EP0859421A1 - Liquid feul cell system - Google Patents

Liquid feul cell system Download PDF

Info

Publication number
EP0859421A1
EP0859421A1 EP97121291A EP97121291A EP0859421A1 EP 0859421 A1 EP0859421 A1 EP 0859421A1 EP 97121291 A EP97121291 A EP 97121291A EP 97121291 A EP97121291 A EP 97121291A EP 0859421 A1 EP0859421 A1 EP 0859421A1
Authority
EP
European Patent Office
Prior art keywords
line
anode
cathode
cell system
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97121291A
Other languages
German (de)
French (fr)
Other versions
EP0859421B1 (en
Inventor
Gerald Hornburg
Arnold Dr. Lamm
Peter Dr. Urban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Fuel Cell GmbH
Original Assignee
DBB FUEL CELL ENGINES GES MIT
DBB Fuel Cell Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DBB FUEL CELL ENGINES GES MIT, DBB Fuel Cell Engines GmbH filed Critical DBB FUEL CELL ENGINES GES MIT
Publication of EP0859421A1 publication Critical patent/EP0859421A1/en
Application granted granted Critical
Publication of EP0859421B1 publication Critical patent/EP0859421B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a fuel cell system with a Anode compartment and a cathode compartment, which are protected by a proton Membrane are separated from each other.
  • WO 96/12317 A1 discloses a generic fuel cell system in which a liquid methanol / water mixture is fed to an anode compartment. A line for recirculation of the methanol / water mixture is also provided. A gas separator for separating CO 2 formed in the anode compartment is also provided in this line. With the CO 2 , however, methanol vapor is also separated off, which leads to a reduction in efficiency.
  • the return of the gas-free, hot anode current provides a sufficiently high fuel cell inlet temperature, which increases the overall efficiency of the fuel cell.
  • the steam separated in the first gas separator will be called that Liquid / gas mixture fed back upstream of the cooler.
  • the gas is in a second gas separator separated and fed to the cathode exhaust.
  • the Gas separation at the coolest point in the system leads to a low fuel discharge through the inert carbon dioxide gas.
  • the fuel components discharged are calculated with the oxygen-rich cathode exhaust gas mixed and in one Exhaust gas catalyst converted to carbon dioxide and water vapor. This can significantly reduce the loss of efficiency as part of the thermal energy in the exhaust gas recovered an expander and sent it to a compressor Compression of the oxygen-containing gas is transmitted.
  • the overall system has a positive water balance, since one large part of the water vapor before and after that as a condensation turbine condensed acting expander and so recovered water a collection or expansion tank is fed.
  • the fuel cell 1 consists of an anode compartment 2 and a cathode compartment 3, which are separated from one another by a proton-conducting membrane 4.
  • a liquid fuel / coolant mixture is fed to the anode compartment 2 via an anode feed line 5.
  • the system described in the exemplary embodiment is operated with liquid methanol as the fuel and water as the coolant. Although only the use of a methanol / water mixture is described below, the scope of this application is not intended to be limited to this exemplary embodiment. Liquids or ionic or non-ionic additives to the water with good antifreeze properties are particularly suitable as coolants.
  • a cathode feed line 6 leads into the cathode compartment 3 passed oxygen-containing gas.
  • ambient air is used for this.
  • the fuel cell 1 the fuel oxidizes at the anode, the atmospheric oxygen the cathode is reduced.
  • Can from the anode side now protons migrate through the proton-conducting membrane 4 and on the cathode side with the oxygen ions to water connect.
  • This electrochemical reaction creates a voltage between the two electrodes. Through parallel or Series of many such cells voltages can result in a so-called fuel cell stack and currents can be achieved that drive a Sufficient vehicle.
  • This liquid / gas mixture is via a return line 7, which with the Anode lead 5 is connected from the anode compartment 2 dissipated.
  • Containing the residual oxygen and water vapor Cathode exhaust air is discharged via a cathode exhaust line 8.
  • the ambient air is used to maintain good efficiency provided in the cathode compartment 3 with overpressure.
  • This is in the cathode lead 6 with the help of an electric motor 9 powered compressor 10 arranged the desired Air mass flow draws in and to the required pressure level condensed.
  • An air filter 11 is provided upstream of the compressor 10.
  • a Part of that needed to compress the ambient air Energy can be stored in the cathode exhaust gas line 8 arranged expanders 12 can be recovered.
  • the regulation of Fuel cell output takes place through control or regulation the compressor speed and thus the available Air mass flow.
  • the methanol / water mixture is on the anode side with the help a pump 13 circulates at a predetermined pressure to to ensure the anode constantly has an excess supply of fuel.
  • the ratio of water to methanol in the anode lead 5 is set with the aid of a sensor 14 which the methanol concentration in the anode lead 5 measures. In Dependence on this sensor signal then takes place Concentration control for the methanol / water mixture, whereby the liquid methanol from a methanol tank 15 via a Methanol feed line 16 fed and using a Injection nozzle 19, not shown in detail, into the anode feed line 5 is injected.
  • the injection pressure is determined by a Injection pump 17 arranged in methanol supply line 16 generated.
  • the anode compartment 2 is thus constantly on Methanol / water mixture supplied with a constant methanol concentration.
  • the methanol / water mixture remaining in the second gas separator 21 is via a line 22 in the anode lead 5th returned.
  • the return of the hot methanol / water mixture from the return line 7 and the cooled down Methanol / water mixture from line 22 takes place via a Thermostatic valve 23. With the help of this thermostatic valve 23 can thus the inlet temperature at the anode compartment 2 to one specified value can be regulated.
  • the return of the hot, gas-free methanol / water mixture provides a sufficient high fuel cell temperature at the anode inlet, which causes the Overall efficiency of the fuel cell system is increased.
  • a bypass line 24 upstream of the return line 7 of the first gas separator 18 connects to the line 33, and a metering valve 25 arranged therein can be part of the hot liquid / gas mixture from the return line 7 separated and fed directly to the cooler 20.
  • the one in The first gas separator 18 is then separated steam if necessary via a further metering valve 26 to the liquid / gas mixture supplied upstream of the cooler 20.
  • bypass lines 27, 28 can be used integrated metering valves 29, 30 and heat exchangers 31, 32 are provided, with the help of if necessary, thermal energy from the hot cathode exhaust air in the cathode exhaust line 8 on the Chilled methanol / water mixture in line 22 or of the hot methanol / water mixture in the Anode lead 5 to the cooler air mass flow in the Cathode lead 6 can be transmitted.
  • the heat exchangers for this purpose, 31, 32 are preferably in the cathode exhaust gas line 8 between cathode compartment 3 and expander 12 or in the Cathode feed line 6 between compressor 10 and cathode compartment 3 arranged.
  • a temperature sensor 35 downstream of the heat exchanger 31 in the Cathode exhaust line 8 can be provided.
  • the heat exchanger 32 With the help of the heat exchanger 32 becomes the hot, charged air before entering in the cathode compartment 3 preferably to a temperature of up to cooled to 100 ° C.
  • the gas mixture separated in the second gas separator 21 Residual methanol and carbon dioxide is fed into the line 33 Cathode exhaust line 8 out where they are rich in oxygen Cathode exhaust air mixed and in a in the cathode exhaust line 8 arranged downstream of the mouth of the line 33 Exhaust catalyst 34 to carbon dioxide and water vapor implemented.
  • At least part of the water vapor as water to be separated from the cathode exhaust air are upstream and downstream of the expander 12 two water separators 36, 37 in the cathode exhaust line 8 arranged.
  • the expander 12 serves as compact condensing turbine, in turn at the output Part of the water vapor condensed out.
  • the Cathode exhaust following the catalytic converter 34 with the help of the heat exchanger 31 described above and Temperature sensor 35 to a predetermined temperature level cooled down. Only through this combination of temperature control and condensing turbine can maintain a positive water balance of the overall system can be guaranteed. That in the Water separators 36, 37 collected water is then via a recovery line 38 with an integrated recovery pump 39 returned to the second gas separator 21.
  • This second Gas separator is also used as a collection container for the product water accumulating on the cathode side and as an expansion tank trained for the liquid methanol / water mixture. The level of the collecting container can be adjusted via a level control be checked and regulated.
  • This overall system shows compared to conventional PEM fuel cell systems with a more compact design and less Cost a comparable system impact. Especially by combining the coolant and fuel circuit volume and costs are reduced. Furthermore the overall efficiency is increased because there is no energy for the Evaporation, overheating and fuel production were used must be and the efficiency losses due to gas processing be significantly reduced in the catalytic converter. Air humidification can also be dispensed with. Other advantages are the positive water balance and one to see improved cold start behavior. Finally, can through the use of a methanol / water mixture Frost protection measures are dispensed with.

