EP0794850B1 - Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil - Google Patents

Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil Download PDF

Info

Publication number
EP0794850B1
EP0794850B1 EP95936389A EP95936389A EP0794850B1 EP 0794850 B1 EP0794850 B1 EP 0794850B1 EP 95936389 A EP95936389 A EP 95936389A EP 95936389 A EP95936389 A EP 95936389A EP 0794850 B1 EP0794850 B1 EP 0794850B1
Authority
EP
European Patent Office
Prior art keywords
tool according
tool
diamond grains
abrasive
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95936389A
Other languages
German (de)
English (en)
Other versions
EP0794850A1 (fr
Inventor
Thierry Gillet
Théodore Holsteyns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamant Boart NV SA
Original Assignee
Diamant Boart NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamant Boart NV SA filed Critical Diamant Boart NV SA
Publication of EP0794850A1 publication Critical patent/EP0794850A1/fr
Application granted granted Critical
Publication of EP0794850B1 publication Critical patent/EP0794850B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials

Definitions

  • the present invention relates to a abrasive tool, for cutting, drilling or grinding construction materials including a support associated with or provided with a structure, positioning grains of diamond.
  • the invention also relates to a method for manufacture of an abrasive tool.
  • a process according to the preamble is known, for example, from WO-A-9009620.
  • the known abrasive or cutting tool of the type above when it is a cutting disc, is consists of a circular sheet steel support and a metallic structure formed by a succession of segments, teeth or rim or continuous diamond crown fixed, for example, by soldering, welding or by sintering on the periphery of this sheet.
  • the structure metallic consists of a body sintered by the powder metallurgy incorporating diamond grains.
  • these grains generally have a size ranging from 20 to 80 US-MESH (ISO 6106 / FEPA or ANSI B74-16 standard).
  • abrasive particles In the case discs, abrasive particles, generally formed of silicon carbide, extend over the entire surface of the disc and are incorporated into a phenolic resin reinforced with synthetic fibers.
  • these disks have the disadvantage that the abrasive part is very weak and wears out quickly. So the diameter of such a disc rapidly decreases during use and therefore requires replacement frequent during relatively intensive use.
  • the structure bearing the grains only exists virtually.
  • the grains diamonds have been previously coated with a layer microscopic nickel of maximum 20 microns having the particularity of better adhering to said resin. From this done, a lattice-like structure does not turn out necessary.
  • This design remains limited to tools exclusively for grinding or grinding, where friction forces transmitted in diamond remain well in below the forces generally encountered during sawing.
  • the grain size is less than 200 microns and is commonly between 100 and 400 US-MESH.
  • One of the essential purposes of this invention is to remedy the disadvantages of these types known abrasive tools and to present an abrasive tool, cutting or the like which may be suitable for both intensive use only for relatively few uses frequent, especially thanks to its manufacturing price relatively reduced compared to its lifespan, and which, more, assures the user performance and safety, especially when this tool is used dry.
  • the invention allows the user to have a tool abrasive with continuous depth of cut substantially constant.
  • the support consists essentially of a molded body, cast, injected or pressed into a material having a point higher than the operating temperature and below 1000 ° C and incorporating a structure device itself carrying and positioning the grains diamond abrasives. These are at least distributed following the direction in which the tool should be applied to the material to be worked, the structure with open spaces, recesses or pores and being at least partially embedded in the aforementioned material, which at least partially penetrates these interstices of so as to secure the structure to the support and to transmit a torque from a motorized axis.
  • the diamond grains advantageously have a size between 20 and 80 US-MESH and preferably between 30 and 60 US-MESH.
  • the aforementioned structure includes an assembly of particles each formed diamond grains coated with a binding envelope, these particles being fixed, directly or not, one to others in such a way as to let subsist between them interstices into which matter enters above to form an anchor with the aforementioned support.
  • Figure 1 shows a first type known from abrasive, cutting or cutting discs comprising a circular support 1, formed of a sheet of steel, and a metallic structure 2, formed by a succession of diamond segments fixed by brazing, welding or sintering on the periphery of this sheet.
  • abrasive, cutting or cutting discs comprising a circular support 1, formed of a sheet of steel, and a metallic structure 2, formed by a succession of diamond segments fixed by brazing, welding or sintering on the periphery of this sheet.
  • Such a disc is generally called “diamond disc”.
  • the aforementioned concretions, forming segments 2 can either be formed in situ by sintering on the periphery of the support 1, either to be preformed sintered and fixed on the periphery of the support 1 by soldering or welding, or again by means mechanical.
  • the junction between support 1 and the various segments 2 is indicated by the reference 6 'in the figure 2.
  • the circular support 1 has a central bore 5 for driving the disc around of its axis.
  • the height or thickness of the segments 2 in radial direction of support 1 is traditionally less than 10 mm. These segments 2 are caused to wear out sawing by slow abrasion of the metal matrix 4, while their cutting power is constantly regenerating by successive appearance of layers of diamond grains 3.
  • This type of disc is renowned for its performance cut, wet or dry, in virtually all building materials, and generally in use on portable or table-top machines. The diameters generally range from 100 to 500 mm.
  • notches 11 are provided between two consecutive segments 2.
  • Figure 3 is a representation schematic of a cutting disc according to the invention.
  • the essential characteristic of the invention resides in the design and construction of structure 2 where the 3 diamond grains will have the best possible adhesion to take up the constraints induced by the work of chopped off.
  • the structure 2 can be obtained prior to the molding of the support 1 by agglomeration of abrasive particles 8 containing the diamond grains 3.
  • the support 1 consists of a material 6 molded, cast, injected or pressed having a melting point higher than the tool temperature during of its use and less than 1000 ° C.
  • the abrasive particles 8 are embedded in the material of the support 1 for example by overmolding in such a way that this material 6, in the liquid or pasty state, can penetrate sufficiently into these interstices, recesses or pores 9 to obtain a rigid and reliable fixing between the support and structure 2 formed essentially by these abrasive particles 8 and especially to allow transmit a sufficiently large torque from the support 1 with diamond grains 3 when using this tool.
  • the volume part occupied by structure 2 on the periphery amounts to 60% while material 6 has a higher penetration rate 90% in the recesses, pores or interstices 9.
  • These diamond grains can be agglomerated on a trellis or on an openwork plate by brazing, sintering or depositing electrolytic.
  • the structure 2 can be obtained directly by coating each diamond grain 3 (as shown in Figure 5), or a whole of such grains by a layer or envelope coating and bonding 7. These coating methods are known so there is no need to describe them here.
