EP0855013A1 - Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide - Google Patents

Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide

Info

Publication number
EP0855013A1
EP0855013A1 EP97936757A EP97936757A EP0855013A1 EP 0855013 A1 EP0855013 A1 EP 0855013A1 EP 97936757 A EP97936757 A EP 97936757A EP 97936757 A EP97936757 A EP 97936757A EP 0855013 A1 EP0855013 A1 EP 0855013A1
Authority
EP
European Patent Office
Prior art keywords
enclosure
evaporator
tube
chamber
evaporator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97936757A
Other languages
German (de)
English (en)
Other versions
EP0855013B1 (fr
Inventor
Thierry Maciaszek
Jacques Mauduyt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Original Assignee
Centre National dEtudes Spatiales CNES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES filed Critical Centre National dEtudes Spatiales CNES
Publication of EP0855013A1 publication Critical patent/EP0855013A1/fr
Application granted granted Critical
Publication of EP0855013B1 publication Critical patent/EP0855013B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops

Definitions

  • the present invention relates to a capillary evaporator for a two-phase energy transfer loop between a hot source and a cold source, of the type which comprises a) an enclosure made of a porous material having an inlet for a heat-transfer fluid in the liquid state. b) an envelope in which said enclosure is placed to define, around the latter a chamber for collecting said fluid in the vapor state, said envelope having an outlet through which the vapor collected by said chamber is evacuated.
  • Such an evaporator is known in particular from French patent application No. 94 09459 filed on July 29, 1994 by the applicant.
  • Such evaporators are part of two-phase loops such as that shown in Figure 1 of the accompanying drawing, which is used to transfer thermal energy from a zone A called “hot source”, to a zone B, at lower temperature, called “cold source”.
  • the loop takes the form of a closed circuit in which circulates a heat transfer fluid which can be, according to the temperatures of use, water, ammonia, a "Freon", etc.
  • This circuit includes evaporators "capillaries” 1, l ', .... connected in parallel, condensers 2, also connected in parallel (or in series-parallel), a vapor circulation duct 3 and a liquid circulation duct 4.
  • the meaning fluid circulation is indicated by the arrows 5.
  • An isolator 6 can be placed at the inlet of each evaporator, to prevent an accidental return of vapor in the duct 4.
  • a sub-cooler 7 is placed on the duct 4 to condense steam which, accidentally, would not have been completely condensed at the outlet of all the condensers 2 and to lower the temperature so as to ensure security with respect to the risk of locally reaching the saturation temperature and thus generating vapor bubbles upstream of the evaporators.
  • the operating temperature of the loop is controlled by a two-phase pressurizer tank 8 mounted on the duct 4. This tank is thermally controlled (by means not shown) so as to ensure control of the vaporization temperature.
  • the hot source can be constituted by equipment releasing heat and mounted in a spacecraft, or installed on the ground, equipment the loop of which maintains the temperature at a value compatible with proper operation of this equipment.
  • the maximum power that can be transported is conditioned by the maximum pressure rise that the capillary evaporators can provide and by the sum of the pressure drops in the circuit for the maximum power considered.
  • ammonia pressure increases of the order of 5000 Pa can be achieved.
  • Figures 2 and 3 show an evaporator 1 capable of being used in the loop of Figure 1. It is described in the document entitled "Capillary pumped loop technology development", authors: J. Kroliczek, R. Me Intosh, presented during from the ICES conference held at LONG BEACH (California) in 1987. Evaporators from this type are marketed by the company OAO in the United States of America.
  • L 1 evaporator 1 comprises a metallic tubular casing 9 which is a good heat conductor, having an inlet 10 at one end and an outlet 11 at the opposite end.
  • a cylinder enclosure 12 with a wall made of porous material is held by spacers 13 (see FIG. 3) coaxial with the envelope 9.
  • the porous material called “capillary wick”, can be made of any material having pores of suitable dimensions and substantially homogeneous, for example metallic or plastic sintered materials (polyethylene) or even ceramics.
  • the space 14 inside the enclosure 12 is filled with the heat-transfer fluid in the liquid state while the annular chamber 15 collects the vapor of this liquid which forms in this chamber under the effect of the heat given off by the hot source A.
  • the pressure of the vapor is higher than the pressure of the liquid which allows the circulation of the heat-transfer fluid in the loop and the evacuation of the heat transported to the cold source B.
  • the heat transfer fluid which circulates in the loop is almost never pure and often contains noncondensable gases in the loop, such as hydrogen.
  • This gas can come from a decomposition of the heat transfer fluid, when the latter consists of ammonia, for example. It can also result from chemical reactions between this ammonia and parts metallic buckle made of aluminum, for example. In microgravity, this noncondensable gas can collect in a pocket 16 at the bottom of the enclosure 12, as shown in FIG. 2.
  • the space 14 inside this enclosure 12 can also accommodate bubbles 17 of non-condensed vapor of the heat transfer fluid . This can result in a local stop of the circulation of this fluid and therefore a thermal runaway of the loop.
  • FIG. 4 schematically represents an evaporator of another type, described in the document entitled “Method of increase the evaporation reliability for loop heat pipes and capillary puped loops", authors: E.Yu. Kotliarov, GP Serov, presented at the ICES conference held in Colorado Springs, USA, in 1994. Evaporators of this type are marketed by Lavotchkin of the Russian Federation.
  • the evaporator of FIG. 4 differs from that of FIGS. 2 and 3 in that it incorporates a buffer tank 19 at the inlet of the evaporator proper, which comprises a casing 9 and an enclosure 12 made of material porous similar to those of the evaporator of Figure 2.
  • the evaporator further comprises a tube 20 with a solid wall which passes axially through the pressurizing tank 19 and the enclosure 12, this tube opening near the bottom of this enclosure.
  • FIG. 5 schematically represents an evaporator of yet another type, described in the document "Test results of reliable and very high capillary multi- evaporation condensers loops", authors: S. Van Ost, M. Dubois and G. Beckaert, presented at the ICES conference held in San Diego, California, USA, in 1995.
  • the Belgian company SABCA markets evaporators of this type.
  • the evaporator is placed. in one of the branches of a circuit which has one evaporator per branch, the same pressurizer tank 8 supplying all these branches.
  • the evaporator comprises, like the previous ones, a casing 9 and an enclosure with a porous wall 12. Between the reservoir 8 and the evaporator, the connection is made by a tubular conduit internally lined with a "capillary link" 21 constituted by a tube made of a metallic fabric.
  • the heat transfer liquid which arrives from the condenser 2 passes through the pressurizer tank 8 and fills the entire duct 3 as well as the space inside the enclosure 12.
  • the incondensable gas s' In the presence of incondensable gas in the loop, but without generation of vapor in the core of the evaporator, situation characteristic of an operation with high thermal power (typically greater than 50 Watt for ammonia), the incondensable gas s' accumulates in the enclosure 12 of the evaporator inside the capillary link 21 only. The porous material of the enclosure 12 then always remains supplied with heat transfer liquid, which ensures the operation of the evaporator.
  • the vapor which forms in this enclosure can, if its generating pressure is sufficient, return to the pressurizing tank 8 as shown schematically in Figure 5, and entrain the incondensable gas.
  • the liquid As for the liquid, it circulates around the periphery of the capillary link 21 and allows the porous material of the enclosure to be supplied, which ensures the operation of the evaporator.
  • the capillary link 21 present in the conduits 3 for supplying the evaporators makes them rigid and bulky (diameter of the order of 10 mm), drawbacks which can prove to be prohibitive when the loop must be placed in a limited space and complex shape, as is often the case in space vehicles, for example.
  • the present invention therefore aims to achieve an evaporator for two-phase loop with capillary pumping, which is tolerant of the presence of incondensable gas or vapor inside its porous enclosure.
  • the present invention also aims to produce such an evaporator suitable for integrating into a two-phase loop containing a plurality of such evaporators mounted in parallel, the geometry of this loop can be adapted to installation in a reduced space and / or complex shape.