Abstract

A fuel cell system has anode and cathode chambers (2,3) that are separated by a proton-conducting membrane (PEM). A pipeline (6) feeds acid-containing gas to the cathode chamber and another one (5) feeds a liquid fuel/coolant mixture to the anode chamber. There is a return pipeline between the anode chamber and the anode pipe, plus a cathode exhaust gas pipeline. The coolant is water. The liquid fuel is an electrochemically oxidisable substance with the general structure H-ÄCH2OÜn-Y with 1n5 and Y=H or CH3. In the return pipeline is located a gas separator (18) and in the cathode exhaust pipeline is located an exhaust catalyser (34). Between these two, a pipeline is provided through which the gas separated is fed into the exhaust pipeline upstream of the catalyser.

Description

Die Erfindung betrifft ein Brennstoffzellensystem mit einem Anodenraum und einem Kathodenraum, die durch eine protonenleitende Membran voneinander getrennt sind.The invention relates to a fuel cell system with a Anode compartment and a cathode compartment, which are protected by a proton Membrane are separated from each other.

Zur Zeit ist zur Verstromung von flüssigen Energieträgern in einem Brennstoffzellensystem mit Protonenaustauschermembran (PEM-Brennstoffzelle) weltweit schwerpunktmäßig die Reformierung von Methanol in einem Gaserzeugungssystem vorgesehen. Dabei wird ein Wasser/Methanol-Gemisch verdampft und in einem Reformer zu Wasserstoff, Kohlendioxid und Kohlenmonoxid umgesetzt. Verdampfung und Reformierung sind hinsichtlich des energetischen Umsatzes sehr aufwendig. Dies hat Wirkungsgradverluste für das Gesamtsystem zur Folge. Darüber hinaus sind Gasaufbereitungsschritte zur Reinigung des Reformierungsgases notwendig. Das gereinigte Gas wird dann dem PEM-Brennstoffzellensystem zugeführt.At present, the generation of electricity from liquid energy sources is in a fuel cell system with proton exchange membrane (PEM fuel cell) the main focus worldwide Reforming of methanol in a gas generation system intended. A water / methanol mixture is evaporated and in a reformer on hydrogen, carbon dioxide and Carbon monoxide implemented. Evaporation and reforming are very expensive in terms of energy turnover. This results in efficiency losses for the overall system. In addition, gas treatment steps to clean the Reforming gas necessary. The cleaned gas is then the PEM fuel cell system supplied.

Ein weiteres Problem stellt der Wassereinsatz für die Reformierung dar. Das auf der Kathodenseite anfallende Produktwasser reicht, zur Deckung des Wasserhaushaltes nicht aus. Hierdurch wird ein separater Wassertank notwendig.Water use poses another problem for the Reforming. That which arises on the cathode side Product water is sufficient, but not to cover the water balance out. This makes a separate water tank necessary.

Weiterhin ist aus der US 48 28 941 A1 eine Methanol/Luft-Brennstoffzelle mit einer CO2-permeablen, anionenleitenden Membran bekannt.Furthermore, from US 48 28 941 A1 a methanol / air fuel cell with a CO 2 permeable, anion-conducting membrane is known.

Aus der WO 96/12317 A1 ist schließlich ein gattungsgemäßes Brennstoffzellensystem bekannt, bei dem einem Anodenraum ein flüssiges Methanol/Wassergemisch zugeführt wird. Weiterhin ist eine Leitung zur Rezirkulation des Methanol/Wassergemisches vorgesehen. In dieser Leitung ist außerdem ein Gasabscheider zur Abtrennung von im Anodenraum gebildeten CO2 vorgesehen. Mit dem CO2 wird jedoch gleichzeitig auch Methanoldampf abgetrennt, was zu einer Wirkungsgradverringerung führt.Finally, WO 96/12317 A1 discloses a generic fuel cell system in which a liquid methanol / water mixture is fed to an anode compartment. A line for recirculation of the methanol / water mixture is also provided. A gas separator for separating CO 2 formed in the anode compartment is also provided in this line. With the CO 2 , however, methanol vapor is also separated off, which leads to a reduction in efficiency.

Es ist die Aufgabe der Erfindung, ein einfacht aufgebautes, kompaktes und mit einem flüssigen Brennmittel/Kühlmittelgemisch betriebenes Brennstoffzellensystem mit protonenleitender Membran mit verbessertem Gesamtwirkungsgrad zu schaffen.It is the object of the invention to provide a simple, compact and with a liquid fuel / coolant mixture operated fuel cell system with proton-conducting To create membrane with improved overall efficiency.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing Features of claim 1 solved.

Die Rückführung des gasfreien, heißen Anodenstromes liefert eine ausreichend hohe Brennstoffzelleneingangstemperatur, wodurch der Gesamtwirkungsgrad der Brennstoffzelle steigt.The return of the gas-free, hot anode current provides a sufficiently high fuel cell inlet temperature, which increases the overall efficiency of the fuel cell.

Der im ersten Gasabscheider abgetrennte Dampf wird dem heißen Flüssigkeits/Gas-Gemisch vor dem Kühler wieder zugeführt. Erst nach erfolgter Kühlung wird das Gas in einem zweiten Gasabscheider abgetrennt und dem Kathodenabgas zugeführt. Die Gasabscheidung am kühlsten Punkt des Systems führt zu einem geringen Brennmittelaustrag über das inerte Kohlendioxidgas. Die ausgetragenen Brennmittelanteile werden mit dem sauerstoffreichen Kathodenabgas gemischt und in einem Abgaskatalystaor zu Kohlendioxid und Wasserdampf umgesetzt. Dadurch kann der Wirkungsgradverlust wesentlich verringert werden, da ein Teil der thermischen Energie im Abgas durch einen Expander zurückgewonnen und auf einen Kompressor zur Verdichtung des sauerstoffhaltigen Gases übertragen wird.The steam separated in the first gas separator will be called that Liquid / gas mixture fed back upstream of the cooler. First After cooling, the gas is in a second gas separator separated and fed to the cathode exhaust. The Gas separation at the coolest point in the system leads to a low fuel discharge through the inert carbon dioxide gas. The fuel components discharged are calculated with the oxygen-rich cathode exhaust gas mixed and in one Exhaust gas catalyst converted to carbon dioxide and water vapor. This can significantly reduce the loss of efficiency as part of the thermal energy in the exhaust gas recovered an expander and sent it to a compressor Compression of the oxygen-containing gas is transmitted.

Das Gesamtsystem weist eine positive Wasserbilanz auf, da ein großer Teil des Wasserdampfes vor und nach dem als Kondensationsturbine wirkenden Expander auskondensiert und das so zurückgewonne Wasser einem Sammel- beziehungsweise Ausgleichsbehälter zugeführt wird. The overall system has a positive water balance, since one large part of the water vapor before and after that as a condensation turbine condensed acting expander and so recovered water a collection or expansion tank is fed.

Weitere Vorteile und Ausgestaltungen gehen aus den Unteransprüchen und der Beschreibung hervor. Die Erfindung ist nachstehend anhand einer Zeichnung, die den Prinzipaufbau des Brennstoffzellensystems zeigt, näher beschrieben.Further advantages and configurations result from the subclaims and the description. The invention is as follows based on a drawing showing the basic structure of the fuel cell system shows, described in more detail.

