EP0624885B1 - Câble utilisable dans le domaine des télécommunications - Google Patents

Câble utilisable dans le domaine des télécommunications Download PDF

Info

Publication number
EP0624885B1
EP0624885B1 EP94400998A EP94400998A EP0624885B1 EP 0624885 B1 EP0624885 B1 EP 0624885B1 EP 94400998 A EP94400998 A EP 94400998A EP 94400998 A EP94400998 A EP 94400998A EP 0624885 B1 EP0624885 B1 EP 0624885B1
Authority
EP
European Patent Office
Prior art keywords
cable
composite material
cable according
conductive polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94400998A
Other languages
German (de)
English (en)
Other versions
EP0624885A1 (fr
Inventor
Lydie Robert
Alain Le Mehaute
Frederic Heliodore
Stanislas Galaj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexans France SAS
Original Assignee
Alcatel Cable SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Cable SA filed Critical Alcatel Cable SA
Publication of EP0624885A1 publication Critical patent/EP0624885A1/fr
Application granted granted Critical
Publication of EP0624885B1 publication Critical patent/EP0624885B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors

Definitions

  • the present invention relates to a cable more particularly intended for use in the field of telecommunications where the useful signal transported is of low energy.
  • the cables ensuring the connection between the various systems carry a useful signal which can be continuous or alternating, but also conduct electromagnetic disturbances of variable frequencies, frequencies which are higher and higher with the increase in information rates.
  • the main solution adopted is the filtering of these disturbances by localized elements; these are placed at the entry of each system to be protected or at the exit of the systems generating the disturbances.
  • this method has the drawback of increasing the cost of the systems, of increasing the size of the system, and does not prevent the cables from serving as antennas.
  • the object of the present invention is to provide a link having intrinsically the property of absorbing electromagnetic disturbances generated by electronic components or links in telecommunication systems.
  • the object of the present invention is a cable intended for use in the field of telecommunications, of coaxial structure, consisting of a metallic core surrounded at least two layers, one of which is a layer of dielectric material, characterized in that the other layer, placed between said core and said layer of dielectric material over at least part of the length of the cable, is a layer of semiconductor composite material comprising an insulating matrix and a non-doped conductive polymer with conjugate connections, said cable thus becoming a cable intrinsically filtering the electromagnetic disturbances which it conducts in the frequency range below 1 GHz.
  • the composite material has the property of absorbing the electromagnetic disturbances conducted by the metallic core of the cable. This property is nonlinear as a function of the frequency of the disturbance.
  • the electromagnetic disturbances are not attenuated for certain frequency values which correspond to the bandwidth of the layer of composite material.
  • the layer of composite material is arranged over at least part of the length of the cable. It can be arranged over the entire length of the cable or only on certain sections.
  • the dielectric material and the insulating matrix of the layer of composite material are preferably chosen to be different in order to limit the diffusion of the polymer in the dielectric material.
  • the undoped conductive polymer is chosen from an electronic conductive polymer, an ionic conductive polymer, a zwitterionic conductive polymer, and a ferro-magnetic polymer such as, for example, a copolymer of aniline and naphthalene.
  • the electronic conductive polymer is chosen from polymers and copolymers based on aniline, thiophene, pyrolle, fullerene (zero-dimensional crystallized carbon), phenylene-vinylene, phenylene sulfide, isothionaphthene , and their derivatives.
  • the zwitterionic conductive polymer is chosen from polymers and copolymers based on sulfobetaine and its derivatives.
  • the proportion of the polymer is greater than 5% by volume of the composite material.
  • the optimum level of charge of the polymer in the matrix is located near the percolation threshold. This threshold depends on the nature of the polymer used; in most cases it is greater than 20%. When the charge rate increases until reaching the percolation threshold, the attenuation of disturbances is more and more effective. Beyond this threshold, the gain in attenuation is much lower.
  • the composite material also contains a conductive additive chosen from a doped or self-doped polymer, a filler of carbon black, and a metallic filler.
  • the additive is introduced at a rate of less than 10% by volume of composite material.
  • the thickness of the layer of composite material is 0.1 to 2 times the thickness of the layer of dielectric material. Below this value the absorption is insufficient, beyond this any increase in thickness has no effect. The higher this thickness ratio, the better the attenuation.
  • the metallic core of the cable is surrounded by several layers of composite materials of different composition and / or thickness, and these layers of composite material are covered with at least one layer of dielectric material.
  • each of the layers of composite material can be arranged over the entire length of the cable or else only on certain sections.
