EP0747910A2 - PTC resistance - Google Patents

PTC resistance Download PDF

Info

Publication number
EP0747910A2
EP0747910A2 EP96810322A EP96810322A EP0747910A2 EP 0747910 A2 EP0747910 A2 EP 0747910A2 EP 96810322 A EP96810322 A EP 96810322A EP 96810322 A EP96810322 A EP 96810322A EP 0747910 A2 EP0747910 A2 EP 0747910A2
Authority
EP
European Patent Office
Prior art keywords
filler
ptc
ptc resistor
particles
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96810322A
Other languages
German (de)
French (fr)
Other versions
EP0747910A3 (en
Inventor
Gerd Maidorn
Ralf Dr. Strümpler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0747910A2 publication Critical patent/EP0747910A2/en
Publication of EP0747910A3 publication Critical patent/EP0747910A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material

Definitions

  • the invention is based on a PTC resistor according to the preamble of claim 1.
  • Resistors based on a polymer matrix and a powdery filler made of electrically conductive material with PTC behavior embedded in the polymer matrix are used as current-limiting elements in energy technology uses and serve to limit a short-circuit or overcurrent occurring in a circuit.
  • the PTC resistor is heated by the short-circuit or overcurrent to a critical temperature at which the polymer of the PTC resistor embedding the filler particles changes its phase, for example by melting, and then interrupts the current-carrying percolation paths of the PTC resistor formed by the filler particles.
  • a PTC resistor based on a polymer matrix and a powdery filler of electrically conductive material embedded in the polymer matrix is described in WO-A-91 19 297.
  • the matrix of this resistor is made of a thermoplastic polymer, such as in particular polyethylene. Carbon black with particle sizes of up to 0.1 ⁇ m, metals such as nickel, tungsten, brass or aluminum, Borides, such as TiB 2 , nitrides, such as ZrN, oxides, such as TiO, or carbides, such as TaC, with particle sizes of up to 100 ⁇ m are used. Due to the material composition and suitable manufacturing processes, the known PTC resistor has a specific resistance between 30 and 50 m ⁇ ⁇ cm in the cold conducting state and can then be loaded with relatively high nominal currents.
  • the PTC behavior of the resistor which is important for current limitation in a power engineering circuit, it is not only its specific resistance in the cold conducting state that is important, but also material-specific properties that are significant, which quickly when the current through the resistor rises above a limit value Limit this current without the resistance being heated to an unacceptably high level.
  • this can lead to the PTC resistor forming locally overheated areas, so-called "hot spots", approximately in the middle between the contact connections.
  • the PTC resistor switches to the high-resistance state earlier than at unheated areas.
  • the total voltage across the PTC resistor then drops over a relatively small distance at the location of the highest resistance.
  • the associated high electrical field strength can then lead to breakdowns and damage to the PTC resistor.
  • the invention is based on the object of providing a PTC resistor of the type mentioned at the outset, which enables particularly rapid limitation of a short-circuit or overcurrent flowing in a circuit.
  • the PTC resistor according to the invention is characterized in that it responds extremely quickly to a short-circuit or overcurrent and can therefore limit this current at an early point in time.
  • the PTC resistor according to the invention absorbs relatively little energy and is largely spared from impermissibly high thermal and electrical loads. Overheated local areas are therefore generally avoided. These favorable properties result from the suitably selected and dimensioned filler.
  • a short-circuit or overcurrent I (t) heats the PTC resistor to its critical temperature T C , at which the PTC transition takes place and the current is limited.
  • the time ⁇ t required for a homogeneous material to limit the short-circuit or overcurrent depends on the specific resistance r, the specific density d mass and the specific heat c P of the material of the PTC resistor as well as its cross section A and its length 1 between its connection electrodes .
  • the energy converted in the response period ⁇ t in the PTC resistor must be at least as large as the energy which is necessary to heat the material of the resistor from the ambient temperature T to the transition temperature T c .
  • the energy supplied by the short-circuit or overcurrent is not converted homogeneously in the PTC resistor.
  • the resistor has percolating current paths formed by the conductive particles.
  • the greatest electrical resistance and thus also the greatest conversion from electrical to thermal energy takes place on electrical Contact between the individual filler particles instead.
  • the thermal energy generated at the contact points heats the polymer embedding the filler particles. If the filler particles are relatively large, for example larger than 100 ⁇ m, relatively large gaps filled with polymer form between the individual particles. If, on the other hand, the filler particles are relatively small, only relatively small gaps filled with polymer form between the individual particles.
  • the energy converted at the contact points can heat the polymer located in the small gaps much faster than the polymer provided in the larger gaps.
  • the temperature T c required to carry out the PTC transition is therefore reached more quickly with smaller filler particles.
  • the major part of the filler particles must not be less than 10 ⁇ m, since otherwise the specific resistance becomes too great.
  • thermoplastic PTC polymer such as, in particular, polyethylene
  • electrically conductive filler powder using a process customary in the production of PTC resistors, and cuboidal resistance bodies with end faces smoothed out by lapping or polishing from the resulting mixture at elevated temperature and pressure pressed. Contact connections were soldered to the end faces.
  • the length 1 of the resistors was in the centimeter range, the cross-sectional area A was in the square centimeter range. Typical values for 1 and A were approx. 0.5 to approx. 2 cm and 0.3 cm 2 .
  • Polyethylene was used as the starting material for the polymer.
  • an epoxy or some other thermoplastic or thermosetting polymer can also be used.
  • Powdery TiB 2 with different particle sizes was used as filler, in particular with average particle sizes between 100 and 200 ⁇ m, between 71 and 90 ⁇ m, between 63 and 71 ⁇ m, between 50 and 63 ⁇ m, between 32 and 50 ⁇ m, between 32 and 45 ⁇ m , between 10 and 30 ⁇ m, between 1 and 5 ⁇ m and with average particle sizes smaller than 45 ⁇ m, of which Particles were 10% by weight less than 4 ⁇ m, 20% by weight less than 8 ⁇ m, 50% by weight less than 15 ⁇ m and 90% by weight less than 20 ⁇ m.
  • the filler may also be another conductive boride such as ZrB 2 , a conductive carbide such as TiC, VC or SiC, a conductive nitride such as ZrN, a conductive oxide such as RUO 2 or VO, or a conductive silicide, such as MoSi 2 or WSi 2 , and / or a metal or an alloy containing this metal, for example based on nickel, silver, tungsten, cobalt, copper, aluminum, zinc, tin or molybdenum.
  • a conductive boride such as ZrB 2
  • a conductive carbide such as TiC, VC or SiC
  • a conductive nitride such as ZrN
  • a conductive oxide such as RUO 2 or VO
  • a conductive silicide such as MoSi 2 or WSi 2
  • the individual PTC resistors were designed in such a way that they had the same cross-section A with the same chemical composition of polymer and filler and differed from one another by length 1 and above all by the size of the powdery filler.
  • PTC resistance samples A to N were produced with the mean filler particle sizes and filler quantities as well as geometric dimensions given in the table below.
  • each of the resistance samples A - N to be examined was installed in a circuit in which a capacitor bank with a capacity of 7.5 was charged as the short-circuit current source in the samples A-D to 200 V and in the samples E - N to 400 V. mF was available.
  • the inductance of the circuit was 4.5 ⁇ H, which after short-circuiting the circuit with an ignitron led to a resonant circuit frequency of approx. 800 Hz.
  • the resistance samples A - N were each protected from overvoltages by varistors connected in parallel. Samples E, F, H, J and L - N were protected against external flashovers by immersion in transformer oil and samples G and K were each protected by applying a silicone coating.
  • the current I max is the highest measured current that has flowed through the respective test resistor during the short-circuit current test. The higher its value, the later the PTC transition and thus the current limitation started.
  • [Energy consumption ⁇ U (t) ⁇ I (t) dt]
  • the energy consumption is a measure of the switching behavior of the PTC resistors.
  • the switching capacity of the PTC resistors is all the better the lower the energy consumption under comparable conditions.
  • sample B and C with particle sizes between 63 and 71 ⁇ m or 32 and 45 ⁇ m
  • the short-circuit current is sometimes limited considerably earlier (with sample C approx. 50 ⁇ s, ie approx. 25% rather than with sample A).
  • the short-circuit current is no longer as high as with sample A (with sample C with 1200 A only about 90% of the value of sample A).
  • the energy absorbed by the resistors when limiting the current is lower. In sample B this energy is approx. 15% and in sample C approx. 45% smaller than in sample A.
  • PTC resistors which mainly contain filler particles with average diameters larger than 100 ⁇ m
  • PTC resistors in which the predominant volume fraction of the filler has particles with average diameters smaller than approx. 100 ⁇ m or better smaller than approx. 70 ⁇ m, have a significantly improved switching behavior on.
  • a particularly favorable switching behavior with low energy consumption, shorter Response time and small peak value of the current I max carried in the resistor is achieved when the predominant volume fraction of the filler has particles with particle sizes smaller than 30 ⁇ m or even smaller than 20 ⁇ m.
  • the average size of the particles provided in the predominant volume fraction must not be chosen too small, since then among other things the specific resistance and thus also the cold resistance of a PTC resistor made from such a material increases too much.
  • sample D in which the filler particles had average particle sizes between 1 and 5 ⁇ m.
  • practically 50% more filler had to be mixed into the polymer with Sample D with a volume fraction of approx. 60% than with the others Rehearse.
  • Current limitation through a PTC transition could not be achieved with such a resistor at a test voltage of 200 V.
  • the limit current I max given in the table above is only due to the high cold resistance of 226 m ⁇ and not due to a PTC transition.
  • a further improvement in the response behavior of the PTC resistor according to the invention is achieved if the filler particles are hollow or have a low mass, since particularly rapid heating of the polymer can then be achieved due to a relatively low specific heat.

