₃―
    ―R₃―O―
    wherein R₃ is a C₁-C₅ alkanediyl group, or is
    Figure imgb0009

    with n being an integer from 0 to 10, and m is an integer from 0 to 2, n+m>1, and R₄ being a C₁₋₄ alkyl group or hydrogen. Most preferred are imidazole derivatives including histidine, purines, hipoxanthine, imidazolidicarboxylic acid, histamine, polyhistidine, alkylated imidazole.
  • Other heterocyclic compounds suitable for the present invention are pyridine and alkylated pyridines and derivatives thereof, pyrole and derivatives thereof.
  • Non heterocyclic compounds capable of binding the 5th ligand of the central atom in the porphin structure are suitable for the present invention.
  • These non heterocyclic compounds include non heterocyclic amines, having the formula (C₂H₅)₃N, C₃H₇NH₂, (C₆H₁₁)₂NH, 1,5 - diazabicyclo[4.3.0]non-5-ene.
    Second, the catalyst stabilizers of the present invention reduce the deposition of the porphin catalyst onto the fabric, resulting in better whiteness maintenance of white fabrics.
    Also, it has been found that the addition of the catalyst stabilizers mentioned hereinabove not only results in less self-destruction of the structure but also results in less deposition of oxidized or non oxidized porphin.
  • Furthermore, it has been found that the rate of dye oxidation by the porphin catalyst is greatly enhanced by the presence of the said catalyst stabilizers. This results in an increased dye bleaching.
    The amine base catalyst stabilizer is present in a molar ratio of iron porphin to amine base catalyst from 1:1 to 1:5000, preferably from 1:1 to 1:2500.
  • The present compositions are conveniently used as additives to conventional detergent compositions for use in laundry operations.
    The present invention also encompasses dye transfer inhibiting compositions which will contain detergent ingredients and thus serve as detergent compositions.
  • DETERGENT INGREDIENTS
  • A wide range of surfactants can be used in the detergent compositions. A typical listing of anionic, nonionic, ampholytic and zwitterionic classes, and species of these surfactants, is given in US Patent 3,664,961 issued to Norris on May 23, 1972.
  • Mixtures of anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1. Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C₁₂-C₁₈ fatty source preferably from a C₁₆-C₁₈ fatty source. In each instance the cation is an alkali metal, preferably sodium. Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6. Examples of preferred alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and C₁₄₋₁₅ alkyl sulphates. The cation in each instance is again an alkali metal cation, preferably sodium.
  • One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5. The hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C₉-C₁₅ primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C₁₄-C₁₅ primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C₁₂-C₁₄ primary alcohols containing 3-5 moles of ethylene oxide per mole of alcohol.
  • Another class of nonionic surfactants comprises alkyl polyglucoside compounds of general formula



            RO (CnH2nO)tZx



    wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides. Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
  • Also suitable as nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula
    Figure imgb0010

