EP0811959B1 - Radio controlled alarm system with substations and safe data transmission - Google Patents

Radio controlled alarm system with substations and safe data transmission Download PDF

Info

Publication number
EP0811959B1
EP0811959B1 EP97109071A EP97109071A EP0811959B1 EP 0811959 B1 EP0811959 B1 EP 0811959B1 EP 97109071 A EP97109071 A EP 97109071A EP 97109071 A EP97109071 A EP 97109071A EP 0811959 B1 EP0811959 B1 EP 0811959B1
Authority
EP
European Patent Office
Prior art keywords
radio
signalling
substations
centre
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97109071A
Other languages
German (de)
French (fr)
Other versions
EP0811959A1 (en
Inventor
Horst Fischer
Helmut Zeissler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundig Multimedia BV
Original Assignee
Grundig AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grundig AG filed Critical Grundig AG
Publication of EP0811959A1 publication Critical patent/EP0811959A1/en
Application granted granted Critical
Publication of EP0811959B1 publication Critical patent/EP0811959B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/009Signalling of the alarm condition to a substation whose identity is signalled to a central station, e.g. relaying alarm signals in order to extend communication range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems

Definitions

  • the invention relates to a radio-controlled hazard alarm system, in particular Fire alarm, intrusion alarm, emergency call, paging or alarm system, with at least one detector or a signaling unit, at least one Sub-center and one center.
  • a detector or a signaling unit from a transmitter, a receiver, a microprocessor system and a sensor.
  • a sub-center consists of a transmitter, a receiver and a microprocessor system.
  • the central office consists of a transmitter, a receiver and a microcomputer system.
  • Danger alarm systems are known from practice, which usually consist of a Central, which contains a recipient, as well as a number of notifiers and / or switching devices, each of which has a transmitter. This is different in the case of a paging system, which is usually consists of a transmitter and a number of mobile receivers, each be carried by the persons to be visited.
  • a disadvantage of such radio-controlled systems is that they only have a limited range.
  • the range depends on the transmission power of the radio transmitter, the selectivity of the radio receiver and the nature of the transmission path.
  • the transmission power of the radio transmitter, as well as the selectivity of the radio receiver make technical Sizes that are specified by the system itself.
  • the nature the transmission path depends on the plant location. By the location and the structural conditions of the plant location come into play sometimes shielding effects or other disturbances that affect the Disrupt or even block the transmission path between transmitter and receiver.
  • the system is both on the transmitter side and on Partly wired on the receiver side, i.e. the transmitters and receivers are installed in those places where mutual communication is possible.
  • this partial wiring does not correspond to the objective of radio-controlled Systems, because these systems in particular require complex and time-consuming wiring should be eliminated.
  • a partially wired system loses its mobility, just wanted in such radio controlled systems becomes.
  • DE-U-296 01 436 proposes at least between the signaling unit and the signal receiving unit to arrange an intermediate station, the one emitted by the signaling unit Passes signal to the signal receiving unit.
  • the problem with hazard detection systems is particularly the guarantee of secure data communication between the individual components of the system.
  • the object of the invention is to avoid these problems and to ensure that there is always a good connection between the individual components of the system.
  • each component of the system is equipped with the ability to communicate bidirectionally on different channels, which can also be on different frequency bands, ie each component of the system is equipped with both a transmitter and a receiver. Every new sub-control center and all detectors are only registered with the control center. The control center then assigns each newly added component an identification number and communicates this to all other components.
  • the sub-centers are installed in such a way that permanent radio communication is guaranteed between them. Since this results in an increased communication volume, it is advantageous if all sub-centers have their own network connection. So many sub-control centers must be installed that each detector has secure communication with at least one sub-control center.
  • All sub-centers synchronize with the main center.
  • the post-synchronization and an exchange of information about the channels to be assigned preferentially take place after a defined time grid. This is done on the basis of an RSSI table (Received Signal Strength Indicator Table), which is determined by each sub-control center by constantly scanning the available frequency band or the frequency bands. All sub-centers create their own RSSI table and transmit this to the center at regular intervals.
  • the central office manages these tables and uses these tables to coordinate which sub-centers communicate with each other on which preferred radio channels. If a detector is to send an alarm message, it proceeds as follows: First, it carries out an RSSI scan to determine a free channel.
  • the detector finds the message from the detector, since it continuously carries out an RSSI scan. It forwards the message to another sub-control center or to the control center directly. The messages from the detectors are evaluated and appropriate measures initiated only at the control center.
  • the detectors and sub-control panels can be arranged so that each detector can communicate with at least two sub-control panels.
  • the transmission security can be further increased by checking the quality of the transmission by initiating a loopback mode, that is to say that the modules which communicate with one another send the data which they have received back to the transmitter. The latter can then determine whether transmission errors have occurred. It can also be agreed that the detectors listen to the sub-control centers at longer intervals in order to receive a request to report presence. In this way, the function of the detectors can be restricted.
  • these parts of the system send the hazard alarm system only with reduced transmission energy.
  • a system component for example a sub-control center, detects a jamming transmitter during an RSSI scan, which can result in falsification or even blocking of the bidirectional radio communication for the hazard alarm system, the system component communicates this fact to the control center.
  • the control center now instructs all system parts to switch to a higher transmission power. This reduces the distortion of the received signal.
  • the command to increase the transmission power is generated by the part of the system which has discovered the jammer. In this case, the response time is further reduced.
  • the part of the system that has discovered the jammer will now check at regular intervals whether the jammer is still present. If he determines that the jammer is no longer active, he informs the central office, which is now instructing all system parts to switch back to the reduced transmission energy. This instruction can in turn also be generated by the plant part that has recognized the jammer and is monitoring it. This ensures that the service life of the voltage sources of self-supplied system parts is increased, since these parts often only work with reduced transmission energy. At the same time, an increase in data security is also guaranteed, since in the event of a jamming transmitter, the system switches over to a higher transmission power. In this way, increased transmission security is achieved, since the distortion of the radio signals of the alarm system by the jammer is reduced.
  • FIG. 1 shows a radio-controlled hazard alarm system according to the invention, which consists, for example, of seven detectors, designated with the numbers 1 to 7, four sub-centers, designated with the numbers 8 to 11 and a central office 12.
  • Each of the four sub-control panels is attached in such a way that each of the seven detectors is in bidirectional radio communication with at least one sub-control panel.
  • the sub-centers are installed in such a way that each sub-center is at least in bidirectional radio communication with another sub-center.
  • the sub-centers 8 and 10 are not in direct radio connection with the center 12. Only the sub-center 9 and the sub-center 11 have a bidirectional radio connection with this.
  • the sub-control center 8 can optionally transmit a message to the control center 12 via the sub-control center 9 or the sub-control center 11, with which it has a bidirectional radio connection.
  • a nationwide network consisting of a control center and any number of detectors and sub-control centers can be set up. It is only necessary to ensure that each detector has at least one sub-center bidirectional radio connection.
  • the sub-center on the other hand, must in turn have a bidirectional radio connection with at least one other sub-center. If, for example, the detector 7 issues an alarm message, this is received by the sub-control center 8.
  • Sub-control center 8 now sends the acknowledgment of receipt back to detector 7. This recognizes that his message has been received.
  • the sub-control center 8 can now not send the alarm message from the detector 7 directly to the control center 12, since there is no bidirectional radio connection with it.
  • Sub-control center 8 can now optionally forward the alarm message of detector 7 to another sub-control center.
  • FIG. 1 there is a choice between sub-center 9 and sub-center 11, since there is a bidirectional radio connection with these two sub-centers.
  • Sub-control center 8 will now select the best channel from its RSSI table and then send the alarm message to the sub-control center previously defined by control center 12. This is, for example, sub-control center 11. This, in turn, now sends confirmation of receipt of the alarm message back to sub-control center 8. This recognizes that the sub-center 11 has received the message.
  • the sub-control center 11 in turn now takes a suitable channel for the radio connection to the control center 12 from its RSSI table, to which it has a bidirectional radio connection, and sends the alarm message of the detector 7 to the control center 12 via the determined channel. This confirms the reception of the message, evaluate the message. and initiates appropriate measures.
  • Figure 2 shows the structure of a detector. This consists of a sensor 2, for example a motion detector or a smoke detector, one Transmitter 4, a receiver 3 and a microprocessor system 1, the evaluates the sensor data and detects an alarm. It also controls Microprocessor system 1 communication between the detector and the Sub-center.
  • a sensor for example a motion detector or a smoke detector
  • Transmitter 4 for example a motion detector or a smoke detector
  • receiver 3 for example a smoke detector
  • microprocessor system 1 the evaluates the sensor data and detects an alarm. It also controls Microprocessor system 1 communication between the detector and the Sub-center.
  • FIG. 3 shows the structure of a sub-center. This consists of a microprocessor system 1, a transmitter 4 and a receiver 3.
  • the microprocessor system 1 manages the RSSI table 2 and scans at regular intervals the radio frequency range in which the communication between the individual components of the system takes place and updates the RSSI table 2 after each scan.
  • Figure 4 shows the structure of the center. It consists of a transmitter 3, a Receiver 2 and a microcomputer system 1.
  • the center also manages the RSSI tables of all sub-centers and coordinates communication among the individual components of the system. It evaluates the alarm messages out.
  • the microcomputer system can use a variety of software be equipped. It is also expandable in terms of its capacity.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Alarm Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The system has a number of remote signal generators (1-7) that communicate bidirectionally with a central station (12) via a number of substations (8-11). Each of the substations is also in bidirectional contact with each other. A number of substations (9-11) may be in direct contact with the central station. The mode of communication is determined by a Received-Signal-Strength-Indicator (RSSI) table which defines channel quality and synchronises substations with central station. The communication channels are constantly monitored, and transmission quality is measured and stored on a microcomputer system of the central station.