  • the particles 8 obtained by coating grains of diamonds 3 are bonded together by brazing, bonding or sintering in shape and size structure 2, that is, making sure that recesses, pores or interstices 9 remain between the agglomerated particles 8.
  • Another embodiment of the structure 2 is obtained by agglomeration by the same diamond wire means assembled in the directions desired, so as to form for example a trellis at network in two or more layers of such wires.
  • These sons can be obtained by extruding metallic powders or other premixes with diamond grains and a plasticizer allowing passage through dies adequate.
  • the particle size 8 obtained must be at least 300 microns.
  • the average diameter of the diamond grains itself is preferably greater than 200 ⁇ m. So the thickness of the layer of coating 7 is at least 50 ⁇ m.
  • structure 2 can be produced in situ by at the same time as the operation of molding, casting, injection or pressing of the support 1 of the tool, at the provided that the materials selected from layers 7 for coating or for the formation of grain agglomerates diamond 3 are compatible to react chemically with the material 6 of the support 1.
  • Reaction is understood to mean chemical, the formation of a 7 'interface between two parts which is likely to create sufficient adhesion of one in relation to the other. So if for example the layer 7 is formed of a metal, such as nickel, and that the material 6 of the support 1 is formed of another metal, such than aluminum, the 7 'interface is made of an alloy of these two metals.
  • the in-situ chemical reaction forms a continuous network joining the particles together, thereby forming said structure 2.
  • thermo-mechanical materials used for training of layer 7 of the agglomerated particles 8 must be superior to the thermomechanical characteristics of materials 6 used for the production of support 1.
  • the present invention provides for the coating layer 7 of the diamond grains 3 is advantageously metallic of the iron, nickel type, cobalt, copper, zinc or their derived alloys if the material 6 of support 1 is a metal with a low melting point, such as aluminum, copper, zinc or their alloys respective, such as alpax, bronze, brass or zamak, or possibly a high performance polymer of the type polyimide, polysulfone or PEEK (polyetheresterketone).
  • This layer 7 will either be metallic of the same type as above, either based on polymers or liquid crystals of high thermo-mechanical performance, such as polyimides, polysulfones, PEEK, when support 1 will consist of a less sophisticated polymer, such as polyesters, epoxy possibly reinforced with glass fibers, aramid or carbon.
  • Figure 4 refers to a disc diamond whose rigid structure formed of said particles 8 extends in a crown around the periphery of the support 1.
  • this structure has a wavy shape in a direction tangential to this periphery, that is to say in the direction of the couple applied to the disc when in use.
  • the material 6, from which the support 1 is formed does not not only penetrates into the recesses 9 between the particles 8 but also completely fills the hollows 10 created laterally in the rigid structure 2 by this wavy shape. This further improves the fixation from the latter to support 1.
  • the width of the structure 2 carrying the diamond grains 3 can be variable and be basically a function of the desired service life of the tool and depth of cut required.
  • the invention allows a large choice of this width, for example from 1 to 25 mm.
  • the support 1 is placed motionless in a suitable mold, not shown in the figures, and we inject, pour or press the material 6 from which the support is formed in this mold of in such a way that this material envelops at least partially structure 2 and enters the interstices 9 of this structure 2 thus making it possible to make the two parties intimately united.
  • Molding techniques are known in industrial practices.
  • the support 1 of the tool is metallic, preferably use the methods of casting molten metal, sand, shell or pressure in permanent mold.
  • the tool support is made of synthetic materials thermosetting or thermoplastic, we will use preferably injection or molding methods adequate.
  • a steel frame 17 or a material synthetic can be placed beforehand in the mold used for support formation.
  • the support 1 is molded, cast or injected around this structure 2 allows for a large number of support types, both in terms of concerns the geometry of the support surfaces that the composition of it. Therefore, if the tool constitutes a cutting disc, it is possible to reduce the surface lateral contact of the latter with the material to be cut by providing for example an embossing on the lateral faces of the concretion.
  • fins 12 can be shaped in the lateral faces of the support 1, as shown in Figure 6, to provide ventilation for this last when using the disc, especially when dry.
  • a certain quantity of carbide grains 13 or of another material hard can be mixed with the resin at the trellis 2 in the shape of a crown. These carbide grains 13 or this other hard material can be located in the mesh of the mesh 2.
  • the quantity of carbide grains or of this other hard material represents at most ten times the volume of the quantity of diamond grains 3.
  • carbide or another hard material 13 can also take place during the constitution of the trellis 2 by brazing, sintering or collage to the latter. So these 13 grains could be diamond grain premixes 3 to be fixed on the trellis 2 and therefore be on the trellis 2 as well as in the meshes of it and even be spread across the support 1 in order to improve the longevity of the latter.
  • composition of the support 1 also thanks to the very classic technique simple that can be applied for its training, it is possible to incorporate charges of an extremely varied and even very complex shaped inserts. So, it is possible to incorporate into it particles to high thermal conductivity so as to facilitate the evacuation of calories, generated during the effort of cutting when the tool is used dry, from the periphery towards the axis of the machine driving the tool.
  • Figure 7 is a schematic view in perspective of a drill with a metallic structure 2 containing 3 diamond grains, corresponding to the shape as shown in Figure 5.
  • the material 6, of which the cylindrical support 1 of this drill is formed is advantageously metal cast in a mold, not shown, in which the structure was already placed 2 positioning the diamond grains 3.
  • This structure consists of a succession of platelets distributed to equal distances along the free circular edge of the support 1 and cast therein.
  • this support 1 is provided, on the side opposite its free circular edge, an axial rod 14 for mounting the drill on a drive machine, not shown.
  • This rod 14 is advantageously formed by an insert which, during the formation of the support 1, is molded by the material 6 of which the latter is constituted.
  • Figure 8 is a perspective view of a grinding wheel, according to the invention, which is manufactured from the same way as the disc according to figure 4 and the drill according to Figure 7 and whose fasteners 15 are also formed by inserts molded into the support 1.
  • Figure 9 concerns a form of special production of diamond tools, according to the invention, for milling or surfacing objects 16 made of stony or vitreous materials.
  • the working face i.e. the structure 2 positioning the diamond grains
  • it can be very shaped varied. Indeed, it can be not only flat, as in a cup wheel, or cylindrical as in a polishing roller but it can also have a concave or convex profile, such as for grinding wheels molding or polishing shoes.

