EP0746689A1 - Housing with recirculation control for use with banded axial-flow fans - Google Patents

Housing with recirculation control for use with banded axial-flow fans

Info

Publication number
EP0746689A1
EP0746689A1 EP94926638A EP94926638A EP0746689A1 EP 0746689 A1 EP0746689 A1 EP 0746689A1 EP 94926638 A EP94926638 A EP 94926638A EP 94926638 A EP94926638 A EP 94926638A EP 0746689 A1 EP0746689 A1 EP 0746689A1
Authority
EP
European Patent Office
Prior art keywords
fan
housing
vanes
combination
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94926638A
Other languages
German (de)
French (fr)
Other versions
EP0746689A4 (en
EP0746689B1 (en
Inventor
Martin G. Yapp
Robert Van Houten
Robert Ives Hickey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Airflow Research and Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airflow Research and Manufacturing Corp filed Critical Airflow Research and Manufacturing Corp
Publication of EP0746689A1 publication Critical patent/EP0746689A1/en
Publication of EP0746689A4 publication Critical patent/EP0746689A4/en
Application granted granted Critical
Publication of EP0746689B1 publication Critical patent/EP0746689B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/545Ducts

Definitions

  • banded axial-flow fan to describe a fan having a hub that rotates on an axis and has blades extending in an outwardly direction (for example, generally radially) from the hub to a circular band that connects the blade tips. Blade rotation tends to force air in the general direction of the fan axis.
  • fan and housing combination to describe such axial flow fans in combination with a housing (e.g., a shroud or a duct) that guides airflow entering and/or leaving the fan.
  • shroud we mean an airflow guide shaped and positioned to guide airflow moving between the fan and a heat exchanger.
  • An example of a banded shrouded fan that moves air through a heat exchanger is disclosed in Gray U.S. Patent, 4,548,548, which is hereby incorporated by reference.
  • duct we mean an elongated flow path such a those used in heat, ventilation, and air conditioning systems.
  • Airflow recirculation can be explained as follows.
  • the fan generates a pressure difference between the upstream side of the fan (the side from which air is drawn) and the downstream side of the fan (the side of the fan which exhausts the airflow) — i.e., pressure is higher on the downstream side than on the upstream side.
  • Airflow recirculation is the undesired flow of air from the downstream to the upstream side of the fan, resulting from this pressure difference.
  • the recirculating airflow passes through the running clearance between the housing and the band.
  • One way to reduce recirculation is to reduce the fan-to-housing clearance.
  • Another way to reduce recirculation is to incorporate labyrinth seals between the fan and the housing. In some cases these methods may present difficulties in economic manufacture.
  • the invention features certain configurations for banded, axial-flow fan and housing combinations that provide a surprising combination of efficiency, low noise, and manufacturability.
  • the invention generally features fan and housing combinations which include stationary flow control vanes (e.g. thin members) positioned to encounter and redirect recirculating airflow. A portion of the housing is positioned outward of the fan band, and there are running clearances between the band and the housing such that recirculating airflow moves in a pathway between the fan and the housing.
  • the stationary flow control vanes are attached to the housing.
  • the invention provides a combination of efficiency, manufacturability and low noise. Without wishing to bind our to a particular theory, such benefits may be explained at least in part as follows.
  • Recirculating airflow generally has a swirling (rotational) component of velocity imparted either by the fan blading or by vicious effects in the recirculation passage.
  • this swirl causes the fan blades to operate locally at an angle of attack different from that of the main flow.
  • Swirl also may increase inflow turbulence, which causes broadband noise, and it may lead to flow non-uniformities causing undesirable tones.
  • the invention is particularly suited for shrouded fans that draw airflow through an upstream heat exchanger, but the invention also can be applied to fans that blow air through a downstream heat exchanger. It is also particularly suited for ducted fans.
  • the first configuration features placement of the vanes generally within the space between the fan band and the housing, although embodiments in which the vanes continue downstream of the fan band are also included within the first configuration.
  • This configuration is best suited for applications in which there are axial packaging constraints, such as automotive applications in which a shrouded fan draws air through a heat exchanger immediately adjacent (usually upstream of) the fan.
  • the second configuration features placement of the vanes such that they are at least partially (or even entirely) upstream of the fan band from the perspective of the primary airflow.
  • Such configurations are particularly suited for ducted fans, such as those in airhandlers for heating, ventilating and/or cooling buildings, where axial space is less constrained.
  • the housing and vanes are a single injection molded plastic unit.
  • the vanes may be injection molded as part of an array that is assembled with the housing.
  • Preferred embodiments are also characterized by a fan-to-housing (usually a shroud) running clearance of at least 0.25% of the fan diameter.
  • running clearance we use the term running clearance to designate the spacing between the fan band and portions of the housing that extend around the fan band.
  • the housing is characterized by a reduction in radius at a location rearward of the trailing edge of the fan band.
  • the pathway of recirculating airflow can include an inlet formed between the trailing edge of the fan band and the portion of the housing at the reduced radius.
  • the trailing edge of the fan band is the rearward-most portion of the band.
  • the band includes a lip that extends rearward of the blade trailing edge.
  • at least a portion of the vanes is positioned radially outward of the inlet to the recirculation pathway.
  • the above-described housing radius reduction can reduce the housing radius R r (see Fig. 2A) to a value approximately equal to, or even less than, the outer radius of the trailing edge of the fan band (R b , see Fig. 2A, described below) .
  • approximately equal in this context means a radius that would risk interference if the portion of the housing with the reduced radius were not offset axially from the fan band.
  • the two radii may differ by less than standard or nominal radial running clearance "C" (see Fig. 2A) .
  • an inlet to the recirculation pathway is formed between the housing and the trailing edge of the band; the housing comprises a rearward portion which extends first rearwardly and then inwardly and forwardly, forming a pocket axially rearward of the inlet of the recirculation flow path.
  • Such pockets may have a rounded back or a straight back.
  • a portion of the vanes may extend into the pocket, and at least a portion of the vanes is axially rearward of the trailing edge of the band.
  • the vanes may be characterized by a reduction in radius at a position axially rearward of the trailing edge of the fan band.
  • the recirculating airflow pathway includes an outlet formed between the housing and an outwardly flaring segment of the leading edge of the fan band.
  • Advantages may be achieved according to the invention with other geometries that do not include this detail, however.
  • the vanes may be straight (radial or non-radial) taken in a section in a plane normal to the fan axis. Alternatively, the vanes may be curved taken in a section in a plane normal to the fan axis. II. Vanes Upstream Of The Fan Band
  • the space through which airflow recirculates comprises a restriction upstream (from the perspective of recirculating airflow) of the vanes.
  • the restriction causes the airflow to jet into the spaces between the vanes, rather than to be deflected radially or tangentially.
  • the band comprises a lip flaring outwardly to establish the above described restriction.
  • the vanes may be part of a single injection molded plastic piece.
  • the vanes may be arranged in an array whose inward tips are connected by an inner ring.
  • the inner ring gives structural rigidity to the vane assembly, which allows the housing to be formed around the vane assembly.
  • the vanes may be molded in various configurations that better match the direction of incoming recirculating airflow. These configurations may be particularly beneficial in fans producing a relatively low pressure rise at some segment of the duty cycle.
  • the vanes may be molded so that the end faces of the vanes are beveled (preferably at least 20° and most preferably at least 30°) so that the high pressure side surfaces extend slightly further upstream (from the perspective of recirculation airflow) than the low pressure side surfaces.
  • the sides of the vanes can also be hooked so that the high pressure side surfaces are concave near the upstream end of the vanes (e.g. so that the radius of the concave portion is between O.IS and l.OS, where S is the spacing between adjacent vanes).
  • the vanes may be angled slightly from purely radial, with the radially inward tip being inclined towards recirculation flow impinging on the vanes.
  • the vanes (or at least the high pressure side of the vanes, with the low pressure side being straight) may be curved in a planar section normal to the fan axis (e.g., the section may be cylindrical with a radius of curvature of between 0.15D and 0.3D).
  • FIG. 1A is a side view in section of a fan and shroud according to the invention, including an upstream heat exchanger.
  • Fig. IB shows a prior art fan.
  • Figs. 2A-2D are views in section of portions of fan and shroud combinations according to the invention, showing alternative configurations of the shroud radius reduction.
  • Figs. 3A and 3B are sections of fan and shroud combinations showing variations in shroud design upstream of the vanes.
  • Figs. 4A-4C are diagrammatic representations of arrays of vanes according to the invention in circumferential view.
  • Figs. 5A and 5B are side views, in section, of other fan/shroud combinations according to the invention, in which a heat exchanger is downstream of the fan.
  • Fig. 6 is a diagrammatic representation of a fan and duct combination according to the invention.
  • Figs. 7-9 are side views in section of other fan and housing combinations. II. Vanes Upstream Of The Fan Band
  • Fig. 10 is a side view in section of a fan and duct showing vanes upstream of the fan band.
  • Figs. 11 is a side view in section of a ducted, banded fan being used with a dual-ring vane assembly.
  • Fig. 12 is an end view of the vanes taken along 12-12 of Fig. 11, showing only a portion of the vanes.
  • Fig. 13A. is a close-up of the circled portion of Fig. 12.
  • Figs. 13B and 13C are similar views of alternative configurations.
  • Fig. 14A is a sectional view taken along 14A-14A of Fig. 12 showing square leading edge details for a pair of vanes.
  • Fig. 14B is a section of an alternative vane configuration.
  • Fig. 15 is perspective view of one particular vane embodiment according to the invention.
  • FIG. 1A fan 20 is positioned in shroud 26 to pull air through heat exchanger 21.
  • Axis A is the fan's rotational axis.
  • Fan 20 has a band 24 connecting the outer tips of blades 22. Band 24 terminates at its upstream edge in a lip 30.
  • Vanes 28 are attached to shroud 26.
  • Figs. 4A-4C are sectional views (perpendicular to the fan axis) of arrays of vanes 28, showing the alternative configurations of the vanes. The sections are taken looking rearwardly along the fan axis, and the direction of fan rotation is clockwise.
  • vanes 28E are radial.