  • an evaporator of the type described in the preamble to the present description remarkable in that it comprises a tube which develops throughout the interior space of the enclosure with a porous wall, from one end of the tube constituting the inlet of the enclosure in heat-transfer liquid, said tube being pierced over its entire length with holes for injecting the liquid coolant in the wall of the enclosure.
  • this tube makes it possible, in all circumstances, to supply the entire enclosure with a porous wall with heat transfer liquid, which ensures the necessary generation of vapor by the evaporator, even in presence of incondensable or uncondensed gas or vapor in said enclosure.
  • FIG. 1 is a diagrammatic representation of a two-phase energy transfer loop comprising capillary evaporators, described in the preamble to this description
  • FIGS. 2 to 5 represent capillary evaporators of the prior art, also described in the preamble to this description,
  • FIG. 6 is a schematic representation of a two-phase loop comprising at least one capillary evaporator (in axial section) according to the present invention
  • Figures 7 to 9 are schematic representations of one capillary evaporator according to the invention, similar to that of FIG. 6 and useful for the description of its operation.
  • FIG. 6 of the appended drawing in which the essential parts of the two-phase loop of FIG. 1 are found, namely, in addition to one or more capillary evaporators 1,1 ', 1 ".... according to invention, conduits 3 of gas and 4 of vapor, a condenser 2 and a pressurizing tank 8.
  • the evaporator according to the invention comprises, like the preceding ones, a tubular casing 9 and an enclosure with a porous wall 12 held in the casing 9 away from this casing by spacers such as the spacers 13 shown in FIG. 3 , or by grooves formed on the inner face of the casing 9, so as to define between the casing and the enclosure a chamber 15 for collecting the vapor formed in one evaporator.
  • the evaporator also includes an inlet 10 for the coolant in the liquid state and an outlet 11 for the vapor of this fluid.
  • the evaporator according to the invention, it comprises (see FIG. 16) a tube 22, for example of helical shape, developing axially throughout the interior space of the enclosure 12, to the bottom of it.
  • the tube 22 is plugged at its end 22 'close to this bottom but it is pierced over its entire length with holes 23, for example regularly spaced.
  • the helical tube 22 adjusts substantially to the inside diameter of the enclosure 12 so as to closely follow the porous wall of this enclosure.
  • the holes 23 are drilled in front of this wall, to inject heat-transfer liquid into the space 14 inside the enclosure 12, by continuously spraying this wall, as will be seen below.
  • the unplugged end 24 of the tube 22 passes through, and is carried by, a partition 25 of a sealed material mounted transversely in a chamber 26 interposed, according to the invention, between the inlet 10 of the evaporator and the assembly formed by the envelope 9 and the enclosure 12.
  • the partition 25 divides the chamber 26 into a first compartment (26 x , 26 2 ), see FIG. 7, and a second compartment 26 3 , one of which (26 ⁇ , 26 ? ) contains a partition 27 made of a porous material similar to that constituting the wall of the enclosure 12.
  • the partition 27 is transverse to the axis X of the evaporator, and it is therefore substantially parallel to the watertight partition 26. It divides the first compartment (261., 26 2 ) into two sub-compartments 261 and 26 2 .
  • means 28 for cooling the chamber 26 are mounted thereon.
  • these means 28 are used to condense heat-transfer fluid in the vapor state present, in certain types of operation of the evaporator, in chamber 26.
  • these means 28 can be constituted by a Peltier effect cold source.
  • a heat sink 29 can be placed between the means 28 and the metal casing 9.
  • the evaporator according to the invention then operates as follows. In the absence of noncondensable gas and vapor in the enclosure or at the inlet of the evaporator, an ideal situation illustrated in FIG. 6, the heat transfer liquid which returns from the condenser 2 passes through the porous partition 27 and is then forced to borrow the perforated tube 22 which plunges into the heart of the evaporator. The liquid spurts through the holes 23 of the tube by injecting heat transfer liquid into the porous wall of the enclosure which faces these holes. The enclosure 12 of the evaporator is full of liquid and its porous wall is always supplied with liquid. The condensing means 28 are then useless and therefore inactive. The evaporator is operating normally.
  • C ' is a situation encountered in high power operation of one evaporator (typically greater than 50 W for ammonia).
  • the bubbles 30 of noncondensable gas are stopped by the porous partition 27 at the inlet of the evaporator, as shown in the figure.
  • a certain quantity of noncondensable gas can accumulate in a part 31 of the enclosure 12 by desorption of the gas dissolved in the liquid.
  • the porous wall of the enclosure 12 is always wetted by liquid even in this part 31 of the enclosure where the noncondensable gas has accumulated.
  • the cold source 28 can remain inactive and the performance of the evaporator remains nominal.
  • FIG. 8 to explain the operation of the evaporator according to the invention, in the presence of bubbles 30 of incondensable gas in the loop and with the formation of bubbles 32 of vapor in the enclosure 12.
  • This is a situation encountered in operation at low thermal power (typically less than 50 W for ammonia).
  • the porous partition 27 stops both the noncondensable gas 30 and the vapor 32 which enter the evaporator under the effect of the circulation of the heat transfer fluid.
  • a certain quantity of noncondensable gas can accumulate at 31 in the enclosure 12 as in the previous case and this enclosure also contains, by hypothesis, steam 32 which is formed there, in small quantity in this hypothesis.
  • the porous wall of the enclosure 12 remains wetted by heat transfer liquid, even in the part 31 where the noncondensable gas and the vapor have accumulated.
  • the cold source 28 is activated according to the invention. Peltier to condense this vapor. Its cooling power must obviously be compatible with the power (very low, however) necessary for the condensation of the total mass flow rate of steam generated in the enclosure 12 of the evaporator and arriving at the inlet thereof. For example, the typical cooling power that must be installed for an ammonia evaporator is of the order of a few watts.
  • FIG. 9 schematically illustrates an extreme operation of the evaporator according to the invention, in which the enclosure 12 is filled with vapor and noncondensable gas, only the perforated tube 22 remaining filled with coolant for watering the the internal face of the porous wall of this enclosure 12, so as to ensure the operation of one evaporator.
  • the power delivered by the cold source 28 is exactly equal to that which is necessary for the condensation of all the uncondensed vapor arriving against the porous partition 27.
  • This evaporator is also robust screw -with respect to the generation of noncondensable gas and vapor in the porous wall enclosure of the evaporator, unlike the evaporator of FIGS. 2 and 3.
  • the connection of its input to a two-phase loop requires a simple flexible conduit and not rigid, unlike that of the evaporator of the prior art shown in Figure 5, which facilitates the integration of such a loop e in reduced spaces and / or of complex shape, as found in space vehicle equipment.
  • the invention is not limited to the embodiment described and shown which has been given only by way of example.
  • the invention is not limited to its implementation in thermal conditioning circuits for space vehicle equipment and can also find applications in equipment operating on the ground.
  • one evaporator according to the invention can be integrated into any type of two-phase capillary pumping loops, whatever the level of the temperature to be regulated.
  • the evaporator according to the invention can undergo a modification to facilitate its ground tests.
  • the gravity gathers the liquid in the lower part and the gases in the upper part, both in the enclosure 12 and in the tube 22, the upper end of which is no longer supplied with heat-transfer liquid, the latter then no longer watering the part high of enclosure 12.
  • a straight tube 33 with a solid wall can be placed in enclosure 12 so that the liquid entering this enclosure enters the tube helical by the end of this tube which is close to the bottom of the enclosure. In this case, it is obviously the other end of the tube 22, near the partition 25 which is blocked. It is understood that thus the heat transfer liquid entering the tube 22 sprinkles the wall of the enclosure, including at the level of a possible pocket of noncondensable gas such as that represented at 31 in FIG. 7.