Description

La présente invention est relative à un outil abrasif, pour la coupe, le forage ou le meulage de matériaux de construction comprenant un support associé à ou muni d'une structure, positionnant des grains de diamant. L'invention concerne également un procédé pour la fabrication d'un outil abrasif. Un procédé selon le préambule est connu, par example, du document WO-A-9009620.
L'outil abrasif ou de coupe connu du type précité, lorsqu'il s'agit d'un disque à tronçonner, est constitue d'un support circulaire en tôle d'acier et d'une structure métallique formée par une succession de segments, de dents ou d'une jante ou couronne continue diamantés fixés, par exemple, par brasage, par soudage ou par frittage sur la périphérie de cette tôle.
Dans ces cas connus, la structure métallique est constituée d'un corps fritté par la métallurgie des poudres incorporant les grains de diamant. Dans les applications de la construction visées par la présente invention, ces grains ont généralement une taille allant de 20 à 80 US-MESH (norme ISO 6106/FEPA ou ANSI B74-16).
Le prix de revient d'un tel outil connu est relativement élevé aussi bien par suite du coût des produits utilisés que de la main d'oeuvre spécialisée requise pour la fixation de la partie diamantée précitée sur la tôle ou que du grand nombre d'étappes de fabrication nécessaires à sa fabrication.
De ceci résulte que les frais d'investissement dans un outil de ce genre ne sont justifiés que pour les professionnels qui en font une utilisation relativement intense.
Pour des utilisations occasionnelles, il existe des outils abrasifs très peu coûteux. Dans le cas des disques, des particules abrasives, formées généralement de carbure de silicium, s'étendent sur toute la surface du disque et sont incorporées dans une résine phénolique renforcée par des fibres synthétiques. Toutefois, ces disques présentent l'inconvénient que la partie abrasive est très peu résistante et s'use rapidement. Ainsi, le diamètre d'un tel disque diminue rapidement au cours de l'utilisation et nécessite, par conséquent, un remplacement fréquent lors d'une utilisation relativement intensive.
De plus, par suite du fait que ces disques sont peu résistants, un risque important existe qu'ils se fissurent et éclatent en blessant ainsi éventuellement l'utilisateur.
Un autre inconvénient, non négligeable dans certains cas, est que l'utilisateur ne dispose jamais d'une profondeur de passe constante et optimale pour un même disque par suite de cette usure rapide. De ce fait, la fréquence de remplacement est d'autant plus élevée.
Par ailleurs, il existe également des outils de sciage ou de meulage dans lesquels la structure portant des grains de diamant à la périphérie de l'outil est formée d'un treillis fixé dans une résine. De tels outils présentent surtout les inconvénients d'avoir non seulement une durée de vie relativement réduite mais également la limitation d'être utilisés exclusivement avec un réfrigérant pour éviter la dégradation de la dite résine, celle-ci étant généralement de faible résistance thermique. L'utilisation à sec n'est donc pas possible avec ce type d'outil.
Dans encore d'autres outils connus la structure portant les grains n'existe que virtuellement. Les grains de diamants ont été préalablement revêtus par une couche microscopique de nickel d'au maximum 20 microns ayant la particularité de mieux adhérer à ladite résine. De ce fait, une structure en forme de treillis ne s'avère pas nécessaire. Cette conception reste limitée à des outils exclusivement de meulage ou de rectification, là où les efforts de frottement transmis en diamant restent bien en deça des efforts généralement rencontrés lors du sciage. Dans ces outils la taille des grains est inférieure à 200 microns et est couramment comprise entre 100 et 400 US-MESH.
Un des buts essentiels de la présente invention est de remédier aux inconvénients de ces types d'outils abrasifs connus et de présenter un outil abrasif, de coupe ou analogue qui peut convenir aussi bien pour des usages intensifs que pour des usages relativement peu fréquents, notamment grâce à son prix de fabrication relativement réduit comparé à sa durée de vie, et qui, de plus, assure à l'utilisateur performance et sécurité, surtout quand cet outil est utilisé à sec. En outre, l'invention permet à l'utiliseur de disposer d'un outil abrasif présentant continuellement une profondeur de passe sensiblement constante.
A cet effet, suivant l'invention, le support est essentiellement constitué d'un corps moulé, coulé, injecté ou pressé en une matière présentant un point de fusion supérieur à la température d'utilisation et inférieur à 1000°C et incorporant une structure périphérique elle-même portant et positionnant les grains de diamant abrasifs. Ceux-ci sont au moins répartis suivant la direction selon laquelle l'outil doit être appliqué sur le matériau à travailler, la structure présentant des interstices, évidements ou pores ouverts et étant au moins partiellement noyée dans la matière susdite, qui pénètre au moins partiellement dans ces interstices de manière à permettre de solidariser la structure au support et de transmettre un couple à partir d'un axe motorisé. Les grains de diamant ont avantageusement une taille comprise entre 20 et 80 US-MESH et préférentiellement entre 30 et 60 US-MESH.
Avantageusement, la structure précitée comprend un assemblage de particules formées chacune de grains de diamants enrobés par une enveloppe de liaison, ces particules étant fixées, directement ou non, les unes aux autres d'une manière telle à laisser subsister entre elles des interstices dans lesquels pénètre la matière précitée pour former un ancrage avec le support précité.
D'autres détails et particularités de l'invention ressortiront de la description donnée ci-après, à titre d'exemple non limitatif, de quelques formes de réalisation particulières de l'invention avec référence aux dessins annexés.
  • La figure 1 est une vue latérale d'un disque diamanté connu.
  • La figure 2 est, à plus grande échelle, une vue latérale analogue d'une partie de la périphérie du disque montré à la figure 1.
  • La figure 3 est une vue latérale d'un disque abrasif suivant une première forme de réalisation de l'invention.
  • La figure 4 est, à plus grande échelle, une vue analogue d'une partie du bord périphérique de cette première forme de réalisation dans laquelle la matière constituant le support du disque a été omise.
  • La figure 5 est une vue en perspective d'un foret suivant l'invention.
  • La figure 6 est une vue en perspective d'une meule de ponçage suivant l'invention.
  • La figure 7 est une vue en coupe et perspective partielle d'une forme de réalisation particulière supplémentaire d'outils diamantés suivant l'invention.
  • Dans ces différentes figures, les mêmes chiffres de référence concernent des éléments analogues ou identiques.
    La figure 1 représente un premier type connu de disque abrasif, de coupe ou à tronçonner comprenant un support circulaire 1, formé d'une tôle d'acier, et une structure métallique 2, formée par une succession de segments diamantés fixés par brasage, soudage ou frittage sur la périphérie de cette tôle. Un tel disque est généralement appelé "disque diamanté".