  • vanes 28F are straight, and they are angled from the radial direction.
  • vanes 28G are curved to receive airflow having a rotational component in the direction of fan rotation.
  • the design of vanes 28 and shroud 26 permits the entire shroud and the vanes to be injection molded as a single unit.
  • the spacing between vanes 28 is selected to remove swirl without excessively blocking airflow. In typical applications there will be more than 10 and less than 1000 (e.g., 30-200) of these vanes, although there may be fewer or more in specific applications.
  • Fan 20 and shroud 26 are designed with running clearances to avoid interference between band 24 and shroud 26.
  • Shroud 26 has a radius reduction rearward of band 24 (formed by shroud segments 27 and 29) , which reduces the shroud radius (R r ) to less than the outer radius (R b )of band 24 at its trailing edge, plus clearance "C".
  • Fig. 2A illustrates R r , R b and R c on a fan and housing similar to that shown in Fig. 1A.
  • Shroud 26 is mounted to radiator 21 by mounts 23.
  • Fig. IB is a figure reproduced from Gray, U.S. 4,548,548.
  • the recirculation flow path between the shroud and the band does not include vanes.
  • the radius of the shroud is relatively constant rearward of the lip of the band, at a value that must provide clearance between the band and the shroud.
  • the radius of the fan band R b , the radius of the shroud after the reduction R r , and clearance "C" are shown in Fig. 2A, discussed below.
  • the operation of the invention can be described as follows. Recirculating airflow enters the inlet between band 24 and the shroud radius reduction formed by segments 27 and 29. The airflow turns to travel in space 32 and encounters vanes 28 whereby rotational velocity is reduced. The airflow exits the recirculation path through outlet 36, which is formed between the upstream edge of lip 30 and shroud 26.
  • the widths of inlet 34 and outlet 36 are as narrow as manufacturing processes permit to minimize leakage and resulting lost energy.
  • Figs. 2A-2D are diagrammatic representations of details of fan/shroud combinations that are similar to the one shown in Fig. 1A, with differing inlets to the recirculation flow path space. In each of those figures, fan blades terminate in a similar band. Vanes are included in the space between the fan band and the shroud. The shroud includes a radius reduction rearward of the trailing edge of the fan band.
  • Figs. 2A-2D The specific designs of the shrouds differ in these radius reductions, thus providing different inlets to the recirculation flow path.
  • the embodiments of Figs. 2A-2D will only be described to highlight the differences among those embodiments.
  • Features in Figs. 2A-2D are numbered with numbers corresponding to those used in Figs. 1A.
  • the shroud radius reduction segments 27A and 29A are rearward of the trailing edge of band 24A.
  • the inner radius of segment 29A is less than the outer radius of the trailing edge of band 24A.
  • shroud segment 29B has an inner radius slightly larger than the outer radius of the trailing edge of band 24B.
  • segment 29C has a radius approximately equal to that of the fan band. Segment 26C flares outwardly, to optimize performance in some applications. The thickness of the shroud may decrease with rearward extent, so that the outer shroud diameter in this segment flares less or is generally cylindrical. In Fig. 2D, segment 29D is rounded to form a pocket 48D. This geometry allows a large amount of flare to be used on an injection moldable part. Vanes 28D extend into the pocket.
  • Figs 3A and 3B are sections of fan and housing combinations that are similar to the fan of Fig 1A, except in the configuration of shroud 26' and 26" upstream of the fan.
  • fan blade 22 terminates in a band 24.
  • Vanes 28 are positioned in the recirculation flow path.
  • Motor supports 37 extend from a downstream extension of the shroud.
  • a restriction is not formed between the band 24' and shroud 26'.
  • the radius of shroud segment 26" is essentially constant, and a restriction is formed between band 24 and shroud 26". Both configurations are within the spirit of the invention.
  • Figs. 5A and 5B show two alternative fan and housing configurations in which the fan is upstream of the heat exchanger, and the shroud guides airflow (shown generally with an arrow) from the fan into the heat exchanger.
  • fan blade 54 has a band 55 with a lip 56 that forms an inlet to the fan. Airflow recirculation takes place through inlet 67 into space 57 between the shroud 58 and the band 55, and exits outlet 68. Vanes 59 are positioned in space 57 to encounter recirculating airflow and reduce swirl in the recirculating airflow.
  • Fan motor 65 is positioned between the fan and the heat exchanger 62.
  • Shroud 58 includes a segment 60 to which motor supports 61 are attached.
  • Fig. 5B fan 70 blows air into downstream heat exchanger 82.
  • motor 71 of the assembly of Fig. 5B is upstream of the fan.
  • the fan band 75 has a lip 76 on the downstream side, and the inlet to the fan is formed by a shroud segment 80 which curves inwardly and back toward heat exchanger 82.
  • the motor 71 is attached to support 81. Recirculating airflow moves through inlet 83 to space 77 between band 75 and shroud 78, and exits outlet 84. Vanes 79 are positioned in space 77 to encounter that recirculating airflow and to reduce swirl in it. In this configuration, the inlet restriction upstream of the vanes and the vane shaping referenced below may be beneficial.
  • Fig. 6 is a section showing a variation of the invention useful in ducted fans.
  • the vanes 44 are provided as a separately molded part having a flared rear face 49 which terminates in an edge 50 that forms the inlet 52 for the recirculation flow path.
  • the blades 48, the band 46 and the duct 51 are similar to those described below.
  • Fig. 7 shows a fan 640 housed in a shroud 642 which guides airflow through a radiator (not shown) upstream of the fan.
  • Vanes 644 are L-shaped in this view and radial in a plane perpendicular to the fan axis.
  • Lip 646 forms a restriction inlet 648 with lip 647.
  • the vanes are spaced from 1/8 to 1/2 of an inch apart around the circumference, with the smaller spacing being used in very small fans.
  • the fan and housing combination of Fig. 7 can also be used (with some modification) as a ducted fan.
  • the width of the recirculation outlet is at least twice the width of the recirculation inlet. Increasing the width of outlet reduces the velocity of the leakage flow thus reducing flow disruption as the recirculation flow enters the main flow.
  • fan 780 has a band 782 with an upstream edge that turns back axially to form lip 784.
  • Shroud 786 includes vanes 788.
  • a lip 790 on shroud 786 forms a restriction 792 in the recirculation path, which feeds the airflow to vanes 788 and from there to outlet 794.
  • the outlet to the recirculation path is at least twice as wide as the restriction.
  • band 800 of fan 801 has a trailing lip 802 which forms restriction 803 with shroud 804.
  • Leakage vanes 805 extend from shroud 804.
  • Bell mouth 807 together with the axially forward edge of band 800 form outlet 806 to the recirculation path.
  • Fig. 10 depicts a fan 90 in which the housing 92 is a duct or shroud having vanes 94 upstream of band 96.
  • Inlet 91 is formed between the upstream edge of band 96 and duct 92.
  • This inlet (“X") is on the order of 0.005D- 0.02D. Recirculation airflow is entrained into vanes 94 and leaves through the open sides 98 of the slots between vanes 94.
  • the array of vanes is provided by a dual ring structure 217 which fits within the duct 212 just upstream of the fan 214.
  • the vane assembly may be made from molded plastic, hard plastic foam, or any suitable material which may be fashioned into the requisite geometry. As shown in Fig. 11, the assembly consists of an outer ring 216, an inner ring 218, and a plurality of vanes 220 disposed generally radially between the two rings 216, 218.
  • the ring 218 gives structural rigidity to the assembly. This is beneficial if it is desired to form the housing by wrapping sheet metal, or some other flexible material, around the perimeter of the outer ring 216 to form the duct.
  • the inner ring 218 also divides the duct into separate flow passageways, an inner primary passageway 222 through which the primary flow passes, and an outer, annular recirculation passageway 224 through which the recirculation flow passes.
  • the inner ring 218 helps to inhibit radial flow, where it exists, from reentering the fan.
  • a banded fan 214 in which the band 226 terminates in a curved lip 228.
  • the curved lip 228 forms a restriction 230 in the recirculation passageway 224.
  • the vanes 220 may be substantially flat, non-shaped vanes. Such vanes generally may provide adequate performance. As explained below, however, for other applications (e.g., low pressure rise fans or fans that are designed both for high and low pressure rise) additional vane shaping can improve performance.
  • Tangential deflection of airflow is reduced by bevelling the end face 234 of each of the vanes 220, as shown in Fig. 14B.
  • the end face 234 is beveled such that the high pressure side surface 236 of the vane projects further upstream (taken from the perspective of the recirculation flow) than the low pressure side surface 238.
  • the bevel angle, ,9 can be at least 20°, and is preferably 30° or more. Deflection of flow in the inward radial direction is reduced by incorporating additional detailed vane shaping in two respects. First, as shown in Fig.
  • the high pressure side surface 236 is made concave by the addition of a cylindrical region 242 at the leading edge 250, i.e., the juncture of the high pressure side surface 236 and end face 234.
  • the radius of curvature r of the cylindrical region 242 can be on the same order as 1/2 of the spacing between vanes.
  • the vanes can be non-radial in a section perpendicular to a plane normal to the fan axis.
  • the innermost tips 250 of the vanes 220 are inclined into the impinging recirculation flow.
  • the lean angle, ⁇ should preferably be between 3° and 10° from radial.
  • vanes (or at least the high pressure side of the vanes) of some embodiments are slightly cylindrical in a plane normal to the fan axis.
  • the center of curvature is parallel with the fan centerline and is placed on a tangent to the outside periphery of the vane.
  • the radius of curvature is approximately 20% of the fan diameter.
  • the vanes are radial at the outer periphery of the device, and are more inclined toward the flow as radius decreases.
  • Fig. 15 is a perspective view of a portion of a dual ring structure 217 looking axially toward the rear face 232 of vanes 240. As described above, the leading edge 242 of vanes 220 is beveled, and the high pressure side face 236 is shaped. The vanes are slightly cylindrical in a plane normal to the fan axis.
  • vanes can be used with fan/shroud combinations that blow air through a downstream heat exchanger.
  • they can be used with the fan/shroud combinations as generally described in a commonly owned U.S. Patent Application titled Fan Inlet With Curved Lip And Cylindrical Member Forming Labyrinth Seal, filed on June 17, 1993, by Michael Sortor, and given serial number 08/079,317. That application is hereby incorporated by reference. What is claimed is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Stationary flow control vanes (28) positioned to encounter and redirect recirculating airflow provide a surprising combination of efficiency, low noise, and manufacturability for shrouded, banded, axial fans (20) that are positioned in a housing (26). Such fan and housing combinations reduce swirl in recirculating airflow, so that the airflow entering the fan (which includes the recirculating airflow) is more ordered and fan performance is improved. It can also be applied to fans that blow air through a downstream heat exchanger (21). The invention is also suited for ducted fans.