Description

Die Erfindung betrifft eine funkgesteuerte Gefahrenmeldeanlage, insbesondere Brandmelde-, Einbruchsmelde-, Notruf-, Personenruf- oder Alarmanlage, mit mindestens einem Melder bzw. einer Signalmeldeeinheit, wenigstens einer Unterzentrale und einer Zentrale. Ein Melder bzw. eine Signalmeldeeinheit besteht aus einem Sender, einem Empfänger, einem Mikroprozessorsystem und einem Sensor. Eine Unterzentrale besteht aus einem Sender, einem Empfänger und einem Mikroprozessorsystem. Die Zentrale besteht aus einem Sender, einem Empfänger und einem Mikrocomputersystem.The invention relates to a radio-controlled hazard alarm system, in particular Fire alarm, intrusion alarm, emergency call, paging or alarm system, with at least one detector or a signaling unit, at least one Sub-center and one center. There is a detector or a signaling unit from a transmitter, a receiver, a microprocessor system and a sensor. A sub-center consists of a transmitter, a receiver and a microprocessor system. The central office consists of a transmitter, a receiver and a microcomputer system.

Aus der Praxis sind Gefahrenmeldeanlagen bekannt, die im Regelfall aus einer Zentrale, die einen Empfänger enthält, sowie aus einer Anzahl von Meldem und/oder Schalteinrichtungen bestehen, die jeweils über einen Sender verfügen. Anders ist dies aber im Falle einer Personenrufanlage, die in der Regel aus einem Sender und einer Reihe von mobilen Empfängern besteht, die jeweils von den aufzusuchenden Personen mitgeführt werden.Danger alarm systems are known from practice, which usually consist of a Central, which contains a recipient, as well as a number of notifiers and / or switching devices, each of which has a transmitter. This is different in the case of a paging system, which is usually consists of a transmitter and a number of mobile receivers, each be carried by the persons to be visited.