Die Brennstoffzelle 1 besteht aus einem Anodenraum 2 und einem Kathodenraum 3,die durch eine protonenleitende Membran 4 voneinander getrennt sind. Über eine Anodenzuleitung 5 wird dem Anodenraum 2 ein flüssiges Brennmittel/Kühlmittelgemisch zugeführt. Als Brennmittel kann hierbei jede bei Zimmertemperatur flüssige und elektrochemisch oxidierbare Substanz mit der allgemeinen Strukturformel H-[-CH2O-]n-Y mit 1≤n≤5 und Y=H oder Y=CH3 verwendet werden. Das im Ausführungsbeispiel beschriebene System wird mit flüssigem Methanol als Brennmittel und Wasser als Kühlmittel betrieben. Obwohl im folgenden nur noch die Verwendung eines Methanol/Wassergemisches beschrieben wird, soll der Schutzbreich dieser Anmeldung jedoch nicht auf dieses Ausführungsbeispiel beschränkt werden. Als Kühlmittel kommen insbesondere auch Flüssigkeiten oder ionische beziehungsweise nicht-ionische Zusätze zum Wasser mit guten Frostschutzeigenschaften in Frage.The fuel cell 1 consists of an anode compartment 2 and a cathode compartment 3, which are separated from one another by a proton-conducting membrane 4. A liquid fuel / coolant mixture is fed to the anode compartment 2 via an anode feed line 5. Any substance that is liquid and electrochemically oxidizable at room temperature and has the general structural formula H - [- CH 2 O-] n -Y with 1≤n≤5 and Y = H or Y = CH 3 can be used as the fuel. The system described in the exemplary embodiment is operated with liquid methanol as the fuel and water as the coolant. Although only the use of a methanol / water mixture is described below, the scope of this application is not intended to be limited to this exemplary embodiment. Liquids or ionic or non-ionic additives to the water with good antifreeze properties are particularly suitable as coolants.

In den Kathodenraum 3 wird über eine Kathodenzuleitung 6 ein sauerstoffhaltiges Gas geleitet. Gemäß Ausführungsbeispiel wird hierzu Umgebungsluft verwendet. In der Brennstoffzelle 1 wird das Brennmittel an der Anode oxidiert, der Luftsauerstoff an der Kathode reduziert. Hierzu wird die protonenleitende Membran 4 auf den entsprechenden Oberflächen mit geeigneten Katalysatoren, wie zum Beispiel hochoberflächige Edelmatallmohre oder getragene Katalysatoren beschichtet. Von der Anodenseite können nun Protonen durch die protonenleitende Membran 4 wandern und sich an der Kathodenseite mit den Sauerstoffionen zu Wasser verbinden. Bei dieser elektrochemischen Reaktion entsteht zwischen den beiden Elektroden eine Spannung. Durch Parallelbeziehungsweise Hintereinanderschaltung vieler solcher Zellen zu einem sogenannten Brennstoffzellenstapel können Spannungen und Stromstärken erreicht werden, die zum Antrieb eines Fahrzeugs ausreichen.A cathode feed line 6 leads into the cathode compartment 3 passed oxygen-containing gas. According to the embodiment ambient air is used for this. In the fuel cell 1 the fuel oxidizes at the anode, the atmospheric oxygen the cathode is reduced. For this, the proton-conducting membrane 4 on the corresponding surfaces with suitable catalysts, such as high-surface precious metal tubes or supported catalysts coated. Can from the anode side now protons migrate through the proton-conducting membrane 4 and on the cathode side with the oxygen ions to water connect. This electrochemical reaction creates a voltage between the two electrodes. Through parallel or Series of many such cells voltages can result in a so-called fuel cell stack and currents can be achieved that drive a Sufficient vehicle.

Als Produkt entsteht am Anodenausgang ein mit Wasser und Methanol angereichertes Kohlendioxidgas. Dieses Flüssigkeits/Gasgemisch wird über eine Rückführleitung 7 , die mit der Anodenzuleitung 5 verbunden ist, aus dem Anodenraum 2 abgeführt. Die Restsauerstoff und Wasserdampf enthaltende Kathodenabluft wird über eine Kathodenabgasleitung 8 abgeführt. Um einen guten Wirkungsgrad zu erhalten wird die Umgebungsluft im Kathodenraum 3 mit Überdruck bereitgestellt. Hierzu ist in der Kathodenzuleitung 6 ein mit Hilfe eines Elektromotors 9 angetriebener Kompressor 10 angeordnet, der den gewünschten Luftmassenstrom ansaugt und auf das erforderliche Druckniveau verdichtet. Beim Betrieb mit Umgebungsluft wird außerdem vorzugsweise im Eintrittsbereich der Kathodenzuleitung 6 stromauf des Kompressors 10 ein Luftfilter 11 vorgesehen. Ein Teil der für die Komprimierung der Umgebungsluft benötigten Energie kann mit Hilfe eines in der Kathodenabgasleitung 8 angeordneten Expanders 12 zurückgewonnen werden. Vorzugsweise sind der Kompressor 9, der Expander 12 und der Elektromotor 9 auf einer gemeinsamen Welle angeordnet. Die Regelung der Brennstoffzellenleistung erfolgt durch Steuerung oder Regelung der Kompressordrehzahl und damit des zur Verfügung stehenden Luftmassenstromes.A product with water and is formed at the anode outlet Methanol-enriched carbon dioxide gas. This liquid / gas mixture is via a return line 7, which with the Anode lead 5 is connected from the anode compartment 2 dissipated. Containing the residual oxygen and water vapor Cathode exhaust air is discharged via a cathode exhaust line 8. The ambient air is used to maintain good efficiency provided in the cathode compartment 3 with overpressure. This is in the cathode lead 6 with the help of an electric motor 9 powered compressor 10 arranged the desired Air mass flow draws in and to the required pressure level condensed. When operating with ambient air is also preferably in the entry area of the cathode feed line 6 An air filter 11 is provided upstream of the compressor 10. A Part of that needed to compress the ambient air Energy can be stored in the cathode exhaust gas line 8 arranged expanders 12 can be recovered. Preferably are the compressor 9, the expander 12 and the electric motor 9 arranged on a common shaft. The regulation of Fuel cell output takes place through control or regulation the compressor speed and thus the available Air mass flow.

Auf der Anodenseite wird das Methanol/Wassergemisch mit Hilfe einer Pumpe 13 bei einem vorgegebenem Druck zirkuliert, um an der Anode ständig ein Überangebot an Brennmittel zu gewährleisten. Das Verhältnis von Wasser zu Methanol in der Anodenzuleitung 5 wird mit Hilfe eines Sensors 14 eingestellt, der die Methanolkonzentration in der Anodenzuleitung 5 mißt. In Abhängigkeit von diesem Sensorsignal erfolgt dann eine Konzentrationsregelung für das Methanol/Wassergemisch, wobei das flüssige Methanol aus einem Methanoltank 15 über eine Methanolzuführungsleitung 16 zugeführt und mit Hilfe einer nicht näher gezeigten Einspritzdüse 19 in die Anodenzuleitung 5 eingespritzt wird. Der Einspritzdruck wird durch eine in der Methanolzuführungsleitung 16 angeordneten Einspritzpumpe 17 erzeugt. Dem Anodenraum 2 wird somit ständig ein Methanol/Wassergemisch mit konstanter Methanolkonzentration zugeführt.The methanol / water mixture is on the anode side with the help a pump 13 circulates at a predetermined pressure to to ensure the anode constantly has an excess supply of fuel. The ratio of water to methanol in the anode lead 5 is set with the aid of a sensor 14 which the methanol concentration in the anode lead 5 measures. In Dependence on this sensor signal then takes place Concentration control for the methanol / water mixture, whereby the liquid methanol from a methanol tank 15 via a Methanol feed line 16 fed and using a Injection nozzle 19, not shown in detail, into the anode feed line 5 is injected. The injection pressure is determined by a Injection pump 17 arranged in methanol supply line 16 generated. The anode compartment 2 is thus constantly on Methanol / water mixture supplied with a constant methanol concentration.