Abstract

PTC resistor has an electrical resistor component (A) between two contact connections. Component (A) comprises (A1) a polymer matrix contg. (A2) embedded electroconductive, powdered filler in which the predominant vol. fraction consists of particles with an average dia. of less than 100 and more than 5 mu m.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem PTC-Widerstand nach dem Oberbegriff von Patentanspruch 1. Widerstände auf der Basis einer Polymer-Matrix und eines in die Polymer-Matrix eingebetteten pulverförmigen Füllstoffs aus elektrisch leitfähigem Material mit PTC-Verhalten werden als strombegrenzende Elemente in der Energietechnik verwendet und dienen der Begrenzung eines in einem Stromkreis auftretenden Kurzschluss- oder Überstroms. Hierbei wird der PTC-Widerstand durch den Kurzschluss- oder Überstrom auf eine kritische Temperatur aufgeheizt, bei der das die Füllstoffteilchen einbettende Polymer des PTC-Widerstands etwa durch Aufschmelzen seine Phase ändert und dann von den Füllstoffteilchen gebildete, stromführenden Perkolationspfade des PTC-Widerstands unterbricht.The invention is based on a PTC resistor according to the preamble of claim 1. Resistors based on a polymer matrix and a powdery filler made of electrically conductive material with PTC behavior embedded in the polymer matrix are used as current-limiting elements in energy technology uses and serve to limit a short-circuit or overcurrent occurring in a circuit. Here, the PTC resistor is heated by the short-circuit or overcurrent to a critical temperature at which the polymer of the PTC resistor embedding the filler particles changes its phase, for example by melting, and then interrupts the current-carrying percolation paths of the PTC resistor formed by the filler particles.

STAND DER TECHNIKSTATE OF THE ART

Ein PTC-Widerstand auf der Basis einer Polymer-Matrix und eines in die Polymer-Matrix eingebetteten, pulverförmigen Füllstoffs aus elektrisch leitfähigem Material ist in WO-A-91 19 297 beschrieben. Die Matrix dieses Widerstands ist von einem thermoplastischen Polymer, wie insbesondere Polyäthylen gebildet. Als Füllstoff werden Russ mit Teilchengrössen bis 0,1 µm, Metalle, wie Nickel, Wolfram, Messing oder Aluminium, Boride, wie TiB2, Nitride, wie ZrN, Oxide, wie TiO, oder Carbide, wie TaC, mit Teilchengrössen bis 100 µm eingesetzt. Bedingt durch die Materialzusammensetzung und durch geeignete Herstellverfahren weist der bekannte PTC-Widerstand im kaltleitenden Zustand einen spezifischen Widerstand zwischen 30 und 50 mΩ·cm auf und kann dann mit relativ hohen Nennströmen belastet werden.A PTC resistor based on a polymer matrix and a powdery filler of electrically conductive material embedded in the polymer matrix is described in WO-A-91 19 297. The matrix of this resistor is made of a thermoplastic polymer, such as in particular polyethylene. Carbon black with particle sizes of up to 0.1 µm, metals such as nickel, tungsten, brass or aluminum, Borides, such as TiB 2 , nitrides, such as ZrN, oxides, such as TiO, or carbides, such as TaC, with particle sizes of up to 100 μm are used. Due to the material composition and suitable manufacturing processes, the known PTC resistor has a specific resistance between 30 and 50 mΩ · cm in the cold conducting state and can then be loaded with relatively high nominal currents.