Ein Nachteil von derartigen funkgesteuerten Anlagen besteht darin, daß diese nur eine eingeschränkte Reichweite besitzen. Die Reichweite ist abhängig von der Sendeleistung des Funksenders, der Selektivität des Funkempfängers sowie der Beschaffenheit des Übertragungsweges. Die Sendeleistung des Funksenders, wie auch die Selektivität des Funkempfängers, stellen technische Größen dar, die durch die Anlage selbst vorgegeben sind. Die Beschaffenheit des Übertragungsweges ist hingegen abhängig vom Anlagenstandort. Durch die Lage und die baulichen Gegebenheiten des Anlagenstandortes kommt es manchmal zu Abschirmungseffekten oder anderen Störungen, welche die Übertragungsstrecke zwischen Sender und Empfänger stören oder gar blockieren. In derartigen Fällen wird die Anlage sowohl auf Senderseite als auch auf Empfängerseite teilverdrahtet, d.h. man installiert die Sender und Empfänger an denjenigen Orten, an denen eine gegenseitige Kommunikation möglich ist. Diese Teilverdrahtung entspricht aber nicht der Zielsetzung funkgesteuerter Anlagen, da gerade bei diesen Anlagen eine aufwendige und zeitintensive Verdrahtung entfallen soll. Außerdem verliert eine teilverdrahtete Anlage ihre Mobilität, die eben gerade bei derartigen funkgesteuerten Anlagen gewünscht wird.A disadvantage of such radio-controlled systems is that they only have a limited range. The range depends on the transmission power of the radio transmitter, the selectivity of the radio receiver and the nature of the transmission path. The transmission power of the radio transmitter, as well as the selectivity of the radio receiver, make technical Sizes that are specified by the system itself. The nature the transmission path, however, depends on the plant location. By the location and the structural conditions of the plant location come into play sometimes shielding effects or other disturbances that affect the Disrupt or even block the transmission path between transmitter and receiver. In such cases, the system is both on the transmitter side and on Partly wired on the receiver side, i.e. the transmitters and receivers are installed in those places where mutual communication is possible. However, this partial wiring does not correspond to the objective of radio-controlled Systems, because these systems in particular require complex and time-consuming wiring should be eliminated. In addition, a partially wired system loses its mobility, just wanted in such radio controlled systems becomes.

Um dieses Problem zu umgehen, wird in der DE-U-296 01 436 vorgeschlagen, zwischen der Signalmeldeeinheit und der Signalempfangseinheit zumindest eine Zwischenstation anzuordnen, die ein von der Signalmeldeeinheit ausgesandtes Signal an die Signalempfangseinheit weiterleitet.To avoid this problem, DE-U-296 01 436 proposes at least between the signaling unit and the signal receiving unit to arrange an intermediate station, the one emitted by the signaling unit Passes signal to the signal receiving unit.

Problematisch bei Gefahrenmeldeanlagen ist gerade die Gewährleistung einer sicheren Datenkommunikation zwischen den einzelnen Komponenten der Anlage. Außerdem muß bei jeder Erweiterung der Anlage um beispielsweise einen Melder und/oder eine Unterzentrale diesen jeweils eine Identifikationsnummer zugewiesen werden. Damit sich die einzelnen Sendeeinheiten der Anlage nicht stören, muß jeweils eine vordefinierte Frequenz bzw. ein Frequenzband jedem einzelnen Sender der Anlage zugeordnet werden. Wird nun im Anlagenbereich durch einen Störsender eine bestimme Frequenz bzw. ein Frequenzband in erheblichem Maße überlagert bzw. gestört, so kann keine Kommunikation mehr zwischen dem Sender, der diese Frequenz bzw. dieses Frequenzband verwendet, und der Zwischenstation stattfinden. Diese Anlageneinheit wird folglich blockiert.
Aufgabe der Erfindung ist es, diese Probleme zu umgehen und zu gewährleisten, daß stets eine gute Verbindung zwischen den einzelnen Komponenten der Anlage besteht.
The problem with hazard detection systems is particularly the guarantee of secure data communication between the individual components of the system. In addition, each time the system is expanded by, for example, a detector and / or a sub-control center, each of these must be assigned an identification number. So that the individual transmitter units of the system do not interfere, a predefined frequency or a frequency band must be assigned to each individual transmitter of the system. If a specific frequency or a frequency band is overlaid or disturbed to a considerable extent in the system area by a jamming transmitter, then communication can no longer take place between the transmitter using this frequency or this frequency band and the intermediate station. This plant unit is consequently blocked.
The object of the invention is to avoid these problems and to ensure that there is always a good connection between the individual components of the system.