Auf der Anodenseite tritt nun das Problem auf, daß aus dem Flüssigkeits/Gasgemisch in der Rückführleitung 7 das mit Methanol- und Wasserdampf angereicherte Kohlendioxid abgetrennt werden muß. Dabei soll ein zu hoher Methanolaustrag über das Kohlendioxidgas verhindert werden, da sonst der Gesamtwirkungsgrad des Systems verringert wird und gleichzeitig unverbranntes Methanol an die Umgebung abgegeben würde. Um dies zu verhindern wird ein zweistufiges System zur Gasabtrennung vorgesehen. Ein erster Gasabscheider 18 zur Abtrennung von Dampf aus dem heißen Flüssigkeits/Gasgemisch ist in der Rückführleitung 7 angeordnet. Die heiße Flüssigkeit wird anschließend von der Rückführleitung 7 in die Anodenzuleitung 5 geführt, während der Dampf mit Hilfe einer Leitung 33 über einen Kühler 20 einem zweiten Gasabscheider 21 zugeführt wird. Das Gas wird somit erst nach erfolgter Kühlung im zweiten Gasabscheider 21, das heißt am kältesten Punkt des Systems, abgetrennt, wodurch der Methanolaustrag über das Kohlendioxid erheblich reduziert wird.The problem now arises on the anode side that from the Liquid / gas mixture in the return line 7 with Carbon dioxide enriched in methanol and water vapor is separated must become. Too high a methanol discharge should Carbon dioxide gas can be prevented, otherwise the overall efficiency of the system is reduced and at the same time unburned Methanol would be released to the environment. To prevent this a two-stage gas separation system is planned. A first gas separator 18 for separating steam from the hot Liquid / gas mixture is arranged in the return line 7. The hot liquid is then removed from the Return line 7 led into the anode lead 5 during the Steam with the help of a line 33 via a cooler 20 second gas separator 21 is supplied. The gas becomes only after cooling in the second gas separator 21, the is called at the coldest point of the system, separated by which the Methanol discharge through which carbon dioxide is significantly reduced.

Das im zweiten Gasabscheider 21 verbleibende Methanol/Wassergemisch wird über eine Leitung 22 in die Anodenzuleitung 5 zurückgeführt. Die Rückführung des heißen Methanol/Wassergemisches aus der Rückführleitung 7 und des heruntergekühlten Methanol/Wassergemisches aus der Leitung 22 erfolgt über ein Thermostatventil 23. Mit Hilfe dieses Thermostatventils 23 kann somit die Eingangstemperatur am Anodenraum 2 auf einen vorgegebenen Wert geregelt werden. Die Rückführung des heißen, gasfreien Methanol/Wassergemisches liefert eine ausreichend hohe Brennstoffzellentemperatur am Anodeneintritt, wodurch der Gesamtwirkungsgrad des Brennstoffzellensystems erhöht wird.The methanol / water mixture remaining in the second gas separator 21 is via a line 22 in the anode lead 5th returned. The return of the hot methanol / water mixture from the return line 7 and the cooled down Methanol / water mixture from line 22 takes place via a Thermostatic valve 23. With the help of this thermostatic valve 23 can thus the inlet temperature at the anode compartment 2 to one specified value can be regulated. The return of the hot, gas-free methanol / water mixture provides a sufficient high fuel cell temperature at the anode inlet, which causes the Overall efficiency of the fuel cell system is increased.

Durch eine Bypassleitung 24, die die Rückführleitung 7 stromauf des ersten Gasabscheiders 18 mit der Leitung 33 verbindet, und eines darin angeordneten Dosierventils 25 kann ein Teil des heißen Flüssigkeits/Gasgemisches aus der Rückführleitung 7 abgetrennt und direkt dem Kühler 20 zugeführt werden. Der im ersten Gasabscheider 18 abgetrennte Dampf wird dann gegebenenfalls über ein weiteres Dosierventil 26 dem Flüssigkeits/Gasgemsich stromauf des Kühlers 20 zugeführt. Durch diese Dosierventile können die Massenströme und damit die Temperaturniveaus in den einzelnen Zweigen des Anodenkreislaufes gezielt beeinflußt werden, wodurch variable Steuer- oder Regelverfahren realisiert werden können.Through a bypass line 24 upstream of the return line 7 of the first gas separator 18 connects to the line 33, and a metering valve 25 arranged therein can be part of the hot liquid / gas mixture from the return line 7 separated and fed directly to the cooler 20. The one in The first gas separator 18 is then separated steam if necessary via a further metering valve 26 to the liquid / gas mixture supplied upstream of the cooler 20. Through these metering valves can the mass flows and thus the temperature levels specifically influenced in the individual branches of the anode circuit be, causing variable control or regulatory procedures can be realized.

Weiterhin können weitere Bypassleitungen 27, 28 mit integrierten Dosierventilen 29,30 und Wärmetauschern 31, 32 vorgesehen werden, mit deren Hilfe bei Bedarf Wärmeenergie von der heißen Kathodenabluft in der Kathodenabgasleitung 8 auf das heruntergekühlte Methanol/Wassergemisch in der Leitung 22 beziehungsweise vom heißen Methanol/Wassergemisch in der Anodenzuleitung 5 auf die kühleren Luftmassenstrom in der Kathodenzuleitung 6 übertragen werden kann. Die Wärmetauscher 31, 32 sind hierzu vorzugsweise in der Kathodenabgasleitung 8 zwischen Kathodenraum 3 und Expander 12 beziehungsweise in der Kathodenzuleitung 6 zwischen Kompressor 10 und Kathodenraum 3 angeordnet. Zur Regelung des Dosierventils 29 kann weiterhin ein Temperatursensor 35 stromab des Wärmetauschers 31 in der Kathodenabgasleitung 8 vorgesehen werden. Mit Hilfe des Wärmetauschers 32 wird die heiße, aufgeladene Luft vor dem Eintritt in den Kathodenraum 3 vorzugsweise auf eine Temperatur von bis zu 100° C abgekühlt.Furthermore, further bypass lines 27, 28 can be used integrated metering valves 29, 30 and heat exchangers 31, 32 are provided, with the help of if necessary, thermal energy from the hot cathode exhaust air in the cathode exhaust line 8 on the Chilled methanol / water mixture in line 22 or of the hot methanol / water mixture in the Anode lead 5 to the cooler air mass flow in the Cathode lead 6 can be transmitted. The heat exchangers For this purpose, 31, 32 are preferably in the cathode exhaust gas line 8 between cathode compartment 3 and expander 12 or in the Cathode feed line 6 between compressor 10 and cathode compartment 3 arranged. To control the metering valve 29 can continue a temperature sensor 35 downstream of the heat exchanger 31 in the Cathode exhaust line 8 can be provided. With the help of the heat exchanger 32 becomes the hot, charged air before entering in the cathode compartment 3 preferably to a temperature of up to cooled to 100 ° C.

