EP0656474A1 - Fuel injector for internal combustion engines - Google Patents

Fuel injector for internal combustion engines Download PDF

Info

Publication number
EP0656474A1
EP0656474A1 EP94117580A EP94117580A EP0656474A1 EP 0656474 A1 EP0656474 A1 EP 0656474A1 EP 94117580 A EP94117580 A EP 94117580A EP 94117580 A EP94117580 A EP 94117580A EP 0656474 A1 EP0656474 A1 EP 0656474A1
Authority
EP
European Patent Office
Prior art keywords
spray
spray hole
channels
injection nozzle
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94117580A
Other languages
German (de)
French (fr)
Other versions
EP0656474B1 (en
Inventor
Detlev Dr. Potz
Guenter Dipl.-Ing. Lewentz (Fh)
Uwe Dipl.-Ing. Gordon (Th)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0656474A1 publication Critical patent/EP0656474A1/en
Application granted granted Critical
Publication of EP0656474B1 publication Critical patent/EP0656474B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • F02M61/045The valves being provided with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow

Definitions

  • the invention is based on a fuel injection nozzle for internal combustion engines according to the preamble of claim 1.
  • a fuel injection nozzle of this type for example known from EP 0 209 244 B1
  • the mouth of the spray holes in the valve head during the opening stroke depends on the feed pressure of the fuel controlled a control edge on the nozzle body, so that the spray cross-section is adapted to the operating point associated with the load and the speed of the internal combustion engine.
  • the control edge on the nozzle body that constricts the spray jet defines the spray cross section required in each case.
  • this control edge also influences the outflow direction of the spray jet, which is deflected away from the control edge by the desired direction given by the axial direction of the spray hole, the more the mouth cross section of the spray hole is covered by the control edge.
  • the fuel injector according to the invention with the characterizing features of claim 1 has the advantage that the spray jet generated maintains the flow direction predetermined by the axis of the spray hole, so that good combustion is achieved even at part load and low engine speeds.
  • the ideal spray direction would be given for any controlled spray cross-section if the spray hole were penetrated by many infinitesimally thin-walled baffles, which are oriented in the direction of the spray cross-section axis and integrated in the spray cross-section.
  • the intermediate guide walls Since with the given materials for the injection nozzle and the given processing options for producing spray holes with a width of less than 0.2 mm, the intermediate guide walls must have a certain thickness, it is advantageous for forming a guide intermediate wall if, according to claim 2, two or more parallel ones Channels in the immediate vicinity in the stroke direction are arranged one above the other by material removal, which are separated from each other by the remaining partition walls.
  • the channels do not have to be arranged exactly one above the other in the stroke direction of the valve member, they can also be slightly offset from one another so that the next channel is already opened as long as the previously released channel has not yet been completely opened.
  • FIG. 1 shows a fuel injection nozzle in longitudinal section and FIGS. 2 to 4 a detail A in the valve and injection part of the injection nozzle according to FIG. 1 in a greatly enlarged scale on average, namely FIG. 2 in a conventional design, FIG. 3 in a theoretically ideal one Training and Figure 4 according to the invention.
  • the fuel injection nozzle has a nozzle body 10 which is clamped to a nozzle holder 12 by means of a union nut 11.
  • a valve needle 15 is slidably mounted in the nozzle body 10 and carries a closing head 16 at the end on the combustion chamber side.
  • a ring 19 with a frustoconical valve cone 17 is firmly attached, which cooperates with a hollow cone-shaped valve seat 18 on the nozzle body 10.
  • the portion of the closing head 16 which projects into the nozzle body 10 and is radially offset from the valve cone 17 is designed as a piston slide 20 which is guided in a guide section 23 of the cylinder body 22 in the nozzle body 10 which is close to the valve seat 18 and forms a pressure chamber 21.
  • a plurality of spray holes 25 are preferably arranged in the piston valve 20, only one of which is shown, the mouth of which lies in the jacket of the piston valve 20 and is only a little or no distance from the valve cone 17, so that its spray cross-section continuously continues from the opening stroke of the closing head 16 a control edge 24 forming inner edge of the valve seat 18 is released.
  • the longitudinal axis of the spray hole 25 extends at an almost right angle a with respect to the axis of displacement of the valve needle 15 and the longitudinal axis of the nozzle body 10. This angle a is adapted to the shape of the combustion chamber of the internal combustion engine.
  • the length of the spray hole 25 is in the range of 2 to 5 times its width.
  • the spray hole 25 is supplied with fuel from the pressure chamber 21 through an inlet channel 27 in the piston slide 20.
  • This inlet channel 27 is preferably designed as a blind hole 27 and extends approximately parallel to the axis of the piston slide 20.