Abstract

L'évaporateur comprend a) une enceinte (12) en un matériau poreux présentant une entrée pour un fluide caloporteur à l'état liquide, b) une enveloppe (9) dans laquelle est placée ladite enceinte (12) pour définir, autour de celle-ci, une chambre (15) de collection dudit fluide à l'état de vapeur, ladite enveloppe (9) présentant une sortie par laquelle s'évacue la vapeur recueillie par ladite chambre (15). Il comprend en outre un tube (22) qui se développe dans tout l'espace (14) intérieur à l'enceinte (12) à paroi poreuse, à partir d'une extrémité (24) du tube constituant l'entrée de l'enceinte (12) en liquide caloporteur, ledit tube (22) étant percé sur toute sa longueur de trous (33) d'injection du liquide caloporteur dans la paroi de l'enceinte (12).

Description

EVAPORATEUR CAPILLAIRE POUR BOUCLE DIPHASIQUE DE TRANSFERT D'ENERGIE ENTRE UNE SOURCE CHAUDE ET UNE SOURCE FROIDE
La présente invention est relative à un évaporateur capillaire pour boucle diphasique de transfert d'énergie entre une source chaude et une source froide, du type qui comprend a) une enceinte en un matériau poreux présentant une entrée pour un fluide caloporteur à l'état liquide, b) une enveloppe dans laquelle est placée ladite enceinte pour définir, autour de celle-ci une chambre de collection dudit fluide à l'état de vapeur, ladite enveloppe présentant une sortie par laquelle s'évacue la vapeur recueillie par ladite chambre.
On connaît un tel évaporateur notamment de la demande de brevet français N° 94 09459 déposée le 29 juillet 1994 par la demanderesse. De tels évaporateurs font partie de boucles diphasiques telles que celle représentée à la figure 1 du dessin annexé, qui sert à transférer de l'énergie thermique d'une zone A dite "source chaude", vers une zone B, à température inférieure, dite "source froide". La boucle prend la forme d'un circuit fermé dans lequel circule un fluide caloporteur qui peut être, selon les températures d'utilisation, de l'eau, de l'ammoniac, un "Fréon", etc.. Ce circuit comprend des évaporateurs "capillaires" 1, l',.... branchés en parallèle, des condenseurs 2, également branchés en parallèle (ou en série-parallèle) , un conduit de circulation de vapeur 3 et un conduit de circulation de liquide 4. Le sens de circulation du fluide est indiqué par les flèches 5. Un isolateur 6 peut être placé à l'entrée de chaque évaporateur, pour empêcher un retour de vapeur accidentel dans le conduit 4. Un sous-refroidisseur 7 est placé sur le conduit 4 pour condenser de la vapeur qui, accidentellement, n'aurait pas été totalement condensée à la sortie de l'ensemble des condenseurs 2 et pour abaisser la température de manière à assurer une sécurité vis-à-vis du risque d'atteindre localement la température de saturation et générer ainsi des bulles de vapeur en amont des évaporateurs. La température de fonctionnement de la boucle est contrôlée par un réservoir pressuriseur diphasique 8 monté sur le conduit 4. Ce réservoir est contrôlé thermiquement (par des moyens non représentés) de manière à assurer un contrôle de la température de vaporisation. Avec ce type de boucle, on peut contrôler avec une précision meilleure que le degré, dans la majorité des cas, une température de consigne fixée pour la source chaude A, et ce quelles que soient les variations de puissance subies par la boucle au niveau des évaporateurs ou condenseurs. A titre d'exemple, la source chaude peut être constituée par un équipement dégageant de la chaleur et monté dans un véhicule spatial, ou installé au sol, équipement dont la boucle maintient la température à une valeur compatible avec un bon fonctionnement de cet équipement.
La puissance maximale qu'il est possible de transporter est conditionnée par la remontée maximale de pression que peuvent assurer les évaporateurs capillaires et par la somme des pertes de charge du circuit pour la puissance maximale considérée. Comme décrit dans la demande de brevet français précitée, avec de l'ammoniac on peut atteindre des remontées de pression de l'ordre de 5000 Pa.
Les figures 2 et 3 représentent un évaporateur 1 susceptible d'être utilisé dans la boucle de la figure 1. Il est décrit dans le document intitulé "Capillary pumped loop technology development", auteurs : J. Kroliczek, R. Me Intosh, présenté lors de la conférence ICES tenue à LONG BEACH (Californie) en 1987. Des évaporateurs de ce type sont commercialisés par la société OAO des Etats- Unis d'Amérique.
L1 évaporateur 1 comprend une enveloppe tubulaire métallique 9 bonne conductrice de la chaleur, ayant une entrée 10 à une extrémité et une sortie 11 à l'extrémité opposée. A l'intérieur de l'enveloppe, une enceinte cylindre 12 à paroi en matière poreuse est maintenue par des entretoises 13 (voir figure 3) coaxialement à l'enveloppe 9. La matière poreuse, appelée "mèche capillaire", peut être constituée de tout matériau ayant des pores de dimensions convenables et sensiblement homogènes, par exemple des matériaux frittes métalliques ou plastiques (polyéthylène) ou encore céramiques. Comme on l'explique dans la demande de brevet français précitée, à laquelle on se reportera pour plus de détails, en fonctionnement normal, l'espace 14 intérieur à l'enceinte 12 est rempli du fluide caloporteur à l'état liquide alors que la chambre annulaire 15 collecte la vapeur de ce liquide qui se forme dans cette chambre sous l'effet de la chaleur dégagée par la source chaude A. La pression de la vapeur est supérieure à la pression du liquide ce qui permet la circulation du fluide caloporteur dans la boucle et l'évacuation de la chaleur transportée vers la source froide B. En disposant plusieurs évaporateurs en parallèle, comme représenté à la figure 1, on augmente la puissance de l'installation.
Cependant le fluide caloporteur qui circule dans la boucle n'est pratiquement jamais pur et contient souvent des gaz incondensables dans la boucle, tels que l'hydrogène. Ce gaz peut provenir d'une décomposition du fluide caloporteur, lorsque celui-ci est constitué par de l'ammoniac, par exemple. Il peut aussi provenir de réactions chimiques entre cet ammoniac et des parties métalliques de la boucle réalisées en aluminium, par exemple. En microgravité, ce gaz incondensable peut se rassembler dans une poche 16 au fond de l'enceinte 12, comme représenté à la figure 2. L'espace 14 intérieur à cette enceinte 12 peut aussi accueillir des bulles 17 de vapeur non condensée du fluide caloporteur. Il peut en résulter un arrêt local de la circulation de ce fluide et donc un emballement thermique de la boucle. En effet, lorsqu'une partie du matériau capillaire constituant la paroi de l'enceinte 12, soumise au flux thermique en provenance de la source chaude A, n'est plus directement alimentée par du liquide venu de l'intérieur de l'enceinte, à cause d'une poche 16 de gaz ou de vapeur incondensable ou incondensé, le liquide contenu dans cette partie du matériau capillaire se vaporise rapidement. Un "perçage" 18 de l'enceinte 12 apparaît et la vapeur sous pression vient alors remplir instantanément l'espace 14 intérieur à l'enceinte 12, ce qui arrête la circulation du fluide caloporteur. La figure 4 représente schématiquement un évaporateur d'un autre type, décrit dans le document intitulé "Method of increase the evaporation reliability for loop heat pipes and capillary puped loops", auteurs : E.Yu. Kotliarov, G. P. Serov, présenté à la conférence ICES tenue à Colorado Springs, USA, en 1994. Des évaporateurs de ce type sont commercialisés par la société Lavotchkin de la Fédération de Russie.
Dans les figures 4 et suivantes du dessin annexé, des références numériques identiques à des références utilisées aux figures 1 à 3 repèrent des éléments ou organes identiques ou similaires.