    wherein R¹ is H, or R¹ is C₁₋₄ hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R² is C₅₋₃₁ hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R¹ is methyl, R² is a straight C₁₁₋₁₅ alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
    The compositions according to the present invention may further comprise a builder system. Any conventional builder system is suitable for use herein including aluminosilicate materials, silicates, polycarboxylates and fatty acids, materials such as ethylenediamine tetraacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pentamethylenephosphonic acid. Though less preferred for obvious environmental reasons, phosphate builders can also be used herein.
    Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeolite A, X, B or HS.
    Another suitable inorganic builder material is layered silicate, e.g. SKS-6 (Hoechst). SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na₂Si₂O₅).
    Suitable polycarboxylates builders for use herein include citric acid, preferably in the form of a water-soluble salt, derivatives of succinic acid of the formula R-CH(COOH)CH2(COOH) wherein R is C10-20 alkyl or alkenyl, preferably C12-16, or wherein R can be substituted with hydroxyl, sulfo sulfoxyl or sulfone substituents. Specific examples include lauryl succinate , myristyl succinate, palmityl succinate2-dodecenylsuccinate, 2-tetradecenyl succinate. Succinate builders are preferably used in the form of their water-soluble salts, including sodium, potassium, ammonium and alkanolammonium salts.
    Other suitable polycarboxylates are oxodisuccinates and mixtures of tartrate monosuccinic and tartrate disuccinic acid such as described in US 4,663,071.
    Especially for the liquid execution herein, suitable fatty acid builders for use herein are saturated or unsaturated C10-18 fatty acids, as well as the corresponding soaps. Preferred saturated species have from 12 to 16 carbon atoms in the alkyl chain. The preferred unsaturated fatty acid is oleic acid. Another preferred builder system for liquid compositions is based on dodecenyl succinic acid.
    Preferred builder systems for use in granular compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid.
    Other builder materials that can form part of the builder system for use in granular compositions for the purposes of this invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.
    Other suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
    Polymers of this type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • Detergency builder salts are normally included in amounts of from 10% to 80% by weight of the composition preferably from 20% to 70% and most usually from 30% to 60% by weight.
  • The compositions of the present invention should be free from conventional bleaching agents. Other components used in detergent compositions may be employed, such as suds boosting or depressing agents, enzymes and stabilizers or activators therefore, soil-suspending agents soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and perfumes. Especially preferred are combinations with enzyme technologies which also provide a type of color care benefit. Examples are cellulase for color maintenance/rejuvenation.
    These components, particularly the enzymes, optical brighteners, coloring agents, and perfumes, should preferably be chosen such that they are compatible with the bleach component of the composition.
    The detergent compositions according to the invention can be in liquid, paste or granular forms. Granular compositions according to the present invention can also be in "compact form", i.e. they may have a relatively higher density than conventional granular detergents, i.e. from 550 to 950 g/l; in such case, the granular detergent compositions according to the present invention will contain a lower amount of "inorganic filler salt", compared to conventional granular detergents; typical filler salts are alkaline earth metal salts of sulphates and chlorides, typically sodium sulphate; "compact" detergents typically comprise not more than 10% filler salt.
  • The present invention also relates to a process for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
  • The process comprises contacting fabrics with a laundering solution as hereinbefore described.
  • The process of the invention is conveniently carried out in the course of the washing process. The washing process is preferably carried out at 5°C to 90°C, especially 20 to 60, but the catalysts are effective at up to 95°C. The pH of the treatment solution is preferably from 7 to 11, especially from 7.0 to 9.0.
  • The process and compositions of the invention can also be used as additive during laundry operations.
  • The following examples are meant to exemplify compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention, said scope being determined according to claims which follow.
  • Example 1 Homogeneous dye bleaching
  • The extent of dye oxidation was compared between a composition containing imidazole as amine base catalyst and a system without amine base catalyst.
    Composition A: A detergent solution (100mL) containing dyes (40 ppm final concentration), glucose (0.1% by weight) and a ferric tetrasulfonated tetraphenylporphin catalyst (1 x 10⁻⁵ M) was prepared and its pH value adjusted to 8.0.
    Composition B: A detergent solution (100mL) containing dyes (40 ppm final concentration), glucose (0.1% by weight), and ferric tetrasulfonated tetraphenylporphin catalyst (2.5 x 10⁻⁶ M) and imidazole (10 mM) was prepared and its pH value adjusted to pH 8.0.
  • Test method :
  • The absorbance spectrum was recorded (350-750 nm). This region encompasses the wavelength maximum of the dyes (as noted in the table below) and the Soret band of the catalyst (414 nm).
    Glucose oxidase (final concentration 0.1U/mL) was then added to the stirred solution to initiate the reaction. After 30 min the absorbance spectrum was recorded and the decrease in the absorbance maximum of the dyes noted.
    Blank experiments indicated that no oxidation of the dyes occurred over the same period in the absence of catalyst or glucose oxidase.
    Dyes CI # % destruction of dye
    lmax COMP A COMP B
    Acid Blue 9 42000 630 nm 13 53
    Direct blue 98 23155 570 nm 62 90
    Direct blue 120 34090 570 nm 50 83
    Acid blue 113 26360 595 nm 39 95
    FD&C Red 40 16035 500 nm 0 30
    Acid Yellow 40 18950 440 nm 0 30