Für das zur Strombegrenzung in einem Stromkreis der Energietechnik wichtige PTC-Verhalten des Widerstandes ist jedoch nicht allein dessen spezifischer Widerstand im kaltleitenden Zustand wesentlich, sondern sind material-spezifische Eigenschaften bedeutsam, die beim Anstieg des durch den Widerstand geführten Stroms über einen Grenzwert hinaus eine rasche Begrenzung dieses Stromes bewirken, ohne dass der Widerstand unzulässig hoch erwärmt wird. Dies kann insbesondere dann, wenn der Schaltvorgang im PTC-Widerstand inhomogen erfolgt, dazu führen, dass der PTC-Widerstand - etwa in der Mitte zwischen den Kontaktanschlüssen - lokal überhitzte Bereiche, sogenannter "hot spots", bildet. In den überhitzten Bereichen schaltet der PTC-Widerstand früher in den hochohmigen Zustand als an nicht erhitzten Stellen. Es fällt dann die gesamte am PTC-Widerstand anliegende Spannung über eine relativ kleine Distanz am Ort des höchsten Widerstands ab. Die damit verbundene hohe elektrische Feldstärke kann dann zu Durchschlägen und zur Beschädigung des PTC-Widerstands führen.However, for the PTC behavior of the resistor, which is important for current limitation in a power engineering circuit, it is not only its specific resistance in the cold conducting state that is important, but also material-specific properties that are significant, which quickly when the current through the resistor rises above a limit value Limit this current without the resistance being heated to an unacceptably high level. In particular, when the switching process in the PTC resistor is inhomogeneous, this can lead to the PTC resistor forming locally overheated areas, so-called "hot spots", approximately in the middle between the contact connections. In the overheated areas, the PTC resistor switches to the high-resistance state earlier than at unheated areas. The total voltage across the PTC resistor then drops over a relatively small distance at the location of the highest resistance. The associated high electrical field strength can then lead to breakdowns and damage to the PTC resistor.

KURZE DARSTELLUNG DER ERFINDUNGSUMMARY OF THE INVENTION

Der Erfindung, wie sie in Patentanspruch 1 angegeben ist, liegt die Aufgabe zugrunde, einen PTC-Widerstand der eingangs genannten Art zu schaffen, welcher eine besonders rasche Begrenzung eines in einem Schaltkreis fliessenden Kurzschluss- oder Überstroms ermöglicht.The invention, as specified in claim 1, is based on the object of providing a PTC resistor of the type mentioned at the outset, which enables particularly rapid limitation of a short-circuit or overcurrent flowing in a circuit.

Der PTC-Widerstand nach der Erfindung zeichnet dadurch aus, dass er äusserst schnell auf einen Kurzschluss- oder Überstrom anspricht und so schon zu einem frühen Zeitpunkt diesen Strom begrenzen kann. Der PTC-Widerstand nach der Erfindung nimmt relativ wenig Energie auf und bleibt weitgehend von unzulässig hohen thermischen und elektrischen Belastungen verschont. Überhitzte lokale Bereiche werden daher im allgemeinen vermieden. Diese günstigen Eigenschaften ergeben sich aus dem geeignet ausgewählten und bemessenen Füllstoff.The PTC resistor according to the invention is characterized in that it responds extremely quickly to a short-circuit or overcurrent and can therefore limit this current at an early point in time. The PTC resistor according to the invention absorbs relatively little energy and is largely spared from impermissibly high thermal and electrical loads. Overheated local areas are therefore generally avoided. These favorable properties result from the suitably selected and dimensioned filler.

Durch einen Kurzschluss- oder Überstrom I(t) wird der PTC-Widerstand auf seine kritische Temperatur TC erhitzt, bei der der PTC-Übergang stattfindet und der Strom begrenzt wird. Die für ein homogenes Material erforderliche Zeit δt zur Begrenzung des Kurzschluss- oder Überstroms hängt vom spezifischen Widerstand r, der spezifischen Dichte dmass und der spezifischen Wärme cP des Materials des PTC-Widerstands sowie seinem Querschnitt A und seiner Länge 1 zwischen seinen Anschlusselektroden ab. Es gilt folgende Ungleichung: r·(l/A)·I(t) 2 ·δt ≥ A·l·c p ·d mass ·δT,

Figure imgb0001
mit δT=Tc-T, wobei T die Umgebungstemperatur ist.A short-circuit or overcurrent I (t) heats the PTC resistor to its critical temperature T C , at which the PTC transition takes place and the current is limited. The time δt required for a homogeneous material to limit the short-circuit or overcurrent depends on the specific resistance r, the specific density d mass and the specific heat c P of the material of the PTC resistor as well as its cross section A and its length 1 between its connection electrodes . The following inequality applies: r · (l / A) · I (t) 2nd · Δt ≥ A · l · c p · D mass · ΔT,
Figure imgb0001
with δT = T c -T, where T is the ambient temperature.

Dies bedeutet, dass die in in der Ansprechperiode δt im PTC-Widerstand umgesetzte Energie zumindest so gross sein muss wie diejenige Energie, die notwendig ist, um das Material des Widerstands von der Umgebungstemperatur T auf die Übergangstemperatur Tc aufzuheizen.This means that the energy converted in the response period δt in the PTC resistor must be at least as large as the energy which is necessary to heat the material of the resistor from the ambient temperature T to the transition temperature T c .