L' évaporateur de la figure 4 se distingue de celui des figures 2 et 3 en ce qu'il intègre un réservoir tampon 19 à l'entrée de 1 'évaporateur proprement dit, qui comprend une enveloppe 9 et une enceinte 12 en matériau poreux analogues à ceux de l' évaporateur de la figure 2. L' évaporateur comprend en outre un tube 20 à paroi pleine qui traverse axialement et le réservoir pressuriseur 19 et l'enceinte 12, ce tube débouchant à proximité du fond de cette enceinte.
Si le liquide caloporteur qui arrive par l'entrée 10 du tube contient des bulles 17 de gaz ou 17' de vapeur incondensable, ces bulles traversent le tube 20 et reviennent à contre-courant dans le réservoir 19 sans perturber le fonctionnement de la paroi poreuse de l'enceinte 12, qui ne souffre alors d'aucun désamorsage.
Par contre, 1 ' évaporateur de la figure 4 comportant son propre réservoir pressuriseur 19, il devient pratiquement impossible de disposer plusieurs tels évaporateurs parallèles dans une boucle telle que celle de la figure 1, un déséquilibre éventuel de pression entre deux réservoirs vidant l'un pour remplir l'autre. De ce fait, la puissance transportable par la boucle demeure limitée.
La figure 5 représente schématiquement un évaporateur d'encore un autre type, décrit dans le document "Test results of reliable and very high capillary multi- evaporation condensers loops", auteurs : S. Van Ost, M. Dubois et G. Beckaert, présenté à la conférence ICES tenue à San Diego, Californie, USA, en 1995. La société belge SABCA commercialise des évaporateurs de ce type.
L' évaporateur est placé . dans l'une des branches d'un circuit qui compte un évaporateur par branche, un même réservoir pressuriseur 8 alimentant toutes ces branches. L' évaporateur comprend, comme les précédents, une enveloppe 9 et une enceinte à paroi poreuse 12. Entre le réservoir 8 et l' évaporateur, la liaison est réalisée par un conduit tubulaire garni intérieurement d'un "lien capillaire" 21 constitué par un tube réalisé en une toile métallique. En fonctionnement normal, le liquide caloporteur qui arrive du condenseur 2 traverse le réservoir pressuriseur 8 et remplit l'ensemble du conduit 3 ainsi que l'espace intérieur à l'enceinte 12.
En présence de gaz incondensable dans la boucle, mais sans génération de vapeur dans le coeur de 1 ' évaporateur, situation caractéristique d'un fonctionnement à forte puissance thermique (typiquement supérieure à 50 Watt pour de l'ammoniac), le gaz incondensable s'accumule dans l'enceinte 12 de l' évaporateur à l'intérieur du lien capillaire 21 seulement. Le matériau poreux de l'enceinte 12 reste alors toujours alimenté par du liquide caloporteur, ce qui assure le fonctionnement de l' évaporateur .
En présence de gaz incondensable et avec génération de vapeur dans l'enceinte 12, situation caractéristique d'un fonctionnement à faible puissance thermique, la vapeur qui se forme dans cette enceinte peut, si sa pression génératrice est suffisante, revenir dans le réservoir pressuriseur 8 comme schématisé à la figure 5, et entraîner le gaz incondensable. Le liquide, quant à lui, circule à la périphérie du lien capillaire 21 et permet l'alimentation du matériau poreux de l'enceinte, ce qui assure le fonctionnement de 1 ' évaporateur .
Il est alors possible de placer plusieurs évaporateurs en parallèle, et la boucle ainsi constituée résiste bien à la présence de vapeur ou de gaz incondensable dans l'enceinte poreuse 12 des évaporateurs .
Par contre, le lien capillaire 21 présent dans les conduits 3 d'alimentation des évaporateurs rendent ceux- ci rigides et encombrants (diamètre de l'ordre de 10 mm), inconvénients qui peuvent s'avérer rédhibitoires quant la boucle doit être disposée dans un espace restreint et de forme complexe, comme c'est souvent le cas dans les véhicules spatiaux, par exemple. La présente invention a donc pour but de réaliser un évaporateur pour boucle diphasique à pompage capillaire, qui soit tolérant à la présence de gaz ou de vapeur incondensable à l'intérieur de son enceinte poreuse. La présente invention a aussi pour but de réaliser un tel évaporateur propre à s'intégrer à une boucle diphasique contenant une pluralité de tels évaporateurs montés en parallèle, la géométrie de cette boucle pouvant être adaptée à une installation dans un espace réduit et/ou de forme complexe.
On atteint ces buts de l'invention, ainsi que d'autres qui apparaîtront à la lecture de la description qui va suivre, avec un évaporateur du type décrit en préambule de la présente description, remarquable en ce qu'il comprend un tube qui se développe dans tout l'espace intérieur à l'enceinte à paroi poreuse, à partir d'une extrémité du tube constituant l'entrée de l'enceinte en liquide caloporteur, ledit tube étant percé sur toute sa longueur de trous d'injection du liquide caloporteur dans la paroi de l'enceinte.
Comme on le verra plus loin en détail, ce tube permet, en toutes circonstances, d'alimenter l'ensemble de l'enceinte à paroi poreuse avec du liquide caloporteur, ce qui assure la génération nécessaire de vapeur par l' évaporateur, même en présence de gaz ou de vapeur incondensables ou incondensés dans ladite enceinte .
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre et à l'examen du dessin annexé dans lequel :
- la figure 1 est une représentation schématique d'une boucle diphasique de transfert d'énergie comprenant des évaporateurs capillaires, décrite en préambule de la présente description, - les figures 2 à 5 représentent des évaporateurs capillaires de la technique antérieure, également décrits en préambule de la présente description,
- la figure 6 est une représentation schématique d'une boucle diphasique comprenant au moins un évaporateur capillaire (en coupe axiale) suivant la présente invention, et les figures 7 à 9 sont des représentations schématiques de 1 ' évaporateur capillaire suivant l'invention, analogues à celle de la figure 6 et utiles à la description de son fonctionnement.
On se réfère à la figure 6 du dessin annexé où l'on retrouve les parties essentielles de la boucle diphasique de la figure 1, à savoir, outre un ou plusieurs évaporateurs capillaires 1,1',1".... suivant l'invention, des conduits 3 de gaz et 4 de vapeur, un condenseur 2 et un réservoir pressuriseur 8.
L' évaporateur suivant l'invention comprend, comme les précédents, une enveloppe tubulaire 9 et une enceinte à paroi poreuse 12 maintenue dans l'enveloppe 9 à l'écart de cette enveloppe par des entretoises telles que les entretoises 13 représentées à la figure 3, ou par des rainures formées sur la face intérieure de l'enveloppe 9, de manière à définir entre l'enveloppe et l'enceinte une chambre 15 de collection de la vapeur formée dans 1 'évaporateur. L' évaporateur comprend encore une entrée 10 pour le fluide caloporteur à l'état liquide et une sortie 11 pour la vapeur de ce fluide.
Suivant une caractéristique de l' évaporateur selon l'invention, celui-ci comprend (voir figure 16) un tube 22, par exemple de forme hélicoïdale, se développant axialement dans tout l'espace intérieur à l'enceinte 12, jusqu'au fond de celle-ci. Le tube 22 est bouché à son extrémité 22' voisine de ce fond mais il est percé sur toute sa longueur de trous 23, par exemple régulièrement espacés. Le tube hélicoïdal 22 s'ajuste sensiblement au diamètre intérieur de l'enceinte 12 de manière à suivre étroitement la paroi poreuse de cette enceinte. Les trous 23 sont percés en face de cette paroi, pour injecter du liquide caloporteur dans l'espace 14 intérieur à l'enceinte 12, en arrosant continûment cette paroi, comme on le verra plus loin.