Description

HOUSING WITH RECIRCULATION CONTROL FOR USE WITH BANDED AXIAL-FLOW FANS
Background of the Invention This application relates primarily to banded, axial-flow fans that are used in combination with a housing. We use the term banded axial-flow fan to describe a fan having a hub that rotates on an axis and has blades extending in an outwardly direction (for example, generally radially) from the hub to a circular band that connects the blade tips. Blade rotation tends to force air in the general direction of the fan axis. We use the term fan and housing combination to describe such axial flow fans in combination with a housing (e.g., a shroud or a duct) that guides airflow entering and/or leaving the fan. By shroud, we mean an airflow guide shaped and positioned to guide airflow moving between the fan and a heat exchanger. An example of a banded shrouded fan that moves air through a heat exchanger is disclosed in Gray U.S. Patent, 4,548,548, which is hereby incorporated by reference. By duct, we mean an elongated flow path such a those used in heat, ventilation, and air conditioning systems.
In order to compare the invention to the prior art, a figure from the '548 patent is reproduced here as Fig. IB. See also, Longhouse, U.S. Patent 4,685,513.
There have been efforts to reduce the effects of undesired airflow recirculation experienced with fan and housing combinations. Airflow recirculation can be explained as follows. The fan generates a pressure difference between the upstream side of the fan (the side from which air is drawn) and the downstream side of the fan (the side of the fan which exhausts the airflow) — i.e., pressure is higher on the downstream side than on the upstream side. Airflow recirculation is the undesired flow of air from the downstream to the upstream side of the fan, resulting from this pressure difference. For banded fans in a housing, the recirculating airflow passes through the running clearance between the housing and the band.
One way to reduce recirculation is to reduce the fan-to-housing clearance. Another way to reduce recirculation is to incorporate labyrinth seals between the fan and the housing. In some cases these methods may present difficulties in economic manufacture.
Hauser U. S. Pat. 4,357,914 discloses a cooling fan for use with an annular radiator having baffle rings to reduce recirculation. Summary of the Invention
The invention features certain configurations for banded, axial-flow fan and housing combinations that provide a surprising combination of efficiency, low noise, and manufacturability. The invention generally features fan and housing combinations which include stationary flow control vanes (e.g. thin members) positioned to encounter and redirect recirculating airflow. A portion of the housing is positioned outward of the fan band, and there are running clearances between the band and the housing such that recirculating airflow moves in a pathway between the fan and the housing. According to the invention, the stationary flow control vanes are attached to the housing. The invention provides a combination of efficiency, manufacturability and low noise. Without wishing to bind ourselves to a particular theory, such benefits may be explained at least in part as follows. Recirculating airflow generally has a swirling (rotational) component of velocity imparted either by the fan blading or by vicious effects in the recirculation passage. When reingested by the fan, this swirl causes the fan blades to operate locally at an angle of attack different from that of the main flow. Swirl also may increase inflow turbulence, which causes broadband noise, and it may lead to flow non-uniformities causing undesirable tones.
The invention is particularly suited for shrouded fans that draw airflow through an upstream heat exchanger, but the invention also can be applied to fans that blow air through a downstream heat exchanger. It is also particularly suited for ducted fans.
We have found that the invention can be practiced in two general configurations described below. While both configurations are included in a single invention, we have found that specific optimum vane geometry may be different for the two configurations, as detailed below. The first configuration features placement of the vanes generally within the space between the fan band and the housing, although embodiments in which the vanes continue downstream of the fan band are also included within the first configuration. This configuration is best suited for applications in which there are axial packaging constraints, such as automotive applications in which a shrouded fan draws air through a heat exchanger immediately adjacent (usually upstream of) the fan.
The second configuration features placement of the vanes such that they are at least partially (or even entirely) upstream of the fan band from the perspective of the primary airflow. Such configurations are particularly suited for ducted fans, such as those in airhandlers for heating, ventilating and/or cooling buildings, where axial space is less constrained. In preferred embodiments of the first configuration of the invention, the housing and vanes are a single injection molded plastic unit. For the second configuration, the vanes may be injection molded as part of an array that is assembled with the housing.
Preferred embodiments (particularly for automotive applications with fan/shroud/radiator combinations) are also characterized by a fan-to-housing (usually a shroud) running clearance of at least 0.25% of the fan diameter.
We use the term running clearance to designate the spacing between the fan band and portions of the housing that extend around the fan band.
I. Vanes In The Band-To- Housing Gap
In preferred embodiments of the first configuration of the invention, the housing (shroud) is characterized by a reduction in radius at a location rearward of the trailing edge of the fan band. The pathway of recirculating airflow can include an inlet formed between the trailing edge of the fan band and the portion of the housing at the reduced radius. The trailing edge of the fan band is the rearward-most portion of the band. In some embodiments, the band includes a lip that extends rearward of the blade trailing edge. Preferably, at least a portion of the vanes is positioned radially outward of the inlet to the recirculation pathway.
The above-described housing radius reduction can reduce the housing radius Rr (see Fig. 2A) to a value approximately equal to, or even less than, the outer radius of the trailing edge of the fan band (Rb, see Fig. 2A, described below) . "Approximately equal" in this context means a radius that would risk interference if the portion of the housing with the reduced radius were not offset axially from the fan band. For example, for automotive and similar applications, the two radii may differ by less than standard or nominal radial running clearance "C" (see Fig. 2A) .
Also in preferred embodiments, the housing comprises a rearward housing segment extending from the radius reduction rearwardly to the rearward housing (shroud) terminus. Elongated motor supports may be attached to that rearward housing segment, extending from the housing to a centrally positioned motor mount. As the housing extends rearwardly from the location of the radius reduction, the inside diameter of the housing may increase, producing a flare to improve performance.
In yet other preferred embodiments, an inlet to the recirculation pathway is formed between the housing and the trailing edge of the band; the housing comprises a rearward portion which extends first rearwardly and then inwardly and forwardly, forming a pocket axially rearward of the inlet of the recirculation flow path. Such pockets may have a rounded back or a straight back. A portion of the vanes may extend into the pocket, and at least a portion of the vanes is axially rearward of the trailing edge of the band. Also, the vanes may be characterized by a reduction in radius at a position axially rearward of the trailing edge of the fan band. Also in some embodiments, the recirculating airflow pathway includes an outlet formed between the housing and an outwardly flaring segment of the leading edge of the fan band. Advantages may be achieved according to the invention with other geometries that do not include this detail, however. The vanes may be straight (radial or non-radial) taken in a section in a plane normal to the fan axis. Alternatively, the vanes may be curved taken in a section in a plane normal to the fan axis. II. Vanes Upstream Of The Fan Band