  • Its inlet 28 is located in the end face of the closing head 16 or the piston slide 20 facing the pressure chamber 21, next to the shaft 14 of the valve needle 15 which adjoins the center.
  • the closing head 16 of the exemplary embodiment of the fuel injector described above is only shown with a single spray hole 25 and a single inlet channel 27. In practice, however, fuel injection nozzles with a plurality of spray holes are generally required, which are distributed uniformly or irregularly on the circumference of the closing head 16 and can also have the same or different spray angles.
  • the valve needle 15 is slidably mounted in a guide bore 35 in the nozzle body 10, to which a collection chamber 36 and an annular gap 37 connecting it to the pressure chamber 21 connect downstream.
  • a closing spring 40 which is arranged in a spring chamber 39 in the nozzle holder 12.
  • the closing spring 40 is supported on the nozzle body 10 via a spacer bush 41 and a slotted stop disk 42 and presses against a support ring 44 fastened at the end of the valve needle 15 via a compensating disk 43.
  • the shaft 14 is the valve needle 15 at the level of the stop disk 42, forming a stop collar 45, which has the distance h g from the stop disk 42 in the closed position of the valve needle 15.
  • An inlet channel 47 in the nozzle holder 12 and in the nozzle body 10 leads to the collecting chamber 36 in the nozzle body 10. Furthermore, a leakage oil channel 48 extends from the spring chamber 39.
  • a spray hole 25 with, for example, a rectangular cross section is incorporated in the piston slide 20 to form a spray jet, the longitudinal axis of the spray hole 25 in relation to the central or stroke axis of the piston slide 20 in one, the combustion chamber adapted angle a is inclined. Its mouth is covered in the closed position by the wall of the nozzle body 10 and is opened upon opening by axially displacing the valve needle 15 and thus the spool 20 from the control edge 24 on the inner edge of the valve seat 18 of the nozzle body depending on the stroke of the spool 20.
  • the outgoing spray jet becomes, as can be seen from the flow lines c , deflected away from the axis of the spray hole away from the control edge 24, so that the outflow angle b is smaller than the axis angle a of the spray hole, which is also the ideal spray angle of the spray jet for optimal combustion.
  • the spray hole then consists of two channels 52, 53 which are arranged one above the other in parallel in the stroke direction of the piston slide 20 and are separated from one another by a partition 55.
  • the two channels 52, 53 are made as cylindrical holes, the axes of which are inclined to the stroke axis of the piston slide 20 by the angle a.
  • the channels 52, 53 have the smallest possible diameter or width and the partition 55 is as thin as possible.
  • the width of the channels 52, 53 is, for example, 0.100 to 0.200 mm, preferably 0.140 mm and the thickness of the partition 55 is approximately half the width of the channels 52, 53, preferably 0.070 mm.
  • valve needle 14 with the closing head 16 and the piston slide 20 in the nozzle body 10 is axially displaced under the effect of the pressure of the supplied fuel.
  • the valve cone 17 lifts off the valve seat 18 and then, or at the same time, the spray cross section is released as a function of the pressure of the fuel. This is done in that one or both mouth cross sections of the channels 52, 53 are moved partially or fully beyond the control edge 24.
  • the piston slide 20 is displaced by approximately 40% of the total stroke h g , so that the lower channel 52 is opened almost completely by the control edge 24.
  • the spray jet emerging from this channel is only slightly deflected by the control edge 24, so that the ideal spray direction is almost identical to the desired spray direction.
  • the ideal spray direction is available.
  • the partial beam emerging from the upper channel 53 is directed towards the partial beam f emerging from the lower channel, so that the two partial beams e and f combine with one another. If the mouth cross section of the upper channel 53 is only slightly open, the beam direction energy of the partial beam e emerging from the upper channel 53 is low compared to the lower partial beam f emerging in full cross section, so that there is hardly any deflection when merging into a single beam g.
  • the beam direction energy of the beam e emerging there is greater, but the deflection is lower again, so that the generated beam g is also deflected only slightly from the desired direction , the direction angle b '' of which deviates only slightly from the ideal angle.
  • the jet direction of the combined spray jet g flowing out of the two channels 52, 53 comes closer and closer to the target angle the more the mouth of the second channel 53 is released from the control edge 24. Measurements on an injection nozzle according to FIG. 4 have shown that the greatest jet deflection deviates from the desired angle a by a maximum of 2.5 degrees in the operating range of the injection nozzle.
  • the actual spray direction of the spray jets is more adapted to the desired direction over the entire operating range of the internal combustion engine, the more channels a spray hole is combined with, or the more guide partitions a spray hole has.
  • refined manufacturing processes are required (e.g. micromechanics, LIGA technology, etc.).