L'extrémité 24 non bouchée du tube 22 traverse, et est portée par, une cloison 25 en un matériau étanche monté transversalement dans une chambre 26 interposée, suivant l'invention, entre l'entrée 10 de 1 ' évaporateur et l'ensemble constitué par l'enveloppe 9 et l'enceinte 12. La cloison 25 divise la chambre 26 en un premier compartiment (26x, 262), voir figure 7, et un deuxième compartiment 263 dont l'un (26α, 26?) contient une cloison 27 en un matériau poreux analogue à celui constituant la paroi de l'enceinte 12. La cloison 27 est transversale à l'axe X de l' évaporateur, et elle est donc sensiblement parallèle à la cloison étanche 26. Elle divise le premier compartiment (261., 262) en deux sous-compartiments 261 et 262.
Suivant une autre caractéristique de la présente invention, des moyens 28 de refroidissement de la chambre 26 sont montés sur celle-ci. Comme on le verra plus loin, ces moyens 28 sont utilisés pour condenser du fluide caloporteur à l'état de vapeur présent, dans certains types de fonctionnement de l' évaporateur, dans la chambre 26. A titre d'exemple illustratif et non limitatif, ces moyens 28 peuvent être constitués par une source froide à effet Peltier. Dans ce cas, un drain thermique 29 peut être disposé entre les moyens 28 et l'enveloppe métallique 9.
L' évaporateur suivant l'invention fonctionne alors comme suit. En l'absence de gaz incondensable et de vapeur dans l'enceinte ou à l'entrée de 1 'évaporateur, situation idéale illustrée à la figure 6, le liquide caloporteur qui revient du condenseur 2 traverse la cloison poreuse 27 et est ensuite obligé d'emprunter le tube troué 22 qui plonge au coeur de 1 'évaporateur . Le liquide gicle par les trous 23 du tube en injectant du liquide caloporteur dans la paroi poreuse de l'enceinte qui fait face à ces trous. L'enceinte 12 de 1 'évaporateur est pleine de liquide et sa paroi poreuse est toujours alimentée en liquide. Les moyens de condensation 28 sont alors inutiles et donc inactifs. L' évaporateur fonctionne normalement .
On se réfère maintenant à la figure 7 pour expliquer le fonctionnement de 1 ' évaporateur suivant l'invention, en présence de bulles de gaz incondensable 30 dans la boucle, et en l'absence de formation de vapeur dans l'enceinte 12. C'est une situation que l'on rencontre dans un fonctionnement à forte puissance de 1 'évaporateur (typiquement supérieure à 50 W pour de l'ammoniac). Dans ce cas, les bulles 30 de gaz incondensable sont arrêtées par la cloison poreuse 27 à l'entrée de 1 'évaporateur, comme représenté à la figure. Cependant, en microgravité par exemple, une certaine quantité de gaz incondensable peut s'accumuler dans une partie 31 de l'enceinte 12 par désorption du gaz dissous dans le liquide. Toutefois, grâce au tube troué 22, la paroi poreuse de l'enceinte 12 est toujours mouillée par du liquide même dans cette partie 31 de l'enceinte où s'est accumulé le gaz incondensable. Dans ce cas, la source froide 28 peut reste inactive et les performances de 1 'évaporateur restent nominales.
On se réfère maintenant à la figure 8 pour expliquer le fonctionnement de l' évaporateur suivant l'invention, en présence de bulles 30 de gaz incondensable dans la boucle et avec formation de bulles 32 de vapeur dans l'enceinte 12. C'est une situation que l'on rencontre dans un fonctionnement à faible puissance thermique (typiquement inférieure à 50 W pour l'ammoniac). Dans ce cas, la cloison poreuse 27 arrête à la fois le gaz incondensable 30 et la vapeur 32 qui entrent dans 1 'évaporateur sous l'effet de la circulation du fluide caloporteur. Cependant une certaine quantité de gaz incondensable peut s'accumuler en 31 dans l'enceinte 12 comme dans le cas précédent et cette enceinte contient aussi, par hypothèse, de la vapeur 32 qui s'y forme, en faible quantité dans cette hypothèse. Toutefois, grâce au tube troué 22, la paroi poreuse de l'enceinte 12 reste mouillée par du liquide caloporteur, même dans la partie 31 ou s'est accumulé le gaz incondensable et la vapeur. Pour éviter que la vapeur qui s'accumule en amont de la cloison poreuse 27 ne vienne à couvrir toute la surface de cette cloison en bloquant alors le fonctionnement de 1' évaporateur, on active, suivant l'invention, la source froide 28 à effet Peltier pour condenser cette vapeur. Sa puissance de refroidissement doit évidemment être compatible avec la puissance (très faible cependant) nécessaire à la condensation du débit massique total de vapeur générée dans l'enceinte 12 de 1 'évaporateur et arrivant à l'entrée de celui-ci. A titre d'exemple, la puissance typique de refroidissement qu'il faut installer pour un évaporateur à ammoniac est de l'ordre de quelques watts.
On a illustré schématiquement à la figure 9 un fonctionnement extrême de l' évaporateur suivant l'invention, dans lequel l'enceinte 12 est remplie de vapeur et de gaz incondensable, seul le tube troué 22 restant rempli de liquide caloporteur pour l'arrosage de la face interne de la paroi poreuse de cette enceinte 12, de manière à assurer le fonctionnement de 1 ' évaporateur . Dans ce cas extrême, la puissance délivrée par la source froide 28 est exactement égale à celle qui est nécessaire à la condensation de toute la vapeur incondensée arrivant contre la cloison poreuse 27. II apparaît maintenant que l'invention permet bien d'atteindre les buts fixés, à savoir réaliser un évaporateur susceptible d'être disposé en parallèle avec d'autres dans une boucle diphasique de transfert de puissance thermique, contrairement à l' évaporateur de la technique antérieure représentée à la figure 4. Cet évaporateur est en outre robuste vis-à-vis de la génération de gaz incondensable et de vapeur dans l'enceinte à paroi poreuse de 1 ' évaporateur, contrairement à 1 ' évaporateur des figures 2 et 3. La connexion de son entrée à une boucle diphasique exige un simple conduit flexible et non rigide, contrairement à celle de 1 ' évaporateur de la technique antérieure représentée à la figure 5, ce qui facilite l'intégration d'une telle boucle dans des espaces réduits et/ou de forme complexe, comme on en rencontre dans les équipements de véhicules spatiaux.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté qui n'a été donné qu'à titre d'exemple. C'est ainsi que l'invention n'est pas limitée à sa mise en oeuvre dans des circuits de conditionnement thermique d'équipements de véhicules spatiaux et peut trouver applications aussi dans des équipements fonctionnant au sol. En outre, 1 ' évaporateur suivant l'invention peut s'intégrer à tout type de boucles diphasiques à pompage capillaire, quel que soit le niveau de la température à réguler.
Egalement, 1 ' évaporateur suivant l'invention peut subir une modification pour faciliter ses essais au sol. En effet, dans ces conditions, si 1 'évaporateur est disposé verticalement avec sa sortie en partie haute, la gravité rassemble le liquide en partie basse et les gaz en partie haute, aussi bien dans l'enceinte 12 que dans le tube 22 dont l'extrémité haute n'est plus alimentée en liquide caloporteur, celui-ci n'arrosant plus alors la partie haute de l'enceinte 12. Pour éviter cet inconvénient, on peut disposer un tube droit 33 à paroi pleine (comme représenté en trait interrompu à la figure 6) dans l'enceinte 12 pour que le liquide entrant dans cette enceinte pénètre dans le tube hélicoïdal par l'extrémité de ce tube qui est voisine du fond de l'enceinte. Dans ce cas, c'est évidemment l'autre extrémité du tube 22, voisine de la cloison 25 qui est bouchée. On comprend qu'ainsi le liquide caloporteur entrant dans le tube 22 arrose la paroi de l'enceinte, y compris au niveau d'une éventuelle poche de gaz incondensable telle que celle représentée en 31 à la figure 7.