    Conclusion : Even though a lower level of iron porphin catalyst is present in composition B, dyes are oxidized to a much bigger extent compared to composition A containing 4 times the iron porphin catalyst level.
  • Example 2 Stability of the metallo catalysts
  • The stability of different porphyrins and phthalocyanines was determined in the presence of imidazole as amine base catalyst.
    A detergent solution (100mL) of glucose (0.1% by weight) and different metallo catalysts (10 x 10⁻⁵ M) was prepared and the pH adjusted to 8.0. To initiate the reaction, different levels of glucose oxidase were added. The destruction of the catalyst was measured in each case by quantifying the decrease in absorption of the Soret band (414 nm).
    The catalyst destruction was compared with and without imidazole at different time intervals.
    Figure imgb0011
  • Example 3 Deposition of FeTPPS
  • A 50 mM borate buffer solution (pH 8.0) of ferric tetrasulfonated tetraphenylporphin catalyst (FeTPPS) (10⁻⁵ M, 10 ppm by weight) was prepared. The FeTPPS deposition was studied as follows: a knitted cotton fabric (14g) was soaked in the FeTPPS solution (100 mL) for 15 min. At the end the fabric was removed and the water squeezed out of it. A solution sample (2 mL) was taken before and after soaking. The concentration of FeTPPS in the solution was determined spectrophotometrically from the 2 ml sample by observing the absorbance peak at 414 nm (characteristic of the FeTPPS Soret band).
    This experimental procedure was repeated with and without imidazole (10 mM).
    solution % Porphyrin left in solution
    FeTPPS only 50
    FeTPPS+Imidazole 84

    Conclusion : The presence of imidazole strongly reduces the tendency of FeTPPS to deposit onto fabrics.
  • Example IV
  • A liquid dye transfer inhibiting composition according to the present invention is prepared, having the following compositions :
    %
    Linear alkylbenzene sulfonate 10
    Alkyl sulphate 4
    Fatty alcohol (C₁₂-C₁₅) ethoxylate 12
    Fatty acid 10
    Oleic acid 4
    Citric acid 1
    NaOH 3.4
    Propanediol 1.5
    Ethanol 5
    Ethanoloxidase 5 u/ml
    Ferric tetrasulfonated tetraphenylporphin 0.1
    imidazole 3
    Minors up to 100
  • Example V
  • A compact granular dye transfer inhibiting composition according to the present invention is prepared, having the following formulation:
    %
    Linear alkyl benzene sulphonate 11.40
    Tallow alkyl sulphate 1.80
    C₄₅ alkyl sulphate 3.00
    C₄₅ alcohol 7 times ethoxylated 4.00
    Tallow alcohol 11 times ethoxylated 1.80
    Dispersant 0.07
    Silicone fluid 0.80
    Trisodium citrate 14.00
    Citric acid 3.00
    Zeolite 32.50
    Maleic acid actylic acid copolymer 5.00
    DETMPA 1.00
    Cellulase (active protein) 0.03
    Alkalase/BAN 0.60
    Lipase 0.36
    Sodium silicate 2.00
    Sodium sulphate 3.50
    Ferric tetrasulfonated tetraphenylporphin 0.025
    Glucose 10.00
    Glucose oxidase 100 u/ml
    imidazole 3
    Minors up to 100

Claims (23)