Im PTC-Widerstand wird jedoch die vom Kurzschluss- oder Überstrom zugeführte Energie nicht homogen umgesetzt. Der Widerstand weist von den leitfähigen Teilchen gebildete perkolierende Strompfade auf. Der grösste elektrische Widerstand und damit auch die grösste Umsetzung von elektrischer in thermische Energie findet am elektrischen Kontakt zwischen den einzelnen Füllstoffteilchen statt. Die an den Kontaktstellen erzeugte thermische Energie erhitzt das die Füllstoffteilchen einbettende Polymer. Sind die Füllstoffteilchen relativ gross, beispielsweise grösser 100 µm, so bilden sich zwischen den einzelnen Teilchen relativ grosse mit Polymer gefüllte Lücken. Sind hingegen die Füllstoffteilchen relativ klein, so bilden sich zwischen den einzelnen Teilchen lediglich relativ kleine mit Polymer gefüllte Lücken. Die an den Kontaktstellen umgesetzte Energie kann das in den kleinen Lücken befindliche Polymer sehr viel schneller erwärmen als das in den grössen Lücken vorgesehenen Polymer. Die zur Durchführung des PTC-Übergangs benötigte Temperatur Tc wird daher bei kleineren Füllstoffteilchen rascher erreicht. Jedoch darf der überwiegende Teil der Füllstoffteilchen nicht kleiner 10 µm sein, da sonst der spezifische Widerstand zu gross wird.However, the energy supplied by the short-circuit or overcurrent is not converted homogeneously in the PTC resistor. The resistor has percolating current paths formed by the conductive particles. The greatest electrical resistance and thus also the greatest conversion from electrical to thermal energy takes place on electrical Contact between the individual filler particles instead. The thermal energy generated at the contact points heats the polymer embedding the filler particles. If the filler particles are relatively large, for example larger than 100 μm, relatively large gaps filled with polymer form between the individual particles. If, on the other hand, the filler particles are relatively small, only relatively small gaps filled with polymer form between the individual particles. The energy converted at the contact points can heat the polymer located in the small gaps much faster than the polymer provided in the larger gaps. The temperature T c required to carry out the PTC transition is therefore reached more quickly with smaller filler particles. However, the major part of the filler particles must not be less than 10 µm, since otherwise the specific resistance becomes too great.

KURZE BESCHREIBUNG DER ZEICHNUNGBRIEF DESCRIPTION OF THE DRAWING

Bevorzugte Ausführungsbeispiele der Erfindung und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:Preferred exemplary embodiments of the invention and the further advantages achievable therewith are explained in more detail below with reference to drawings. Here shows:

Fig. 1Fig. 1
Kennlinien von drei PTC-Widerständen, bei denen jeweils die Grösse eines in einem Schaltkreis durch Entladung einer auf 200 V aufgeladenen Kondensatorbank erzeugten, durch die PTC-Widerstände fliessenden und durch die PTC-Widerstände unterschiedlich begrenzten Kurzschlussstroms I [A] in Abhängigkeit von der Zeit t [ms] dargestellt ist,Characteristic curves of three PTC resistors, in each of which the size of a short-circuit current I [A] generated in a circuit by discharging a capacitor bank charged to 200 V, flowing through the PTC resistors and differently limited by the PTC resistors, as a function of time t [ms] is shown,
Fig. 2Fig. 2
Kennlinien von fünf weiteren PTC-Widerständen, bei denen entsprechend den Kennlinien gemäss Fig. 1 die Grösse des Stroms I [A] in Abhängigkeit von der Zeit t [ms] dargestellt ist, die Kondensatorbank des Schaltkreises jedoch auf 400 V aufgeladen war,Characteristic curves of five further PTC resistors, in which, according to the characteristic curves according to FIG. 1, the magnitude of the current I [A] as a function of the time t [ms] is shown, but the capacitor bank of the circuit was charged to 400 V,
Fig. 3Fig. 3
weitere Kennlinien der in Fig.2 genannten fünf PTC-Widerstände, bei denen die Energieaufnahme W [J] der vom Strom I(t) durchflossenen PTC-Widerstände in Abhängigkeit von der Zeit t [ms] dargestellt ist, undfurther characteristics of the five PTC resistors mentioned in FIG. 2, in which the energy consumption W [J] of the PTC resistors through which the current I (t) flows is shown as a function of the time t [ms], and
Fig. 4Fig. 4
Kennlinien von zwei weiteren PTC-Widerständen und einem der fünf in Fig.2 genannten PTC-Widerstände, bei denen entsprechend den Kennlinien gemäss Fig.2 die Grösse des Stroms I(t) in Abhängigkeit von der Zeit t [ms] dargestellt ist.Characteristic curves of two further PTC resistors and one of the five PTC resistors named in FIG. 2, in which, according to the characteristic curves according to FIG. 2, the magnitude of the current I (t) is shown as a function of the time t [ms].
WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Es wurden nach einem bei der Herstellung von PTC-Widerständen üblichen Verfahren ein thermoplastisches PTC-Polymer, wie insbesondere Polyäthylen, mit elektrisch leitfähigem Füllstoffpulver vermischt und aus der resultierenden Mischung bei erhöhter Temperatur und bei erhöhtem Druck quaderförmige Widerstandskörper mit zueinander durch Läppen oder Polieren geglätteten Stirnflächen gepresst. Auf die Stirnflächen wurden Kontaktanschlüsse gelötet. Die Länge 1 der Widerstände lag im Zentimeterbereich, die Querschnittsfläche A lag im Quadratzentimeterbereich. Typische Werte für 1 bzw. A waren ca. 0,5 bis ca. 2 cm bzw. 0,3 cm2.A thermoplastic PTC polymer, such as, in particular, polyethylene, was mixed with electrically conductive filler powder using a process customary in the production of PTC resistors, and cuboidal resistance bodies with end faces smoothed out by lapping or polishing from the resulting mixture at elevated temperature and pressure pressed. Contact connections were soldered to the end faces. The length 1 of the resistors was in the centimeter range, the cross-sectional area A was in the square centimeter range. Typical values for 1 and A were approx. 0.5 to approx. 2 cm and 0.3 cm 2 .