  • the thickness of each of the layers can be identical or different over the length of the cable.
  • the electromagnetic disturbances are absorbed in a frequency range which depends on the nature of the polymer and the thickness of the layer of material. composite.
  • the variation in thickness makes it possible to act on the relaxation phenomena (modification of the resistance and the linear capacity of the layer) and therefore to move the passband of the filter cable.
  • each of the layers of composite material being defined by its thickness, by the nature and the proportion of the polymer which composes it, the superposition of several layers of different characteristics makes it possible to adjust the bandwidth of the cable to requirements.
  • Such a cable is intended to be used in the field of telecommunications.
  • This type of cable is more particularly advantageous in applications of low or medium voltages (less than 100 Volts), where the frequency of the electromagnetic disturbances conducted varies between 100 kHz and 1 GHz.
  • FIG. 1 shows an example of the structure of a cable according to the invention: a layer of semiconductor composite material 1, of thickness 0.6 mm, and a layer of dielectric material 2, of thickness 2 mm, surround concentrically with the central metal core 3 of the cable, with an external diameter of 1.38 mm.
  • the mass return of the coaxial structure is ensured by a metal braid 4.
  • the cable is produced by coextrusion. Cable protection and structure cohesion are provided by a heat-shrinkable sheath 5.
  • the dielectric material is conventionally a low density polyethylene ("LLDPE ATO5600” from ATOCHEM) without peroxide. This material behaves in the frequency range considered (100 kHz to 1 GHz) as a perfect dielectric.
  • a cable with a structure similar to that shown in FIG. 1 is produced using a conventional semiconductor layer based on carbon black as composite material.
  • the material consists of an insulating matrix based on a copolymer of ethylene and acrylate. butyl EBA and a charge of acetylene black in a proportion of 25% by volume.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material comprises an insulating matrix which is a copolymer of ethylene and vinyl acetate EVA ("ELVAX 260"), containing 26% vinyl acetate which promotes the sealing strength, and a load of dedicated polythiophene in a proportion of 30% by volume.
  • the EVA matrix different from the dielectric material, was chosen because it has a high admissible charge rate and an extrusion temperature compatible with the charges envisaged.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a deduced polyaniline filler in a proportion of 30% in volume.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 3 of FIG. 2.
  • the attenuation is -3dB at a frequency of 30MHz and -10dB at a frequency of 100MHz
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of ferro-magnetic copolymer of aniline and naphthalene in a proportion of 30% by volume.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 4 in FIG. 2.
  • the attenuation is -3dB at a frequency of 10MHz.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of non-doped ionic conductive polymer in a proportion 20% by volume.
  • This polymer is obtained by mixing a solution based on alkaline cation K + and polyoxyethylene (-CH 2 -CH 2 -O-) n . Polyoxyethylene complexes the K + ion which ensures the conductivity of the polymer obtained.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 5 of FIG. 3.
  • the attenuation is -3dB at a frequency of 30MHz.
  • a cable is produced according to the invention of structure similar to that shown in Figure 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 5% of zwitterions in molecular state.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 6 of FIG. 3.
  • the attenuation is -3dB at a frequency of 20MHz.
  • a cable is produced according to the invention of structure similar to that shown in Figure 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a charge of conductive polymer dedoped in a proportion of 30 % by volume and 10% PVDF.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 7 of FIG. 3.
  • the attenuation is -3dB at a frequency of 7MHz.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a fullerene charge in a proportion of 25% in volume.
  • grafted fullerenes for example bromophenylfulleroids, nitroso compounds of fullerenes, copolymers of fullerenes (in particular xylylene), and metallofullerenes.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 5% of doped polythiophene.
  • the measurement of the attenuation of the signal as a function of the frequency is given on curve 8 of FIG. 4.
  • the attenuation is -3dB at a frequency of 50 MHz.
  • a cable is produced according to the invention with a structure similar to that shown in FIG. 1.
  • the composite material similar to that described in Example 2, comprises an EVA insulating matrix and a load of deduced polythiophene in a proportion of 30% by volume and 10% of doped polythiophene.
  • the measurement of the signal attenuation as a function of the frequency is given on curve 9 of FIG. 4.
  • the attenuation is -3dB at a frequency of 40MHz.
  • the cable can be coated externally with one or more additional layers such as an electromagnetic shielding layer, a layer of colored material intended for identification, a flame-retardant protective layer, etc.
  • additional layers such as an electromagnetic shielding layer, a layer of colored material intended for identification, a flame-retardant protective layer, etc.