Abstract

A fuel injector for internal combustion engines has a nozzle body (10) with a valve seat (18) arranged on the combustion chamber side and an outwards opening valve needle (15) with a closing head (16), which has a closing cone (17) interacting with the valve seat (18). In the closing head (16) at least one spray hole (25), directed outwards to the lifting axis thereof, is arranged, which is opened by a control edge (24) on the nozzle body as a function of the fuel admission pressure. In order to minimise any deviation of the spray jet emerging from the spray hole (25) relative to the alignment of the spray hole, the spray hole (25) is divided into at least two or more parallel passages (52, 53), which are separated from one another by a dividing wall (55) and are successively exposed by the control edge (24) during the opening lift of the valve needle. <IMAGE>

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Kraftstoff-Einspritzdüse für Brennkraftmaschinen nach der Gattung des Anspruchs 1. Bei einer beispielsweise aus der EP 0 209 244 B1 bekannten Kraftstoff-Einspritzdüse dieser Art wird die Mündung der Spritzlöcher im Ventilkopf beim Öffnungshub in Abhängigkeit vom Zulaufdruck des Kraftstoffs von einer Steuerkante am Düsenkörper aufgesteuert, so daß der Abspritzquerschnitt dem von der Last und der Drehzahl der Brennkraftmaschine zugehörigen Betriebspunkt angepaßt wird. Um einen solchen Vario-Effekt zu erzielen, legt die den Spritzstrahl einengende Steuerkante am Düsenkörper den jeweils benötigten Spritzquerschnitt fest. Diese Steuerkante beeinflußt jedoch auch die Ausströmrichtung des Spritzstrahls, der umso mehr aus der durch die Achsrichtung des Spritzlochs vorgegebenen Sollrichtung von der Steuerkante weg abgelenkt wird, je mehr der Mündungsquerschnitt des Spritzlochs von der Steuerkante überdeckt wird. Eine solche Ablenkung des Spritzstrahls bzw. der Spritzstrahlen aus der für den Brennraum idealen Spritzrichtung beeinträchtigt die Aufbereitung des Kraftstoffs und damit eine optimale Verbrennung, so daß verschärfte Abgas- und Geräusch-Grenzwerte nicht eingehalten werden können.The invention is based on a fuel injection nozzle for internal combustion engines according to the preamble of claim 1. In a fuel injection nozzle of this type, for example known from EP 0 209 244 B1, the mouth of the spray holes in the valve head during the opening stroke depends on the feed pressure of the fuel controlled a control edge on the nozzle body, so that the spray cross-section is adapted to the operating point associated with the load and the speed of the internal combustion engine. In order to achieve such a vario effect, the control edge on the nozzle body that constricts the spray jet defines the spray cross section required in each case. However, this control edge also influences the outflow direction of the spray jet, which is deflected away from the control edge by the desired direction given by the axial direction of the spray hole, the more the mouth cross section of the spray hole is covered by the control edge. Such a deflection of the spray jet or spray jets from the ideal spray direction for the combustion chamber impairs the preparation of the fuel and thus optimal combustion, so that stricter exhaust gas and noise limit values cannot be maintained.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Kraftstoff-Einspritzdüse mit den kennzeichnenden Merkmalen des Anspruchs 1 hat den Vorteil, daß der erzeugte Spritzstrahl die durch die Achse des Spritzlochs vorgegebene Strömungsrichtung beibehält, so daß eine gute Verbrennung auch bei Teillast und niedrigen Drehzahlen der Brennkraftmaschine erzielt wird. Theoretisch wäre bei jedwedem aufgesteuerten Spritzquerschnitt die ideale Spritzrichtung gegeben, wenn das Spritzloch durch viele infinitesimal dünnwandige Leitbleche durchsetzt wäre, die in Richtung der Spritzquerschnittsachse orientiert und im Spritzquerschnitt integriert sind. Da bei den gegebenen Materialien für die Einspritzdüse und den gegebenen Bearbeitungsmöglichkeiten zum Herstellen von Spritzlöchern mit einer Weite von weniger als 0,2 mm die Zwischenleitwände eine bestimmte Dicke aufweisen müssen, ist es zum Bilden einer Leitzwischenwand vorteilhaft, wenn gemäß Anspruch 2 zwei oder mehr parallele Kanäle in unmittelbarer Nähe in Hubrichtung versetzt übereinander durch Materialabtragung angeordnet werden, die durch die verbleibenden Zwischenwände voneinander getrennt sind. Die Kanäle müssen nicht genau in Hubrichtung des Ventilgliedes übereinander angeordnet sein, sie können auch zusätzlich gering winkelversetzt zueinander sein, so daß der nächstfolgende Kanal bereits aufgesteuert wird, solange der vorhergehend freigegebene noch nicht ganz aufgesteuert ist.The fuel injector according to the invention with the characterizing features of claim 1 has the advantage that the spray jet generated maintains the flow direction predetermined by the axis of the spray hole, so that good combustion is achieved even at part load and low engine speeds. In theory, the ideal spray direction would be given for any controlled spray cross-section if the spray hole were penetrated by many infinitesimally thin-walled baffles, which are oriented in the direction of the spray cross-section axis and integrated in the spray cross-section. Since with the given materials for the injection nozzle and the given processing options for producing spray holes with a width of less than 0.2 mm, the intermediate guide walls must have a certain thickness, it is advantageous for forming a guide intermediate wall if, according to claim 2, two or more parallel ones Channels in the immediate vicinity in the stroke direction are arranged one above the other by material removal, which are separated from each other by the remaining partition walls. The channels do not have to be arranged exactly one above the other in the stroke direction of the valve member, they can also be slightly offset from one another so that the next channel is already opened as long as the previously released channel has not yet been completely opened.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen Figur 1 eine Kraftstoff-Einspritzdüse im Längsschnitt und Figur 2 bis 4 ein Detail A im Ventil- und Spritzteil der Einspritzdüse nach Figur 1 in stark vergrößertem Maßstab im Schnitt, und zwar Figur 2 bei einer herkömmlichen Ausbildung, Figur 3 bei einer theoretisch idealen Ausbildung und Figur 4 gemäß der Erfindung.An embodiment of the invention is shown in the drawing and will be described in more detail below. 1 shows a fuel injection nozzle in longitudinal section and FIGS. 2 to 4 a detail A in the valve and injection part of the injection nozzle according to FIG. 1 in a greatly enlarged scale on average, namely FIG. 2 in a conventional design, FIG. 3 in a theoretically ideal one Training and Figure 4 according to the invention.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die Kraftstoff-Einspritzdüse hat einen Düsenkörper 10, der mittels einer Überwurfmutter 11 an einem Düsenhalter 12 festgespannt ist. Im Düsenkörper 10 ist eine Ventilnadel 15 verschiebbar gelagert, die am brennraumseitigen Ende einen Schließkopf 16 trägt. Auf dem brennraumseitigen Ende des Schließkopfs 16 ist ein Ring 19 mit einem kegelstumpfförmigen Ventilkegel 17 fest aufgesetzt, der mit einem hohlkegelförmigen Ventilsitz 18 am Düsenkörper 10 zusammenwirkt. Der in den Düsenkörper 10 ragende, gegenüber dem Ventilkegel 17 radial abgesetzte Abschnitt des Schließkopfs 16 ist als Kolbenschieber 20 ausgebildet, der in einem dem Ventilsitz 18 nahen Führungsabschnitt 23 einer Zylinderbohrung 22 im Düsenkörper 10 geführt ist, die einen Druckraum 21 bildet.The fuel injection nozzle has a nozzle body 10 which is clamped to a nozzle holder 12 by means of a union nut 11. A valve needle 15 is slidably mounted in the nozzle body 10 and carries a closing head 16 at the end on the combustion chamber side. On the end of the closing head 16 on the combustion chamber side, a ring 19 with a frustoconical valve cone 17 is firmly attached, which cooperates with a hollow cone-shaped valve seat 18 on the nozzle body 10. The portion of the closing head 16 which projects into the nozzle body 10 and is radially offset from the valve cone 17 is designed as a piston slide 20 which is guided in a guide section 23 of the cylinder body 22 in the nozzle body 10 which is close to the valve seat 18 and forms a pressure chamber 21.