Diese Aufgabe wird mit den Merkmalen des kennzeichnenden Teils des Anspruchs 1 gelöst. Im einzelnen wird jede Komponente der Anlage mit der Fähigkeit ausgestattet, bidirektional auf verschiedenen Kanälen, die sich auch auf verschiedenen Frequenzbändern befinden können, zu kommunizieren, d.h. jede Komponente der Anlage ist sowohl mit einem Sender, als auch mit einem Empfänger ausgestattet. Jede neu hinzukommende Unterzentrale sowie alle Melder werden nur noch bei der Zentrale angemeldet. Die Zentrale vergibt dann jeder neu hinzukommenden Komponente eine Identifikationsnummer und teilt diese allen anderen Komponenten mit.
Die Unterzentralen werden in der Art und Weise installiert, daß zwischen ihnen eine ständige Funkkommunikation gewährleistet ist. Da hierdurch ein erhöhtes Kommunikationsaufkommen entsteht, ist es von Vorteil, wenn alle Unterzentralen einen eigenen Netzanschluß haben. Es müssen so viele Unterzentralen installiert werden, daß jeder Melder eine sichere Kommunikation mit zumindest einer Unterzentrale hat.
Nach der Inbetriebnahme der Anlage synchronisieren sich alle Unterzentralen auf die Hauptzentrale. Nach einem festgelegten Zeitraster erfolgt die Nachsynchronisation und ein Austausch von Informationen über die bevorzugt zu belegenden Kanäle. Dies erfolgt auf Basis einer RSSI-Tabelle (Received-Signal-Strength-lndicator-Tabelle), die von jeder Unterzentrale durch ständiges Scannen des zur Verfügung stehenden Frequenzbandes bzw. der Frequenzbänder ermittelt wird. Alle Unterzentralen legen eine eigene RSSI-Tabelle an und übermitteln diese in regelmäßigen Zeitabständen an die Zentrale. Die Zentrale verwaltet diese Tabellen und koordiniert aufgrund dieser Tabellen, welche Unterzentralen auf welchen bevorzugten Funkkanälen miteinander kommunizieren.
Soll ein Melder eine Alarmnachricht absetzten, so geht er wie folgt vor: Zunächst führt er einen RSSI-Scan durch, um einen freien Kanal zu ermitteln. Danach setzt er seine Nachricht ab und wartet auf die Bestätigung des Erhalts der Nachricht durch die Unterzentrale. Erst wenn er eine Bestätigung seitens der Unterzentrale über den Erhalt seiner Nachricht empfangen hat, kann der Melder davon ausgehen, daß seine Nachricht erhalten wurde und weitergegeben wird. Solange dieser Melder keine Bestätigung seiner Nachricht erhalten hat, wird er in konstanten, vordefinierten Zeitabständen diese Nachricht emeut absetzen. Die Unterzentrale ihrerseits findet die Nachricht des Melders, da sie ständig einen RSSI-Scan durchführt. Sie gibt die Nachricht an eine weitere Unterzentrale oder an die Zentrale direkt weiter. Nur in der Zentrale werden die Nachrichten der Melder ausgewertet und entsprechende Maßnahmen eingeleitet.
Um die Übertragungssicherheit noch weiter zu steigern, kann man die Melder und die Unterzentralen so anordnen, daß jeder Melder mit mindestens zwei Unterzentralen kommunizieren kann. Durch diese Redundanz wird ein möglicher Ausfall einer Unterzentrale kompensiert.
Außerdem kann die Übertragungssicherheit noch weiter erhöht werden, indem man die Qualität der Übertragung durch Einleiten eines Loopback-Modes überprüft, d.h. daß die Module, die miteinander kommunizieren, diejenigen Daten, die sie erhalten haben, an den Sender zurückschicken. Dieser kann dann ermitteln, ob etwa Übertragungsfehler aufgetreten sind.
Außerdem kann vereinbart werden, daß in größeren Zeitabständen die Melder auf die Unterzentralen hören, um eine Aufforderung zur Anwesenheitsmeldung zu empfangen. Auf diese Weise kann eine eingeschränkte Funktionsprüfung der Melder erfolgen.
This object is achieved with the features of the characterizing part of claim 1. In particular, each component of the system is equipped with the ability to communicate bidirectionally on different channels, which can also be on different frequency bands, ie each component of the system is equipped with both a transmitter and a receiver. Every new sub-control center and all detectors are only registered with the control center. The control center then assigns each newly added component an identification number and communicates this to all other components.
The sub-centers are installed in such a way that permanent radio communication is guaranteed between them. Since this results in an increased communication volume, it is advantageous if all sub-centers have their own network connection. So many sub-control centers must be installed that each detector has secure communication with at least one sub-control center.
After commissioning the system, all sub-centers synchronize with the main center. The post-synchronization and an exchange of information about the channels to be assigned preferentially take place after a defined time grid. This is done on the basis of an RSSI table (Received Signal Strength Indicator Table), which is determined by each sub-control center by constantly scanning the available frequency band or the frequency bands. All sub-centers create their own RSSI table and transmit this to the center at regular intervals. The central office manages these tables and uses these tables to coordinate which sub-centers communicate with each other on which preferred radio channels.
If a detector is to send an alarm message, it proceeds as follows: First, it carries out an RSSI scan to determine a free channel. He then issues his message and waits for the sub-center to confirm that he has received the message. Only when he has received confirmation from the sub-center that his message has been received can the detector assume that his message has been received and will be passed on. As long as this detector has not received confirmation of its message, it will send this message again at constant, predefined time intervals. For its part, the sub-center finds the message from the detector, since it continuously carries out an RSSI scan. It forwards the message to another sub-control center or to the control center directly. The messages from the detectors are evaluated and appropriate measures initiated only at the control center.
In order to further increase the security of transmission, the detectors and sub-control panels can be arranged so that each detector can communicate with at least two sub-control panels. This redundancy compensates for a possible failure of a sub-control center.
In addition, the transmission security can be further increased by checking the quality of the transmission by initiating a loopback mode, that is to say that the modules which communicate with one another send the data which they have received back to the transmitter. The latter can then determine whether transmission errors have occurred.
It can also be agreed that the detectors listen to the sub-control centers at longer intervals in order to receive a request to report presence. In this way, the function of the detectors can be restricted.

Um die Lebensdauer der Spannungsquellen, insbesondere Batterien, von eigenversorgten Anlagenteilen zu erhöhen, senden diese Anlagenteile der Gefahrenmeldeanlage nur mit reduzierter Sendeenergie. Wird nun durch einen Anlagenteil, beispielsweise einer Unterzentrale, bei einem RSSI-Scan ein Störsender erkannt, der eine Verfälschung oder gar ein Blockieren des bidirektionalen Funkverkehrs für die Gefahrenmeldeanlage zur Folge haben kann, so teilt derjenige Anlagenteil diesen Umstand der Zentrale mit. Die Zentrale weist nun alle Anlagenteile an, auf eine höhere Sendeleistung umzustellen. Dadurch wird die Verfälschung des empfangenen Signals reduziert. Es besteht auch die Möglichkeit, daß der Befehl zur Erhöhung der Sendeleistung von dem Anlagenteil generiert wird, der den Störsender entdeckt hat. In diesem Fall wird die Reaktionszeit weiter verkürzt. Der Anlagenteil, der den Störsender entdeckt hat, wird nun in regelmäßigen Zeitabständen kontrollieren, ob der Störsender noch vorhanden ist. Stellt er fest, daß der Störsender nicht mehr aktiv ist, so teilt er diesen Umstand der Zentrale mit, die nun alle Anlagenteile anweist, wieder auf die reduzierte Sendeenergie zurückzuschalten. Diese Anweisung kann wiederum auch von dem Anlagenteil generiert werden, der den Störsender erkannt hat und diesen überwacht.
Auf diese Weise wird gewährleistet, daß die Lebensdauer der Spannungsquellen von eigenversorgten Anlagenteilen erhöht wird, da diese Teile häufig nur mit reduzierter Sendeenergie arbeiten. Zugleich wird auch eine Erhöhung der Datensicherheit gewährleistet, da im Falle des Vorliegens eines Störsenders die Anlage auf eine höhere Sendeleistung umschaltet. Hierdurch wird eine erhöhte Übertragungssicherheit erreicht, da die Verfälschung der Funksignale der Gefahrenmeldeanlage durch den Störsender reduziert wird.
In order to increase the lifespan of the voltage sources, in particular batteries, of self-supplied parts of the system, these parts of the system send the hazard alarm system only with reduced transmission energy. If a system component, for example a sub-control center, detects a jamming transmitter during an RSSI scan, which can result in falsification or even blocking of the bidirectional radio communication for the hazard alarm system, the system component communicates this fact to the control center. The control center now instructs all system parts to switch to a higher transmission power. This reduces the distortion of the received signal. There is also the possibility that the command to increase the transmission power is generated by the part of the system which has discovered the jammer. In this case, the response time is further reduced. The part of the system that has discovered the jammer will now check at regular intervals whether the jammer is still present. If he determines that the jammer is no longer active, he informs the central office, which is now instructing all system parts to switch back to the reduced transmission energy. This instruction can in turn also be generated by the plant part that has recognized the jammer and is monitoring it.
This ensures that the service life of the voltage sources of self-supplied system parts is increased, since these parts often only work with reduced transmission energy. At the same time, an increase in data security is also guaranteed, since in the event of a jamming transmitter, the system switches over to a higher transmission power. In this way, increased transmission security is achieved, since the distortion of the radio signals of the alarm system by the jammer is reduced.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels gemäß den Figuren 1 bis 4 erläutert; es zeigen:

  • Fig. 1 eine funkgesteuerte Gefahrenmeldeanlage, die aus mehreren Meldem, Unterzentralen und einer Zentrale besteht
  • Fig. 2 ein Blockschaltbild eines Melders
  • Fig. 3 ein Blockschaltbild einer Unterzentrale
  • Fig. 4 ein Blockschaltbild einer Zentrale
  • The invention is explained below using an exemplary embodiment according to FIGS. 1 to 4; show it:
  • Fig. 1 is a radio controlled hazard alarm system, which consists of several detectors, sub-centers and a control center
  • Fig. 2 is a block diagram of a detector
  • Fig. 3 is a block diagram of a sub-center
  • Fig. 4 is a block diagram of a center
  • Figur 1 zeigt eine erfindungsgemäße funkgesteuerte Gefahrenmeldeanlage, die beispielsweise aus sieben Meldern, bezeichnet mit den Nummern 1 bis 7, vier Unterzentralen, bezeichnet mit den Nummern 8 bis 11 und einer Zentrale 12 besteht. Jede der vier Unterzentralen ist derart angebracht, daß jeder der sieben Melder zumindest mit einer Unterzentrale in bidirektionaler Funkverbindung steht. Die Unterzentralen sind derart angebracht, daß jede Unterzentrale zumindest mit einer anderen Unterzentrale in bidirektionaler Funkverbindung steht. Im Ausführungsbeispiel stehen beispielsweise die Unterzentralen 8 und 10 nicht in direkter Funkverbindung mit der Zentrale 12. Mit dieser haben nur die Unterzentrale 9 und die Unterzentrale 11 eine bidirektionale Funkverbindung. Die Unterzentrale 8 kann aber wahlweise über die Unterzentrale 9 oder die Unterzentrale 11, mit denen sie eine bidirektionale Funkverbindung hat, eine Nachricht an die Zentrale 12 übermitteln.
    Auf diese Weise kann ein flächendeckendes Netzwerk, bestehend aus einer Zentrale und einer beliebigen Anzahl von Meldem und Unterzentralen, aufgebaut werden. Es muß hierbei nur gewährleistet sein, daß jeder Melder mit mindestens einer Unterzentrale bidirektionale Funkverbindung hat. Die Unterzentrale hingegen muß ihrerseits zumindest mit einer anderen Unterzentrale eine bidirektionale Funkverbindung haben.
    Setzt nun beispielsweise der Melder 7 eine Alarmnachricht ab, so wird diese von der Unterzentrale 8 empfangen. Die Unterzentrale 8 sendet nun die Empfangsbestätigung an den Melder 7 zurück. Dieser erkennt somit, daß seine Nachricht empfangen worden ist. Die Unterzentrale 8 kann nun die Alarmnachricht des Melders 7 nicht direkt an die Zentrale12 senden, da mit dieser keine bidirektionale Funkverbindung besteht. Die Unterzentrale 8 kann nun aber wahlweise die Alarmnachricht des Melders 7 an eine andere Unterzentrale weiterleiten. In Figur 1 besteht die Auswahl zwischen der Unterzentrale 9 und der Unterzentrale 11, da mit diesen beiden Unterzentralen eine bidirektionale Funkverbindung besteht. Die Unterzentrale 8 wird nun aus ihrer RSSI-Tabelle den besten Kanal auswählen und dann die Alarmnachricht an die vorher durch die Zentrale 12 festgelegte Unterzentrale senden. Dies ist beispielsweise die Unterzentrale 11. Diese sendet nun ihrerseits eine Bestätigung des Empfanges der Alarmnachricht an die Unterzentrale 8 zurück. Diese erkennt so, daß die Unterzentrale 11 die Nachricht erhalten hat. Die Unterzentrale 11 ihrerseits entnimmt nun aus ihrer RSSI-Tabelle einen geeigneten Kanal für die Funkverbindung mit der Zentrale 12, zu der sie eine bidirektionale Funkverbindung hat, und sendet die Alarmnachricht des Melders 7 über den ermittelten Kanal an die Zentrale 12. Diese bestätigt den Empfang der Nachricht, wertet die Nachricht. aus und leitet entsprechende Maßnahmen ein.
    FIG. 1 shows a radio-controlled hazard alarm system according to the invention, which consists, for example, of seven detectors, designated with the numbers 1 to 7, four sub-centers, designated with the numbers 8 to 11 and a central office 12. Each of the four sub-control panels is attached in such a way that each of the seven detectors is in bidirectional radio communication with at least one sub-control panel. The sub-centers are installed in such a way that each sub-center is at least in bidirectional radio communication with another sub-center. In the exemplary embodiment, for example, the sub-centers 8 and 10 are not in direct radio connection with the center 12. Only the sub-center 9 and the sub-center 11 have a bidirectional radio connection with this. However, the sub-control center 8 can optionally transmit a message to the control center 12 via the sub-control center 9 or the sub-control center 11, with which it has a bidirectional radio connection.
    In this way, a nationwide network consisting of a control center and any number of detectors and sub-control centers can be set up. It is only necessary to ensure that each detector has at least one sub-center bidirectional radio connection. The sub-center, on the other hand, must in turn have a bidirectional radio connection with at least one other sub-center.
    If, for example, the detector 7 issues an alarm message, this is received by the sub-control center 8. Sub-control center 8 now sends the acknowledgment of receipt back to detector 7. This recognizes that his message has been received. The sub-control center 8 can now not send the alarm message from the detector 7 directly to the control center 12, since there is no bidirectional radio connection with it. Sub-control center 8 can now optionally forward the alarm message of detector 7 to another sub-control center. In FIG. 1, there is a choice between sub-center 9 and sub-center 11, since there is a bidirectional radio connection with these two sub-centers. Sub-control center 8 will now select the best channel from its RSSI table and then send the alarm message to the sub-control center previously defined by control center 12. This is, for example, sub-control center 11. This, in turn, now sends confirmation of receipt of the alarm message back to sub-control center 8. This recognizes that the sub-center 11 has received the message. The sub-control center 11 in turn now takes a suitable channel for the radio connection to the control center 12 from its RSSI table, to which it has a bidirectional radio connection, and sends the alarm message of the detector 7 to the control center 12 via the determined channel. This confirms the reception of the message, evaluate the message. and initiates appropriate measures.