Als Ausgangsmaterial für das Polymer wurde Polyäthylen verwendet. Anstelle von Polyäthylen kann aber je nach Anwendungsfall auch ein Epoxid oder irgendein anderes thermo- oder duroplastisches Polymer eingesetzt werden. Als Füllstoff wurde pulverförmiges TiB2 mit unterschiedlichen Teilchengrössen verwendet, insbesondere mit mittleren Teilchengrössen zwischen 100 und 200 µm, zwischen 71 und 90 µm, zwischen 63 und 71 µm, zwischen 50 und 63 µm, zwischen 32 und 50 µm, zwischen 32 und 45 µm, zwischen 10 und 30 µm, zwischen 1 und 5 µm und mit mittleren Teilchengrössen kleiner 45 µm, von welchen Teilchen 10 Gewichtsprozent kleiner 4 µm, 20 Gewichtsprozent kleiner 8 µm, 50 Gewichtsprozent kleiner 15 µm und 90 Gewichtsprozent kleiner 20 µm waren. Anstelle von TiB2 kann der Füllstoff auch ein anderes leitfähiges Borid, wie etwa ZrB2, ein leitfähiges Carbid, wie etwa TiC, VC oder SiC, ein leitfähiges Nitrid, wie etwa ZrN, ein leitfähiges Oxid, wie RUO2 oder VO, oder ein leitfähiges Silicid, wie etwa MoSi2 oder WSi2, und/oder ein Metall oder eine dieses Metall enthaltende Legierung, etwa auf der Basis von Nickel, Silber, Wolfram, Kobalt, Kupfer, Aluminium, Zink, Zinn oder Molybdän, sein.Polyethylene was used as the starting material for the polymer. Instead of polyethylene, depending on the application, an epoxy or some other thermoplastic or thermosetting polymer can also be used. Powdery TiB 2 with different particle sizes was used as filler, in particular with average particle sizes between 100 and 200 µm, between 71 and 90 µm, between 63 and 71 µm, between 50 and 63 µm, between 32 and 50 µm, between 32 and 45 µm , between 10 and 30 µm, between 1 and 5 µm and with average particle sizes smaller than 45 µm, of which Particles were 10% by weight less than 4 µm, 20% by weight less than 8 µm, 50% by weight less than 15 µm and 90% by weight less than 20 µm. Instead of TiB 2 , the filler may also be another conductive boride such as ZrB 2 , a conductive carbide such as TiC, VC or SiC, a conductive nitride such as ZrN, a conductive oxide such as RUO 2 or VO, or a conductive silicide, such as MoSi 2 or WSi 2 , and / or a metal or an alloy containing this metal, for example based on nickel, silver, tungsten, cobalt, copper, aluminum, zinc, tin or molybdenum.

Um vergleichbare Ergebnisse zu erhalten, waren die einzelnen PTC-Widerstände derart ausgebildet, dass sie bei gleicher chemischer Zusammensetzung von Polymer und Füllstoff gleichen Querschnitt A aufwiesen und sich voneinander durch die Länge 1 und vor allem durch die Grösse des pulverförmigen Füllstoffs voneinander unterschieden.In order to obtain comparable results, the individual PTC resistors were designed in such a way that they had the same cross-section A with the same chemical composition of polymer and filler and differed from one another by length 1 and above all by the size of the powdery filler.

Es wurden PTC-Widerstandsproben A bis N mit den nachfolgend tabellarisch angegebenen mittleren Füllstoffteilchengrössen und Füllstoffmengen sowie geometrischen Abmessungen hergestellt.PTC resistance samples A to N were produced with the mean filler particle sizes and filler quantities as well as geometric dimensions given in the table below.

Unterschiede in den Füllstoffgehalten bei den Proben A - D bewirken nur eine vernachlässigbar geringe Änderung der spezifischen Wärme und hatten daher bei den nachfolgend beschriebenen Vergleichsversuchen keinen wesentlichen Einfluss auf das Ansprechverhalten der PTC-Widerstände. Bei den Proben E - N wurden gleiche Füllstoffgehalte gewählt.Differences in the filler contents in samples A - D cause only a negligible change in the specific heat and therefore had no significant influence on the response behavior of the PTC resistors in the comparative tests described below. The same filler contents were selected for samples E - N.

Probesample Teilchengrösse [µm]Particle size [µm] Volumenanteil Füllstoff [%]Volume fraction filler [%] Querschnitt [cm2]Cross section [cm 2 ] Länge [cm]Length [cm] AA 100-200100-200 4343 0,300.30 2,12.1 BB 63-7163-71 3535 0,300.30 1,81.8 CC. 32-4532-45 4040 0,300.30 1,951.95 DD 1-51-5 6060 0,300.30 2,02.0 EE < 45<45 5050 0,320.32 0,470.47 FF < 45<45 5050 0,320.32 0,550.55 GG 10-3010-30 5050 0,300.30 0,520.52 HH 10-3010-30 5050 0,310.31 0,570.57 JJ 32-5032-50 5050 0,310.31 0,550.55 KK 50-6350-63 5050 0,310.31 1,081.08 LL 50-6350-63 5050 0,310.31 0,580.58 MM 63-7163-71 5050 0,310.31 0,5250.525 NN 71-9071-90 5050 0,320.32 0,460.46

Von diese Widerständen wurden bei Raumtemperatur der Kaltwiderstand R [mΩ], der spezifische Widerstand r [mΩ·cm] und mit Hilfe von Kurzschlussstromversuchen der maximal in der Widerstandsprobe auftretende Kurzschlussstrom Imax [A] und die beim Wirken des Kurzschlussstromes vom Widerstand aufgenommene Energie [Joule] ermittelt.From these resistors, the cold resistance R [mΩ], the specific resistance r [mΩ · cm] and, with the help of short-circuit current tests, the maximum short-circuit current I max [A] and the energy absorbed by the resistor when the short-circuit current was effective were determined. Joule] determined.

Bei den Kurzschlussstromversuchen wurde jede der zu untersuchenden Widerstandsproben A - N in einen Schaltkreis eingebaut, in dem als Kurzschlussstromquelle eine bei den Proben A -D auf 200 V und bei den Proben E - N auf 400 V aufgeladene Kondensatorbank mit einer Kapazität von 7,5 mF zur Verfügung stand. Die Induktivität des Schaltkreises betrug 4,5 µH, was nach Kurzschliessen des Kreises mit einem Ignitron zu einer Schwingkreisfrequenz von ca. 800 Hz führte. Die Widerstandsproben A - N waren jeweils durch parallelgeschaltete Varistoren vor Überspannungen geschützt. Gegen Aussenüberschläge waren die Proben E, F, H, J und L - N jeweils durch Tauchen in Transformatoröl und die Proben G und K jeweils durch Aufbringen eines Silikonüberzugs geschützt.In the short-circuit current tests, each of the resistance samples A - N to be examined was installed in a circuit in which a capacitor bank with a capacity of 7.5 was charged as the short-circuit current source in the samples A-D to 200 V and in the samples E - N to 400 V. mF was available. The inductance of the circuit was 4.5 µH, which after short-circuiting the circuit with an ignitron led to a resonant circuit frequency of approx. 800 Hz. The resistance samples A - N were each protected from overvoltages by varistors connected in parallel. Samples E, F, H, J and L - N were protected against external flashovers by immersion in transformer oil and samples G and K were each protected by applying a silicone coating.