Im Kolbenschieber 20 sind vorzugsweise mehrere Spritzlöcher 25 angeordnet, von denen nur eines dargestellt ist, dessen Mündung im Mantel des Kolbenschiebers 20 liegt und nur einen geringen oder gar keinen Abstand zum Ventilkegel 17 hat, so daß sein Spritzquerschnitt beim Öffnungshub des Schließkopfs 16 fortlaufend von der eine Steuerkante 24 bildenden Innenkante des Ventilsitzes 18 freigegeben wird. Die Längsachse des Spritzlochs 25 verläuft in einem nahezu rechten Winkel a in Bezug zur Verschiebeachse der Ventilnadel 15 und der Längsachse des Düsenkörpers 10. Dieser Winkel a ist der Gestalt des Brennraums der Brennkraftmaschine angepaßt. Die Länge des Spritzlochs 25 liegt im Bereich des 2- bis 5-fachen von dessen Weite.A plurality of spray holes 25 are preferably arranged in the piston valve 20, only one of which is shown, the mouth of which lies in the jacket of the piston valve 20 and is only a little or no distance from the valve cone 17, so that its spray cross-section continuously continues from the opening stroke of the closing head 16 a control edge 24 forming inner edge of the valve seat 18 is released. The longitudinal axis of the spray hole 25 extends at an almost right angle a with respect to the axis of displacement of the valve needle 15 and the longitudinal axis of the nozzle body 10. This angle a is adapted to the shape of the combustion chamber of the internal combustion engine. The length of the spray hole 25 is in the range of 2 to 5 times its width.

Das Spritzloch 25 wird mit Kraftstoff aus dem Druckraum 21 durch einen Zulaufkanal 27 im Kolbenschieber 20 versorgt. Dieser Zulaufkanal 27 ist vorzugsweise als Sackloch 27 ausgebildet und verläuft in etwa parallel zur Achse des Kolbenschiebers 20. Sein Einlauf 28 befindet sich in der dem Druckraum 21 zugewandten Stirnseite des Schließkopfs 16 bzw. des Kolbenschiebers 20 neben dem mittig anschließenden Schaft 14 der Ventilnadel 15. Der Übersicht halber ist der Schließkopf 16 des oben beschriebenen Ausführungsbeispiels der Kraftstoff-Einspritzdüse nur mit einem einzigen Spritzloch 25 und einem einzigen Zulaufkanal 27 dargestellt. Für die Praxis sind jedoch in aller Regel Kraftstoff-Einspritzdüsen mit mehreren Spritzlöchern erforderlich, welche auf dem Umang des Schließkopfs 16 gleichmäßig oder unregelmäßig verteilt sind und auch gleiche oder verschiedene Spritzwinkel haben können.The spray hole 25 is supplied with fuel from the pressure chamber 21 through an inlet channel 27 in the piston slide 20. This inlet channel 27 is preferably designed as a blind hole 27 and extends approximately parallel to the axis of the piston slide 20. Its inlet 28 is located in the end face of the closing head 16 or the piston slide 20 facing the pressure chamber 21, next to the shaft 14 of the valve needle 15 which adjoins the center. For the sake of clarity, the closing head 16 of the exemplary embodiment of the fuel injector described above is only shown with a single spray hole 25 and a single inlet channel 27. In practice, however, fuel injection nozzles with a plurality of spray holes are generally required, which are distributed uniformly or irregularly on the circumference of the closing head 16 and can also have the same or different spray angles.

Die Ventilnadel 15 ist in einer Führungsbohrung 35 im Düsenkörper 10 verschiebbar gelagert, an die sich stromabwärts eine Sammelkammer 36 und ein diese mit dem Druckraum 21 verbindender Ringspalt 37 anschließen. In Ruhestellung ist die Ventilnadel 15 mit dem Ventilkegel 17 ihres Schließkopfes 16 gegen den Ventilsitz 18 am Düsenkörper 10 von einer Schließfeder 40 gezogen, die in einer Federkammer 39 im Düsenhalter 12 angeordnet ist. Die Schließfeder 40 stützt sich über eine Distanzbuchse 41 und eine geschlitzte Anschlagscheibe 42 am Düsenkörper 10 ab und drückt über eine Ausgleichsscheibe 43 gegen einen am Ende der Ventilnadel 15 befestigten Stützring 44. Zum Begrenzen des Gesamthubes hg der Ventilnadel 15 ist der Schaft 14 der Ventilnadel 15 in Höhe der Anschlagscheibe 42 einen Anschlagbund 45 bildend abgesetzt, der in Schließstellung der Ventilnadel 15 von der Anschlagscheibe 42 den Abstand hg hat. Zu der Sammelkammer 36 im Düsenkörper 10 führt ein Zulaufkanal 47 im Düsenhalter 12 und im Düsenkörper 10. Ferner geht ein Leckölkanal 48 von der Federkammer 39 ab.The valve needle 15 is slidably mounted in a guide bore 35 in the nozzle body 10, to which a collection chamber 36 and an annular gap 37 connecting it to the pressure chamber 21 connect downstream. In the rest position, the valve needle 15 with the valve cone 17 of its closing head 16 is pulled against the valve seat 18 on the nozzle body 10 by a closing spring 40 which is arranged in a spring chamber 39 in the nozzle holder 12. The closing spring 40 is supported on the nozzle body 10 via a spacer bush 41 and a slotted stop disk 42 and presses against a support ring 44 fastened at the end of the valve needle 15 via a compensating disk 43. To limit the total stroke h g of the valve needle 15, the shaft 14 is the valve needle 15 at the level of the stop disk 42, forming a stop collar 45, which has the distance h g from the stop disk 42 in the closed position of the valve needle 15. An inlet channel 47 in the nozzle holder 12 and in the nozzle body 10 leads to the collecting chamber 36 in the nozzle body 10. Furthermore, a leakage oil channel 48 extends from the spring chamber 39.