    Figur 2 zeigt den Aufbau eines Melders. Dieser besteht aus einem Sensor 2, beispielsweise einem Bewegungsdetektor oder einem Rauchdedektor, einem Sender 4, einem Empfänger 3 und einem Mikroprozessorsystem 1, das die Sensordaten auswertet und einen Alarmfall erkennt. Außerdem steuert das Mikroprozessorsystem 1 die Kommunikation zwischen dem Melder und der Unterzentrale. Figure 2 shows the structure of a detector. This consists of a sensor 2, for example a motion detector or a smoke detector, one Transmitter 4, a receiver 3 and a microprocessor system 1, the evaluates the sensor data and detects an alarm. It also controls Microprocessor system 1 communication between the detector and the Sub-center.

    Figur 3 zeigt den Aufbau einer Unterzentrale. Diese besteht aus einem Mikroprozessorsystem 1, einem Sender 4 und einem Empfänger 3. Das Mikroprozessorsystem 1 verwaltet die RSSI-Tabelle 2 und scannt in regelmäßigen Zeitabständen den Funkfrequenzbereich, in dem die Kommunikation zwischen den einzelnen Komponenten der Anlage stattfindet und aktualisiert die RSSI-Tabelle 2 nach jedem durchgeführen Scanvorgang.Figure 3 shows the structure of a sub-center. This consists of a microprocessor system 1, a transmitter 4 and a receiver 3. The microprocessor system 1 manages the RSSI table 2 and scans at regular intervals the radio frequency range in which the communication between the individual components of the system takes place and updates the RSSI table 2 after each scan.

    Figur 4 zeigt den Aufbau der Zentrale. Sie besteht aus einem Sender 3, einem Empfänger 2 und einem Mikrocomputersystem 1. Die Zentrale verwaltet zusätzlich die RSSI-Tabellen aller Unterzentralen und koordiniert die Kommunikation unter den einzelnen Komponenten der Anlage. Sie wertet die Alarmnachrichten aus. Das Mikrocomputersystem kann mit verschiedenster Software ausgestattet werden. Es ist auch in Hinsicht auf seine Kapazität erweiterbar.Figure 4 shows the structure of the center. It consists of a transmitter 3, a Receiver 2 and a microcomputer system 1. The center also manages the RSSI tables of all sub-centers and coordinates communication among the individual components of the system. It evaluates the alarm messages out. The microcomputer system can use a variety of software be equipped. It is also expandable in terms of its capacity.

    Claims (7)

    1. Radio-controlled danger-signalling system, in particular fire-signalling, intrusion-signalling, emergency-call, paging or alarm signal, comprising at least one signalling unit, one centre and at least one substation that is disposed in such a way that it receives a signal broadcast by the signalling unit and passes it to the centre or to another substation,
      characterized in that
      a bidirectional radio link exists between the centre and/or the substations and/or the signalling units,
      the centre has a synchronization module that coordinates the bidirectional radio communication between the signalling units, the substations and/or the centre,
      each substation has a scanner that continuously scans the frequency bands or radio channels available for the radio link,
      the substation establishes a table containing the current receiving field strengths of the available frequency bands or radio channels on the basis of the scanning of the available frequency bands or radio channels,
      the substation determines the radio channels currently to be seized from said table,
      the substation transmits the table containing the current receiving field strengths of the available frequency bands or radio channels to the centre in a specified time cycle,
      the centre maintains these transmitted tables containing the current receiving field strengths of the available frequency bands or radio channels in the synchronization module,
      the synchronization module of the centre synchronizes the communication of the substations with one another, and
      the substations exchange with one another the radio channels preferably to be seized for the purpose of the radio link with one another from the respective tables containing the current receiving field strengths of the available frequency bands or radio channels.
    2. Radio-controlled danger-signalling system according to Claim 1, characterized in that there is provided in the centre and/or the substations and/or the signalling units a control unit that switches over from a reduced transmitting power to full transmitting power in the event of detection of an interfering transmitter that interferes with the radio traffic between the individual system parts.
    3. Radio-controlled danger-signalling system according to Claim 2, characterized in that the centre and/or the substations and/or the signalling units of the danger-signalling system comprise(s) a detector that detects the interfering signal and monitors it, and, as soon as the interfering signal is no longer present instructs the control unit of the danger-signalling system to transmit again with reduced transmission power.
    4. Radio-controlled danger-signalling system according to one of Claims 1 to 3, characterized in that as many substations as desired can be interconnected to form a network with complete area coverage.
    5. Radio-controlled danger-signalling system according to one of Claims 1 to 4, characterized in that the substations are equipped with their own power-supply connections.
    6. Radio-controlled danger-signalling system according to one of Claims 1 to 5, characterized in that the centre, the substations and/or the signalling units check the transmission quality at regular intervals by means of a loop back mode.
    7. Radio-controlled danger-signalling system according to one of Clams 1 to 6, characterized in that the centre has a microcomputer system having interchangeable memory modules.
    EP97109071A 1996-06-07 1997-06-05 Radio controlled alarm system with substations and safe data transmission Expired - Lifetime EP0811959B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19622880 1996-06-07
    DE19622880A DE19622880A1 (en) 1996-06-07 1996-06-07 Radio-controlled hazard detection system with sub-central and secure data communication between the individual components

    Publications (2)

    Publication Number Publication Date
    EP0811959A1 EP0811959A1 (en) 1997-12-10
    EP0811959B1 true EP0811959B1 (en) 2001-11-28

    Family

    ID=7796387

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97109071A Expired - Lifetime EP0811959B1 (en) 1996-06-07 1997-06-05 Radio controlled alarm system with substations and safe data transmission

    Country Status (4)