    Comme il résulte plus clairement de la figure 2, dans ces segments 2, des grains de diamant 3 sont maintenus dans une matrice métallique 4 formée par frittage de poudres métalliques. Une telle matrice comprenant les grains de diamant 3 positionnés rigidement les uns par rapport aux autres dans celle-ci, dont sont constitués les segments 2, est généralement appelée "concrétion" et est fixée à la périphérie du support circulaire 1. Cette fixation peut être réalisée par diverses méthodes d'assemblage.
    Ainsi, les concrétions précitées, formant les segments 2, peuvent soit être formées in situ par frittage sur la périphérie du support 1, soit être préformées frittées et fixées sur la périphérie du support 1 par brasage ou soudage, soit encore par des moyens mécaniques. La jonction entre le support 1 et les divers segments 2 est indiquée par la référence 6' sur la figure 2. Le support circulaire 1 présente un alésage central 5 servant à l'entraínement du disque autour de son axe.
    La hauteur ou épaisseur des segments 2 en direction radiale du support 1 est traditionnellement inférieure à 10 mm. Ces segments 2 sont amenés à s'user au cours de sciage par abrasion lente de la matrice métallique 4, alors que leur pouvoir de coupe se régénère constamment par apparition successive des couches de grains de diamants 3. Ce type de disque est réputé pour ses performances de coupe, à l'eau ou à sec, dans pratiquement tous les matériaux de construction, et généralement en utilisation sur machines portatives ou machines sur table. Les diamètres vont généralement de 100 à 500 mm.
    Il y a encore lieu de remarquer que, dans la forme de réalisation montrée à la figure 1, des encoches 11 sont prévues entre deux segments consécutifs 2.
    Toutefois, au lieu d'une succession de segments diamantés, il est possible de prévoir à la périphérie de cette tôle une jante ou couronne diamantée continue.
    La figure 3 est une représentation schématique d'un disque de tronçonnage suivant l'invention. La caractéristique essentielle de l'invention réside dans la conception et la réalisation de la structure 2 où les grains de diamant 3 auront la meilleure adhésion possible pour reprendre les contraintes induites par le travail de coupe. Suivant l'invention, la structure 2 peut être obtenue préalablement au moulage du support 1 par agglomération de particules abrasives 8 contenant les grains de diamant 3.
    Les dimensions et le nombre de ces interstices, évidements ou pores 9 sont notamment fonction de la nature, plus particulièrement de la viscosité, de la matière 6 dont est constitué le support 1. En effet, suivant l'invention, le support 1 est constitué d'une matière 6 moulée, coulée, injectée ou pressée présentant un point de fusion supérieur à la température de l'outil lors de son utilisation et inférieur à 1000°C. Ainsi, les particules abrasives 8 sont noyées dans la matière du support 1 par exemple par surmoulage de manière telle que cette matière 6, à l'état liquide ou pâteuse, puisse pénétrer suffisamment dans ces interstices, évidements ou pores 9 pour obtenir une fixation rigide et fiable entre le support et la structure 2 formée essentiellement par ces particules abrasives 8 et surtout pour permettre de transmettre un couple suffisamment important à partir du support 1 aux grains de diamant 3 lors de l'utilisation de cet outil.
    A titre d'exemple, la partie volumique occupée par la structure 2 en périphérie se monte à 60 % tandis que la matière 6 a un taux de pénétration supérieur à 90 % dans les évidements, pores ou interstices 9. Ces grains de diamant peuvent être agglomérés sur un treillis ou sur une plaque ajourée par brasage, frittage ou dépôt électrolytique.
    Avantageusement, pour une question de prix de revient et de performance au travail, la structure 2 peut être directement obtenue par un enrobage de chaque grain de diamant 3 (comme montré à la figure 5), ou d'un ensemble de tels grains par une couche ou enveloppe d'enrobage et de liaison 7. Ces méthodes d'enrobage sont connues si bien qu'il n'est pas nécessaire de les décrire ici. Les particules 8 obtenues par enrobage de grains de diamants 3 sont agglomérées entre-elles par brasage, collage ou frittage dans la forme et la dimension souhaitées de la structure 2, c'est-à-dire en veillant que des évidements, pores ou interstices 9 subsistent entre les particules agglomérées 8.
    Une autre forme de réalisation de la structure 2 est obtenue par l'agglomération par les mêmes moyens de fils diamantés assemblés suivant les directions souhaitées, de manière à former par exemple un treillis au réseau en deux ou plus de couches de tels fils. Ces fils peuvent être obtenus par extrusion de poudres métalliques ou autres prémélangées aux grains de diamant et à un plastifiant permettant le passage dans des filières adéquates.
    Toute autre technique apparentée au moulage par injection est également applicable pour obtenir des formes dérivées, la taille des particules 8 obtenues devant au minimum être de 300 microns. Par ailleurs, le diamètre moyen des grains de diamant même est de préférence supérieur à 200 µm. Ainsi, l'épaisseur de la couche d'enrobage 7 est au moins de 50 µm.
    Suivant encore une autre forme de l'invention, la structure 2 peut être réalisée in situ en même temps que s'effectue l'opération dé moulage, coulée, injection ou pressage du support 1 de l'outil, à la condition que les matières choisies des couches 7 d'enrobage ou pour la formation d'agglomérats de grains de diamant 3 soient compatibles pour réagir chimiquement avec la matière 6 du support 1. On entend par réaction chimique, la formation d'un interface 7' entre deux parties qui est susceptible de créer une adhésion suffisante de l'une par rapport à l'autre. Ainsi, si par exemple la couche 7 est formée d'un métal, tel que du nickel, et que la matière 6 du support 1 est formée d'un autre métal, tel que de l'aluminium, l'interface 7' est formé d'un alliage de ces deux métaux.
    Vu la concentration élevée des particules 8 à la périphérie de l'outil, la réaction chimique in-situ forme un réseau continu joignant les particules entre-elles, en formant ainsi la dite structure 2.
    Il est entendu que les caractéristiques thermo-mécaniques des matières utilisées pour la formation de la couche 7 des particules 8 agglomérées doivent être supérieures aux caractéristiques thermomécaniques des matières 6 utilisées pour la réalisation du support 1.
    Pour ce faire, la présente invention prévoit que la couche d'enrobage 7 des grains de diamant 3 soit avantageusement métallique du type fer, nickel, cobalt, cuivre, zinc ou de leurs alliages dérivés si la matière 6 du support 1 est un métal à bas point de fusion, tel l'aluminium, le cuivre, le zinc ou leurs alliages respectifs, tels l'alpax, le bronze, le laiton ou le zamak, ou éventuellement un polymère haute performance de type polyimide, polysulfone ou PEEK (polyetheresterketone). Cette couche 7 sera soit métallique du même type que ci-dessus, soit à base de polymères ou cristaux liquides de haute performance thermo-mécanique, tels que polyimides, polysulfones, PEEK, quand le support 1 sera constitué d'un polymère moins sophistiqué, tel les polyesters, epoxy éventuellement renforcées par des fibres de verre, aramide ou carbone.