Bei einer bekannten Einspritzdüse ist, wie in Figur 2 dargestellt, zum Bilden eines Spritzstrahls ein Spritzloch 25 mit beispielsweise rechteckigem Querschnitt im Kolbenschieber 20 eingearbeitet, wobei die Längsachse des Spritzlochs 25 in Bezug zur Mittel- bzw. Hubachse des Kolbenschiebers 20 in einem, dem Brennraum angepaßten Winkel a geneigt ist. Seine Mündung ist in Schließstellung von der Wand des Düsenkörpers 10 abgedeckt und wird beim Öffnen durch axiales Verschieben der Ventilnadel 15 und damit des Kolbenschiebers 20 von der Steuerkante 24 am inneren Rand des Ventilsitzes 18 des Düsenkörpers in Abhängigkeit vom Hub des Kolbenschiebers 20 aufgesteuert. Bei voll aufgesteuertem Mündungsquerschnitt des Spritzlochs 25, das ist, wenn bei Vollast der Brennkraftmaschine der Brennstoff mit hohem Druck zugeführt wird, strömt der Kraftstoff als gebündelter Spritzstrahl aus dem Spritzloch 25, wobei die Achse des Spritzstrahls mit der Achse des Spritzlochs ausgerichtet ist. Bei einer Teiloffenstellung des Spritzlochs 25, das ist wie in Figur 2 dargestellt, wenn zum Binspritzen einer Teilmenge die Wand des Düsenkörpers 10 den Mündungsquerschnitt der Spritzöffnung 25 bis zur Steuerkante 24 teilweise überdeckt, wird der abgehende Spritzstrahl, wie anhand der Strömungslinien c zu erkennen ist, aus der Achse des Spritzlochs von der Steuerkante 24 weg abgelenkt, so daß der Abströmwinkel b kleiner als der Achswinkel a des Spritzlochs ist, der zugleich für eine optimale Verbrennung der ideale Spritzwinkel des Spritzstrahls ist.In a known injection nozzle, as shown in FIG. 2, a spray hole 25 with, for example, a rectangular cross section is incorporated in the piston slide 20 to form a spray jet, the longitudinal axis of the spray hole 25 in relation to the central or stroke axis of the piston slide 20 in one, the combustion chamber adapted angle a is inclined. Its mouth is covered in the closed position by the wall of the nozzle body 10 and is opened upon opening by axially displacing the valve needle 15 and thus the spool 20 from the control edge 24 on the inner edge of the valve seat 18 of the nozzle body depending on the stroke of the spool 20. When the mouth cross-section of the spray hole 25 is fully open, that is, when the fuel is supplied to the internal combustion engine at high pressure, the fuel flows out of the spray hole 25 as a bundled spray jet, the axis of the spray jet being aligned with the axis of the spray hole. When the spray hole 25 is partially open, as shown in FIG. 2, when the wall of the nozzle body 10 partially covers the mouth cross section of the spray opening 25 as far as the control edge 24 for spraying a partial quantity, the outgoing spray jet becomes, as can be seen from the flow lines c , deflected away from the axis of the spray hole away from the control edge 24, so that the outflow angle b is smaller than the axis angle a of the spray hole, which is also the ideal spray angle of the spray jet for optimal combustion.

Eine solche ideale Ausrichtung des Spritzstrahls bei Teiloffenstellung des Spritzlochs 25 wäre erzielbar, wenn, wie in Figur 3 dargestellt, im Spritzloch 25 mehrere extrem dünne, zur Achse des Spritzlochs 25 parallele Leitzwischenwände 51 oder Leitbleche angeordnet wären. Diese Leitwände 51 würden in jeder Stellung des Spritzlochs 25 die Ablenkwirkung der Steuerkante 24 am Düsenkörper 10 unterbinden, wie anhand der Strömungslinien d gezeigt ist, deren Achse mit der Ausrichtung der Achse des Spritzlochs 25 und der Leitzwischenwände 51 übereinstimmt, so daß der Abspritzwinkel b' gleich dem Ausrichtwinkel bzw. Achswinkel a des Spritzlochs 25 ist. Da eine solche ideale Ausführungsform nur mit großem Aufwand machbar ist, wird eine Ausführungsform vorgeschlagen, die in Figur 4 dargestellt ist. Danach besteht das Spritzloch aus zwei Kanälen 52, 53, die parallel in Hubrichtung des Kolbenschiebers 20 übereinander angeordnet und von einer Trennwand 55 voneinander getrennt sind. Die beiden Kanäle 52, 53 sind als zylindrische Löcher hergestellt, deren Achsen zur Hubachse des Kolbenschiebers 20 um den Winkel a geneigt sind. Die Kanäle 52, 53 haben einen möglichst kleinen Durchmesser bzw. Weite und die Trennwand 55 ist möglichst dünn. Die Weite der Kanäle 52, 53 beträgt beispielsweise 0,100 bis 0,200 mm, vorzugsweise 0,140 mm und die Dicke der Trennwand 55 beträgt etwa die Hälfte der Weite der Kanäle 52, 53, vorzugsweise 0,070 mm.Such an ideal alignment of the spray jet with the spray hole 25 partially open would be achievable if, as shown in FIG. 3, a plurality of extremely thin intermediate guide walls 51 or guide plates were arranged in the spray hole 25 and parallel to the axis of the spray hole 25. These baffles 51 would in any position Spray hole 25 prevent the deflection of the control edge 24 on the nozzle body 10, as shown by the flow lines d, the axis of which coincides with the orientation of the axis of the spray hole 25 and the guide intermediate walls 51, so that the spray angle b 'is equal to the alignment angle or axis angle a of Spray hole 25 is. Since such an ideal embodiment can only be achieved with great effort, an embodiment is proposed which is shown in FIG. 4. The spray hole then consists of two channels 52, 53 which are arranged one above the other in parallel in the stroke direction of the piston slide 20 and are separated from one another by a partition 55. The two channels 52, 53 are made as cylindrical holes, the axes of which are inclined to the stroke axis of the piston slide 20 by the angle a. The channels 52, 53 have the smallest possible diameter or width and the partition 55 is as thin as possible. The width of the channels 52, 53 is, for example, 0.100 to 0.200 mm, preferably 0.140 mm and the thickness of the partition 55 is approximately half the width of the channels 52, 53, preferably 0.070 mm.