Description

  • La présente invention concerne un câble plus particulièrement destiné à être utilisé dans le domaine des télécommunications où le signal utile transporté est de faible énergie.
  • Les câbles assurant la liaison entre les différents systèmes véhiculent un signal utile pouvant être continu ou alternatif, mais conduisent également des perturbations électromagnétiques de fréquences variables, fréquences de plus en plus élevées avec l'augmentation des débits d'information.
  • La protection des systèmes électroniques vis à vis des perturbations électromagnétiques conduites par les liaisons est devenue indispensable pour assurer un bon fonctionnement dans un environnement électromagnétique pollué, voire pour éviter des destructions car les composants électroniques travaillent avec des niveaux de tension de plus en plus faibles (par exemple, EP-A-0 190 939).
  • Dans l'état actuel de la situation, la principale solution retenue est le filtrage de ces perturbations par des éléments localisés; ceux-ci sont placés à l'entrée de chaque système à protéger ou bien à la sortie des systèmes générant les perturbations. Mais cette méthode a pour inconvénient d'augmenter le coût des systèmes, d'accroître l'encombrement du système, et ne permet pas d'éviter que les câbles servent d'antennes.
  • La présente invention a pour but de procurer une liaison possédant intrinsèquement la propriété d'absorber les perturbations électromagnétiques générées par les composants électroniques ou les liaisons dans les systèmes de télécommunication.
  • L'objet de la présente invention est un câble destiné à être utilisé dans le domaine des télécommunications, de structure coaxiale, constitué d'une âme métallique entourée d'au moins deux couches dont l'une est une couche de matériau diélectrique, caractérisé par le fait que l'autre couche, placée entre ladite âme et ladite couche de matériau diélectrique sur au moins une partie de la longueur du câble, est une couche de matériau composite semi-conducteur comprenant une matrice isolante et un polymère conducteur non dopé à liaisons conjuguées, ledit câble devenant ainsi un câble filtrant intrinsèquement les perturbations électromagnétiques qu'il conduit dans la gamme de fréquences inférieures à 1GHZ.
  • Le matériau composite a la propriété d'absorber les perturbations électromagnétiques conduites par l'âme métallique du câble. Cette propriété est non linéaire en fonction de la fréquence de la perturbation. Les perturbations électromagnétiques ne sont pas atténuées pour certaines valeurs de fréquence qui correspondent à la bande passante de la couche de matériau composite.
  • La couche de matériau composite est disposée sur au moins une partie de la longueur du câble. Elle peut être disposée sur toute la longueur du câble ou bien seulement sur certains tronçons.
  • Le matériau diélectrique et la matrice isolante de la couche de matériau composite sont de préférence choisis de nature différente afin de limiter la diffusion du polymère dans le matériau diélectrique
  • Le polymère conducteur non dopé est choisi parmi un polymère conducteur électronique, un polymère conducteur ionique, un polymère conducteur zwitterionique, et un polymère ferro-magnétique comme par exemple un copolymère de l'aniline et du naphtalène.
  • De préférence, le polymère conducteur électronique est choisi parmi les polymères et les copolymères à base d'aniline, de thiophène, de pyrolle, de fullérène (carbone cristallisé de zéro dimension), de phénylène-vinylène, de phénylène-sulfide, d'isothionaphtène, et de leurs dérivés.
  • De préférence, le polymère conducteur zwitterionique est choisi parmi les polymères et les copolymères à base de sulfobêtaïne et de ses dérivés.
  • La proportion du polymère est supérieure à 5% en volume du matériau composite. L'optimum du taux de charge du polymère dans la matrice se situe au voisinage du seuil de percolation. Ce seuil dépend de la nature du polymère utilisé; dans la plupart des cas, il est supérieur 20%. Lorsque le taux de charge augmente jusqu'à atteindre le seuil de percolation, l'atténuation des perturbations est de plus en plus efficace. Au-delà de ce seuil, le gain en atténuation beaucoup plus faible.