    La figure 4 se rapporte à un disque diamanté dont la structure rigide formée desdites particules 8 s'étend suivant une couronne autour de la périphérie du support 1. De plus, cette structure présente une forme ondulée suivant une direction tangentielle à cette périphérie, c'est-à-dire dans la direction du couple appliqué sur le disque lors de son utilisation.
    Toutefois, comme montré en détail à la figure 5, la matière 6, dont est formé le support 1, ne pénètre pas seulement dans les évidements 9 entre les particules 8, mais remplit également complètement les creux 10 créés latéralement dans la structure rigide 2 par cette forme ondulée. Ceci permet d'ameliorer encore la fixation de cette dernière au support 1.
    La largeur de la structure 2 portant les grains de diamant 3 peut être variable et être essentiellement fonction de la durée de vie souhaitée de l'outil et de la profondeur de passe requis. L'invention permet un grand choix de cette largeur, par exemple de 1 à 25 mm.
    Par ailleurs, au lieu de prévoir une couronne diamantée continue, comme dans la forme de réalisation montrée à la figure 4, il est possible de former des segments diamantés successifs 2 séparés par des encoches 11 pénétrant éventuellement jusque dans le support 1, comme dans le cas du disque diamanté connu, montré à la figure 1.
    En général, pour fixer le support 1 à la structure diamanté 2 ainsi obtenue, on place cette dernière d'une manière immobile dans un moule approprié, non représenté aux figures, et l'on injecte, coule ou presse la matière 6 dont est formé le support dans ce moule d'une manière telle que cette matière enveloppe au moins partiellement la structure 2 et pénètre dans les interstices 9 de cette structure 2 permettant ainsi de rendre les deux parties intimement solidaires.
    Les techniques de moulage sont connues dans les pratiques industrielles. Quand le support 1 de l'outil est métallique, on utilisera préférentiellement les méthodes de coulée du métal en fusion, en sable, en coquille ou sous pression en moule permanent. Quand le support de l'outil est en matériaux synthétiques thermodurcissables ou thermoplastiques, on utilisera préférentiellement les méthodes d'injection ou de moulage adéquates.
    Afin d'augmenter la rigidité du support 1, ainsi obtenu, une armature en acier 17 ou en une matière synthétique peut être placée préalablement dans le moule utilisé pour la formation du support.
    Le fait que le support 1 est moulé, coulé ou injecté autour de cette structure 2 permet de réaliser un grand nombre de types de support, aussi bien en ce qui concerne la géométrie des surfaces du support que la composition de celui-ci. Dès lors, si l'outil constitue un disque à tronçonner, il est possible de réduire la surface de contact latérale de celui-ci avec le matériau à couper en prévoyant par exemple un gaufrage aux faces latérales de la concrétion. De la même façon, des ailettes 12 peuvent être façonnées dans les faces latérales du support 1, comme montré à la figure 6, pour assurer une ventilation de ce dernier lors de l'utilisation du disque, particulièrement à sec.
    Il est également possible de former directement le corps de l'outil dans l'alésage voulu 5 du support 1. Il est encore possible de réaliser un support 1 dont l'alésage 5 est situé en dehors du plan de celui-ci, de manière à obtenir ainsi un disque dit : "à moyeu déporté". Pour réaliser toutes ces différentes formes du support 1, il suffit simplement d'adapter la construction du moule, dans lequel est formé ce dernier par des procédés classiques de formage déjà cités ci-dessus.
    Par ailleurs, il est possible de mouler un marquage, des références, la flèche de rotation etc... dans la masse du support 1.
    Comme montré à la figure 3, dans laquelle la structure 2 est formée d'un treillis, une certaine quantité de grains de carbure 13 ou d'une autre matière dure peut être mélangée à la résine au niveau du treillis 2 en forme de couronne. Ces grains de carbure 13 ou de cette autre matière dure peuvent se localiser ainsi dans les mailles du treillis 2. La quantité de grains de carbure ou de cette autre matière dure représente tout au plus dix fois le volume de la quantité de grains de diamant 3.
    L'addition de ces grains en carbure ou en une autre matière dure 13 peut également avoir lieu lors de la constitution du treillis 2 par brasage, frittage ou collage à ce dernier. Ainsi, ces grains 13 pourraient être prémélangés aux grains de diamant 3 à fixer sur le treillis 2 et donc se trouver aussi bien sur le treillis 2 même que dans les mailles de celui-ci et même être répartis dans le support 1 afin d'améliorer la longévité de ce dernier.
    Pour ce qui concerne la composition du support 1, également grâce à la technique classique très simple pouvant être appliquée pour sa formation, il est possible d'y incorporer des charges de nature extrêmement variées et des inserts même de forme très complexe. Ainsi, il est possible d'incorporer dans celui-ci des particules à haute conductivité thermique de manière à faciliter l'évacuation de calories, générées lors de l'effort de coupe quand l'outil est utilisé à sec, de la périphérie vers l'axe de la machine entraínant l'outil.
    La figure 7 est une vue schématique en perspective d'un foret muni d'une structure métallique 2 contenant des grains de diamant 3, correspondant à la forme de réalisation, telle que montrée à la figure 5. La matière 6, dont le support cylindrique 1 de ce foret est formé, est avantageusement du métal coulé dans un moule, non représenté, dans lequel était déjà placée la structure 2 positionnant les grains de diamant 3. Cette structure est constituée d'une succession de plaquettes reparties à des distances égales le long du bord circulaire libre du support 1 et coulées dans ce dernier. De plus, ce support 1 est muni, du côté opposé à son bord circulaire libre, d'une tige axiale 14 pour le montage du foret sur une machine d'entraínement, non représentée. Cette tige 14 est avantageusement formée par un insert qui, lors de la formation du support 1, est surmoulé par la matière 6 dont ce dernier est constitué.
    La figure 8 est une vue en perspective d'une meule, suivant l'invention, qui est fabriquée de la même façon que le disque suivant la figure 4 et le foret suivant la figure 7 et dont les organes de fixation 15 sont également constitués par des inserts moulés dans le support 1.
    La figure 9 concerne une forme de réalisation particulière d'outils diamantés, suivant l'invention, pour le fraisage ou le surfaçage d'objets 16 en matériaux pierreux ou vitreux. Comme montré par cette figure la face de travail, c'est-à-dire la structure 2 positionnant les grains de diamant, peut être de forme très variée. En effet, elle peut être non seulement plane, comme dans une meule boisseau, ou cylindrique comme pour un rouleau de polissage, mais elle peut également avoir un profil concave ou convexe, tel que pour les meules de moulurage ou des sabots de polissage.