Das im zweiten Gasabscheider 21 abgetrennte Gasgemisch aus Restmethanol und Kohlendioxid wird über eine Leitung 33 in die Kathodenabgasleitung 8 geführt, wo sie mit der sauerstoffreichen Kathodenabluft vermischt und in einem in der Kathodenabgasleitung 8 stromab der Einmündung der Leitung 33 angeordneten Abgaskatalysator 34 zu Kohlendioxid und Wasserdampf umgesetzt. Um zumindest einen Teil des Wasserdampfes als Wasser aus der Kathodenabluft abzutrennen sind stromauf und stromab des Expanders 12 zwei Wasserabscheider 36, 37 in der Kathodenabgasleitung 8 angeordnet. Hierbei dient der Expander 12 als kompakte Kondensationsturbine, an deren Ausgang wiederum ein Teil des Wasserdampfes auskondensiert. Zusätzlich wird die Kathodenabluft im Anschluß an den Abgaskatalysator 34 mit Hilfe des weiter oben beschriebenen Wärmetauschers 31 und des Temperatursensors 35 auf ein vorgegebenes Temperaturniveau heruntergekühlt. Erst durch diese Kombination von Temperaturregelung und Kondensationsturbine kann ein positiver Wasserhaushalt des Gesamtsystems gewährleistet werden. Das in den Wasserabscheidern 36, 37 gesammelte Wasser wird anschließend über eine Rückspeiseleitung 38 mit integrierter Rückspeisepumpe 39 in den zweiten Gasabscheider 21 zurückgeführt. Dieser zweite Gasabscheider ist gleichzeitig als Sammelbehälter für das auf der Kathodenseite anfallende Produktwasser und als Ausgleichsbehälter für das flüssige Methanol/Wassergemisch ausgebildet. Über eine Füllstandsregelung kann das Niveau des Sammelbehälters kontrolliert und geregelt werden.The gas mixture separated in the second gas separator 21 Residual methanol and carbon dioxide is fed into the line 33 Cathode exhaust line 8 out where they are rich in oxygen Cathode exhaust air mixed and in a in the cathode exhaust line 8 arranged downstream of the mouth of the line 33 Exhaust catalyst 34 to carbon dioxide and water vapor implemented. At least part of the water vapor as water to be separated from the cathode exhaust air are upstream and downstream of the expander 12 two water separators 36, 37 in the cathode exhaust line 8 arranged. Here, the expander 12 serves as compact condensing turbine, in turn at the output Part of the water vapor condensed out. In addition, the Cathode exhaust following the catalytic converter 34 with the help of the heat exchanger 31 described above and Temperature sensor 35 to a predetermined temperature level cooled down. Only through this combination of temperature control and condensing turbine can maintain a positive water balance of the overall system can be guaranteed. That in the Water separators 36, 37 collected water is then via a recovery line 38 with an integrated recovery pump 39 returned to the second gas separator 21. This second Gas separator is also used as a collection container for the product water accumulating on the cathode side and as an expansion tank trained for the liquid methanol / water mixture. The level of the collecting container can be adjusted via a level control be checked and regulated.

Dieses Gesamtsystem weist gegenüber herkömmlichen PEM-Brennstoffzellensystemen bei kompakterer Bauweise und geringeren Kosten einen vergleichbaren Systemwirkungsgard auf. Insbesondere durch die Vereinigung von Kühl- und Brennmittelkreislauf folgt eine Volumen- und Kostenreduzierung. Außerdem wird der Gesamtwirkungsgrad erhöht, da keine Energie für die Verdampfung, Überhitzung und Treibstofferzeugung aufgewendet werden muß und die Wirkungsgradverluste durch die Gasaufbereitung im Abgaskatalysator wesentlich verringert werden. Weiterhin kann auf eine Luftbefeuchtung verzichtet werden. Weitere Vorteile sind in der positiven Wasserbilanz und einem verbessertem Kaltstartverhalten zu sehen. Schließlich kann durch die Verwendung eines Methanol/Wassergemisches auf Frostschutzmaßnahmen verzichtet werden.This overall system shows compared to conventional PEM fuel cell systems with a more compact design and less Cost a comparable system impact. Especially by combining the coolant and fuel circuit volume and costs are reduced. Furthermore the overall efficiency is increased because there is no energy for the Evaporation, overheating and fuel production were used must be and the efficiency losses due to gas processing be significantly reduced in the catalytic converter. Air humidification can also be dispensed with. Other advantages are the positive water balance and one to see improved cold start behavior. Finally, can through the use of a methanol / water mixture Frost protection measures are dispensed with.

Claims (10)

Brennstoffzellensystem (1) mit einem Anodenraum (2) und einem Kathodenraum (3), die durch eine protonenleitende Membran (4) voneinander getrennt sind, mit einer Kathodenzuleitung (6) zur Zufuhr von sauerstoffhaltigem Gas zum Kathodenraum (3), einer Anodenzuleitung (5) zur Zufuhr eines flüssigen Brennmittel/Kühlmittelgemisches zum Anodenraum (2), mit einer Rückführleitung (7) zwischen dem Anodenraumausgang und der Anodenzuleitung (5), wobei in der Rückführleitung (7) ein erster Gasabscheider (18) mit zugehöriger Leitung (33) zur Abfuhr des abgetrennten Gases angeordnet ist, und mit einer Kathodenabgasleitung (8),
dadurch gekennzeichnet,
daß in der Leitung (33) in Strömungsrichtung nacheinander ein Kühler (20) und ein zweiter Gasabscheider (21) angeordnet sind, daß eine steuerbare Bypassleitung (24), die die Rückführleitung (7) stromauf des ersten Gasabscheiders (18) mit der Leitung (33) zwischen dem ersten Gasabscheider (18) und dem Kühler (20) verbindet, vorgesehen ist und daß der zweite Gasabscheider (21) zur Abfuhr der flüssigen Bestandteile über eine Leitung (22) mit der Anodenzuleitung (5) verbunden ist.
Fuel cell system (1) with an anode compartment (2) and a cathode compartment (3), which are separated from each other by a proton-conducting membrane (4), with a cathode inlet (6) for supplying oxygen-containing gas to the cathode compartment (3), an anode inlet (5 ) for supplying a liquid fuel / coolant mixture to the anode compartment (2), with a return line (7) between the anode compartment outlet and the anode feed line (5), wherein in the return line (7) a first gas separator (18) with associated line (33) for Discharge of the separated gas is arranged, and with a cathode exhaust line (8),
characterized,
that a cooler (20) and a second gas separator (21) are arranged in the line (33) in the flow direction, that a controllable bypass line (24) which connects the return line (7) upstream of the first gas separator (18) to the line ( 33) connects between the first gas separator (18) and the cooler (20), is provided and that the second gas separator (21) is connected to the anode feed line (5) via a line (22) for removing the liquid constituents.
Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß in der Kathodenabgasleitung (8) ein Abgaskatalysator (34) angeordnet ist und daß die Leitung (33) stromauf des Abgaskatalysators (34) in die Kathodenabgasleitung (8) mündet.
Fuel cell system according to claim 1,
characterized,
that an exhaust gas catalyst (34) is arranged in the cathode exhaust gas line (8) and that the line (33) opens upstream of the exhaust gas catalyst (34) into the cathode exhaust gas line (8).
Brennstoffzellensystem nach Anspruch 2,
dadurch gekennzeichnet,
daß in den zweiten Gasabscheider (21) ein Sammelbehälter und/oder ein Ausgleichsbehälter mit Niveauregulierung integriert ist.
Fuel cell system according to claim 2,
characterized,
that a collection container and / or an expansion tank with level control is integrated in the second gas separator (21).
Brennstoffzellensystem nach Anspruch 2,
dadurch gekennzeichnet,
daß die Rückführleitung (7) und die Leitung (22) über ein Thermostatventil (23) mit der Anodenzuleitung (5) verbunden sind.
Fuel cell system according to claim 2,
characterized,
that the return line (7) and the line (22) via a thermostatic valve (23) are connected to the anode feed line (5).
Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß zur Zufuhr des flüssigen Brennmittels eine Brennmittelzuführungsleitung (16) zwischen einem Brennmitteltank (15) und der Anodenzuleitung (5) vorgesehen ist, daß in der Anodenzuleitung (5) stromab der Einmündung der Brennmittelzuführungsleitung (16) ein Sensor (14) zur Ermittlung der Brennmittelkonzentration vorgesehen ist, und daß in der Brennmittelzuführungsleitung (16) eine Einspritzpumpe (17) und eine Einspritzdüse (19) für die Einspritzung des Brennmitteles in Abhängigkeit von der Brennmittelkonzentration stromauf des Sensors (14) in die Anodenzuleitung (5) vorgesehen sind.
Fuel cell system according to claim 1,
characterized,
that a fuel supply line (16) is provided between a fuel tank (15) and the anode supply line (5) for supplying the liquid fuel, that a sensor (14) for determining the fuel concentration in the anode supply line (5) downstream of the confluence of the fuel supply line (16) and that an injection pump (17) and an injection nozzle (19) are provided in the fuel supply line (16) for the injection of the fuel depending on the fuel concentration upstream of the sensor (14) into the anode feed line (5).
Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß zwischen der Kathodenzuleitung (6) und der Kathodenabgasleitung (8) eine Kompressor/Expandereinheit (10, 12) vorgesehen ist.
Fuel cell system according to claim 1,
characterized,
that a compressor / expander unit (10, 12) is provided between the cathode feed line (6) and the cathode exhaust gas line (8).
Brennstoffzellensystem nach Anspruch 1, 3 und 6,
dadurch gekennzeichnet,
daß stromauf und/oder stromab der Kompressor/Expandereinheit (10, 12) in der Kathodenabgasleitung (8) ein Wasserabscheider (36, 37) vorgesehen ist, der über eine Rückspeiseleitung (38) mit dem Sammelbehälter verbunden ist.
Fuel cell system according to claim 1, 3 and 6,
characterized,
that a water separator (36, 37) is provided upstream and / or downstream of the compressor / expander unit (10, 12) in the cathode exhaust line (8) and is connected to the collecting container via a return line (38).
Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß zwischen der Anodenzuleitung (6) und der Kathodenzuleitung (6) ein Wärmetauscher (32) vorgesehen ist.
Fuel cell system according to claim 1,
characterized,
that a heat exchanger (32) is provided between the anode feed line (6) and the cathode feed line (6).
Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
daß zwischen der Leitung (22) und der Kathodenabgasleitung (8) ein Wärmetauscher (31) vorgesehen ist.
Fuel cell system according to claim 1,
characterized,
that a heat exchanger (31) is provided between the line (22) and the cathode exhaust gas line (8).
Brennstoffzellensystem nach Anspruch 9,
dadurch gekennzeichnet,
daß in der Leitung (22) ein Dosierventil (29) angeordnet ist, daß in der Kathodenabgasleitung (8) stromab des Wärmetauschers (31) ein Temperatursensor (35) angeordnet ist, daß eine das Dosierventil (29) umgehende und den Wärmetauscher (31) durchströmende Bypassleitung (27) vorgesehen ist, wobei das Dosierventil (29) zur Einstellung des Bypassstromes in Abhängigkeit vom Signal des Temperatursensors (35) angesteuert wird.
Fuel cell system according to claim 9,
characterized,
that a metering valve (29) is arranged in the line (22), that a temperature sensor (35) is arranged in the cathode exhaust gas line (8) downstream of the heat exchanger (31), that a bypassing the metering valve (29) and the heat exchanger (31) flowing through bypass line (27) is provided, the metering valve (29) for setting the bypass flow depending on the signal of the temperature sensor (35) is controlled.
EP97121291A 1997-01-17 1997-12-04 Fuel cell system with liquid fuel Expired - Lifetime EP0859421B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701560A DE19701560C2 (en) 1997-01-17 1997-01-17 Fuel cell system
DE19701560 1997-01-17