We turn now to a second configuration of the invention in which the vanes are at least partially upstream of the fan band. In some embodiments of the second configuration of the invention, the space through which airflow recirculates comprises a restriction upstream (from the perspective of recirculating airflow) of the vanes. Without wishing to be bound to or limited by a specific theory, we believe improved performance from this configuration may result, at least in part, because the restriction causes the airflow to jet into the spaces between the vanes, rather than to be deflected radially or tangentially. Also preferably, the band comprises a lip flaring outwardly to establish the above described restriction. (This embodiment of the invention also has application in some embodiments of the first configuration of the invention, e.g. in the embodiment of Fig. 5B where the inlet to the recirculation path is the restriction.)
The vanes may be part of a single injection molded plastic piece. For example, the vanes may be arranged in an array whose inward tips are connected by an inner ring. The inner ring gives structural rigidity to the vane assembly, which allows the housing to be formed around the vane assembly.
The vanes may be molded in various configurations that better match the direction of incoming recirculating airflow. These configurations may be particularly beneficial in fans producing a relatively low pressure rise at some segment of the duty cycle. For example, the vanes may be molded so that the end faces of the vanes are beveled (preferably at least 20° and most preferably at least 30°) so that the high pressure side surfaces extend slightly further upstream (from the perspective of recirculation airflow) than the low pressure side surfaces. The sides of the vanes can also be hooked so that the high pressure side surfaces are concave near the upstream end of the vanes (e.g. so that the radius of the concave portion is between O.IS and l.OS, where S is the spacing between adjacent vanes). The vanes may be angled slightly from purely radial, with the radially inward tip being inclined towards recirculation flow impinging on the vanes. The vanes (or at least the high pressure side of the vanes, with the low pressure side being straight) may be curved in a planar section normal to the fan axis (e.g., the section may be cylindrical with a radius of curvature of between 0.15D and 0.3D).
Other features and advantages of the invention will be apparent from the following description of preferred embodiments and from the claims.
Brief Description of the Drawings
I. Vanes In The Band- To-Housing Gap Fig. 1A is a side view in section of a fan and shroud according to the invention, including an upstream heat exchanger.
Fig. IB shows a prior art fan. Figs. 2A-2D are views in section of portions of fan and shroud combinations according to the invention, showing alternative configurations of the shroud radius reduction.
Figs. 3A and 3B are sections of fan and shroud combinations showing variations in shroud design upstream of the vanes.
Figs. 4A-4C are diagrammatic representations of arrays of vanes according to the invention in circumferential view. Figs. 5A and 5B are side views, in section, of other fan/shroud combinations according to the invention, in which a heat exchanger is downstream of the fan.
Fig. 6 is a diagrammatic representation of a fan and duct combination according to the invention.
Figs. 7-9 are side views in section of other fan and housing combinations. II. Vanes Upstream Of The Fan Band
Fig. 10 is a side view in section of a fan and duct showing vanes upstream of the fan band.
Figs. 11 is a side view in section of a ducted, banded fan being used with a dual-ring vane assembly.
Fig. 12 is an end view of the vanes taken along 12-12 of Fig. 11, showing only a portion of the vanes. Fig. 13A. is a close-up of the circled portion of Fig. 12. Figs. 13B and 13C are similar views of alternative configurations.
Fig. 14A is a sectional view taken along 14A-14A of Fig. 12 showing square leading edge details for a pair of vanes. Fig. 14B is a section of an alternative vane configuration.
Fig. 15 is perspective view of one particular vane embodiment according to the invention.
Description of the Preferred Embodiments We will describe embodiments of the two configurations of the invention separately. I. Vanes in Gap Between Housing and Fan Band
In Fig. 1A, fan 20 is positioned in shroud 26 to pull air through heat exchanger 21. Axis A is the fan's rotational axis. Fan 20 has a band 24 connecting the outer tips of blades 22. Band 24 terminates at its upstream edge in a lip 30. Vanes 28 are attached to shroud 26. Figs. 4A-4C are sectional views (perpendicular to the fan axis) of arrays of vanes 28, showing the alternative configurations of the vanes. The sections are taken looking rearwardly along the fan axis, and the direction of fan rotation is clockwise. In Fig. 4A, vanes 28E are radial. In Fig. 4B, vanes 28F are straight, and they are angled from the radial direction. In Fig. 4C, vanes 28G are curved to receive airflow having a rotational component in the direction of fan rotation. Advantageously, the design of vanes 28 and shroud 26 permits the entire shroud and the vanes to be injection molded as a single unit. The spacing between vanes 28 is selected to remove swirl without excessively blocking airflow. In typical applications there will be more than 10 and less than 1000 (e.g., 30-200) of these vanes, although there may be fewer or more in specific applications. Fan 20 and shroud 26 are designed with running clearances to avoid interference between band 24 and shroud 26. Shroud 26 has a radius reduction rearward of band 24 (formed by shroud segments 27 and 29) , which reduces the shroud radius (Rr) to less than the outer radius (Rb)of band 24 at its trailing edge, plus clearance "C". Fig. 2A illustrates Rr, Rb and Rc on a fan and housing similar to that shown in Fig. 1A.
Motor supports (one shown as 37 in Fig. 1A) are attached to shroud segment 29. Shroud 26 is mounted to radiator 21 by mounts 23.
For comparative purposes, we include Fig. IB which is a figure reproduced from Gray, U.S. 4,548,548. Note that the recirculation flow path between the shroud and the band does not include vanes. Moreover, the radius of the shroud is relatively constant rearward of the lip of the band, at a value that must provide clearance between the band and the shroud. The radius of the fan band Rb, the radius of the shroud after the reduction Rr, and clearance "C" are shown in Fig. 2A, discussed below. The operation of the invention can be described as follows. Recirculating airflow enters the inlet between band 24 and the shroud radius reduction formed by segments 27 and 29. The airflow turns to travel in space 32 and encounters vanes 28 whereby rotational velocity is reduced. The airflow exits the recirculation path through outlet 36, which is formed between the upstream edge of lip 30 and shroud 26.
Preferably, the widths of inlet 34 and outlet 36 are as narrow as manufacturing processes permit to minimize leakage and resulting lost energy. In practice, for typical automotive applications, the width of inlet 34 may be about 0.04D (where D = the fan diameter) or less, and the width of outlet 36 may be 0.02D or less. Figs. 2A-2D are diagrammatic representations of details of fan/shroud combinations that are similar to the one shown in Fig. 1A, with differing inlets to the recirculation flow path space. In each of those figures, fan blades terminate in a similar band. Vanes are included in the space between the fan band and the shroud. The shroud includes a radius reduction rearward of the trailing edge of the fan band. The specific designs of the shrouds differ in these radius reductions, thus providing different inlets to the recirculation flow path. In view of those similarities, the embodiments of Figs. 2A-2D will only be described to highlight the differences among those embodiments. Features in Figs. 2A-2D are numbered with numbers corresponding to those used in Figs. 1A. In Fig. 2A, the shroud radius reduction segments 27A and 29A are rearward of the trailing edge of band 24A. The inner radius of segment 29A is less than the outer radius of the trailing edge of band 24A. In Fig. 2B, shroud segment 29B has an inner radius slightly larger than the outer radius of the trailing edge of band 24B.
In Fig. 2C, segment 29C has a radius approximately equal to that of the fan band. Segment 26C flares outwardly, to optimize performance in some applications. The thickness of the shroud may decrease with rearward extent, so that the outer shroud diameter in this segment flares less or is generally cylindrical. In Fig. 2D, segment 29D is rounded to form a pocket 48D. This geometry allows a large amount of flare to be used on an injection moldable part. Vanes 28D extend into the pocket.