Claims

REVENDICATIONS
1. Evaporateur capillaire pour boucle diphasique de transfert d'énergie entre une source chaude (A) et une source froide (B) , du type qui comprend a) une enceinte (12) en un matériau poreux présentant une entrée pour un fluide caloporteur à l'état liquide, b) une enveloppe (9) dans laquelle est placée ladite enceinte (12) pour définir, autour de celle-ci, une chambre (15) de collection dudit fluide à l'état de vapeur, ladite enveloppe (9) présentant une sortie par laquelle s'évacue la vapeur recueillie par ladite chambre (15), évaporateur caractérisé en ce qu'il comprend un tube (22) qui se développe dans tout l'espace (14) intérieur à l'enceinte (12) à paroi poreuse, à partir d'une extrémité (24) du tube constituant l'entrée de l'enceinte (12) en liquide caloporteur, ledit tube (22) étant percé sur toute sa longueur de trous (33) d'injection du liquide caloporteur dans la paroi de l'enceinte (12).
2. Evaporateur conforme à la revendication 1, caractérisé en ce qu'il comprend une chambre (26) placée à l'entrée de l'enceinte (12) à paroi poreuse, cette chambre étant divisée en des premier (26!, 262) et deuxième (263) compartiments par une cloison (25) en un matériau étanche, le fluide caloporteur entrant à l'état liquide dans le premier compartiment (26 262) et pénétrant dans l'enceinte (12) par l'entrée (24) du tube troué (22), qui traverse ladite cloison (25) et le deuxième compartiment (263) .
3. Evaporateur conforme à la revendication 2, caractérisé en ce que ledit premier compartiment (261;
262) est subdivisé en des premier (26ι) et deuxième
(262) sous-compartiments par une cloison (27) en matériau poreux, sensiblement parallèle à la cloison (25) en un matériau étanche, les entrées (10) du premier compartiment et du tube troué (22) étant situées de part et d'autre de ladite cloison (27) en matériau poreux.
4. Evaporateur conforme à la revendication 3, caractérisé en ce qu'il comprend des moyens (28) de condensation de vapeur du fluide caloporteur éventuellement présente dans le premier sous-compartiment (26.) .
5. Evaporateur conforme à la revendication 3, caractérisé en ce que lesdits moyens (28) de condensation sont du type à effet Peltier.
6. Evaporateur conforme à la revendication 5, caractérisé en ce qu'il comprend un drain thermique (29) entre lesdits moyens (28) de condensation et l'enveloppe (9) de 1 'évaporateur, cette enveloppe (9) étant constituée en un matériau bon conducteur de la chaleur.
7. Evaporateur conforme à l'une quelconque des revendications précédentes, caractérisé en ce que le tube troué (22) est de forme hélicoïdale et se développe à proximité d'une face interne cylindrique de la paroi poreuse de l'enceinte (12), les trous (23) percés dans ledit tube (22) débouchant vers cette paroi et l'extrémité du tube (22) opposée à son extrémité d'entrée de fluide étant bouchée.
8. Evaporateur conforme à l'une quelconque des revendications 2 à 7, caractérisé en ce que le liquide pénétrant dans l'enceinte (12) traverse d'abord un tube (33) à paroi pleine raccordé par son autre extrémité au tube troué (22), au voisinage du fond de l'enceinte 12.
9. Boucle diphasique de transfert d'énergie entre une source chaude et une source froide, comprenant au moins un évaporateur capillaire conforme à l'une quelconque des revendications précédentes.
EP97936757A 1996-08-12 1997-08-08 Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide Expired - Lifetime EP0855013B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9610110A FR2752291B1 (fr) 1996-08-12 1996-08-12 Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
FR9610110 1996-08-12
PCT/FR1997/001470 WO1998006992A1 (fr) 1996-08-12 1997-08-08 Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide

Publications (2)

Publication Number Publication Date
EP0855013A1 true EP0855013A1 (fr) 1998-07-29
EP0855013B1 EP0855013B1 (fr) 2001-02-21

Family

ID=9494993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936757A Expired - Lifetime EP0855013B1 (fr) 1996-08-12 1997-08-08 Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide

Country Status (8)

Country Link
US (1) US6058711A (fr)
EP (1) EP0855013B1 (fr)
JP (1) JPH11514081A (fr)
CA (1) CA2234403A1 (fr)
DE (1) DE69704105T2 (fr)
ES (1) ES2156398T3 (fr)
FR (1) FR2752291B1 (fr)
WO (1) WO1998006992A1 (fr)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450148B2 (ja) * 1997-03-07 2003-09-22 三菱電機株式会社 ループ型ヒートパイプ
FR2783313A1 (fr) * 1998-09-15 2000-03-17 Matra Marconi Space France Dispositif de tranfert de chaleur
JP2000241089A (ja) * 1999-02-19 2000-09-08 Mitsubishi Electric Corp 蒸発器、吸熱器、熱輸送システム及び熱輸送方法
KR100294317B1 (ko) * 1999-06-04 2001-06-15 이정현 초소형 냉각 장치
US6189333B1 (en) * 1999-07-26 2001-02-20 Delphi Technologies, Inc. Refrigerant filter for use in an automotive air conditioning system
US8047268B1 (en) 2002-10-02 2011-11-01 Alliant Techsystems Inc. Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems
US7251889B2 (en) * 2000-06-30 2007-08-07 Swales & Associates, Inc. Manufacture of a heat transfer system
US8136580B2 (en) 2000-06-30 2012-03-20 Alliant Techsystems Inc. Evaporator for a heat transfer system
US7931072B1 (en) 2002-10-02 2011-04-26 Alliant Techsystems Inc. High heat flux evaporator, heat transfer systems
WO2002002201A2 (fr) * 2000-06-30 2002-01-10 Swales Aerospace Controle de phases dans des evaporateurs capillaires
US8109325B2 (en) 2000-06-30 2012-02-07 Alliant Techsystems Inc. Heat transfer system
US7549461B2 (en) 2000-06-30 2009-06-23 Alliant Techsystems Inc. Thermal management system
US7004240B1 (en) * 2002-06-24 2006-02-28 Swales & Associates, Inc. Heat transport system
US7708053B2 (en) * 2000-06-30 2010-05-04 Alliant Techsystems Inc. Heat transfer system
US6843308B1 (en) 2000-12-01 2005-01-18 Atmostat Etudes Et Recherches Heat exchanger device using a two-phase active fluid, and a method of manufacturing such a device
US7200161B2 (en) * 2001-01-22 2007-04-03 The Boeing Company Side-pumped solid-state disk laser for high-average power
US6625193B2 (en) * 2001-01-22 2003-09-23 The Boeing Company Side-pumped active mirror solid-state laser for high-average power
US6768751B2 (en) 2002-06-17 2004-07-27 The Boeing Company Methods and apparatus for removing heat from a lasing medium of a solid-state laser assembly
BR0315812A (pt) * 2002-10-28 2005-09-13 Swales & Associates Inc Sistema de transferência de calor, sistema termodinâmico e método de utilizar os sistemas
CN100449244C (zh) * 2002-10-28 2009-01-07 斯沃勒斯联合公司 传热系统
US6941761B2 (en) * 2003-06-09 2005-09-13 Tecumseh Products Company Thermoelectric heat lifting application
TW592033B (en) * 2003-10-20 2004-06-11 Konglin Construction & Mfg Co Heat transfer device and manufacturing method thereof
US6926072B2 (en) * 2003-10-22 2005-08-09 Thermal Corp. Hybrid loop heat pipe
AU2004286255B2 (en) * 2003-10-28 2010-04-08 Northrop Grumman Systems Corporation Manufacture of a heat transfer system
US6990816B1 (en) * 2004-12-22 2006-01-31 Advanced Cooling Technologies, Inc. Hybrid capillary cooling apparatus
CN100344918C (zh) * 2005-05-26 2007-10-24 王双玲 半导体电子致冷装置专用蒸发腔及其制备方法
JP2007107784A (ja) * 2005-10-12 2007-04-26 Fujikura Ltd ループ型ヒートパイプ
US7661464B2 (en) * 2005-12-09 2010-02-16 Alliant Techsystems Inc. Evaporator for use in a heat transfer system
US7748436B1 (en) 2006-05-03 2010-07-06 Advanced Cooling Technologies, Inc Evaporator for capillary loop
JP2008008512A (ja) * 2006-06-27 2008-01-17 Fujikura Ltd ループ型ヒートパイプ
AT507187B1 (de) 2008-10-23 2010-03-15 Helmut Dr Buchberger Inhalator
JP5676205B2 (ja) * 2010-10-26 2015-02-25 株式会社 正和 ループ型ヒートパイプおよびその製造方法
CN102032821A (zh) * 2010-11-17 2011-04-27 上海彩耀新能源投资发展有限公司 环路热管散热装置
HUE026804T2 (en) 2011-02-11 2016-07-28 Batmark Ltd Inhaler component
AT510837B1 (de) 2011-07-27 2012-07-15 Helmut Dr Buchberger Inhalatorkomponente
KR101953201B1 (ko) 2011-09-06 2019-02-28 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 가열식 흡연가능 재료
EP3892125A3 (fr) 2011-09-06 2022-01-05 Nicoventures Trading Limited Chauffage de substance fumable
FR2979981B1 (fr) * 2011-09-14 2016-09-09 Euro Heat Pipes Dispositif de transport de chaleur a pompage capillaire
JP5741354B2 (ja) * 2011-09-29 2015-07-01 富士通株式会社 ループ型ヒートパイプ及び電子機器
GB201207039D0 (en) 2012-04-23 2012-06-06 British American Tobacco Co Heating smokeable material
WO2014102402A1 (fr) * 2012-12-28 2014-07-03 Ibérica Del Espacio, S.A. Système de boucle fluide diphasique de type lhp pour la transmission de chaleur et la régulation thermique
GB201407426D0 (en) 2014-04-28 2014-06-11 Batmark Ltd Aerosol forming component
GB2533135B (en) 2014-12-11 2020-11-11 Nicoventures Holdings Ltd Aerosol provision systems
GB201511349D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic aerosol provision systems
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
BR112018071824B1 (pt) 2016-04-27 2023-01-10 Nicoventures Trading Limited Subconjunto, sistema, método para fabricar um vaporizador e dispositivo de fornecimento de vapor eletrônico
US10948238B2 (en) * 2017-11-29 2021-03-16 Roccor, Llc Two-phase thermal management devices, systems, and methods
CN108089618B (zh) * 2017-12-11 2019-06-18 北京空间机电研究所 一种航天光学遥感器节能型控温环路热管装置
JP7390252B2 (ja) 2020-05-12 2023-12-01 新光電気工業株式会社 ループ型ヒートパイプ
WO2022183793A1 (fr) * 2021-03-01 2022-09-09 苏州圣荣元电子科技有限公司 Caloduc en boucle de type à plaque mince
CN113446888B (zh) * 2021-06-30 2022-05-20 华中科技大学 适用于长距离热传输的多蒸发器平板式环路热管系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352392A (en) * 1980-12-24 1982-10-05 Thermacore, Inc. Mechanically assisted evaporator surface
US4467861A (en) * 1982-10-04 1984-08-28 Otdel Fiziko-Tekhnicheskikh Problem Energetiki Uralskogo Nauchnogo Tsentra Akademii Nauk Sssr Heat-transporting device
DE3431240A1 (de) * 1984-08-24 1986-03-06 Michael 4150 Krefeld Laumen Kaeltemaschine bzw. waermepumpe sowie strahlpumpe hierfuer
DE3526574C1 (de) * 1985-07-25 1987-03-26 Dornier System Gmbh Kapillarunterstuetzter Verdampfer
US4791634A (en) * 1987-09-29 1988-12-13 Spectra-Physics, Inc. Capillary heat pipe cooled diode pumped slab laser
DE3810128C1 (fr) * 1988-03-25 1989-09-07 Erno Raumfahrttechnik Gmbh, 2800 Bremen, De
US4869313A (en) * 1988-07-15 1989-09-26 General Electric Company Low pressure drop condenser/evaporator pump heat exchanger
US4957157A (en) * 1989-04-13 1990-09-18 General Electric Co. Two-phase thermal control system with a spherical wicked reservoir
FR2723187B1 (fr) * 1994-07-29 1996-09-27 Centre Nat Etd Spatiales Systeme de transfert d'energie entre une source chaude et une source froide
US5725049A (en) * 1995-10-31 1998-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Capillary pumped loop body heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9806992A1 *