  • Selon une variante, le matériau composite contient en outre un additif conducteur choisi parmi un polymère dopé ou autodopé, une charge de noir de carbone, et une charge métallique. L'additif est introduit à un taux inférieur à 10% en volume de matériau composite.
  • L'épaisseur de la couche de matériau composite est de 0,1 à 2 fois l'épaisseur de la couche de matériau diélectrique. En dessous de cette valeur l'absorption est insuffisante, au-delà tout accroissement d'épaisseur est sans effet. Plus ce rapport des épaisseurs est élevé, meilleure sera l'atténuation.
  • Selon une variante de réalisation, l'âme métallique du câble est entourée de plusieurs couches de matériaux composites de composition et/ou d'épaisseur différente, et ces couches de matériau composite sont recouvertes d'au moins une couche de matériau diélectrique.
  • Indépendamment, chacune des couches de matériau composite peut être disposée sur toute la longueur du câble ou bien seulement sur certains tronçons. L'épaisseur de chacune des couches peut être identique ou différente sur la longueur du câble.
  • Les perturbations électromagnétiques sont absorbées dans un domaine de fréquences qui dépend de la nature du polymère et de l'épaisseur de la couche de matériau composite. La variation d'épaisseur permet d'agir sur les phénomènes de relaxation (modification de la résistance et de la capacité linéique de la couche) et donc de déplacer la bande passante du câble filtrant.
  • Les conditions d'absorption de chacune des couches de matériau composite étant définies par son épaisseur, par la nature et la proportion du polymère qui la compose, la superposition de plusieurs couches de caractéristiques différentes permet d'ajuster aux besoins la bande passante du câble.
  • Un tel câble est destiné à être utilisé dans le domaine des télécommunications. Ce type de câble est plus particulièrement avantageux dans des applications de faibles ou moyennes tensions (inférieures à 100 Volts), où la fréquence des perturbations électromagnétiques conduites varie entre 100kHz et 1GHz.
  • Les câbles filtrants selon l'invention possèdent en outre d'autres avantages en terme de compatibilité électromagnétique:
    • ils réduisent les couplages entre câbles en absorbant les tensions parasites,
    • ils possèdent un meilleur comportement en émission de perturbations rayonnées puisqu'ils filtrent les courants parasites haute fréquence.
  • L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture des exemples qui vont suivre, donnés à titre illustratif et non limitatif, accompagnés des dessins annexés parmi lesquels:
    • la figure 1 représente un exemple de structure d'un câble selon l'invention,
    • la figure 2 montre l'atténuation des perturbations électromagnétiques en fonction de la fréquence pour différents matériaux composites,
    • la figure 3 est analogue à la figure 2 pour d'autres matériaux,
    • la figure 4 est analogue à la figure 2 pour des matériaux contenant du polythiophène dédopé et dopé.
  • Sur les figures 2 à 4, l'atténuation a en décibels (dB) est donnée en ordonné, et en abcisse la fréquence F en Hertz (Hz).
  • Sur la figure 1 est représenté un exemple de structure d'un câble selon l'invention: une couche de matériau composite semi-conducteur 1, d'épaisseur 0,6mm, et une couche de matériau diélectrique 2, d'épaisseur 2mm, entourent de façon concentrique l'âme centrale métallique 3 du câble, de diamètre externe 1,38mm. Le retour de masse de la structure coaxiale est assuré par une tresse métallique 4.
  • La couche de matériau composite 1 n'est pas reliée à la masse ce qui empêche toute circulation de courant perturbateur dans cette couche. Par ailleurs, l'épaisseur de peau dans la gamme de fréquences considérée (δ=1,6.10-2m à 200MHz) est largement supérieure à l'épaisseur de la couche de matériau composite, ce qui réduit le phénomène d'absorption de perturbations extérieures. Par conséquent en terme d'efficacité de blindage, l'action de la couche de matériau composite semi-conducteur est inefficace.
  • La réalisation du câble est faite par coextrusion. La protection du câble et la cohésion de la structure sont assurées par une gaine thermorétractable 5.
  • Le matériau diélectrique est classiquement un polyéthylène basse densité ("LLDPE ATO5600" de ATOCHEM) sans peroxyde. Ce matériau se comporte dans la gamme de fréquence considérées (100kHz à 1GHz) comme un diélectrique parfait.