  1. A dye transfer inhibiting composition comprising:
    A. a metallo catalyst selected from
    a) metallo porphin and water-soluble or water-dispersable derivatives thereof;
    b) metallo porphyrin and water-soluble or water-dispersable derivatives thereof;
    c) metallo phthalocyanine and water-soluble or water-dispersable derivatives thereof;
    B. an amine base catalyst stabilizer capable of binding the 5th ligand of the metallo catalyst.
    C. an enzymatic system capable of generating hydrogen peroxide.
  2. A dye transfer inhibiting compositions according to claim 1 wherein said amine base catalyst stabilizer is selected from imidazole and derivates thereof.
  3. A dye transfer inhibiting composition according to claim 1 wherein said amine base catalyst stabilizer is selected from pyridine and its derivatives thereof.
  4. A dye transfer inhibiting composition according to claim 1-3 wherein said enzymatic system comprises an oxidase and as a substrate an alcohol, an aldehyde or a combination of both.
  5. A dye transfer inhibiting composition according to claim 1-4, containing a metallo porphin derivative, wherein said iron porphin is substituted on at least one of its meso positions with a phenyl or pyridyl substituent selected from the group consisting of
    Figure imgb0012
    wherein n and m may be 0 or 1, A is selected from the group consisting of sulfate, sulfonate, phosphate, and carboxylate groups, and B is selected from the group consisting of C₁-C₁₀ alkyl, C₁-C₁₀ polyethoxyalkyl and C₁-C₁₀ hydroxyalkyl.
  6. A dye transfer inhibiting composition according to claim 5 wherein the substituents on the phenyl or pyridyl groups are selected from the group consisitng of -CH₃, -C₂H₅, - CH₂CH₂CH₂SO₃-, -CH₂COO-, -CH₂C-H(OH)CH₂SO₃-, and -SO₃.
  7. A dye transfer inhibiting composition according to claims 1-4, containing a metallo porphin derivative, wherein said metallo porphin is substituted on at least one of its meso positions with a phenyl substituent selected from the group consisting of
    Figure imgb0013
    wherein X¹ is (=CY-) wherein each Y, independently, is hydrogen, chlorine, bromine or meso substituted alkyl, cycloalkyl, aralkyl, aryl, alkaryl or heteroaryl.
  8. A dye transfer inhibiting composition according to claim 7 wherein the catalyst compound is metallo tetrasulfonated tetraphenylporphin.
  9. A dye transfer inhibiting composition according to claim 1 wherein the metallo of said metallo catalyst is substituted by Fe, Mn, Co, or other transition metals.
  10. A dye transfer inhibiting composition according to claim 1 wherein the concentration of metallo catalyst is from 10⁻⁸ to 10⁻³ molar, preferably from 10⁻⁶ to 10⁻⁴ molar.
  11. A dye transfer inhibiting composition according to claim 4 wherein the oxidase is present by 0.1 - 20000 units, preferably 0.5 to 5000 units per gram of the composition.
  12. A dye transfer inhibiting composition according to claim 4 wherein said substrate is glucose.
  13. A dye transfer inhibiting composition according to claim 4 wherein said substrate consists of a C₁-C₆ alcohol.
  14. A dye transfer inhibiting composition according to claim 10 wherein said substrate is ethanol.