Die Ergebnisse der Kurzschlussstromversuche sind in den Figuren und zusammen mit den Widerstandsmessungen in der nachfolgenden Tabelle zusammengestellt.The results of the short-circuit current tests are shown in the figures and together with the resistance measurements in the table below.

Probesample Kaltwiderstand R [mΩ]Cold resistance R [mΩ] spez. Widerstand [mΩ cm]spec. Resistance [mΩ cm] Imax [A]I max [A] Energie [Joule]Energy [Joule] AA 140140 15,415.4 13501350 107107 BB 145145 18,118.1 13001300 9191 CC. 132132 16,716.7 12001200 6060 DD 226226 24,724.7 (800)(800) 110110 EE 4343 6,36.3 30803080 241241 FF 4141 6,36.3 31203120 242242 GG 3939 6,76.7 33603360 252252 HH 4343 6,76.7 33603360 266266 JJ 4242 8,48.4 34803480 353353 KK 3838 5,95.9 36803680 388388 LL 4242 5,95.9 40004000 438438 MM 4343 8,18.1 39603960 421421 NN 4040 7.67.6 43204320 487487

Der Strom Imax ist der höchste gemessene Strom, der beim Kurzschlussstromversuch durch den jeweiligen Probewiderstand geflossen ist. Je höher sein Wert, um so später hat der PTC-Übergang und damit die Strombegrenzung eingesetzt. Energie in Joule bedeutet diejenige Energie, die im Zeitraum zwischen dem Auftreten des Kurzschlussstroms (tA = 0) bis zu seinem Verschwinden (je nach Probewiderstand tE = 0,4- 2 ms) vom jeweiligen Probewiderstand überwiegend in Form von Wärme aufgenommen worden ist. [Energieaufnahme = ∫ U(t)·I(t)dt]

Figure imgb0002
The current I max is the highest measured current that has flowed through the respective test resistor during the short-circuit current test. The higher its value, the later the PTC transition and thus the current limitation started. Energy in joules means the energy that was absorbed by the respective test resistor in the form of heat in the period between the occurrence of the short-circuit current (t A = 0) and its disappearance (depending on the test resistance t E = 0.4-2 ms) . [Energy consumption = ∫ U (t) · I (t) dt]
Figure imgb0002

Die Energieaufnahme ist ein Mass für das Schaltverhalten der PTC-Widerstände. Das Schaltvermögen der PTC-Widerstände ist umso besser je geringer bei vergleichbaren Bedingungen die Energieaufnahme ist.The energy consumption is a measure of the switching behavior of the PTC resistors. The switching capacity of the PTC resistors is all the better the lower the energy consumption under comparable conditions.

Aus den Messergebnissen ist ersichtlich, dass bei einem PTC-Widerstand mit vergleichsweise grossen Füllstoffteilchen (Probe A mit Teilchengrössen zwischen 100 und 200 µm) der Kurzschlussstrom verhältnismässig spät begrenzt wird und der Kurzschlussstrom zugleich einen ziemlich hohen Wert (Imax=1350[A]) erreicht. Auch die hierbei vom Widerstand aufgenommene Energie ist mit 107 [J] verhältnismässig gross.The measurement results show that with a PTC resistor with comparatively large filler particles (sample A with particle sizes between 100 and 200 µm) the short-circuit current is limited relatively late and the short-circuit current is at the same time a fairly high value (I max = 1350 [A]) reached. The energy absorbed by the resistance is also relatively large at 107 [J].

Bei PTC-Widerständen mit kleineren Füllstoffteilchen (Proben B bzw. C mit Teilchengrössen zwischen 63 und 71 µm bzw. 32 und 45 µm) wird der Kurzschlussstrom zum Teil schon erheblich früher begrenzt (bei Probe C ca. 50 µs, d.h. ca. 25% eher als bei Probe A). Zudem erreicht der Kurzschlussstrom nicht mehr so hohe Werte wie bei Probe A (bei Probe C mit 1200 A lediglich noch ca. 90% des Wertes von Probe A). Darüber hinaus ist auch die von den Widerständen bei der Strombegrenzung aufgenommene Energie geringer. Bei der Probe B ist diese Energie ca. 15% und bei der Probe C ca. 45% kleiner als bei Probe A. Die hieraus zu erkennende Tendenz, dass sich mit abnehmender Grösse der Füllstoffteilchen das Strombegrenzungsvermögen und das Schaltverhalten der PTC-Widerstände zunehmend verbessern, ist weder den kleinen Unterschieden im spezifischen Widerstand noch im Kaltwiderstand der einzelnen Proben zuzuschreiben, sondern ausschliesslich der geeigneten Wahl der Füllstoffteilchen.In the case of PTC resistors with smaller filler particles (samples B and C with particle sizes between 63 and 71 µm or 32 and 45 µm) the short-circuit current is sometimes limited considerably earlier (with sample C approx. 50 µs, ie approx. 25% rather than with sample A). In addition, the short-circuit current is no longer as high as with sample A (with sample C with 1200 A only about 90% of the value of sample A). In addition, the energy absorbed by the resistors when limiting the current is lower. In sample B this energy is approx. 15% and in sample C approx. 45% smaller than in sample A. The tendency to be seen from this is that the smaller the size of the filler particles, the better the current limiting capacity and the switching behavior of the PTC resistors , is not due to the small differences in the specific resistance or in the cold resistance of the individual samples, but solely to the suitable choice of filler particles.