Publications (2)

Publication Number Publication Date
EP0859421A1 true EP0859421A1 (en) 1998-08-19
EP0859421B1 EP0859421B1 (en) 2002-10-02

Family

ID=7817672

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97121291A Expired - Lifetime EP0859421B1 (en) 1997-01-17 1997-12-04 Fuel cell system with liquid fuel

Country Status (3)

Country Link
US (1) US5981096A (en)
EP (1) EP0859421B1 (en)
DE (1) DE19701560C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044249A1 (en) * 1998-02-25 1999-09-02 Ballard Power Systems Inc. Liquid feed solid polymer fuel cell system
WO1999044250A1 (en) * 1998-02-25 1999-09-02 Xcellsis Gmbh Liquid fuel cell system
WO2001028021A1 (en) * 1999-10-11 2001-04-19 Siemens Aktiengesellschaft Method and device for determining the concentration of fluid fuels to be used in fuel cells

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38493E1 (en) 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
US5904740A (en) * 1997-06-03 1999-05-18 Motorola, Inc. Fuel for liquid feed fuel cells
US6921597B2 (en) 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
JP3473436B2 (en) * 1998-09-16 2003-12-02 株式会社豊田自動織機 Fuel cell device
DE19850720C2 (en) * 1998-11-03 2001-06-21 Forschungszentrum Juelich Gmbh Method for controlling the fuel concentration in an alcohol or ether fuel mixture containing fuel and water in a fuel cell and fuel cell system
JP2000182647A (en) * 1998-12-18 2000-06-30 Aisin Seiki Co Ltd Fuel cell system
US20020192531A1 (en) * 1998-12-30 2002-12-19 Joerg Zimmerman Liquid reactant flow field plates for liquid feed fuel cells
DE19908099A1 (en) * 1999-02-25 2000-08-31 Daimler Chrysler Ag Fuel cell system
DE19911016C2 (en) 1999-03-12 2001-07-26 Daimler Chrysler Ag Fuel cell system with water release agents on the cathode side
DE19943248B4 (en) * 1999-09-10 2005-10-27 Ballard Power Systems Ag Method for operating a fuel cell system and arrangement for carrying out the method
DE19947254A1 (en) 1999-09-30 2001-04-05 Bosch Gmbh Robert Device for supplying liquid media to consumers of a fuel cell system
US6432566B1 (en) * 1999-10-25 2002-08-13 Utc Fuel Cells, Llc Direct antifreeze cooled fuel cell power plant
DE19954031A1 (en) * 1999-10-29 2001-06-07 Daimler Chrysler Ag Method and arrangement for the power supply of auxiliary devices in rail vehicles when the main power supply is switched off
DE10000514C2 (en) * 2000-01-08 2002-01-10 Daimler Chrysler Ag Fuel cell system and method for operating such a system
DE10004800A1 (en) * 2000-02-03 2001-08-09 Opel Adam Ag Fuel cell system
US6416893B1 (en) * 2000-02-11 2002-07-09 General Motors Corporation Method and apparatus for controlling combustor temperature during transient load changes
US6599652B2 (en) * 2000-02-22 2003-07-29 General Motors Corporation Fuel cell with a degassing device
DE10015332A1 (en) * 2000-03-28 2001-10-04 Volkswagen Ag Loading fuel mixture for fuel cell with fuel constituents involves storing and/or delivering water as mixture with another fuel constituent that lowers freezing point relative to that of water
DE10015334A1 (en) * 2000-03-28 2001-10-04 Volkswagen Ag Arrangement for delivering fuel mixture to fuel cell has fuel mixture constituent dispensing unit that interacts with gas-conducting part of fuel mixture delivery arrangement
DE10015331A1 (en) * 2000-03-28 2001-10-04 Volkswagen Ag Device for delivering fuel mixture to fuel cell has measurement arrangement determining fuel mixture ratio, used for regulated setting of ratio by dispensing unit interacting with control unit
US6921595B2 (en) * 2000-05-31 2005-07-26 Nuvera Fuel Cells, Inc. Joint-cycle high-efficiency fuel cell system with power generating turbine
US6916564B2 (en) * 2000-05-31 2005-07-12 Nuvera Fuel Cells, Inc. High-efficiency fuel cell power system with power generating expander
DE10027350B4 (en) * 2000-06-02 2010-05-12 General Motors Corporotion, Detroit Compressor arrangement for the operation of a fuel cell system and a method for cooling and / or sound insulation of a compressor assembly
WO2002007852A2 (en) 2000-07-20 2002-01-31 Proton Energy Systems Gas/liquid phase separator for electrolysis cell
DE10035756A1 (en) * 2000-07-22 2002-01-31 Daimler Chrysler Ag Fuel cell system has device for dosing and feeding combustion medium to cathode chamber depending on determined temperature
DE10040088A1 (en) * 2000-08-16 2002-04-25 Siemens Ag Method for operating a fuel cell system and associated fuel cell system
US6432177B1 (en) 2000-09-12 2002-08-13 Donaldson Company, Inc. Air filter assembly for low temperature catalytic processes
US6589033B1 (en) 2000-09-29 2003-07-08 Phoenix Analysis And Design Technologies, Inc. Unitary sliding vane compressor-expander and electrical generation system
WO2002035623A2 (en) * 2000-10-27 2002-05-02 Questair Technologies Inc. Systems and processes for providing hydrogen to fuel cells
US7097925B2 (en) 2000-10-30 2006-08-29 Questair Technologies Inc. High temperature fuel cell power plant
CA2325072A1 (en) 2000-10-30 2002-04-30 Questair Technologies Inc. Gas separation for molten carbonate fuel cell
AU780651B2 (en) * 2000-10-30 2005-04-07 Questair Technologies, Inc. Energy efficient gas separation for fuel cells
US20020163819A1 (en) * 2000-11-07 2002-11-07 Treece William A. Hybrid microturbine/fuel cell system providing air contamination control
FR2816760B1 (en) * 2000-11-14 2003-10-31 Air Liquide METHOD AND DEVICE FOR RECOVERING THE WATER PRODUCED BY A FUEL CELL
AU2002215752A1 (en) 2000-12-08 2002-06-18 Denis Connor Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
US20020112479A1 (en) * 2001-01-09 2002-08-22 Keefer Bowie G. Power plant with energy recovery from fuel storage
US6534210B2 (en) 2001-01-16 2003-03-18 Visteon Global Technologies, Inc. Auxiliary convective fuel cell stacks for fuel cell power generation systems
CA2334530A1 (en) * 2001-02-06 2002-08-06 General Motors Corporation A direct methanol fuel cell system with a device for the separation of the methanol and water mixture
DE10107529A1 (en) * 2001-02-17 2002-09-05 Forschungszentrum Juelich Gmbh The fuel cell system
JP3614110B2 (en) * 2001-02-21 2005-01-26 日産自動車株式会社 Fuel cell system
US7416580B2 (en) * 2001-04-11 2008-08-26 Donaldsom Company, Inc. Filter assemblies and systems for intake air for fuel cells
US6783881B2 (en) 2001-04-11 2004-08-31 Donaldson Company, Inc. Filter assembly for intake air of fuel cell
US6780534B2 (en) 2001-04-11 2004-08-24 Donaldson Company, Inc. Filter assembly for intake air of fuel cell
US6797027B2 (en) * 2001-04-11 2004-09-28 Donaldson Company, Inc. Filter assemblies and systems for intake air for fuel cells
US6566003B2 (en) * 2001-04-18 2003-05-20 Mti Microfuel Cells, Inc. Method and apparatus for CO2 - driven air management for a fuel cell system
DE10119377B4 (en) * 2001-04-19 2005-10-20 Forschungszentrum Juelich Gmbh Method for operating a direct methanol fuel cell
US6720098B2 (en) 2001-05-16 2004-04-13 General Motors Corporation Compressor arrangement for the operation of a fuel cell system
DE10141738B4 (en) * 2001-08-25 2008-04-30 Nucellsys Gmbh Fuel cell system with at least one fuel cell
JP4534401B2 (en) 2001-09-10 2010-09-01 株式会社日立製作所 Fuel cell and its compressed air supply system
US6951697B2 (en) * 2001-09-11 2005-10-04 Donaldson Company, Inc. Integrated systems for use with fuel cells, and methods
DE10152311A1 (en) * 2001-10-26 2003-05-15 Audi Ag Fuel cell system, especially for vehicle, has fuel cell exhaust gas water recovery device with heat exchanger for achieving heat transfer between 2 different temperature cell exhaust gas flows