    Country Link
    EP (1) EP0811959B1 (en)
    AT (1) ATE209807T1 (en)
    DE (2) DE19622880A1 (en)
    ES (1) ES2169290T3 (en)

    Cited By (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1282095A2 (en) 2001-08-03 2003-02-05 Siemens Gebäudesicherheit GmbH & Co. OHG Method of radio communication in an alarm system
    US6664893B1 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Method for controlling access to medical monitoring device service
    US6665385B2 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Medical monitoring system having multipath communications capability
    US6694177B2 (en) 2001-04-23 2004-02-17 Cardionet, Inc. Control of data transmission between a remote monitoring unit and a central unit
    US6801137B2 (en) 2001-04-23 2004-10-05 Cardionet, Inc. Bidirectional communication between a sensor unit and a monitor unit in patient monitoring
    US7145466B2 (en) 2003-09-12 2006-12-05 Simplexgrinnell Lp National security warning system integrated with building fire alarm notification system
    US7295127B2 (en) 2003-09-12 2007-11-13 Simplexgrinnell Lp National security warning system integrated with building fire alarm notification system
    US7714733B2 (en) 2003-09-12 2010-05-11 Simplexgrinnell Lp Emergency warning system integrated with building hazard alarm notification system
    US8425414B2 (en) 2001-04-23 2013-04-23 Braemar Manufacturing, Llc Controlling access to a medical monitoring system
    US9189934B2 (en) 2005-09-22 2015-11-17 Rsi Video Technologies, Inc. Security monitoring with programmable mapping
    US9472067B1 (en) 2013-07-23 2016-10-18 Rsi Video Technologies, Inc. Security devices and related features

    Families Citing this family (24)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19710011A1 (en) * 1997-03-12 1998-09-17 Siemens Ag Method and device for connecting functional units of an alarm system
    NL1008011C2 (en) * 1998-01-12 1999-08-06 Hillson B V Fire detection and reporting system for a building
    FR2787905A1 (en) * 1998-12-23 2000-06-30 Cedi Securite Surveillance/alarm system asynchronous communications system having master/slave processor module driven transmitter/receivers first channel transmitting interrogation messages and response awaiting before second channel reception.
    FR2816430B1 (en) * 2000-11-06 2006-06-16 Atral MULTI-FREQUENCY MONITORING AND / OR ALARM DEVICE AND METHOD
    DE10114313C2 (en) * 2001-03-23 2003-12-04 Siemens Gebaeudesicherheit Gmb Procedure for radio transmission in a hazard detection system
    DE10114314A1 (en) * 2001-03-23 2002-10-10 Siemens Gebaeudesicherheit Gmb Method for radio transmission in a hazard detection system
    DE10200302A1 (en) * 2002-01-07 2003-07-17 Micro Mel Deutschland Gmbh Procedures for securing and managing movable objects, and object security and management system
    FR2839593B1 (en) * 2002-05-07 2006-06-23 Radio Systemes Ingenierie RADIOFREQUENCY COMMUNICATION METHOD BETWEEN SEVERAL DEVICES AND MONITORING SYSTEM IMPLEMENTING SUCH A METHOD
    DE10317586B3 (en) * 2003-04-16 2005-04-28 Siemens Ag Method for radio transmission in a hazard detection system
    DE10321204B3 (en) * 2003-05-12 2005-01-13 Siemens Ag Method and device for monitoring the function of radio transmission paths in a hazard detection system
    DE102004039026B3 (en) * 2004-08-11 2006-06-08 Siemens Ag Method for radio transmission in a hazard detection system
    ITBA20040059A1 (en) * 2004-12-23 2005-03-23 Matrix Srl LOCALIZATION SYSTEM FOR PEOPLE, ANIMALS AND THINGS, BY INNOVATIVE NETWORK OF TRANSCEIVERS WITHOUT CABLES AND LOW ENERGY CONSUMPTION
    US8155105B2 (en) 2005-09-22 2012-04-10 Rsi Video Technologies, Inc. Spread spectrum wireless communication and monitoring arrangement and method
    US8081073B2 (en) 2005-09-22 2011-12-20 Rsi Video Technologies, Inc. Integrated motion-image monitoring device with solar capacity
    US7463145B2 (en) 2005-09-22 2008-12-09 Rsi Video Technologies, Inc. Security monitoring arrangement and method using a common field of view
    US7835343B1 (en) 2006-03-24 2010-11-16 Rsi Video Technologies, Inc. Calculating transmission anticipation time using dwell and blank time in spread spectrum communications for security systems
    IES20070680A2 (en) * 2006-09-21 2008-04-30 E I Technology Ltd Alarm systems
    US8714449B2 (en) 2008-02-07 2014-05-06 Rsi Video Technologies, Inc. Method and device for arming and disarming status in a facility monitoring system
    AU2009343562B2 (en) * 2009-04-02 2013-07-11 Hochiki Corporation Wireless Disaster-Prevention Node and Wireless Disaster-Prevention System
    DE102010032349B4 (en) * 2010-07-27 2013-02-07 Lotfi Makadmini Radio communication method with fast alarm notification
    DE102010032369B4 (en) * 2010-07-27 2013-02-21 Lotfi Makadmini Registration method for radio communication systems
    DE102010032368B4 (en) * 2010-07-27 2017-04-06 Lotfi Makadmini Full-duplex radio communication method in a synchronous radio system
    ITMI20101634A1 (en) * 2010-09-09 2012-03-10 Carlo Amendola ANTI-THEFT SYSTEM AND METHOD OF MONITORING, IN MULTIFREQUENCY, OF MOBILE AND IMMOBILE OBJECTS
    ITTO20110185A1 (en) * 2011-03-02 2012-09-03 Sisvel Technology Srl PROCEDURE AND ALARM COOPERATIVE TRANSMISSION APPARATUS