  • EXEMPLE 1
  • On réalise un câble de structure analogue à celle montrée par la figure 1 en utilisant comme matériau composite une couche semi-conductrice classique à base de noir de carbone. Le matériau se compose d'une matrice isolante à base d'un copolymère d'éthylène et d'acrylate de butyl EBA et d'une charge de noir d'acétylène dans une proportion de 25% en volume.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 1 de la figure 2. Pour une fréquence de 100MHz, l'atténuation est extrêmement faible.
  • EXEMPLE 2
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite comprend une matrice isolante qui est un copolymère d'éthylène et d'acétate de vinyl EVA ("ELVAX 260"), contenant 26% d'acétate de vinyl ce qui favorise la force de scellage, et une charge de polythiophène dédopé dans une proportion de 30% en volume.
  • La matrice EVA, différente du matériau diélectrique, a été choisie car elle possède un taux de charge admissible élevé et une température d'extrusion compatible avec les charges envisagées.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 2 de la figure 2. Pour un câble de 3,7m de long, l'atténuation est de -3dB pour 50MHz et de -5dB pour 100MHz.
  • EXEMPLE 3
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polyaniline dédopée dans une proportion de 30% en volume.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 3 de la figure 2. L'atténuation est de -3dB à une fréquence de 30MHz et de -10dB à une fréquence de 100MHz
  • EXEMPLE 4
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de copolymère ferro-magnétique de l'aniline et du naphtalène dans une proportion de 30% en volume.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 4 de la figure 2. L'atténuation est de -3dB à une fréquence de 10MHz.
  • EXEMPLE 5
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur ionique non dopé dans une proportion de 20% en volume. Ce polymère est obtenu en mélangeant une solution à base de cation alcalin K+ et le polyoxyéthylène (-CH2-CH2-O-)n. Le polyoxyéthylène complexe l'ion K+ qui assure la conductivité du polymère obtenu.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 5 de la figure 3. L'atténuation est de -3dB à une fréquence de 30MHz.
  • EXEMPLE 6
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur dédopé dans une proportion de 30% en volume et de 5% de zwitterions à l'état moléculaire.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 6 de la figure 3. L'atténuation est de -3dB à une fréquence de 20MHz.
  • EXEMPLE 7
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polymère conducteur dédopé dans une proportion de 30% en volume et de 10% de PVDF.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 7 de la figure 3. L'atténuation est de -3dB à une fréquence de 7MHz.
  • EXEMPLE 8
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de fullérènes dans une proportion de 25% en volume.
  • L'atténuation observée est identique à celle obtenue dans l'exemple 2 pour le polythiophène (courbe 2 de la figure 2).
  • On pourrait tout aussi bien utiliser des fullérènes greffés, par exemple les bromophénylfulléroides, les composés nitrosés des fullérènes, les copolymères des fullérènes (en particulier le xylylène), et les métallofullérènes.
  • EXEMPLE 9
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polythiophène dédopé dans une proportion de 30% en volume et de 5% de polythiophène dopé.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 8 de la figure 4. L'atténuation est de -3dB à une fréquence de 50MHz.
  • EXEMPLE 10
  • On réalise un câble selon l'invention de structure analogue à celle montrée par la figure 1. Le matériau composite, analogue à celui décrit dans l'exemple 2, comprend une matrice isolante EVA et une charge de polythiophène dédopé dans une proportion de 30% en volume et de 10% de polythiophène dopé.
  • La mesure de l'atténuation du signal en fonction de la fréquence est donnée sur la courbe 9 de la figure 4. L'atténuation est de -3dB à une fréquence de 40MHz.
  • Le câble peut être revêtu extérieurement d'une ou plusieurs couches supplémentaires telles que couche de blindage électromagnétique, couche de matériau coloré destinée à l'identification, couche de protection ignifuge, etc...