Figs 3A and 3B are sections of fan and housing combinations that are similar to the fan of Fig 1A, except in the configuration of shroud 26' and 26" upstream of the fan. In both figures, fan blade 22 terminates in a band 24. Vanes 28 are positioned in the recirculation flow path. Motor supports 37 extend from a downstream extension of the shroud. Unlike the fan and housing depicted in Fig. 1A, in Fig. 3A, a restriction is not formed between the band 24' and shroud 26'. In Fig. 3B, the radius of shroud segment 26" is essentially constant, and a restriction is formed between band 24 and shroud 26". Both configurations are within the spirit of the invention.
Figs. 5A and 5B show two alternative fan and housing configurations in which the fan is upstream of the heat exchanger, and the shroud guides airflow (shown generally with an arrow) from the fan into the heat exchanger. In Fig. 5A, fan blade 54 has a band 55 with a lip 56 that forms an inlet to the fan. Airflow recirculation takes place through inlet 67 into space 57 between the shroud 58 and the band 55, and exits outlet 68. Vanes 59 are positioned in space 57 to encounter recirculating airflow and reduce swirl in the recirculating airflow. Fan motor 65 is positioned between the fan and the heat exchanger 62. Shroud 58 includes a segment 60 to which motor supports 61 are attached.
In Fig. 5B, fan 70 blows air into downstream heat exchanger 82. Unlike the assembly of Fig. 5A, motor 71 of the assembly of Fig. 5B is upstream of the fan. The fan band 75 has a lip 76 on the downstream side, and the inlet to the fan is formed by a shroud segment 80 which curves inwardly and back toward heat exchanger 82. The motor 71 is attached to support 81. Recirculating airflow moves through inlet 83 to space 77 between band 75 and shroud 78, and exits outlet 84. Vanes 79 are positioned in space 77 to encounter that recirculating airflow and to reduce swirl in it. In this configuration, the inlet restriction upstream of the vanes and the vane shaping referenced below may be beneficial. Fig. 6 is a section showing a variation of the invention useful in ducted fans. The vanes 44 are provided as a separately molded part having a flared rear face 49 which terminates in an edge 50 that forms the inlet 52 for the recirculation flow path. In other respects, the blades 48, the band 46 and the duct 51 are similar to those described below.
Fig. 7 shows a fan 640 housed in a shroud 642 which guides airflow through a radiator (not shown) upstream of the fan. Vanes 644 are L-shaped in this view and radial in a plane perpendicular to the fan axis. Lip 646 forms a restriction inlet 648 with lip 647. The vanes are spaced from 1/8 to 1/2 of an inch apart around the circumference, with the smaller spacing being used in very small fans. The fan and housing combination of Fig. 7 can also be used (with some modification) as a ducted fan. In some applications, the width of the recirculation outlet is at least twice the width of the recirculation inlet. Increasing the width of outlet reduces the velocity of the leakage flow thus reducing flow disruption as the recirculation flow enters the main flow.
In Fig. 8, fan 780 has a band 782 with an upstream edge that turns back axially to form lip 784. Shroud 786 includes vanes 788. A lip 790 on shroud 786 forms a restriction 792 in the recirculation path, which feeds the airflow to vanes 788 and from there to outlet 794. In this particular embodiment, the outlet to the recirculation path is at least twice as wide as the restriction.
In Fig. 9, band 800 of fan 801 has a trailing lip 802 which forms restriction 803 with shroud 804. Leakage vanes 805 extend from shroud 804. Bell mouth 807 together with the axially forward edge of band 800 form outlet 806 to the recirculation path. II. Vanes Upstream of the Fan Band
Fig. 10 depicts a fan 90 in which the housing 92 is a duct or shroud having vanes 94 upstream of band 96. Inlet 91 is formed between the upstream edge of band 96 and duct 92. This inlet ("X") is on the order of 0.005D- 0.02D. Recirculation airflow is entrained into vanes 94 and leaves through the open sides 98 of the slots between vanes 94.
With reference to Figs. 11-15, in preferred embodiments the array of vanes is provided by a dual ring structure 217 which fits within the duct 212 just upstream of the fan 214. The vane assembly may be made from molded plastic, hard plastic foam, or any suitable material which may be fashioned into the requisite geometry. As shown in Fig. 11, the assembly consists of an outer ring 216, an inner ring 218, and a plurality of vanes 220 disposed generally radially between the two rings 216, 218.
Although use of an inner ring 218 is not absolutely necessary, it is preferred. The ring 218 gives structural rigidity to the assembly. This is beneficial if it is desired to form the housing by wrapping sheet metal, or some other flexible material, around the perimeter of the outer ring 216 to form the duct.
The inner ring 218 also divides the duct into separate flow passageways, an inner primary passageway 222 through which the primary flow passes, and an outer, annular recirculation passageway 224 through which the recirculation flow passes. The inner ring 218 helps to inhibit radial flow, where it exists, from reentering the fan.
As disclosed above, it is advantageous to use a banded fan 214 in which the band 226 terminates in a curved lip 228. The curved lip 228 forms a restriction 230 in the recirculation passageway 224.
As shown in Fig. 13A and 14A, the vanes 220 may be substantially flat, non-shaped vanes. Such vanes generally may provide adequate performance. As explained below, however, for other applications (e.g., low pressure rise fans or fans that are designed both for high and low pressure rise) additional vane shaping can improve performance.
Without wishing to bind ourselves to a single, specific theory as to the operation of such shaping improvements, it appears that the tangential velocity of the recirculation flow is induced mainly by viscous effects, and is therefore approximately a fixed percentage of tip speed. The axial velocity, however, is caused by the pressure difference across the fan. As a result, a fan which generates a relatively low pressure (for its diameter and rotation speed) will have a recirculation flow which approaches the vane at an angle closer to tangential than will be the case for a relatively high pressure fan. When air approaches a vane with a square end face (Figure 14A) at an angle close to tangential, there is a tendency for some of this flow to be deflected in the tangential and inward radial directions, rather than to pass through the space between the vanes. In this case, it is beneficial to provide some additional shaping to the vanes.
Tangential deflection of airflow is reduced by bevelling the end face 234 of each of the vanes 220, as shown in Fig. 14B. The end face 234 is beveled such that the high pressure side surface 236 of the vane projects further upstream (taken from the perspective of the recirculation flow) than the low pressure side surface 238. The bevel angle, ,9, can be at least 20°, and is preferably 30° or more. Deflection of flow in the inward radial direction is reduced by incorporating additional detailed vane shaping in two respects. First, as shown in Fig. 14B, the high pressure side surface 236 is made concave by the addition of a cylindrical region 242 at the leading edge 250, i.e., the juncture of the high pressure side surface 236 and end face 234. The radius of curvature r of the cylindrical region 242 can be on the same order as 1/2 of the spacing between vanes.
Secondly, the vanes can be non-radial in a section perpendicular to a plane normal to the fan axis. In Fig. 13B, the innermost tips 250 of the vanes 220 are inclined into the impinging recirculation flow. The lean angle, λ, should preferably be between 3° and 10° from radial. Alternatively, as shown in Fig. 13C, vanes (or at least the high pressure side of the vanes) of some embodiments are slightly cylindrical in a plane normal to the fan axis. The center of curvature is parallel with the fan centerline and is placed on a tangent to the outside periphery of the vane. The radius of curvature is approximately 20% of the fan diameter. The vanes are radial at the outer periphery of the device, and are more inclined toward the flow as radius decreases.
Fig. 15 is a perspective view of a portion of a dual ring structure 217 looking axially toward the rear face 232 of vanes 240. As described above, the leading edge 242 of vanes 220 is beveled, and the high pressure side face 236 is shaped. The vanes are slightly cylindrical in a plane normal to the fan axis.
Other embodiments are within the following claims. For example, the above described vanes can be used with fan/shroud combinations that blow air through a downstream heat exchanger. Specifically, they can be used with the fan/shroud combinations as generally described in a commonly owned U.S. Patent Application titled Fan Inlet With Curved Lip And Cylindrical Member Forming Labyrinth Seal, filed on June 17, 1993, by Michael Sortor, and given serial number 08/079,317. That application is hereby incorporated by reference. What is claimed is:

Claims

1. A fan and housing combination comprising a fan having a hub that rotates on an axis and blades extending outwardly from the hub to a circular band that connects the blade tips, the combination also comprising a housing to control airflow entering the fan, leaving the fan, or both, the combination being characterized in that: a) a portion of the housing is positioned outward of the fan band and there are running clearances between the band and the housing such that recirculating airflow moves in a pathway between the fan and the housing; and b) stationary flow control vanes are connected to the housing in a position to encounter and redirect recirculating airflow, said housing and said vanes being a single injection molded plastic unit.
2. The fan and housing combination of claim 1 in which the housing is positioned upstream from a heat exchanger, whereby the fan pushes air through the heat exchanger.
3. A fan and housing combination comprising a fan having a hub that rotates on an axis and blades extending outwardly from the hub to a circular band that connects the blade tips, the combination also comprising a housing to control airflow entering the fan, leaving the fan, or both, the combination being characterized in that: a) a portion of the housing is positioned outward of the fan band and there are running clearances between the band and the housing such that recirculating airflow moves in a pathway between the fan and the housing; and b) stationary flow control vanes are connected to the housing in a position to encounter and redirect recirculating airflow, an airflow recirculation pathway being formed between the fan band and the housing, and at least a portion of the vanes being positioned in the pathway, the housing is characterized by rearward housing segment having a reduction in radius at a location rearward of the trailing edge of the fan band, the combination being characterized in that, the housing comprises elongated motor supports which extend from the rearward housing segment to a centrally positioned motor mount.
4. The fan and housing combination of claim 3 in which the pathway has an inlet formed between the fan band and the housing, and at least a portion of the vanes is positioned radially outward of the pathway inlet, and the radially innermost face of the vanes is rounded or beveled.
5. The fan and housing combination of claim 3 in which, as the housing extends rearwardly from the location of the radius reduction, the inside diameter of the housing increases.
6. The fan and housing assembly of claim 5 in which, as the housing extends rearwardly from the location of the radius reduction, the thickness of the housing decreases.
7. The fan and housing combination of claim 1 or claim 3 in which the vanes are non-radial taken in a section in a plane normal to the fan axis.
8. The fan and housing combination of claim 1 or claim 3 in which the vanes are curved taken in a section in a plane normal to the fan axis.
9. The fan and housing combination of claim 1 or claim 3 characterized in that the vanes are positioned at least in part upstream of the fan band.
10. The fan and housing combination of claim 3 in which said vanes are all part a single injection molded plastic assembly.
11. The fan and housing combination of claim 1 or claim 3 wherein said vanes have a beveled end face.
12. The fan and housing combination of claim 11 wherein the end faces of said vanes are beveled by at least 20°.
13. The fan and housing combination of claim 12 wherein said vanes are arranged in an array whose inward tips are connected by an inner ring.
14. The fan and housing combination of claim in which the high pressure side of the vanes has a concave portion adjacent to the end face of the vanes.
15. The fan and housing combination of claim 14 in which the radius of said concave portion is between 0.1S and l.OS, where S is the spacing between adjacent vanes.
16. The fan and housing combination of claim 15 in which the high pressure side of said vanes is curved in a plane normal to the fan axis.
17. The fan and housing combination of claim 16 in which the high pressure side of said vanes is substantially cylindrical in a plane normal to the fan axis, having a radius of curvature between 0.15D and 0.3D, where D is the fan diameter.
18. The fan and housing combination of claim in which: a) the end faces of said vanes are beveled by at least 20°; b) the high pressure side of the vanes has a concave portion adjacent to the end face of the vanes, having a radius of curvature of between O.IS and l.OS, where S is the spacing between adjacent vanes; and c) the high pressure side of the vanes is substantially cylindrical in section in a plane normal to the fan axis, having a radius of curvature of between 0.15D and 0.3D, where D is the fan diameter.
EP94926638A 1993-08-30 1994-08-30 Housing with recirculation control for use with banded axial-flow fans Expired - Lifetime EP0746689B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11395293A 1993-08-30 1993-08-30
US113952 1993-08-30
PCT/US1994/009782 WO1995006822A1 (en) 1993-08-30 1994-08-30 Housing with recirculation control for use with banded axial-flow fans