    Claims (20)

    1. Outil abrasif, de coupe ou analogue comprenant un support (1) associé à une structure (2) positionnant des grains de diamant (3) et destinée à être appliquée suivant une direction déterminée sur un matériau à traiter (16), caractérisé en ce que le support (1) est essentiellement constitué d'une matière (6) moulée, coulée, injectée ou pressée présentant un point de fusion supérieur à la température d'utilisation de l'outil et inférieur à 1000°C, les grains de diamant (3) étant au moins répartis suivant la direction déterminée susdite par rapport à la structure (2), cette structure présentant des interstices ou pores ouvertes et étant au moins partiellement noyée dans la matière (6), cette dernière pénétrant au moins partiellement dans ces interstices ou pores, de manière à permettre de solidariser cette structure (2) du support (1) et de transmettre un couple à partir de ce dernier aux grains de diamant (3).
    2. Outil suivant la revendication 1, caractérisé en ce que la structure précitée (2) comprend une plaque ajourée ou un treillis auquel sont fixées rigidement les grains de diamant (3) de façon tridimensionnelle.
    3. Outil suivant la revendication 2, caractérisé en ce que les grains de diamant (3) sont fixés au treillis ou à la plaque ajourée (2) par brasage, collage, frittage ou dépôt électrochimique.
    4. Outil suivant la revendication 1, caractérisé en ce que la structure précitée (2) comprend un assemblage de particules (8) formées chacune de grains de diamant (3) enrobés par une enveloppe de liaison (7), ces particules (8) étant fixées les unes aux autres d'une manière telle à laisser subsister entr'elles des pores ou interstices (9) et à former ainsi une structure (2) sous forme de squelette incorporant des grains de diamant (3).
    5. Outil suivant la revendication 4, caractérisé en ce que l'enveloppe précitée (7) est formée ou recouverte par une substance présentant un point de fusion supérieur à celui de la matière (6), tel qu'une matière thermoplastique de haute performance, du type polyimide, polysulfone, polyetheresterketone (PEEK) ou par un mélange d'une poudre métallique et d'une colle, cette enveloppe ayant été soumise à un frittage ou une polymérisation de manière à immobiliser les grains de diamant enrobés (3) les uns par rapport aux autres.
    6. Outil suivant l'une ou l'autre des revendications 4 et 5, caractérisé en ce que l'enveloppe (7) contient de la brasure, les grains de diamant enrobés (3) étant soudés les uns aux autres par ladite brasure.
    7. Outil suivant l'une quelconque des revendications 4 à 6, caractérisé en ce que la structure précitée (2) comprend un assemblage d'agglomérats de grains de diamant (3).
    8. Outil suivant la revendication 1, caractérisé en ce que la structure précitée (2) comprend des fils extrudés ou formés par injection à partir d'un mélange de grains de diamant (3) et d'une substance à point de fusion supérieur au point de fusion de la matière (6) du support (2).
    9. Outil suivant la revendication 8, caractérisé en ce que la structure précitée (2) comprend un treillis (1) formé à partir de fils extrudés ou formés par injection.
    10. Outil suivant l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend des grains de carbure, notamment de carbure de silicium (13), représentant tout au plus dix fois le volume de la quantité des grains de diamant (3).
    11. Outil suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que la matière précitée (6) du support (1) est constituée d'un métal, tel que de l'aluminium, ou d'un alliage d'aluminium, de bronze, de laiton ou d'un alliage de zinc.
    12. Outil suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que la matière précitée (6) du support (1) est constituée d'une matière synthétique, telle qu'une matière thermoplastique ou thermodurcissable ou un matériau composite, éventuellement renforcée, par exemple par des fibres.
    13. Outil suivant l'une quelconque des revendications 1 à 12, caractérisé en ce que le support (1) contient une armature, tel qu'un treillis d'acier ou de fibres synthétiques.
    14. Outil suivant l'une quelconque des revendications 1 à 13, caractérisé en ce que la structure précitée (2) fait saillie par rapport au support (1).
    15. Outil suivant l'une quelconque des revendications 1 à 14, caractérisé en ce que, lorsque la matière précitée (6) du support 1 est constituée d'une résine, cette dernière est chargée de grains abrasifs (13), notamment en carbure de silicium.
    16. Outil suivant l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il est formé d'un disque abrasif, d'une meule ou d'un foret.
    17. Outil suivant l'une quelconque des revendications 1 à 16, caractérisé en ce que la structure précitée (2) positionnant les grains de diamant (3) présente, suivant la direction du couple appliqué, lors de son utilisation, une succession de parties saillantes.
    18. Outil suivant la revendication 17, caractérisé en ce que la structure (2) présente une allure sensiblement ondulée suivant la direction du couple précité.
    19. Procédé pour la fabrication d'un outil abrasif dans lequel on forme d'abord une structure rigide (2) à interstices ou pores ouvertes positionnant des grains de diamant (3) au moins suivant la direction selon laquelle cette structure est destinée à être appliquée sur un matériau à traiter, caractérisé en ce que pour la fabrication d'un outil abrasif suivant l'une quelconque des revendications 1 à 18, ou moule, notamment par coulage, pression ou injection, une matière (6) présentant un point de fusion supérieur à la température de l'outil lors de son utilisation et inférieur à 1000°C, de manière à ce que cette matière pénètre dans ces interstices ou pores et forme ainsi un support (1) fixé rigidement à cette structure (2).
    20. Procédé suivant la revendication 19, caractérisé en ce que l'on fixe la structure précitée (2) à une armature pour le support (1) et en ce que l'on forme ensuite la matière (6) destinée à constituer le support (1) autour de la structure (2) et de cette armature.
    EP95936389A 1994-11-16 1995-11-06 Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil Expired - Lifetime EP0794850B1 (fr)

    Applications Claiming Priority (4)

    Application Number Priority Date Filing Date Title
    BE9401028A BE1008917A3 (fr) 1994-11-16 1994-11-16 Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil.
    BE9401028 1994-11-16
    PCT/BE1995/000101 WO1996014963A1 (fr) 1994-11-16 1995-11-06 Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil
    US08/680,378 US5885149A (en) 1994-11-16 1996-07-15 Homogenous abrasive tool

    Publications (2)

    Publication Number Publication Date
    EP0794850A1 EP0794850A1 (fr) 1997-09-17
    EP0794850B1 true EP0794850B1 (fr) 1999-05-19

    Family

    ID=25662943

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95936389A Expired - Lifetime EP0794850B1 (fr) 1994-11-16 1995-11-06 Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil

    Country Status (9)

    Country Link
    US (1) US5885149A (fr)
    EP (1) EP0794850B1 (fr)
    AT (1) ATE180197T1 (fr)
    AU (1) AU3836495A (fr)
    BE (1) BE1008917A3 (fr)
    DE (1) DE69509788T2 (fr)
    ES (1) ES2133821T3 (fr)
    GR (1) GR3030933T3 (fr)
    WO (1) WO1996014963A1 (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US9083719B2 (en) 2000-05-04 2015-07-14 Focal Ip, Llc Controller for the intelligent interconnection of two communication networks, and method of use for same
    WO2018125722A1 (fr) * 2016-12-26 2018-07-05 Saint-Gobain Abrasives, Inc. Procédé de formation d'article abrasif