ATE360747T1 (en) * 2001-12-05 2007-05-15 Lawrence G Clawson HIGH EFFICIENCY OTTO ENGINE WITH EXPANDER FOR ENERGY GENERATION
US6783879B2 (en) 2002-01-11 2004-08-31 General Motors Corporation Dynamic fuel processor mechanization and control
WO2003076048A1 (en) 2002-03-14 2003-09-18 Questair Technologies Inc. Gas separation by combined pressure swing and displacement purge
EP1500156B1 (en) 2002-03-14 2007-09-12 QuestAir Technologies Inc. Hydrogen recycle for solid oxide fuel cell
US7226679B2 (en) * 2002-07-31 2007-06-05 Siemens Power Generation, Inc. Fuel cell system with degradation protected anode
KR20050084115A (en) * 2002-12-02 2005-08-26 도날드슨 캄파니 인코포레이티드 Various filter elements for hydrogen fuel cell
DE10330123A1 (en) * 2003-07-04 2005-01-20 Volkswagen Ag Fuel cell system with reformer supplied with hydrocarbons and air-water mixture and fuel cell has arrangement for returning part of fuel cell output gas to device for producing air-water mixture
JP2005108717A (en) * 2003-09-30 2005-04-21 Toshiba Corp Fuel cell
JP3993177B2 (en) * 2004-03-15 2007-10-17 株式会社東芝 Fuel cell system
US7443803B2 (en) * 2004-03-23 2008-10-28 Fujitsu Limited Estimating and managing network traffic
EP1603180A1 (en) * 2004-05-31 2005-12-07 C.R.F. Societa' Consortile per Azioni Recirculating assembly for a fuel cell system
CA2575629A1 (en) * 2004-06-11 2006-08-10 Nuvera Fuel Cells, Inc. Fuel fired hydrogen generator
US7189280B2 (en) 2004-06-29 2007-03-13 Questair Technologies Inc. Adsorptive separation of gas streams
JP4951847B2 (en) * 2004-07-23 2012-06-13 パナソニック株式会社 Fuel cell activation method
WO2006052937A2 (en) 2004-11-05 2006-05-18 Questair Technologies, Inc. Separation of carbon dioxide from other gases
FR2881576A1 (en) * 2005-01-28 2006-08-04 Renault Sas Fuel cell system for motor vehicle, has central control unit controlling air supply unit based on absolute humidity of supply air and utilizing humidity for reducing pressure in condensation unit while conserving water autonomy
FR2883667B1 (en) * 2005-03-23 2007-06-22 Renault Sas ELECTRICITY PRODUCTION FACILITY ON A MOTOR VEHICLE COMPRISING A FUEL CELL
US7781114B2 (en) * 2005-10-05 2010-08-24 Panasonic Corporation High electrical performance direct oxidation fuel cells & systems
US20070077469A1 (en) * 2005-10-05 2007-04-05 Matsushita Electric Industrial Co., Ltd. Direct oxidation fuel cell systems with regulated fuel cell stack and liquid-gas separator temperatures
TWM292790U (en) * 2005-10-28 2006-06-21 Antig Tech Co Ltd Fuel cell device having operation parameter adjusting capability
US20070122667A1 (en) * 2005-11-28 2007-05-31 Kelley Richard H Fuel cell system with integrated fuel processor
US20070218326A1 (en) * 2006-03-17 2007-09-20 Honeywell International, Inc. Approach of solving humidification device turndown ratio for proton exchange membrane fuel cells
DE102006017964B4 (en) * 2006-04-13 2008-12-24 Sabik Informationssysteme Gmbh Mixing unit for a fuel cell
FR2900000A1 (en) * 2006-04-14 2007-10-19 Renault Sas Power module for motor vehicle, has stream splitter providing fluid supplied to degassing vase and containing reformate and large proportion of water droplets, and providing another fluid containing reformate and supplied to fuel cell
DE102007043894A1 (en) 2007-09-14 2009-03-19 EVT Gesellschaft für Energieverfahrenstechnik mbH Liquid or gaseous hydrocarbons or alcohol reforming method for e.g. alkaline fuel cell system, involves allowing cathode exhaust gas to undergo reformation process, so that water vapor contained in gas undergoes water gas shift-process
DE102007062165A1 (en) 2007-12-21 2009-06-25 Sabik Informationssysteme Gmbh Method and device for operating a fuel cell
US8541637B2 (en) * 2009-03-05 2013-09-24 G4 Insights Inc. Process and system for thermochemical conversion of biomass
CA2781204C (en) 2009-11-18 2018-05-01 G4 Insights Inc. Sorption enhanced methanation of biomass
WO2011060539A1 (en) 2009-11-18 2011-05-26 G4 Insights Inc. Method and system for biomass hydrogasification
US8383871B1 (en) 2010-09-03 2013-02-26 Brian G. Sellars Method of hydrogasification of biomass to methane with low depositable tars
DE102012211421A1 (en) * 2012-07-02 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Exhaust air duct of a fuel cell stack in a motor vehicle
DE102013214602A1 (en) * 2013-07-25 2015-01-29 Bayerische Motoren Werke Aktiengesellschaft Exhaust air duct of a fuel cell stack in a motor vehicle
DE102014209506A1 (en) 2014-05-20 2015-11-26 Volkswagen Ag Fuel cell device with heat transfer device and motor vehicle with fuel cell device
JP7094787B2 (en) * 2018-06-13 2022-07-04 本田技研工業株式会社 Fuel cell vehicle
JP7120983B2 (en) * 2019-11-22 2022-08-17 本田技研工業株式会社 fuel cell system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263544A (en) * 1968-06-01 1972-02-09 Siemens Ag Monitoring the concentration of liquid reactants dissolved in the electrolytes of fuel cells
JPS5697972A (en) * 1980-01-07 1981-08-07 Hitachi Ltd Fuel cell
JPS56118273A (en) * 1980-02-20 1981-09-17 Nissan Motor Co Ltd Concentration sensor for fuel cell
JPS56118274A (en) * 1980-02-20 1981-09-17 Nissan Motor Co Ltd Water-removing device for fuel cell
JPS5719973A (en) * 1980-07-09 1982-02-02 Hitachi Ltd Fuel cell system
JPS57196479A (en) * 1981-05-27 1982-12-02 Nissan Motor Co Ltd Liquid fuel cell
JPS5816471A (en) * 1981-07-20 1983-01-31 Nissan Motor Co Ltd Liquid fuel cell
DE3508153A1 (en) * 1984-03-07 1985-09-12 Hitachi, Ltd., Tokio/Tokyo FUEL CELL
JPH04229957A (en) * 1990-12-27 1992-08-19 Aisin Aw Co Ltd Fuel mixer for liquid fuel cell
US5573866A (en) * 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL49872A (en) * 1975-07-21 1978-07-31 United Technologies Corp Fuel cell cooling system using a non-dielectric coolant
DE3618840A1 (en) * 1986-06-04 1987-12-10 Basf Ag METHANOL / AIR FUEL CELLS
DE4318818C2 (en) * 1993-06-07 1995-05-04 Daimler Benz Ag Method and device for providing conditioned process air for air-breathing fuel cell systems
DE4425634C1 (en) * 1994-07-20 1995-10-26 Daimler Benz Ag Fuel cell dosing control valve positioned in tube between pump and fuel cell
EP0755576B1 (en) * 1994-10-18 2008-03-05 The University Of Southern California Organic fuel cell, and methods of operation thereof and manufacture of electrode therefor
JP3553210B2 (en) * 1995-06-26 2004-08-11 本田技研工業株式会社 Fuel cell system for mobile vehicles equipped with fuel cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1263544A (en) * 1968-06-01 1972-02-09 Siemens Ag Monitoring the concentration of liquid reactants dissolved in the electrolytes of fuel cells
JPS5697972A (en) * 1980-01-07 1981-08-07 Hitachi Ltd Fuel cell
JPS56118273A (en) * 1980-02-20 1981-09-17 Nissan Motor Co Ltd Concentration sensor for fuel cell
JPS56118274A (en) * 1980-02-20 1981-09-17 Nissan Motor Co Ltd Water-removing device for fuel cell
JPS5719973A (en) * 1980-07-09 1982-02-02 Hitachi Ltd Fuel cell system
JPS57196479A (en) * 1981-05-27 1982-12-02 Nissan Motor Co Ltd Liquid fuel cell
JPS5816471A (en) * 1981-07-20 1983-01-31 Nissan Motor Co Ltd Liquid fuel cell
DE3508153A1 (en) * 1984-03-07 1985-09-12 Hitachi, Ltd., Tokio/Tokyo FUEL CELL
JPH04229957A (en) * 1990-12-27 1992-08-19 Aisin Aw Co Ltd Fuel mixer for liquid fuel cell
US5573866A (en) * 1995-05-08 1996-11-12 International Fuel Cells Corp. Direct methanol oxidation polymer electrolyte membrane power system