Zum Einspritzen von Kraftstoff in den Brennraum wird die Ventilnadel 14 mit dem Schließkopf 16 und dem Kolbenschieber 20 im Düsenkörper 10 unter der Wirkung des Drucks des zugeführten Kraftstoffs axial verschoben. Dabei hebt zunächst der Ventilkegel 17 vom Ventilsitz 18 ab und danach oder auch zugleich wird der Spritzquerschnitt in Abhängigkeit vom Druck des Kraftstoffs freigegeben. Dies erfolgt dadurch, daß ein oder beide Mündungsquerschnitte der Kanäle 52, 53 teilweise oder voll über die Steuerkante 24 hinaus bewegt werden. Bei kleinster Teillast der Brennkraftmaschine wird der Kolbenschieber 20 um etwa 40% des Gesamthubes hg verschoben, so daß der untere Kanal 52 nahezu voll von der Steuerkante 24 aufgesteuert ist. In dieser Stellung erfährt der aus diesem Kanal austretende Spritzstrahl durch die Steuerkante 24 nur eine gringe Ablenkung, so daß die ideale Spritzrichtung nahezu identisch ist mit der gewünschten Spritzrichtung. Bei größerer Teillast, wenn der untere Kanal 52 voll freigegeben ist, ist die ideale Spritzrichtung vorhanden. Bei noch größerer Teillast, wenn auch der obere Kanal 53 von der Steuerkante 24 freigegeben wird, wird der aus dem oberen Kanal 53 austretende Teilstrahl zu dem aus dem unteren Kanal austretenden Teilstrahl f hingelenkt, so daß sich die beiden Teilstrahlen e und f miteinander vereinigen. Wenn der Mündungsquerschnitt des oberen Kanals 53 nur wenig geöffnet ist, ist die Strahlrichtungsenergie des aus dem oberen Kanal 53 austretenden Teilstrahls e gegenüber dem unteren, in vollem Querschnitt austretenden Teilstrahl f gering, so daß beim Vereinigen zu einem einzigen Strahl g kaum eine Ablenkung stattfindet. Ist der obere Kanal 53 noch weiter geöffnet beispielsweise zur Hälfte, wie in Figur 4 dargestellt, ist die Strahlrichtungsenergie des dort austretenden Strahls e zwar größer, die Ablenkung aber schon wieder geringer, so daß der erzeugte Strahl g ebenfalls nur wenig aus der Sollrichtung abgelenkt wird, wobei dessen Richtungswinkel b'' nur wenig vom Idealwinkel abweicht. Schließlich kommt die Strahlrichtung des aus den beiden Kanälen 52, 53 strömenden, vereinigten Spritzstrahls g dem Sollwinkel immer näher je mehr die Mündung des zweiten Kanals 53 von der Steuerkante 24 freigegeben ist. Messungen an einer Einspritzdüse nach der Figur 4 haben ergeben, daß im Betriebsbereich der Einspritzdüse die größte Strahlablenkung vom Sollwinkel a maximal 2,5 Grad abweicht.For injecting fuel into the combustion chamber, the valve needle 14 with the closing head 16 and the piston slide 20 in the nozzle body 10 is axially displaced under the effect of the pressure of the supplied fuel. First, the valve cone 17 lifts off the valve seat 18 and then, or at the same time, the spray cross section is released as a function of the pressure of the fuel. This is done in that one or both mouth cross sections of the channels 52, 53 are moved partially or fully beyond the control edge 24. At the lowest partial load of the internal combustion engine, the piston slide 20 is displaced by approximately 40% of the total stroke h g , so that the lower channel 52 is opened almost completely by the control edge 24. In this position, the spray jet emerging from this channel is only slightly deflected by the control edge 24, so that the ideal spray direction is almost identical to the desired spray direction. At higher partial loads, when the lower channel 52 is fully released, the ideal spray direction is available. At an even greater partial load, when the upper channel 53 is also released by the control edge 24, the partial beam emerging from the upper channel 53 is directed towards the partial beam f emerging from the lower channel, so that the two partial beams e and f combine with one another. If the mouth cross section of the upper channel 53 is only slightly open, the beam direction energy of the partial beam e emerging from the upper channel 53 is low compared to the lower partial beam f emerging in full cross section, so that there is hardly any deflection when merging into a single beam g. If the upper channel 53 is still further open, for example half, as shown in FIG. 4, the beam direction energy of the beam e emerging there is greater, but the deflection is lower again, so that the generated beam g is also deflected only slightly from the desired direction , the direction angle b '' of which deviates only slightly from the ideal angle. Finally, the jet direction of the combined spray jet g flowing out of the two channels 52, 53 comes closer and closer to the target angle the more the mouth of the second channel 53 is released from the control edge 24. Measurements on an injection nozzle according to FIG. 4 have shown that the greatest jet deflection deviates from the desired angle a by a maximum of 2.5 degrees in the operating range of the injection nozzle.

Ergänzend wird bemerkt, daß über den gesamten Betriebsbereich der Brennkraftmaschine die tatsächliche Spritzrichtung der Spritzstrahlen der Sollrichtung desto mehr angepaßt ist, aus je mehr Kanälen ein Spritzloch zusammengefaßt ist, bzw. je mehr Leitzwischenwände ein Spritzloch hat. Um eine solche Vielzahl von Kanälen in der Einspritzdüse zu verwirklichen, sind verfeinerte Fertigungsverfahren erforderlich (z.B. Mikromechanik, LIGA-Technik, etc.).In addition, it is noted that the actual spray direction of the spray jets is more adapted to the desired direction over the entire operating range of the internal combustion engine, the more channels a spray hole is combined with, or the more guide partitions a spray hole has. In order to realize such a large number of channels in the injection nozzle, refined manufacturing processes are required (e.g. micromechanics, LIGA technology, etc.).