Claims (11)

  1. Câble utilisé dans le domaine des télécommunications, de structure coaxiale, constitué d'une âme métallique entourée d'au moins deux couches dont l'une est une couche de matériau diélectrique, caractérisé par le fait que l'autre couche, placée entre ladite âme et ladite couche de matériau diélectrique sur au moins une partie de la longueur du câble, est une couche de matériau composite semi-conducteur comprenant une matrice isolante et un polymère conducteur non dopé à liaisons conjuguées, ledit câble devenant ainsi un câble filtrant intrinsèquement les perturbations électromagnétiques qu'il conduit dans la gamme de fréquences inférieures à 1GHz.
  2. Câble selon la revendication 1, caractérisé par le fait que ledit polymère est choisi parmi un polymère conducteur électronique, un polymère conducteur ionique, un polymère conducteur zwitterionique, et un polymère ferro-magnétique.
  3. Câble selon la revendication 2, caractérisé par le fait que ledit polymère conducteur électronique est choisi parmi les polymères et les copolymères à base d'aniline, de thiophène, de pyrolle, de fullérène, de phénylène-vinylène, de phénylène-sulfide, d'isothionaphtène, et de leurs dérivés.
  4. Câble selon la revendication 2, caractérisé par le fait que ledit polymère conducteur zwitterionique est choisi parmi les polymères et les copolymères à base de sulfobêtaïne et de ses dérivés.
  5. Câble selon l'une des revendications précédentes, caractérisé par le fait que la proportion dudit polymère est supérieure à 5% en volume du matériau composite.
  6. Câble selon l'une des revendications précédentes, caractérisé par le fait que ledit matériau composite contient en outre un additif conducteur choisi parmi un polymère conducteur dopé ou autodopé, une charge de noir de carbone, et une charge métallique, ledit additif étant introduit à un taux inférieur à 10% en volume dudit matériau composite.
  7. Câble selon l'une des revendications précédentes, caractérisé par le fait que l'épaisseur de ladite couche de matériau composite est de 0,1 à 2 fois l'épaisseur de ladite couche de matériau diélectrique.
  8. Câble selon l'une des revendications précédentes, caractérisé par le fait que ladite âme est entourée de plusieurs couches de matériaux composites de composition et/ou d'épaisseur différentes, lesdites couches de matériau composite étant recouvertes d'au moins une couche de matériau diélectrique.
  9. Câble selon l'une des revendications précédentes, caractérisé par le fait que lesdites perturbations électromagnétiques sont absorbées dans un domaine de fréquence qui dépend de la nature dudit polymère.
  10. Câble selon l'une des revendications précédentes, caractérisé par le fait que ledites perturbations électromagnétiques sont absorbées dans un domaine de fréquence qui dépend de l'épaisseur de ladite couche de matériau composite.
  11. Application d'un câble selon l'une des revendications précédentes, au domaine des télécommunications.
EP94400998A 1993-05-10 1994-05-06 Câble utilisable dans le domaine des télécommunications Expired - Lifetime EP0624885B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9305582 1993-05-10
FR9305582A FR2705161B1 (fr) 1993-05-10 1993-05-10 Câble utilisable dans le domaine des télécommunications.