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3343692A1 (en) * 1983-12-02 1985-06-13 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for controlling switching procedures in a telecommunications system, in particular a telephone system, with at least one loop
    US5148148A (en) * 1989-12-28 1992-09-15 Hochiki Kabushiki Kaisha Radio alarm system
    FR2675323B1 (en) * 1991-04-12 1993-07-09 Crde TRANSPONDER SYSTEM FOR TRANSMITTING ALARM INFORMATION TO A RECEIVING AND PROCESSING SYSTEM, AND RELATED METHOD.
    DE4236134A1 (en) * 1992-10-26 1994-06-30 Siemens Ag Method and arrangement for activating one of two antennas of a receiving device
    FR2708774A1 (en) * 1993-08-05 1995-02-10 Guillo Jean Safety device with bi-directional radio link
    GB9407098D0 (en) * 1994-04-09 1994-06-01 Harrison Brothers Steeplejacks Detection system and method of operating same
    US5461365A (en) * 1994-10-27 1995-10-24 Schlager; Dan Multi-hazard alarm system using selectable power-level transmission and localization
    DE9417625U1 (en) * 1994-11-03 1995-02-09 Kuemmet Koloman Folding table for picnics, camping, etc.
    DE29601436U1 (en) * 1996-01-29 1996-04-18 Impex Ges Fuer Elektronische A Radio-controlled signaling and receiving system

    Cited By (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    USRE43767E1 (en) 2001-04-23 2012-10-23 Cardionet, Inc. Control of data transmission between a remote monitoring unit and a central unit
    US6664893B1 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Method for controlling access to medical monitoring device service
    US6665385B2 (en) 2001-04-23 2003-12-16 Cardionet, Inc. Medical monitoring system having multipath communications capability
    US6694177B2 (en) 2001-04-23 2004-02-17 Cardionet, Inc. Control of data transmission between a remote monitoring unit and a central unit
    US6801137B2 (en) 2001-04-23 2004-10-05 Cardionet, Inc. Bidirectional communication between a sensor unit and a monitor unit in patient monitoring
    US8290129B2 (en) 2001-04-23 2012-10-16 Cardionet, Inc. Medical monitoring system having multiple communications channels
    US8425414B2 (en) 2001-04-23 2013-04-23 Braemar Manufacturing, Llc Controlling access to a medical monitoring system
    EP1282095A2 (en) 2001-08-03 2003-02-05 Siemens Gebäudesicherheit GmbH & Co. OHG Method of radio communication in an alarm system
    US7145466B2 (en) 2003-09-12 2006-12-05 Simplexgrinnell Lp National security warning system integrated with building fire alarm notification system
    US7295127B2 (en) 2003-09-12 2007-11-13 Simplexgrinnell Lp National security warning system integrated with building fire alarm notification system
    US7714733B2 (en) 2003-09-12 2010-05-11 Simplexgrinnell Lp Emergency warning system integrated with building hazard alarm notification system
    US9189934B2 (en) 2005-09-22 2015-11-17 Rsi Video Technologies, Inc. Security monitoring with programmable mapping
    US9472067B1 (en) 2013-07-23 2016-10-18 Rsi Video Technologies, Inc. Security devices and related features

    Also Published As

    Publication number Publication date
    DE59705496D1 (en) 2002-01-10
    ATE209807T1 (en) 2001-12-15
    DE19622880A1 (en) 1997-12-11
    EP0811959A1 (en) 1997-12-10
    ES2169290T3 (en) 2002-07-01

    Similar Documents

    Publication Publication Date Title
    EP0811959B1 (en) Radio controlled alarm system with substations and safe data transmission
    DE69936753T2 (en) METHOD FOR OPERATIONAL MONITORING OF A CELLULAR RADIO SYSTEM
    DE4035070C2 (en)
    DE4426140A1 (en) Communication system and method for its operation
    WO1984003264A1 (en) Method for the transmission of informations and/or instructions
    DE2715216A1 (en) MESSAGE SYSTEM
    EP0833288B1 (en) Method for radio transmission of measured data of sensors and radio alarm system
    DE102005022989A1 (en) Modular system for obtaining and relaying measurement data, has measurement data sender and data receiving device combined as repeater
    DE2404116A1 (en) MESSAGE TRANSMISSION SYSTEM
    DE4005354C2 (en)
    EP0326630B1 (en) Method for transmitting remote control signals on a single carrier frequency between autonomous transmitters and receivers in time multiplexe and arrangement for realization of this method
    DE19539312A1 (en) Procedure for increasing the transmission security in radio alarm systems
    EP0803850B1 (en) Fire alarm system
    EP0286627B1 (en) Device for warning gangs
    EP3459813A1 (en) Train warning system
    CH712298A2 (en) Zugwarnsystem.
    EP1176567B1 (en) Monitoring device
    EP1526747A2 (en) Broadcast receiver and mobile device for receiving emergency calls
    EP1469437A2 (en) Radio transmission method in a hazard signalling system
    EP0111973B1 (en) Monitoring an existing radio link between a fixed and a mobile radio station
    DE102004039675B4 (en) Method for the commissioning of radio-based hazard detection systems
    DE962866C (en) Arrangement for combined remote control and telephone operation
    EP0316853A1 (en) Cableless danger signal system
    DE4417685A1 (en) Radio monitoring system covering traffic, theft and fire alarms
    DE1813128A1 (en) System for determining and displaying the respective location of vehicles

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

    17P Request for examination filed

    Effective date: 19980604

    AKX Designation fees paid

    Free format text: AT CH DE ES FR GB IT LI NL PT SE

    RBV Designated contracting states (corrected)

    Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20000914

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: GRUNDIG AKTIENGESELLSCHAFT

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    ITF It: translation for a ep patent filed

    Owner name: DE DOMINICIS & MAYER S.R.L.

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT CH DE ES FR GB IT LI NL PT SE

    REF Corresponds to:

    Ref document number: 209807

    Country of ref document: AT

    Date of ref document: 20011215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: BOVARD AG PATENTANWAELTE

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20011128

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REF Corresponds to:

    Ref document number: 59705496

    Country of ref document: DE

    Date of ref document: 20020110

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020228

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2169290

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: GRUNDIG MULTIMEDIA B.V.

    Free format text: GRUNDIG AKTIENGESELLSCHAFT#BEUTHENER STRASSE 41#90471 NUERNBERG (DE) -TRANSFER TO- GRUNDIG MULTIMEDIA B.V.#DE BOELELAAN 7 OFF. I 2 HG#1083HJ AMSTERDAM (NL)

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    NLS Nl: assignments of ep-patents

    Owner name: GRUNDIG MULTIMEDIA B.V.

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20090623

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20090616

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20090623

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20090713

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20110101

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110101

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100605

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100606

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 59705496

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20160621

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20160623

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20160623

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20160704

    Year of fee payment: 20

    Ref country code: IT

    Payment date: 20160630

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59705496

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20170604

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170604

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180508

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20170606