    Families Citing this family (35)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19529786C1 (de) * 1995-08-12 1997-03-06 Loh Optikmaschinen Ag Verfahren und Werkzeug zur Erzeugung einer konkaven Oberfläche an einem Brillenglasrohling
    US5976001A (en) * 1997-04-24 1999-11-02 Diamond Machining Technology, Inc. Interrupted cut abrasive tool
    US5919084A (en) * 1997-06-25 1999-07-06 Diamond Machining Technology, Inc. Two-sided abrasive tool and method of assembling same
    US6113474A (en) * 1997-10-01 2000-09-05 Cummins Engine Company, Inc. Constant force truing and dressing apparatus and method
    US6042463A (en) * 1997-11-20 2000-03-28 General Electric Company Polycrystalline diamond compact cutter with reduced failure during brazing
    US6261167B1 (en) 1998-12-15 2001-07-17 Diamond Machining Technology, Inc. Two-sided abrasive tool and method of assembling same
    US6402603B1 (en) 1998-12-15 2002-06-11 Diamond Machining Technology, Inc. Two-sided abrasive tool
    US6528141B1 (en) 1998-12-15 2003-03-04 Diamond Machining Technology, Inc. Support structure and method of assembling same
    US6905637B2 (en) * 2001-01-18 2005-06-14 General Electric Company Electrically conductive thermoset composition, method for the preparation thereof, and articles derived therefrom
    US7235192B2 (en) * 1999-12-01 2007-06-26 General Electric Company Capped poly(arylene ether) composition and method
    EP1110671A3 (fr) * 1999-12-20 2003-10-29 Reishauer Ag. Outil de dressage, de rodage et de meulage
    WO2002055246A2 (fr) * 2000-11-10 2002-07-18 Gemsaw, Inc. Lame de scie revetue
    US6593391B2 (en) * 2001-03-27 2003-07-15 General Electric Company Abrasive-filled thermoset composition and its preparation, and abrasive-filled articles and their preparation
    US6443967B1 (en) * 2001-05-03 2002-09-03 Scimed Life Systems, Inc. Injection moldable feedstock including diamond particles for abrasive applications
    US6723142B2 (en) 2002-06-05 2004-04-20 Tepco Ltd. Preformed abrasive articles and method for the manufacture of same
    CA2501549C (fr) * 2002-10-11 2011-08-30 University Of Connecticut Melanges de polymeres amorphes et semicristallins possedant des proprietes de memoire de forme
    US20040137834A1 (en) * 2003-01-15 2004-07-15 General Electric Company Multi-resinous molded articles having integrally bonded graded interfaces
    DE10309021B4 (de) * 2003-02-21 2005-02-24 Schmirgelwerk Chemnitz Gmbh Schleifkörper
    JP2004291213A (ja) * 2003-03-28 2004-10-21 Noritake Super Abrasive:Kk 研削砥石
    GB0400978D0 (en) * 2004-01-16 2004-02-18 Element Six Ltd Diamond bonding
    US8151783B2 (en) * 2005-06-27 2012-04-10 Husqvarna Outdoor Products Inc. Tools and methods for making and using tools, blades and methods of making and using blades
    WO2008021260A1 (fr) * 2006-08-10 2008-02-21 Derek Mcgrogan articles abrasifs
    MY151755A (en) * 2007-12-28 2014-06-30 Shinetsu Chemical Co Outer blade cutting wheel and making method
    DE202008013561U1 (de) * 2008-10-15 2010-03-04 Edt Eurodima Gmbh Trennwerkzeug
    US8079428B2 (en) 2009-07-02 2011-12-20 Baker Hughes Incorporated Hardfacing materials including PCD particles, welding rods and earth-boring tools including such materials, and methods of forming and using same
    US8353278B2 (en) * 2009-07-22 2013-01-15 C.M.S.-North America, Inc. Rotary stone cutting tool
    SG190924A1 (en) * 2010-11-29 2013-07-31 Shinetsu Chemical Co Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
    US9061264B2 (en) * 2011-05-19 2015-06-23 Robert H. Frushour High abrasion low stress PDC
    US9533430B1 (en) * 2011-10-18 2017-01-03 Robert M. Kalb Portable adjustable cutting apparatus for cutting and shaping sink holes in stone countertops
    US20130269498A1 (en) * 2012-04-11 2013-10-17 Adam R. Loukus Composite Cutting Blade
    JP6667100B2 (ja) * 2015-12-14 2020-03-18 株式会社ジェイテクト ツルア、これを備えたツルーイング装置、研削装置及びツルーイング方法
    DE102016006951B4 (de) * 2016-06-08 2018-05-09 KAPP Werkzeugmaschinen GmbH Verfahren zum Herstellen eines Abrichtwerkzeugs für ein Schleifwerkzeug
    WO2018160297A1 (fr) 2017-02-28 2018-09-07 3M Innovative Properties Company Articles abrasifs à liaison métallique et procédés de fabrication d'articles abrasifs à liaison métallique
    CN212351801U (zh) 2017-12-01 2021-01-15 米沃奇电动工具公司 用于驱动紧固件的工具头
    USD921468S1 (en) 2018-08-10 2021-06-08 Milwaukee Electric Tool Corporation Driver bit