  15. A dye transfer inhibiting composition according to claim 3 in which the substrate is present from 0.1 to 50% by weight of the composition.
  16. A dye transfer inhibiting composition according to claim 1 which yields hydrogen peroxide at a concentration from 0.005 to 10 ppm/min in the wash process.
  17. A dye transfer inhibiting composition according to claim 1 wherein said catalyst stabilizer is present in a molair ratio of iron porphin to amine base catalyst from 1:1 to 1:5000, preferably from 1:1 to 1:2500.
  18. A dye transfer inhibiting composition according to claims 1-17 which is a detergent additive, in the form of a non-dusting granule or a liquid.
  19. A detergent composition which comprises a dye transfer inhibiting composition according to any of the preceding claims further comprising enzymes, surfactants, builders, and other conventional detergent ingredients.
  20. A process for inhibiting dye transfer between fabrics during laundering operations involving colored fabrics, said process comprising contacting said fabrics with a laundering solution containing a dye transfer inhibition composition according to claims 1-19.
  21. A process for inhibiting dye transfer according to claim 20 which is carried out at a temperature in the range of from 5°C to 90°C.
  22. A process for inhibiting dye transfer according to claims 20-21 wherein the pH of the bleaching bath is from 7 to 11.
  23. A process for inhibiting dye transfer according to claim 22 wherein the pH of the bleaching bath is from 7 to 9.
EP19920870019 1992-01-31 1992-01-31 Detergent compositions inhibiting dye transfer in washing Expired - Lifetime EP0553608B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP19920870019 EP0553608B1 (en) 1992-01-31 1992-01-31 Detergent compositions inhibiting dye transfer in washing
JP5513361A JPH07503278A (en) 1992-01-31 1993-01-22 A detergent composition containing a catalyst, an amine stabilizer, and a peroxide-generating enzyme and inhibiting dye migration.
TR6993A TR26405A (en) 1992-01-31 1993-01-22 DETERGENT COMPOSITIONS THAT PREVENT DYEING THROUGH WASH
CA 2127096 CA2127096C (en) 1992-01-31 1993-01-22 Detergent compositions inhibiting dye transfer containing a catalyst, amine stabilizer and peroxide generating enzyme
PCT/US1993/000626 WO1993015176A1 (en) 1992-01-31 1993-01-22 Detergent compositions inhibiting dye transfer containing a catalyst, amine stabilizer and peroxide generating enzyme
US08/307,735 US5474576A (en) 1992-01-31 1993-01-22 Detergent compositions inhibiting dye transfer in washing
PH45615A PH30907A (en) 1992-01-31 1993-01-26 Detergent compositions inhibiting dye transfer in washing.
MX9300514A MX9300514A (en) 1992-01-31 1993-01-29 DETERGENT COMPOSITIONS THAT INHIBIT THE TRANSFER OF DYE DURING LAUNDRY.
CN 93102396 CN1075502A (en) 1992-01-31 1993-01-30 The detergent composition of dye transfer when suppressing washing
AU48626/93A AU4862693A (en) 1992-01-31 1993-09-28 Detergent compositions inhibiting dye transfer in washing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19920870019 EP0553608B1 (en) 1992-01-31 1992-01-31 Detergent compositions inhibiting dye transfer in washing