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 171 (E - 080) 30 October 1981 (1981-10-30) *
PATENT ABSTRACTS OF JAPAN vol. 005, no. 197 (E - 086) 15 December 1981 (1981-12-15) *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 081 (E - 107) 19 May 1982 (1982-05-19) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 045 (E - 160) 23 February 1983 (1983-02-23) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 094 (E - 171) 20 April 1983 (1983-04-20) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 579 (E - 1299) 18 December 1992 (1992-12-18) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999044249A1 (en) * 1998-02-25 1999-09-02 Ballard Power Systems Inc. Liquid feed solid polymer fuel cell system
WO1999044250A1 (en) * 1998-02-25 1999-09-02 Xcellsis Gmbh Liquid fuel cell system
US6759153B1 (en) 1998-02-25 2004-07-06 Ballard Power Systems Ag Liquid fuel cell system
WO2001028021A1 (en) * 1999-10-11 2001-04-19 Siemens Aktiengesellschaft Method and device for determining the concentration of fluid fuels to be used in fuel cells

Also Published As

Publication number Publication date
EP0859421B1 (en) 2002-10-02
US5981096A (en) 1999-11-09
DE19701560C2 (en) 1998-12-24
DE19701560A1 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
EP0859421B1 (en) Fuel cell system with liquid fuel
DE19807876C2 (en) The fuel cell system
DE19807878C2 (en) Fuel cell system
DE19857398B4 (en) Fuel cell system, in particular for electric motor driven vehicles
EP1033769B1 (en) Fuel cell system having an associated hydrogen generating device
EP0850494B1 (en) Process for operating a fuel cell installation and fuel cell installation for implementing it
DE19635008C2 (en) Fuel cell system
DE10048183B4 (en) Method and device for monitoring a hydrogen-containing gas stream
EP1356533B1 (en) Fuel cells with integrated humidification and method for humidifying fuel cell process gas
DE10085063B4 (en) Method and apparatus for removing contaminants from the coolant supply of a fuel cell power plant
DE10328856A1 (en) Control and diagnosis of exhaust emissions
EP1705739B1 (en) Method for operating a fuel cell system
DE102006019114A1 (en) Fuel cell operating method for improved hydrogen and oxygen utilization
DE10359952B4 (en) The fuel cell system
EP1032066B1 (en) Fuel cell system
DE102018215217A1 (en) Fuel cell device and motor vehicle with a fuel cell device
DE102020101292A1 (en) Fuel cell system, method for operating a fuel cell system and motor vehicle
WO2004079846A2 (en) Fuel cell system comprising at least one fuel cell and one gas generating system
WO2021244881A1 (en) Heat exchanger system for operating a fuel cell stack
EP1106569A1 (en) Vaporizer for a fuel cell system
DE102011100839A1 (en) Fuel cell assembly of fuel cell electric vehicle, has oxygen enriching apparatus arranged for increasing oxygen content in oxygen-containing gas mixture which is supplied to cathode chamber from cathode gas supply
DE102010041465B4 (en) Fuel cell system with direct methanol fuel cell and method of operation
DE102020100599A1 (en) Method for a freeze start of a fuel cell system, fuel cell system and motor vehicle with such a system
DE102018216267A1 (en) Fuel cell system and method for operating a fuel cell system
DE19958830A1 (en) Fuel cell system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980702

AKX Designation fees paid

Free format text: FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XCELLSIS GMBH

RTI1 Title (correction)

Free format text: FUEL CELL SYSTEM WITH LIQUID FUEL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BALLARD POWER SYSTEMS AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021202

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030703

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130102

Year of fee payment: 16

Ref country code: FR

Payment date: 20130121

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204