    Family Cites Families (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2143636A (en) * 1935-12-04 1939-01-10 Carborundum Co Abrasive wheel and its manufacture
    US2413729A (en) * 1944-03-07 1947-01-07 Carborundum Co Bonded abrasive and method of making same
    GB972835A (en) * 1960-04-28 1964-10-21 Norton Co Grinding tool
    DE1236396B (de) * 1961-01-18 1967-03-09 Wilhelm Ellerich Saegekabel zum Schneiden von Bloecken aus Natur- oder Kunststein und aehnlich hartem Material
    US3293012A (en) * 1962-11-27 1966-12-20 Exxon Production Research Co Process of infiltrating diamond particles with metallic binders
    US3262231A (en) * 1964-07-01 1966-07-26 Norton Co Internal reinforcement of molded rotatable articles
    US3427759A (en) * 1965-08-25 1969-02-18 Itt Prestressed grinding wheel
    US3420007A (en) * 1966-07-11 1969-01-07 Wallace Murray Corp Abrasive tool
    GB1192475A (en) * 1968-05-24 1970-05-20 Carborundum Co Diamond Abrasive Articles
    US3779726A (en) * 1969-03-07 1973-12-18 Norton Co A method of making a metal impregnated grinding tool
    US3650715A (en) * 1969-04-04 1972-03-21 Du Pont Abrasive compositions
    BE758964A (fr) * 1969-11-14 1971-05-13 Norton Co Elements abrasifs
    US3841852A (en) * 1972-01-24 1974-10-15 Christensen Diamond Prod Co Abraders, abrasive particles and methods for producing same
    US3896593A (en) * 1974-04-08 1975-07-29 Carborundum Co Reinforced bonded abrasive cup wheel
    GB1498689A (en) * 1976-08-31 1978-01-25 Kendia Ltd Cutting disc
    US4067312A (en) * 1976-09-08 1978-01-10 Elberton Granite Association, Inc. Automatic feedback control for wire saw
    CA1193870A (fr) * 1980-08-14 1985-09-24 Peter N. Tomlinson Produit abrasif
    US4350497A (en) * 1980-09-08 1982-09-21 Abraham Ogman Reinforced grinding device
    JPS61274203A (ja) * 1985-05-30 1986-12-04 Komatsu Ltd クレ−ンの振れ角検出装置
    US4949511A (en) * 1986-02-10 1990-08-21 Toshiba Tungaloy Co., Ltd. Super abrasive grinding tool element and grinding tool
    US5176055A (en) * 1987-03-05 1993-01-05 Seneca Sawmill Company Bandmill with automatic track and strain control system
    US4925457B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
    US4945687A (en) * 1989-07-25 1990-08-07 Jason, Inc. Rotary fininshing tool
    FR2655904B1 (fr) * 1989-12-14 1992-05-22 Diamind Sa Systeme de decoupe de corps solides du type "a cable".
    US5131924A (en) * 1990-02-02 1992-07-21 Wiand Ronald C Abrasive sheet and method
    US5244371A (en) * 1990-12-04 1993-09-14 Eastman Kodak Company Apparatus for fabricating grin lens elements by spin molding
    US5316559A (en) * 1991-12-18 1994-05-31 St. Florian Company Dicing blade composition
    CH686787A5 (de) * 1993-10-15 1996-06-28 Diametal Ag Schleifbelag fuer Schleifwerkzeuge und Verfahren zur Herstellung des Schleifbelages.

    Cited By (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US9083719B2 (en) 2000-05-04 2015-07-14 Focal Ip, Llc Controller for the intelligent interconnection of two communication networks, and method of use for same
    WO2018125722A1 (fr) * 2016-12-26 2018-07-05 Saint-Gobain Abrasives, Inc. Procédé de formation d'article abrasif
    CN110461546A (zh) * 2016-12-26 2019-11-15 圣戈班磨料磨具有限公司 形成磨料制品的方法
    US10730164B2 (en) 2016-12-26 2020-08-04 Saint-Gobain Abrasives, Inc/Saint-Gobain Abrasifs Process of forming an abrasive article
    AU2017388035B2 (en) * 2016-12-26 2021-03-04 Saint-Gobain Abrasifs Process of forming an abrasive article

    Also Published As

    Publication number Publication date
    WO1996014963A1 (fr) 1996-05-23
    ATE180197T1 (de) 1999-06-15
    DE69509788D1 (de) 1999-06-24
    DE69509788T2 (de) 1999-12-09
    AU3836495A (en) 1996-06-06
    US5885149A (en) 1999-03-23
    ES2133821T3 (es) 1999-09-16
    EP0794850A1 (fr) 1997-09-17
    BE1008917A3 (fr) 1996-10-01
    GR3030933T3 (en) 1999-11-30

    Similar Documents

    Publication Publication Date Title
    EP0794850B1 (fr) Outil abrasif, de coupe ou analogue et procede de fabrication de cet outil
    EP0398776B1 (fr) Outil composite comportant une partie active en diamant polycristallin
    US5471970A (en) Method of manufacturing a segmented diamond blade
    US20220055105A1 (en) Method for producing a machining segment for the dry machining of concrete materials
    FR2502235A1 (fr) Element de coupe pour trepan de forage rotatif pour forages profonds dans des formations geologiques
    JP2006501073A (ja) ろう付けダイヤモンド工具とそれらの製造法
    FR2870472A1 (fr) Lame de dressage au diamant a liant metallique brase
    FR2561969A1 (fr) Outil abrasif ayant une partie rapportee contenant des particules de diamant
    EP0246118A1 (fr) Produit abrasif diamanté thermostable et procédé de fabrication d'un tel produit
    EP1993786A2 (fr) Meule d'ebarbage fine, utilisation de cette meule, procede et dispositif pour la fabriquer.
    EP0442238B1 (fr) Outil de coupe circulaire et rotatif composite
    FR2473106A1 (fr) Comprimes de diamant composites pour trepans et scies
    EP0333244B1 (fr) Revêtement insonore et/ou amortissant des vibrations, élément pourvu d'un tel revêtement et procédé d'application de ce dernier
    EP0480851B1 (fr) Plaque à surface antiabrasion, et procédé pour sa réalisation
    EP1856368A1 (fr) Trepan a structure de coupe fixe
    FR2736293A1 (fr) Composant d'outil
    WO2014005079A1 (fr) Article abrasif comprenant des segments abrasifs interchangeables réversibles
    FR2693246A1 (fr) Disque de frein pour frein à disque de véhicule, en particulier de bicyclette ou similaire.
    EP0317452B1 (fr) Produit abrasif diamanté composite, son procédé de préparation et les outils de forage ou d'usinage qui en sont équipés
    EP0907463B1 (fr) Outil abrasif et procede de fabrication de cet outil
    WO2016019306A2 (fr) Article abrasif comportant des segments abrasifs en forme de z
    BE1008044A5 (fr) Segment de coupe a concretion diamantee.
    EP1092507B1 (fr) Procédé de fabrication d'un disque abrasif de meulage
    EP0988950A1 (fr) Procédé de sciage pour la taille de pierres, segment diamanté pour outil de coupe et outil de coupe muni de tels segments diamantés
    EP3538735B1 (fr) Outil et procede de coupe de roche pour forages miniers et petroliers

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970602

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB GR IT LI LU PT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980727

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB GR IT LI LU PT

    REF Corresponds to:

    Ref document number: 180197

    Country of ref document: AT

    Date of ref document: 19990615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69509788

    Country of ref document: DE

    Date of ref document: 19990624

    ITF It: translation for a ep patent filed

    Owner name: MITTLER & C. S.R.L.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ISLER & PEDRAZZINI AG

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990819

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2133821

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990817

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20021104

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20021106

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20021111

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20021121

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20021126

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20021129

    Year of fee payment: 8

    Ref country code: CH

    Payment date: 20021129

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20021130

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20021223

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20021227

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031106

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031106

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    BERE Be: lapsed

    Owner name: S.A. *DIAMANT BOART

    Effective date: 20031130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040602

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040603

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20031106

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040730

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20040531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20031107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051106