Also Published As

Publication number Publication date
JPH11514081A (ja) 1999-11-30
WO1998006992A1 (fr) 1998-02-19
ES2156398T3 (es) 2001-06-16
EP0855013B1 (fr) 2001-02-21
US6058711A (en) 2000-05-09
FR2752291B1 (fr) 1998-09-25
CA2234403A1 (fr) 1998-02-19
DE69704105D1 (de) 2001-03-29
FR2752291A1 (fr) 1998-02-13
DE69704105T2 (de) 2001-08-02

Similar Documents

Publication Publication Date Title
EP0855013B1 (fr) Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
BE1009410A3 (fr) Dispositif de transport de chaleur.
EP2179240B1 (fr) Dispositif passif a micro boucle fluide a pompage capillaire
EP1366990B1 (fr) Dispositif de transfert de chaleur pour satellite comprenant un évaporateur
EP1293428B1 (fr) Dispositif de transfert de chaleur
EP2181301B1 (fr) Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire
EP0772757B1 (fr) Systeme de transfert d'energie entre une source chaude et une source froide
EP2032440B1 (fr) Dispositif de regulation thermique passive a base de boucle fluide diphasique a pompage capillaire avec capacite thermique
FR3002028A1 (fr) Dispositif de transport de chaleur a fluide diphasique
EP2795226B1 (fr) Dispositif de refroidissement
EP2520889B1 (fr) Dispositif et systeme de transfert de la chaleur
WO2014191512A1 (fr) Dispositif de transport de chaleur à fluide diphasique
FR2783313A1 (fr) Dispositif de tranfert de chaleur
EP3250870A1 (fr) Boucle diphasique de refroidissement a evaporateurs satellites
EP2981781B1 (fr) Caloduc comportant un bouchon gazeux de coupure
FR2533364A1 (fr) Dispositif de repartition de la chaleur pour composants electroniques du type comportant au moins un element chaud et un element froid tels que les tubes a ondes progressives et procede de realisation d'un tel dispositif
FR2741427A1 (fr) Circuit de transfert de chaleur a deux phases
FR2542439A1 (fr) Procede pour chauffer un fluide au moyen d'un liquide plus chaud et installation pour sa mise en oeuvre
FR2783312A1 (fr) Boucle fluide a pompage capillaire
EP4323711A1 (fr) Dispositif diphasique de transfert de chaleur à réservoir d'excédent de liquide
BE630920A (fr)
WO1996020383A1 (fr) Echangeur thermique a circulation de fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69704105

Country of ref document: DE

Date of ref document: 20010329

ITF It: translation for a ep patent filed

Owner name: BIANCHETTI - BRACCO - MINOJA S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2156398

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020730

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020903

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

BERE Be: lapsed

Owner name: CENTRE NATIONAL D'*ETUDES SPATIALES

Effective date: 20030831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120824

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120821

Year of fee payment: 16

Ref country code: DE

Payment date: 20120808

Year of fee payment: 16

Ref country code: FR

Payment date: 20120919

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120726

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69704105

Country of ref document: DE

Effective date: 20140301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902