Dieses Verhalten ist besonders deutlich aus den Messungen an den Proben E -N zu ersehen (Figuren 2 - 4 und Tabelle), bei denen im Unterschied zu den Messungen an den Proben A - D die Ladespannung der Kondensatorbank 400 V betrug und dementsprechend der Prüfstrom stärker anstieg als bei den Messungen an den Proben A - D. Eine äusserst rasche und wirkungsvolle Strombegrenzung bei gleichzeitig guten Kaltleiteigenschaften wurde mit den Proben E bis H erreicht, also mit PTC-Widerständen, bei denen wie bei den Proben G und H die Füllstoffteilchen 10 - 30 µm bzw. wie bei den Proben E und F die Füllstoffteilchen überwiegend kleiner 20 oder sogar 15 µm waren.This behavior can be seen particularly clearly from the measurements on samples E -N (FIGS. 2-4 and table), in which, in contrast to the measurements on samples AD, the charging voltage of the capacitor bank was 400 V and, accordingly, the test current was stronger increased than in the measurements on samples A - D. An extremely rapid and effective current limitation with good cold conduction properties was achieved with samples E to H, i.e. with PTC resistors in which, as in samples G and H, the filler particles 10 - 30 µm or, as with samples E and F, the filler particles were predominantly smaller than 20 or even 15 µm.

Gegenüber PTC-Widerständen, welche überwiegend Füllstoffteilchen mit mittleren Durchmessern grösser 100 µm enthalten, weisen PTC-Widerstände, bei denen der überwiegende Volumenanteil des Füllstoffs Partikel mit mittleren Durchmessern kleiner ca. 100 µm oder besser kleiner ca. 70 µm aufweisen, ein erheblich verbessertes Schaltverhalten auf. Ein besonders günstiges Schaltverhalten mit kleiner Energieaufnahme, kurzer Ansprechzeit und kleinem Spitzenwert des im Widerstand geführten Stroms Imax wird erreicht, wenn der überwiegende Volumenanteil des Füllstoffs Partikel mit Teilchengrössen kleiner 30 µm oder sogar kleiner 20 µm aufweist.Compared to PTC resistors, which mainly contain filler particles with average diameters larger than 100 µm, PTC resistors, in which the predominant volume fraction of the filler has particles with average diameters smaller than approx. 100 µm or better smaller than approx. 70 µm, have a significantly improved switching behavior on. A particularly favorable switching behavior with low energy consumption, shorter Response time and small peak value of the current I max carried in the resistor is achieved when the predominant volume fraction of the filler has particles with particle sizes smaller than 30 µm or even smaller than 20 µm.

Jedoch darf die mittlere Grösse der im überwiegenden Volumenanteil vorgesehenen Partikel nicht zu klein gewählt werden, da dann unter anderem der spezifische Widerstand und damit auch der Kaltwiderstand eines aus einem solchen Material gefertigten PTC-Widerstands zu stark ansteigt. Dies ist aus Probe D zu erkennen, bei der die Füllstoffpartikel mittlere Teilchengrössen zwischen 1 und 5 µm aufwiesen. Um einen zumindest mit den Proben A bis C annähernd (Abweichung ca. 50-60%) vergleichbaren Kaltwiderstand zu erreichen, musste bei Probe D mit einem Volumenanteil von ca. 60% praktisch 50% mehr Füllstoff in das Polymer eingemischt werden als bei den anderen Proben. Eine Strombegrenzung durch einen PTC-Übergang konnte mit einem solchen Widerstand bei einer Prüfspannung von 200 V nicht erreicht werden. Der in der vorstehenden Tabelle angegebene Begrenzungsstrom Imax ist lediglich durch den hohen Kaltwiderstand von 226 mΩ und nicht durch einen PTC-Übergang bedingt.However, the average size of the particles provided in the predominant volume fraction must not be chosen too small, since then among other things the specific resistance and thus also the cold resistance of a PTC resistor made from such a material increases too much. This can be seen from sample D, in which the filler particles had average particle sizes between 1 and 5 μm. In order to achieve a cold resistance comparable to that of Samples A to C at least (deviation approx. 50-60%), practically 50% more filler had to be mixed into the polymer with Sample D with a volume fraction of approx. 60% than with the others Rehearse. Current limitation through a PTC transition could not be achieved with such a resistor at a test voltage of 200 V. The limit current I max given in the table above is only due to the high cold resistance of 226 mΩ and not due to a PTC transition.

Eine weitere Verbesserung des Ansprechverhaltens des erfindungsgemässen PTC-Widerstands wird erzielt, wenn die Füllstoffteilchen hohl ausgebildet sind oder eine geringe Masse aufweisen, da dann aufgrund einer relativ geringen spezifischen Wärme eine besonders rasche Erwärmung des Polymers erreicht werden kann.A further improvement in the response behavior of the PTC resistor according to the invention is achieved if the filler particles are hollow or have a low mass, since particularly rapid heating of the polymer can then be achieved due to a relatively low specific heat.

Claims (7)

PTC-Widerstand mit einem zwischen zwei Kontaktanschlüssen angeordneten elektrischen Widerstandskörper aus Verbundwerkstoff mit einer Polymer-Matrix und einem in die Polymer-Matrix eingebetteten pulverförmigen Füllstoff aus elektrisch leitfähigem Material, dadurch gekennzeichnet, dass der überwiegende Volumenanteil des Füllstoffs eine Fraktion von Teilchen aufweist, deren mittlerer Durchmesser kleiner 100 µm und grösser 5 µm ist.PTC resistor with an electrical resistance body made of composite material arranged between two contact connections with a polymer matrix and a powdered filler made of electrically conductive material embedded in the polymer matrix, characterized in that the predominant volume fraction of the filler has a fraction of particles, the middle of which Diameter is less than 100 microns and greater than 5 microns. PTC-Widerstand nach Anspruch 1, dadurch gekennzeichnet, dass der überwiegende Volumenanteil des Füllstoffs eine Fraktion von Teilchen aufweist, deren mittlerer Durchmesser kleiner 70 µm ist.PTC resistor according to claim 1, characterized in that the predominant volume fraction of the filler has a fraction of particles whose average diameter is less than 70 µm. PTC-Widerstand nach Anspruch 2, dadurch gekennzeichnet, dass der überwiegende Volumenanteil des Füllstoffs eine Fraktion von Teilchen aufweist, deren mittlerer Durchmesser kleiner 30 µm ist.PTC resistor according to claim 2, characterized in that the predominant volume fraction of the filler has a fraction of particles whose average diameter is less than 30 µm. PTC-Widerstand nach Anspruch 3, dadurch gekennzeichnet, dass der überwiegende Volumenanteil des Füllstoffs eine Fraktion von Teilchen aufweist, deren mittlerer Durchmesser kleiner 20 µm ist.PTC resistor according to claim 3, characterized in that the predominant volume fraction of the filler has a fraction of particles whose average diameter is less than 20 µm. PTC-Widerstand nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der überwiegende Volumenanteil des Füllstoffs eine Fraktion von Teilchen aufweist, deren mittlerer Durchmesser grösser 10 µm ist.PTC resistor according to one of claims 1 to 4, characterized in that the predominant volume fraction of the filler has a fraction of particles whose average diameter is greater than 10 µm. PTC-Widerstand nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass als Füllstoff elektrisch leitende Teilchen in Form mindestens eines Metallborids, -carbids, -nitrids, - oxids und/oder - silizids und/oder eines Metalles und/oder einer Legierung auf der Basis des Metalls vorgesehen sind.PTC resistor according to one of claims 1-5, characterized in that the filler is electrically conductive particles in the form of at least one metal boride, carbide, nitride, oxide and / or silicide and / or a metal and / or an alloy the base of the metal are provided. PTC-Widerstand nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass der Füllstoff überwiegend hohle Teilchen aufweist.PTC resistor according to one of Claims 1-6, characterized in that the filler has predominantly hollow particles.
EP96810322A 1995-06-08 1996-05-22 PTC resistance Withdrawn EP0747910A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995120869 DE19520869A1 (en) 1995-06-08 1995-06-08 PTC resistor
DE19520869 1995-06-08