Publications (2)

Publication Number Publication Date
EP0624885A1 EP0624885A1 (fr) 1994-11-17
EP0624885B1 true EP0624885B1 (fr) 1996-10-23

Family

ID=9446955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94400998A Expired - Lifetime EP0624885B1 (fr) 1993-05-10 1994-05-06 Câble utilisable dans le domaine des télécommunications

Country Status (5)

Country Link
US (1) US5530206A (fr)
EP (1) EP0624885B1 (fr)
DE (1) DE69400777T2 (fr)
ES (1) ES2093495T3 (fr)
FR (1) FR2705161B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2723245B1 (fr) * 1994-08-01 1996-09-13 Cortaillod Cables Sa Cable de transport d'energie electrique ou de telecommunication et procede de fabrication d'un tel cable
FR2753300B1 (fr) * 1996-09-09 1998-10-09 Alcatel Cable Conducteur electrique protege contre les perturbations electromagnetiques depassant un seuil
SE0001123L (sv) * 2000-03-30 2001-10-01 Abb Ab Kraftkabel
SE0001748D0 (sv) * 2000-03-30 2000-05-12 Abb Ab Induktionslindning
US6621970B2 (en) 2001-03-28 2003-09-16 Alcatel UV-curable optical fiber coating composition including fullerenes
US20060022789A1 (en) * 2004-05-26 2006-02-02 Kolasinski John R Charge dissipative electrical interconnect
KR100725287B1 (ko) * 2005-07-28 2007-06-07 엘에스전선 주식회사 고주파 신호 전송용 utp케이블
WO2008127082A2 (fr) * 2007-04-13 2008-10-23 Magnekon, S. A. De C. V. Fil de bobinage pourvu d'un revêtement résistant à l'effet couronne
JP5516456B2 (ja) * 2011-02-24 2014-06-11 日立金属株式会社 シールド付き電気絶縁ケーブル
US10147523B2 (en) 2014-09-09 2018-12-04 Panasonic Avionics Corporation Cable, method of manufacture, and cable assembly

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749817A (en) * 1970-12-28 1973-07-31 Sumitomo Electric Industries Insulated cable having strand shielding semi-conductive layer
FR2233685B1 (fr) * 1973-06-12 1977-05-06 Josse Bernard
FR2437686A1 (fr) * 1978-09-29 1980-04-25 Mayer Ferdy Element electrique a pertes, tel que fil, cable et ecran, resistant et absorbant
US4487996A (en) * 1982-12-02 1984-12-11 Electric Power Research Institute, Inc. Shielded electrical cable
US4556860A (en) * 1984-01-19 1985-12-03 Owens-Corning Fiberglas Corporation Conductive polymers
DE3538527A1 (de) * 1984-11-27 1986-06-05 Showa Electric Wire & Cable Co., Ltd., Kawasaki, Kanagawa Verfahren zur herstellung eines mit vernetzten polyolefinen isolierten kabels
BR8600492A (pt) * 1985-02-06 1986-10-21 Raychem Corp Cabos de atenuacao de frequencia elevada e chicote de cabos
AU5323586A (en) * 1985-02-06 1986-08-14 Raychem Corporation High frequency attenuation cable
US4988949A (en) * 1989-05-15 1991-01-29 Westinghouse Electric Corp. Apparatus for detecting excessive chafing of a cable arrangement against an electrically grounded structure
US5132490A (en) * 1991-05-03 1992-07-21 Champlain Cable Corporation Conductive polymer shielded wire and cable

