EP0888639A1 - Durch feldeffekt steuerbares halbleiterbauelement - Google Patents

Durch feldeffekt steuerbares halbleiterbauelement

Info

Publication number
EP0888639A1
EP0888639A1 EP97917263A EP97917263A EP0888639A1 EP 0888639 A1 EP0888639 A1 EP 0888639A1 EP 97917263 A EP97917263 A EP 97917263A EP 97917263 A EP97917263 A EP 97917263A EP 0888639 A1 EP0888639 A1 EP 0888639A1
Authority
EP
European Patent Office
Prior art keywords
semiconductor component
field effect
drain zone
drain
controllable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97917263A
Other languages
English (en)
French (fr)
Inventor
Jenö Tihanyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0888639A1 publication Critical patent/EP0888639A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Definitions

  • the invention relates to a semiconductor component that can be controlled by a field effect according to the preamble of claim 1.
  • Such a semiconductor component which can be controlled by a field effect is, for. B. a vertical MOS field effect transistor. These transistors have been known for a long time and z. B. in the Siemens data book 1993-94 SIPMOS semiconductors, power transistors and diodes, page 29 ff. Figure 4 on page 30 of this data book shows the basic structure of such a power transistor.
  • the n * substrate serves as a carrier with the one below it
  • n * substrate there is an n " epitaxial layer, which is of different thickness and correspondingly doped depending on the blocking voltage.
  • the gate made of n + polysilicon above is embedded in insulating silicon dioxide and serves as an implantation mask for the P-well and for the n + source zone.
  • the source metalization covers the entire structure and connects the individual transistor cells of the chip in parallel. Further details can be found on page 30 ff. of the data book.
  • the forward resistance Ron of the drain-source load path increases with increasing dielectric strength of the semiconductor component, since the thickness of the epitaxial layer must increase.
  • the area-related forward resistance Ron is approximately 0.20 ⁇ mm 2 and increases, for example, to a value of approximately 10 ⁇ mm 2 at a reverse voltage of 1000 V.
  • the IGBT was developed, which mixes MOS and Epola functions in order to become more conductive.
  • a transistor is slower than a MOSFET.
  • such a structure enables a chain connection of several field effect transistors with increasing breakdown voltages and lower saturation voltages. Lateral transistors, however, require a large area.
  • a semiconductor component is known from US Pat. No. 5,216,275, in which the drain layer applied to the substrate consists of vertical, alternately p-doped and n-doped layers. US 5,216,275 shows these layers, for example in FIG. 4 of the description.
  • the p-layers are denoted by 7 and the n-layer by 6. From the description, in particular from column 2, line 8, it is evident that the alternating p and n layers must be connected to the p + and p " regions, respectively. However, this leads to a strong integration Restriction in the design of a semiconductor component, since the edge areas can no longer be freely designed.
  • a high-blocking power MOSFET is known from US Pat. No. 5,438,215, which has a reduced forward resistance. However, such a device is difficult to manufacture.
  • Another advantage is that such a trench structure can be arranged in a lattice-like or strip-like manner around the individual transistor cells, and thus an optimal influence on the space charge zone is made possible.
  • the vertical additional electrode can be electrically connected to the source or gate or can also be designed such that it forms part of the gate electrode or the gate electrode itself.
  • FIG. 1 shows a first exemplary embodiment of a vertical MOS field-effect transistor according to the invention
  • FIG. 2 shows a detail of a plan view of an inventive field-effect transistor according to FIG. 1,
  • FIG. 3 shows a second exemplary embodiment of a MOS field-effect transistor according to the invention
  • FIG. 4 shows a third exemplary embodiment of a MOS field-effect transistor according to the invention.
  • FIG. 5 shows a detail of a trench structure of a further MOS field effect transistor according to the invention.
  • the vertical MOSFET shown in Figure 1 has an n + - doped substrate, which is connected on the back with a drain connection, for. B. a metallization is provided.
  • An n " -doped epitaxial layer 2 is deposited over this layer 1. in which p-doped source regions 3 are introduced. These p-doped source regions 3 have embedded n + regions 4.
  • a source metallization 7 forms a short circuit between these n + and p source regions 3, 4.
  • two of these source regions 3, 4 are shown, which are spaced apart from one another and whose intermediate region is in each case in connection with the drain zone 1 , 2 a channel is defined, over which, embedded in gate oxide 5, a gate 6 is arranged.
  • a trench-shaped recess extends into the epitaxial layer 2 below the gate and contains an auxiliary electrode 10b, which is surrounded by insulating gate oxide 9b.
  • This auxiliary electrode 10b is wedge-shaped, so that the thickness of the insulating gate oxide 9b increases with increasing distance from the surface facing the gate into the epitaxial layer 2. In the example shown, the distance d1 is thus less than the distance d2 and d3.
  • the trench walls 11b are also n + doped.
  • a similar trench structure is also formed below the source electrode.
  • the trench 8a formed there extends from the source metallization 13 through the source region 3 in the direction of the drain through the epitaxial layer 2.
  • the wedge-shaped additional electrode here extends from the source metallization to which it is conductively connected ⁇ device of the drain in the same way as the auxiliary electrode 10b.
  • the trench walls 11a are again n * -doped, starting below the source electrode 3.
  • FIG. 2 shows how the auxiliary electrodes 10a and 10b can be connected to one another and to the source regions.
  • the auxiliary electrodes 10a and 10b and further auxiliary electrodes, not shown in FIG. 1 have a grid-like structure which on the one hand surround the source regions and on the other hand cross the source regions.
  • the additional auxiliary electrodes 10a, 10b are connected to the source metalization through individual source cells.
  • all auxiliary electrodes which cross source regions can each be connected to the source metallization.
  • the auxiliary electrodes are likewise connected to one another and thus form an annular structure which surrounds the individual transistor cells. A stripe structure is also possible.
  • the mode of operation of such a vertical MOSFET corresponds essentially to that of the known lateral MOSFETs with an additional field plate, the distance of which from the epitaxial layer increases in the direction of the drain.
  • FIG. 3 Another embodiment is shown in Figure 3.
  • the auxiliary electrode is also wedge-shaped in the vertical direction, but is directly connected to the gate 6.
  • the same elements have the same reference symbols.
  • the additional wedge-shaped auxiliary electrode 13 is thus part of the gate and thus completely embedded in the gate oxide 5 and the gate oxide 12 of the trench 8.
  • the trench extends here into the substrate 1, only the side walls 14 being doped in this exemplary embodiment.
  • FIG. 4 shows a development of the arrangement shown in FIG. 3, the trench technology known from storage technology being used here.
  • the difference to previously known trench trenches lies in the fact that the combined gate field plates here are again partially wedge-shaped, so that the thickness of the surrounding gate oxide 12 increases in the direction of the drain.
  • This combined gate field plate structure is designated by 15 in FIG.
  • the wedge-shaped configuration starts here approximately from the end of the source zone 3 in the direction of the drain connection.
  • the n + layer planted outside the trench has a doping of less than approximately 10 12 1 / cm 2 . It should be so high that no avalanche breakdown occurs in layers 14 when fully cleared.
  • the additional auxiliary electrode can consist of n + polysilicon and its connection can be made both to the source contact or to the gate connection.
  • FIG. 5 shows a section of the trench structure according to FIG. 3.
  • a further p-doped layer 16 is introduced here in the edge region of the trench.
  • a plurality of alternating p- or n-doped layers can also be introduced, or the arrangement according to FIG. 5 can be interchanged, so that the n + layer 14 is on the inside and the p-layer 16 is on the outside.
  • the layer 16 can be produced by ion implantation.
  • the edge of a transistor constructed in this way can be designed as in the current power MOSFETs.
  • the doping of the trench walls 11a, 11b, 14, 16 can, for. B. by ion implantation at an angle to the trench wall. It should be so high that no avalanche breakdown occurs in layers 14 when fully cleared.