Publications (3)

Publication Number Publication Date
EP0746689A1 true EP0746689A1 (en) 1996-12-11
EP0746689A4 EP0746689A4 (en) 1998-07-15
EP0746689B1 EP0746689B1 (en) 2002-04-24

Family

ID=22352489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926638A Expired - Lifetime EP0746689B1 (en) 1993-08-30 1994-08-30 Housing with recirculation control for use with banded axial-flow fans

Country Status (6)

Country Link
EP (1) EP0746689B1 (en)
JP (1) JPH09505375A (en)
AT (1) ATE216757T1 (en)
DE (1) DE69430488T2 (en)
ES (1) ES2173121T3 (en)
WO (1) WO1995006822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050127A (en) * 2016-12-15 2019-07-23 大金工业株式会社 Pressure fan and refrigerating plant with pressure fan

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577888A (en) * 1995-06-23 1996-11-26 Siemens Electric Limited High efficiency, low-noise, axial fan assembly
JP3304246B2 (en) * 1995-10-18 2002-07-22 日立建機株式会社 Engine cooling device
JP4592908B2 (en) * 2000-09-28 2010-12-08 株式会社ティラド Fan seal structure
JP4862224B2 (en) * 2001-06-06 2012-01-25 株式会社デンソー Axial fan and heat exchanger
KR100729650B1 (en) * 2002-02-27 2007-06-18 한라공조주식회사 Shroud having structure for noise reduction
US6874990B2 (en) * 2003-01-29 2005-04-05 Siemens Vdo Automotive Inc. Integral tip seal in a fan-shroud structure
JP4024228B2 (en) * 2004-06-07 2007-12-19 本田技研工業株式会社 Radiator cooling device for motorcycles
FR2874409B1 (en) * 2004-08-19 2006-10-13 Max Sardou TUNNEL FAN
DE102005042556A1 (en) * 2005-09-08 2007-03-15 Temic Automotive Electric Motors Gmbh Axial or diagonal fan for cooling engine of motor vehicle, has impeller having outer ring, and retainer including jacket ring surrounding outer ring, where outer ring includes bar at its outer contour
ATE444448T1 (en) 2006-05-31 2009-10-15 Bosch Gmbh Robert AXIAL FAN ARRANGEMENT
DE102006048483A1 (en) * 2006-10-11 2008-05-08 Behr Gmbh & Co. Kg Axial blower and method for preventing recirculation flow
JP2009127422A (en) * 2007-11-19 2009-06-11 Denso Corp Blower fan
CN101981323B (en) 2008-04-15 2013-11-13 博格华纳公司 Open-blade engine-cooling fan shroud guide vanes
UY31832A (en) 2008-05-20 2010-01-05 Astrazeneca Ab INDAZOL DERIVATIVES REPLACED WITH PHENYL AND BENZODIOXINYL
DE102008046508A1 (en) * 2008-09-09 2010-03-11 Behr Gmbh & Co. Kg Ventilating device for ventilating internal combustion engine of motor vehicle, has wheel cover section and fan shroud section between which gap is formed, where gap runs towards centrifugal force occurring during rotation of fan wheel
GB2468312A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB0903682D0 (en) 2009-03-04 2009-04-15 Dyson Technology Ltd A fan
DE102009012025A1 (en) 2009-03-10 2010-09-16 Behr Gmbh & Co. Kg Cooling device for a motor vehicle
GB0919473D0 (en) 2009-11-06 2009-12-23 Dyson Technology Ltd A fan
KR101295170B1 (en) 2010-05-27 2013-08-09 이덕정 Device for Blowing Air by Means of Narrow Slit Nozzle Assembly
GB2482549A (en) * 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
DE102010039219A1 (en) * 2010-08-11 2012-02-16 Behr Gmbh & Co. Kg Fan i.e. engine cooling fan, for use as axial blower to cool combustion engine of motor car, has fan wheel comprising fan blades, which are enclosed by fan cladding, and secondary fan inhibiting back flow of air promoted by fan wheel
JP5588565B2 (en) 2010-10-13 2014-09-10 ダイソン テクノロジー リミテッド Blower assembly
WO2012052735A1 (en) 2010-10-18 2012-04-26 Dyson Technology Limited A fan assembly
GB2484670B (en) 2010-10-18 2018-04-25 Dyson Technology Ltd A fan assembly
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
GB2493506B (en) 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
RU2576735C2 (en) 2011-07-27 2016-03-10 Дайсон Текнолоджи Лимитед Fan assembly
GB201119500D0 (en) 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly
GB2496877B (en) 2011-11-24 2014-05-07 Dyson Technology Ltd A fan assembly
JP5549686B2 (en) * 2012-01-12 2014-07-16 株式会社デンソー Blower
GB2499044B (en) 2012-02-06 2014-03-19 Dyson Technology Ltd A fan
GB2499042A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd A nozzle for a fan assembly
GB2499041A (en) 2012-02-06 2013-08-07 Dyson Technology Ltd Bladeless fan including an ionizer
GB2500010B (en) 2012-03-06 2016-08-24 Dyson Technology Ltd A humidifying apparatus
GB2500011B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500017B (en) 2012-03-06 2015-07-29 Dyson Technology Ltd A Humidifying Apparatus
CA2866146A1 (en) 2012-03-06 2013-09-12 Dyson Technology Limited A fan assembly
GB2500012B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500005B (en) 2012-03-06 2014-08-27 Dyson Technology Ltd A method of generating a humid air flow
GB2500903B (en) 2012-04-04 2015-06-24 Dyson Technology Ltd Heating apparatus
GB2501301B (en) 2012-04-19 2016-02-03 Dyson Technology Ltd A fan assembly
DE102012023454A1 (en) * 2012-11-30 2014-06-05 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Fan device and vehicle with a fan device
EP2943726B1 (en) 2013-01-11 2023-03-01 Carrier Corporation Air handling unit
AU350181S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
AU350179S (en) 2013-01-18 2013-08-15 Dyson Technology Ltd Humidifier or fan
AU350140S (en) 2013-01-18 2013-08-13 Dyson Technology Ltd Humidifier or fan
BR302013003358S1 (en) 2013-01-18 2014-11-25 Dyson Technology Ltd CONFIGURATION APPLIED ON HUMIDIFIER
GB2510195B (en) 2013-01-29 2016-04-27 Dyson Technology Ltd A fan assembly
SG11201505665RA (en) 2013-01-29 2015-08-28 Dyson Technology Ltd A fan assembly
CA152657S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
CA152655S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152658S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
CA152656S (en) 2013-03-07 2014-05-20 Dyson Technology Ltd Fan
BR302013004394S1 (en) 2013-03-07 2014-12-02 Dyson Technology Ltd CONFIGURATION APPLIED TO FAN
CA154723S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
CA154722S (en) 2013-08-01 2015-02-16 Dyson Technology Ltd Fan
TWD172707S (en) 2013-08-01 2015-12-21 戴森科技有限公司 A fan
JP6224952B2 (en) * 2013-08-19 2017-11-01 株式会社Soken Blower
GB2518638B (en) 2013-09-26 2016-10-12 Dyson Technology Ltd Humidifying apparatus
EP2886872A1 (en) * 2013-12-17 2015-06-24 Delphi Automotive Systems Luxembourg SA Engine fan
DE102013227025A1 (en) 2013-12-20 2015-06-25 MAHLE Behr GmbH & Co. KG Axial
GB2528704A (en) 2014-07-29 2016-02-03 Dyson Technology Ltd Humidifying apparatus
GB2528708B (en) 2014-07-29 2016-06-29 Dyson Technology Ltd A fan assembly
GB2528709B (en) 2014-07-29 2017-02-08 Dyson Technology Ltd Humidifying apparatus
US11396888B1 (en) 2017-11-09 2022-07-26 Williams International Co., L.L.C. System and method for guiding compressible gas flowing through a duct
JP7224927B2 (en) * 2019-01-16 2023-02-20 株式会社川本製作所 axial pump
JP6970359B2 (en) * 2020-01-31 2021-11-24 ダイキン工業株式会社 Blower and refrigeration system equipped with it
JP6856165B2 (en) * 2020-10-19 2021-04-07 ダイキン工業株式会社 Blower and refrigeration system with a blower