Publications (2)

Publication Number Publication Date
EP0553608A1 true EP0553608A1 (en) 1993-08-04
EP0553608B1 EP0553608B1 (en) 1998-06-17

Family

ID=8212238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920870019 Expired - Lifetime EP0553608B1 (en) 1992-01-31 1992-01-31 Detergent compositions inhibiting dye transfer in washing

Country Status (8)

Country Link
EP (1) EP0553608B1 (en)
JP (1) JPH07503278A (en)
CN (1) CN1075502A (en)
AU (1) AU4862693A (en)
CA (1) CA2127096C (en)
MX (1) MX9300514A (en)
PH (1) PH30907A (en)
TR (1) TR26405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593406A1 (en) * 1992-10-13 1994-04-20 The Procter & Gamble Company Non-aqueous liquid detergent compositions
WO1998054282A1 (en) * 1997-05-26 1998-12-03 Henkel Kommanditgesellschaft Auf Aktien Bleaching system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922111B (en) * 2010-09-14 2012-05-09 东华大学 Low-temperature activating and bleaching method by using water-soluble metalloporphyrin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077768A (en) * 1975-06-20 1978-03-07 The Procter & Gamble Company Inhibiting dye transfer in washing or bleaching
EP0308101A1 (en) * 1987-09-08 1989-03-22 Texaco Development Corporation Preparation of tertiary butyl alcohol
EP0369678A2 (en) * 1988-11-11 1990-05-23 Unilever Plc Bleach composition
US4978799A (en) * 1989-10-30 1990-12-18 Texaco Chemical Company Production of detergent range alcohols and ketones using porphyrin catalysts
WO1991005839A1 (en) * 1989-10-13 1991-05-02 Novo Nordisk A/S Dye transfer inhibition
EP0384503B1 (en) * 1989-02-22 1995-06-28 Unilever N.V. Metallo-porphyrins for use as bleach catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077768A (en) * 1975-06-20 1978-03-07 The Procter & Gamble Company Inhibiting dye transfer in washing or bleaching
EP0308101A1 (en) * 1987-09-08 1989-03-22 Texaco Development Corporation Preparation of tertiary butyl alcohol
EP0369678A2 (en) * 1988-11-11 1990-05-23 Unilever Plc Bleach composition
EP0384503B1 (en) * 1989-02-22 1995-06-28 Unilever N.V. Metallo-porphyrins for use as bleach catalyst
WO1991005839A1 (en) * 1989-10-13 1991-05-02 Novo Nordisk A/S Dye transfer inhibition
US4978799A (en) * 1989-10-30 1990-12-18 Texaco Chemical Company Production of detergent range alcohols and ketones using porphyrin catalysts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593406A1 (en) * 1992-10-13 1994-04-20 The Procter & Gamble Company Non-aqueous liquid detergent compositions
WO1998054282A1 (en) * 1997-05-26 1998-12-03 Henkel Kommanditgesellschaft Auf Aktien Bleaching system
US6479450B1 (en) 1997-05-26 2002-11-12 Henkel Kommanditgesellschaft Auf Aktien Bleaching system

Also Published As

Publication number Publication date
MX9300514A (en) 1994-07-29
AU4862693A (en) 1994-07-07
TR26405A (en) 1995-03-15
EP0553608B1 (en) 1998-06-17
CA2127096C (en) 1998-04-14
JPH07503278A (en) 1995-04-06
CN1075502A (en) 1993-08-25
PH30907A (en) 1997-12-23
CA2127096A1 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
US5445651A (en) Detergent compositions inhibiting dye transfer in washing
EP0538228A1 (en) Detergent compositions inhibiting dye transfer in washing
US5474576A (en) Detergent compositions inhibiting dye transfer in washing
EP0603931A2 (en) Liquid laundry detergents containing stabilized glucose/glucose oxidase as hydrogen peroxide generation system
CN1130400A (en) Detergent composition for inhibiting dye transfer
US5759981A (en) Process for treating textiles and compositions therefor
EP0553607B1 (en) Detergent compositions inhibiting dye transfer in washing
EP0688859A1 (en) A process for treating textiles and compositions therefore
WO1995031526A1 (en) Dye transfer inhibiting compositions with specifically selected metallo catalysts
EP0553608B1 (en) Detergent compositions inhibiting dye transfer in washing
EP0596184B1 (en) Detergent compositions inhibiting dye transfer
US5560858A (en) Dye transfer inhibiting compositions containing a metallocatalyst, a bleach and polyamine N-oxide polymer
US5908821A (en) Dye transfer inhibiting compositions with specifically selected metallo catalysts
WO1993015176A1 (en) Detergent compositions inhibiting dye transfer containing a catalyst, amine stabilizer and peroxide generating enzyme
EP0596187A1 (en) Detergent compositions inhibiting dye transfer in washing
EP0596186A1 (en) Detergent compositions inhibiting dye transfer in washing
IE922733A1 (en) Detergent compositions inhibiting dye transfer in washing
JPH07503276A (en) A detergent composition containing a catalyst, a polymer, and a peroxide-generating enzyme and inhibiting dye migration

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19940114

17Q First examination report despatched

Effective date: 19950108

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): GB

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031211

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050131