Claims (5)

Kraftstoff-Einspritzdüse für Brennkraftmaschinen der nach außen öffnenden Bauart mit einem in einer Bohrung eines Düsenkörpers vom Kraftstoffdruck entgegen der Wirkung einer Schließfeder verschiebbaren Ventilglied mit einem kolbenartigen Ventilkopf, in dem wenigstens ein in einem bestimmten Winkel zur Hubachse des Ventilglieds ausgerichtetes Spritzloch angeordnet ist, dessen Mündungsquerschnitt in Schließstellung des Ventilglieds vom Düsenkörper abgedeckt und beim Öffnungshub fortlaufend von einer Steuerkante am brennraumseitigen Ende des Ventilkörpers aufgesteuert wird, dadurch gekennzeichnet, daß das Spritzloch (25) mit wenigstens einer dünnen Trennwand (55) in mehrere parallele Strömungskanäle (52, 53) unterteilt ist, deren Mündungen von der Steuerkante (24) beim Öffnungshub des Ventilglieds (16, 20) nacheinander freigegeben werden, wobei die freigegebenen Teilströmungen (e, f) sich zu einem Spritzstrahl (g) vereinigen, dessen Achse in oder nahe der Ausrichtung des Spritzlochs (25) liegt.Fuel injection nozzle for internal combustion engines of the outwardly opening type with a valve member displaceable in a bore of a nozzle body by the fuel pressure against the action of a closing spring, with a piston-like valve head in which at least one spray hole is arranged at a certain angle to the stroke axis of the valve member, the mouth cross section of which in the closed position of the valve member covered by the nozzle body and continuously controlled by a control edge at the combustion chamber end of the valve body during the opening stroke, characterized in that the spray hole (25) is divided into a plurality of parallel flow channels (52, 53) with at least one thin partition (55) , the orifices of which are released from the control edge (24) in succession during the opening stroke of the valve member (16, 20), the released partial flows (e, f) uniting to form a spray jet (g), the axis of which is in or near the orientation d there is a spray hole (25). Kraftstoff-Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß das Spritzloch (25) aus zwei oder mehr in der Hubachse des Ventilglieds übereinander angeordneten parallelen Kanälen (52, 53) gebildet ist, und daß die Dicke der Trennwand (55) die Hälfte der Weite eines Kanals beträgt.Fuel injection nozzle according to Claim 1, characterized in that the spray hole (25) is formed from two or more parallel channels (52, 53) arranged one above the other in the stroke axis of the valve member, and in that the thickness of the partition (55) is half the width of a channel. Kraftstoff-Einspritzdüse nach Anspruch 2, dadurch gekennzeichnet, daß die Weite der Kanäle (52, 53) 0,100 bis 0,200 mm und die Dicke der Trennwand (55) 0,050 bis 0,100 mm beträgt.Fuel injection nozzle according to Claim 2, characterized in that the width of the channels (52, 53) is 0.100 to 0.200 mm and the thickness of the partition (55) is 0.050 to 0.100 mm. Kraftstoff-Einspritzdüse nach Anspruch 3, dadurch gekennzeichnet, daß die Kanäle (52, 53) gleiche Querschnitte haben.Fuel injection nozzle according to Claim 3, characterized in that the channels (52, 53) have the same cross sections. Kraftstoff-Einspritzdüse nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Kanäle (52, 53) einen Kreisquerschnitt haben.Fuel injection nozzle according to one of Claims 2 to 4, characterized in that the channels (52, 53) have a circular cross section.
EP94117580A 1993-12-01 1994-11-08 Fuel injector for internal combustion engines Expired - Lifetime EP0656474B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4340883A DE4340883A1 (en) 1993-12-01 1993-12-01 Fuel injection nozzle for internal combustion engines
DE4340883 1993-12-01

Publications (2)

Publication Number Publication Date
EP0656474A1 true EP0656474A1 (en) 1995-06-07
EP0656474B1 EP0656474B1 (en) 1999-02-17

Family

ID=6503874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117580A Expired - Lifetime EP0656474B1 (en) 1993-12-01 1994-11-08 Fuel injector for internal combustion engines

Country Status (4)