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR84439E (en) * 1961-09-11 1965-02-05 Axial fan
DE2345506A1 (en) * 1972-10-04 1974-04-11 Ford Werke Ag AIR CONDUCTING DEVICE FOR FANS, IN PARTICULAR FOR VEHICLE ENGINES
US4357914A (en) * 1978-11-16 1982-11-09 Suddeutsche Kuhlerfabrik, Julius Fr. Behr Gmbh & Co. Kg Cooling system for internal combustion engines
US4548548A (en) * 1984-05-23 1985-10-22 Airflow Research And Manufacturing Corp. Fan and housing
US4685513A (en) * 1981-11-24 1987-08-11 General Motors Corporation Engine cooling fan and fan shrouding arrangement
DE8614073U1 (en) * 1986-05-24 1988-04-07 Daimler-Benz Ag
EP0474019A1 (en) * 1990-09-03 1992-03-11 Nippondenso Co., Ltd. A cooling fan apparatus for an automobile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE747870A (en) * 1969-03-27 1970-09-24 Aerospatiale IMPROVEMENTS TO FAIRINGS FOR PROPELLERS OR FANS
US3677660A (en) * 1969-04-08 1972-07-18 Mitsubishi Heavy Ind Ltd Propeller with kort nozzle
US4448573A (en) * 1982-03-25 1984-05-15 General Electric Company Single-stage, multiple outlet centrifugal blower
SE451873B (en) * 1982-07-29 1987-11-02 Do G Pk I Experiment AXIALFLEKT
DK345883D0 (en) * 1983-07-28 1983-07-28 Nordisk Ventilator axial
DE3539604C1 (en) * 1985-11-08 1987-02-19 Turbo Lufttechnik Gmbh Axial fan

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR84439E (en) * 1961-09-11 1965-02-05 Axial fan
DE2345506A1 (en) * 1972-10-04 1974-04-11 Ford Werke Ag AIR CONDUCTING DEVICE FOR FANS, IN PARTICULAR FOR VEHICLE ENGINES
US4357914A (en) * 1978-11-16 1982-11-09 Suddeutsche Kuhlerfabrik, Julius Fr. Behr Gmbh & Co. Kg Cooling system for internal combustion engines
US4685513A (en) * 1981-11-24 1987-08-11 General Motors Corporation Engine cooling fan and fan shrouding arrangement
US4548548A (en) * 1984-05-23 1985-10-22 Airflow Research And Manufacturing Corp. Fan and housing
DE8614073U1 (en) * 1986-05-24 1988-04-07 Daimler-Benz Ag
EP0474019A1 (en) * 1990-09-03 1992-03-11 Nippondenso Co., Ltd. A cooling fan apparatus for an automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9506822A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050127A (en) * 2016-12-15 2019-07-23 大金工业株式会社 Pressure fan and refrigerating plant with pressure fan
EP3557077A4 (en) * 2016-12-15 2019-12-04 Daikin Industries, Ltd. Blower and refrigeration device comprising blower
CN110050127B (en) * 2016-12-15 2021-10-26 大金工业株式会社 Blower and refrigerating device with same

Also Published As

Publication number Publication date
JPH09505375A (en) 1997-05-27
EP0746689A4 (en) 1998-07-15
DE69430488D1 (en) 2002-05-29
EP0746689B1 (en) 2002-04-24
WO1995006822A1 (en) 1995-03-09
DE69430488T2 (en) 2002-12-19
ES2173121T3 (en) 2002-10-16
ATE216757T1 (en) 2002-05-15

Similar Documents

Publication Publication Date Title
EP0746689B1 (en) Housing with recirculation control for use with banded axial-flow fans
US5489186A (en) Housing with recirculation control for use with banded axial-flow fans
EP1340921B1 (en) Fan assembly
KR100566501B1 (en) Air blower apparatus and outdoor unit of air conditioner using the same
AU759980B2 (en) Deswirler system for centrifugal compressor
US5423660A (en) Fan inlet with curved lip and cylindrical member forming labyrinth seal
EP0622549B1 (en) Centrifugal compressor and vaned diffuser
EP0601119B1 (en) Forward skew fan with rake and chordwise camber corrections
EP0583091B1 (en) A fan
KR20050005086A (en) Stator of Axial flow fan shroud
NZ569987A (en) Improved impeller for a ventilation fan that has an aerofoil section and a centrifugal accelerator portion
US20160305448A1 (en) Cooling fan module and system
US6206635B1 (en) Fan stator
WO2008075467A1 (en) Cascade of axial compressor
EP0602007A2 (en) Vacuum cleaner having an impeller and diffuser
CN106884804B (en) Centrifugal blower
JP2003184792A (en) Blower
JP3366265B2 (en) Centrifugal blower
JP6005256B2 (en) Impeller and axial flow blower using the same
JP2001248597A (en) Turbo compressor and turbo blower
JP3744489B2 (en) Blower
JP7198923B2 (en) Centrifugal compressor and turbocharger
JPH08159097A (en) Fan and casing of compressor
CN216788809U (en) Current collector for centrifugal fan and multi-wing centrifugal fan applying same
US20230141673A1 (en) Turbofan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19980529

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE DE ES FR GB IT LU NL SE

RHK1 Main classification (correction)

Ipc: F04D 29/54

17Q First examination report despatched

Effective date: 19990914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH CORPORATION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

REF Corresponds to:

Ref document number: 216757

Country of ref document: AT

Date of ref document: 20020515

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69430488

Country of ref document: DE

Date of ref document: 20020529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2173121

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050830

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130820

Year of fee payment: 20

Ref country code: GB

Payment date: 20130823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130823

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69430488

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140831