Also Published As

Publication number Publication date
EP0624885A1 (fr) 1994-11-17
US5530206A (en) 1996-06-25
DE69400777T2 (de) 1997-02-27
FR2705161B1 (fr) 1995-06-30
ES2093495T3 (es) 1996-12-16
DE69400777D1 (de) 1996-11-28
FR2705161A1 (fr) 1994-11-18

Similar Documents

Publication Publication Date Title
EP0624885B1 (fr) Câble utilisable dans le domaine des télécommunications
EP0264315B1 (fr) Structures à propagation d'onde pour la suppression de surtensions et l'absorption de transitoires
EP1128395B1 (fr) Câble d'énergie haute et très haute tension à courant continu
EP0930623A1 (fr) Matériau polymère composite pour protection contre des décharges électrostatiques
EP2765581B1 (fr) Câble électrique résistant aux décharges partielles
FR2555190A1 (fr) Composition pour proteger des dispositifs electroniques a l'encontre d'interferences electromagnetiques et a hautes frequences
FR2991808A1 (fr) Dispositif comprenant une couche piegeuse de charges d'espace
FR2714543A1 (fr) Dispositif pour la jonction de câbles d'énergie.
FR2753301A1 (fr) Dispositif de transport de signal electrique protege contre les perturbations electromagnetiques
FR2475280A1 (fr) Cable d'allumage tres perfectionne
CA2214024C (fr) Conducteur electrique protege contre les perturbations electromagnetiques depassant un seuil
FR2710183A1 (fr) Câble d'énergie à rigidité diélectrique améliorée.
EP3422366A1 (fr) Cable comprenant un element electriquement conducteur comprenant des fibres de carbone metallisees
EP0833421B1 (fr) Equipement pour extrémité de câble et matériau de constitution de l'équipement
EP2148336B1 (fr) Câble d'énergie spécifiquement conçu pour transmettre des données à haut débit
EP0644558B2 (fr) Structure d'isolement pour câble
FR2920918A1 (fr) Cable rayonnant.
FR2710184A1 (fr) Câble d'énergie à rigidité diélectrique améliorée.
EP3503125A1 (fr) Câble comprenant au moins une couche métallisée d'un matériau carboné
EP2498264B1 (fr) Câble électrique à moyenne ou haute tension
EP1462837A1 (fr) Câble à fibre optique comprenant une couche isolante à base de polymères
EP3671768A1 (fr) Câble électrique résistant aux arborescences d'eau
EP3965123A1 (fr) Câble électrique pour le domaine de l'aéronautique
BE1011412A4 (fr) Materiau polymere pour l'absorption d'ondes electromagnetiques.
FR2784538A1 (fr) Procede de protection contre les agressions electromagnetiques champ fort

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19950303

17Q First examination report despatched

Effective date: 19951117

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEC ALSTHOM (SUISSE) S.A. DEPARTEMENT DES BREVETS

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961024

REF Corresponds to:

Ref document number: 69400777

Country of ref document: DE

Date of ref document: 19961128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2093495

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980417

Year of fee payment: 5

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ALCATEL CABLE TRANSFER- ARELEC (SOCIETE ANONYME) *

Ref country code: CH

Ref legal event code: PFA

Free format text: ALCATEL TELSPACE TRANSFER- ALCATEL CIT * ARELEC (SOCIETE ANONYME) TRANSFER- ALCATEL CABLE FRANCE

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990412

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990417

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990421

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990524

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000506

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050506