Country Link
US (1) US5497947A (en)
EP (1) EP0656474B1 (en)
JP (1) JPH07189866A (en)
DE (2) DE4340883A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4440369A1 (en) * 1994-11-11 1996-05-15 Bosch Gmbh Robert Fuel injection valve for IC engine
DE4442764A1 (en) * 1994-12-01 1996-06-05 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19602615A1 (en) * 1996-01-25 1997-07-31 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19618698A1 (en) * 1996-05-09 1997-11-13 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19620521A1 (en) * 1996-05-22 1997-11-27 Bosch Gmbh Robert Fuel injector for internal combustion engine
DE19623211A1 (en) * 1996-06-11 1997-12-18 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19623759A1 (en) * 1996-06-14 1997-12-18 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19625059A1 (en) * 1996-06-22 1998-01-02 Bosch Gmbh Robert Injection valve, in particular for injecting fuel directly into a combustion chamber of an internal combustion engine
DE19645900A1 (en) * 1996-11-07 1998-05-14 Bosch Gmbh Robert Fuel injection valve for internal combustion engine
DE19714186A1 (en) * 1997-04-07 1998-10-08 Bosch Gmbh Robert Method of making a split disk
DE19753162A1 (en) * 1997-11-29 1999-06-02 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
DE19818200A1 (en) * 1998-04-23 1999-10-28 Bosch Gmbh Robert Fuel injection valve for internal combustion engine
GB9813743D0 (en) * 1998-06-26 1998-08-26 Lucas Ind Plc Fuel injector
US6109540A (en) * 1998-10-29 2000-08-29 Caterpillar Inc. Outwardly opening nozzle valve for a fuel injector
DE19916485C2 (en) 1999-04-13 2001-10-31 Daimler Chrysler Ag Method for operating a reciprocating piston internal combustion engine
DE19922964C2 (en) 1999-05-19 2003-03-27 Daimler Chrysler Ag Method of injecting diesel fuel
US6454189B1 (en) 2000-07-03 2002-09-24 Caterpillar Inc. Reverse acting nozzle valve and fuel injector using same
DE10049544A1 (en) * 2000-10-06 2002-04-25 Bosch Gmbh Robert Fuel injector
US7210640B2 (en) * 2001-11-30 2007-05-01 Caterpillar Inc Fuel injector spray alteration through a moveable tip sleeve
DE102004033842A1 (en) * 2004-07-13 2006-02-09 Robert Bosch Gmbh Fuel injector
US7104475B2 (en) * 2004-11-05 2006-09-12 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7124963B2 (en) * 2004-11-05 2006-10-24 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7137577B2 (en) * 2004-11-05 2006-11-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7168637B2 (en) * 2004-11-05 2007-01-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7438241B2 (en) * 2004-11-05 2008-10-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7051957B1 (en) * 2004-11-05 2006-05-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7185831B2 (en) * 2004-11-05 2007-03-06 Ford Motor Company Low pressure fuel injector nozzle
US9062642B2 (en) * 2010-03-23 2015-06-23 Cummins Inc. Fuel injector with variable spray
US9920674B2 (en) 2014-01-09 2018-03-20 Cummins Inc. Variable spray angle injector arrangement
DE102014200756A1 (en) * 2014-01-17 2015-07-23 Robert Bosch Gmbh Gas injector for direct injection of gaseous fuel into a combustion chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295081A (en) * 1940-12-10 1942-09-08 Albert S Harvath Diesel engine injector
FR2289756A1 (en) * 1974-10-30 1976-05-28 Maschf Augsburg Nuernberg Ag INJECTOR FOR INTERNAL COMBUSTION AND PISTON ENGINES
US3982693A (en) * 1976-01-16 1976-09-28 General Motors Corporation Orifice plunger valve fuel injector
US4750675A (en) * 1987-10-05 1988-06-14 General Motors Corporation Damped opening poppet covered orifice fuel injection nozzle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1921873A (en) * 1931-02-12 1933-08-08 Gillen Kimmey Baker Syndicate Fuel injector
US2035203A (en) * 1934-02-21 1936-03-24 John W Smith Method of and apparatus for feeding fuel
US2762654A (en) * 1952-07-01 1956-09-11 Gen Motors Corp Fuel injection device
DE2749378A1 (en) * 1977-11-04 1979-05-10 Bosch Gmbh Robert FUEL INJECTOR
CA1269003A (en) * 1985-07-15 1990-05-15 David P. Sczomak Poppet covered orifice fuel injection nozzle
US4905908A (en) * 1988-10-17 1990-03-06 General Motors Corporation Poppet covered orifice fuel injection nozzle
US5127584A (en) * 1991-05-06 1992-07-07 General Motors Corporation Fuel injection nozzle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295081A (en) * 1940-12-10 1942-09-08 Albert S Harvath Diesel engine injector
FR2289756A1 (en) * 1974-10-30 1976-05-28 Maschf Augsburg Nuernberg Ag INJECTOR FOR INTERNAL COMBUSTION AND PISTON ENGINES
US3982693A (en) * 1976-01-16 1976-09-28 General Motors Corporation Orifice plunger valve fuel injector
US4750675A (en) * 1987-10-05 1988-06-14 General Motors Corporation Damped opening poppet covered orifice fuel injection nozzle

Also Published As

Publication number Publication date
US5497947A (en) 1996-03-12
EP0656474B1 (en) 1999-02-17
DE59407825D1 (en) 1999-03-25
DE4340883A1 (en) 1995-06-08
JPH07189866A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
EP0656474B1 (en) Fuel injector for internal combustion engines
DE60024334T2 (en) Fuel injector
EP0171031A2 (en) Fuel injection device for an internal combustion engine
DE69925884T2 (en) Fuel injector
DE10049518B4 (en) Fuel injector
CH669822A5 (en)
DE19755057A1 (en) Fuel injection nozzle for self-igniting internal combustion engines
EP1801410B1 (en) Valve for control of a fluid
CH623114A5 (en)
DE2935850A1 (en) FUEL INJECTION VALVE
EP0619426B1 (en) Fuel injection nozzle for internal combustion engines
DE4437927C2 (en) Solenoid valve-controlled fuel injection device with an injection nozzle for fuel injection into the combustion chamber of a diesel internal combustion engine
DE10100390A1 (en) Injector
EP0611885B1 (en) Fuel injector valve for an internal combustion piston engine
EP1407137A1 (en) Fuel injection valve for internal combustion engines
EP0646218B1 (en) Fuel injection nozzle for internal combustion engines
EP1561027B1 (en) Valve for control of a fluid
DE19507188C1 (en) Fuel injection valve for internal combustion engines
DE10046416A1 (en) Valve configuration for control valves comprises a valve seat between a high pressure inlet and a blocking element on the low pressure side which in its closed position is centered over the seat contact zone
DE3105687A1 (en) Leakage-free fuel injection nozzle
EP1558865B2 (en) Gas valve
DE1247066B (en) Fuel injection valve for externally ignited internal combustion engines
DE10164395A1 (en) Fuel injection device for IC engine has leakage channel connecting control pressure space for valve piston to discharge bore
EP0246220A1 (en) Injection nozzle for internal-combustion engines, particularly for diesel engines
DE4132505A1 (en) FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19951207

17Q First examination report despatched

Effective date: 19970603

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59407825

Country of ref document: DE

Date of ref document: 19990325

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001018

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010126

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011108

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051108