Publications (2)

Publication Number Publication Date
EP0747910A2 true EP0747910A2 (en) 1996-12-11
EP0747910A3 EP0747910A3 (en) 1997-09-10

Family

ID=7763881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810322A Withdrawn EP0747910A3 (en) 1995-06-08 1996-05-22 PTC resistance

Country Status (4)

Country Link
EP (1) EP0747910A3 (en)
JP (1) JPH097802A (en)
CN (1) CN1140318A (en)
DE (1) DE19520869A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
WO2018080441A1 (en) * 2016-10-25 2018-05-03 Hewlett-Packard Development Company, L.P. Temperature sensors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19800470A1 (en) * 1998-01-09 1999-07-15 Abb Research Ltd Resistor element for current limiting purposes especially during short-circuits
US6128168A (en) 1998-01-14 2000-10-03 General Electric Company Circuit breaker with improved arc interruption function
US6144540A (en) 1999-03-09 2000-11-07 General Electric Company Current suppressing circuit breaker unit for inductive motor protection
US6157286A (en) 1999-04-05 2000-12-05 General Electric Company High voltage current limiting device
CN101935418B (en) * 2009-06-30 2013-05-29 比亚迪股份有限公司 Positive temperature coefficient material and preparation method thereof, and material-containing thermosensitive resistor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373633A2 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Polyetheric copolymers, process for preparing the same, compositions containing the same, their molded products, and their use
EP0590347A1 (en) * 1992-10-01 1994-04-06 Abb Research Ltd. Resistance with PTC-behaviour

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604735A (en) * 1978-04-14 1981-12-16 Raychem Corp Ptc compositions and devices comprising them
US4616125A (en) * 1984-02-03 1986-10-07 Eltac Nogler & Daum Kg Heating element
JPH0777161B2 (en) * 1986-10-24 1995-08-16 日本メクトロン株式会社 PTC composition, method for producing the same and PTC element
SE468026B (en) * 1990-06-05 1992-10-19 Asea Brown Boveri SET TO MAKE AN ELECTRIC DEVICE
DE4221309A1 (en) * 1992-06-29 1994-01-05 Abb Research Ltd Current limiting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373633A2 (en) * 1988-12-14 1990-06-20 Idemitsu Kosan Company Limited Polyetheric copolymers, process for preparing the same, compositions containing the same, their molded products, and their use
EP0590347A1 (en) * 1992-10-01 1994-04-06 Abb Research Ltd. Resistance with PTC-behaviour

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF MATERIALS SCIENCE, Bd. 26, Nr. 1, 1.Januar 1991, Seiten 145-154, XP000371800 SHROUT T R ET AL: "COMPOSITE PTCR THERMISTORS UTILIZING CONDUCTING BORIDES, SILICIDES, AND CARBIDE POWDERS" *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
US6540944B2 (en) 1997-11-24 2003-04-01 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6366193B2 (en) 1998-05-20 2002-04-02 General Electric Company Current limiting device and materials for a current limiting device
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
US6711807B2 (en) 1999-11-19 2004-03-30 General Electric Company Method of manufacturing composite array structure
WO2018080441A1 (en) * 2016-10-25 2018-05-03 Hewlett-Packard Development Company, L.P. Temperature sensors
US11199456B2 (en) 2016-10-25 2021-12-14 Hewlett-Packard Development Company, L.P. Temperature sensors

Also Published As

Publication number Publication date
CN1140318A (en) 1997-01-15
DE19520869A1 (en) 1996-12-12
EP0747910A3 (en) 1997-09-10
JPH097802A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
DE2903442C2 (en)
DE3512483C2 (en)
EP0747910A2 (en) PTC resistance
EP0590347B1 (en) Resistance with PTC-behaviour
DE3707503C2 (en) PTC composition
DE2345303C2 (en) Self-regulating electrical resistance body and process for its manufacture
DE69834231T2 (en) PTC element, protection device and electrical circuit board
DE69927433T2 (en) Ceramic heating element and the same oxygen sensor used
EP0755058B1 (en) Electrically and thermically conductive plastics material and the application thereof
DE2641894B2 (en)
DE7527288U (en) SELF-LIMITING ELECTRICAL RESISTANCE
DE3038780C2 (en)
DE2247643C2 (en) Varistor with at least three electrodes
DE3606403C2 (en)
EP0936632B1 (en) Resistor element
DE1961679C3 (en) Voltage-dependent resistor based on zinc oxide (ZnO)
DE1564613B2 (en) DIODE HOLDER WITH TWO PLATE-SHAPED CURRENT LADDERS
EP1355327B1 (en) Surge voltage arrester and method to produce such a surge voltage arrester
DE2853134C2 (en) Ceramic varistor
EP0711496B1 (en) Ceramic heating element and process for producing such a heating element
EP0696036A1 (en) Process for the preparation of a PTC resistance and resistance obtained therefrom
DE3425768C2 (en)
DE2354697C2 (en) Gas-filled surge arrester
DE2532588A1 (en) SOLID STATE SWITCHING DEVICE
DE2508140A1 (en) SHOCK ABSORBER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980212