Abstract

Das erfindungsgemäße durch Feldeffekt steuerbare Halbleiterbauelement weist eine Drainzone vom ersten Leitungstyp auf sowie wenigstens eine aus polykristallinen Silizium bestehende Gateelektrode, welche gegenüber der Drainzone isoliert ist, und eine in der Drainzone eingebrachten Sourcebereich vom zweiten Leitungstyp auf. Zusätzlich ist in der Drainzone eine Grabenstruktur eingebracht, die von der Oberfläche der Epitaxieschicht bis in die Substratschicht reichen kann und innerhalb der eine in einer Oxydschicht eingebettete zusätzliche Feldplatte aus Polysilizium eingebracht ist. Das die aus Polysilizium bestehende Feldplatte umgebende Oxyd nimmt vertikal in Richtung zum Drain in seiner Dicke zu.

Description

Beschreibung
Durch Feldeffekt steuerbares Halbleiterbauelement
Die Erfindung betrifft ein durch Feldeffekt steuerbares Halb¬ leiterbauelement gemäß dem Oberbegriff des Anspruchs 1.
Ein derartiges durch Feldeffekt steuerbares Halbleiterbauele¬ ment ist z. B. ein vertikaler MOS-Feldeffekttransistor. Diese Transistoren sind seit langem bekannt und z. B. im Siemens Datenbuch 1993-94 SIPMOS-Halbleiter, Leistungstransistoren und Dioden, Seite 29 ff. beschrieben. Figur 4 auf Seite 30 dieseε Datenbuchs zeigt den prinzipiellen Aufbau eineε derar¬ tigen Leistungstransistors. Bei einem solchen Transistor dient das n*-Substrat alε Träger mit der darunterliegenden
Drain-Metallisierung. Über dem n*-Substrat schließt sich eine n"-Epitaxieschicht an, die je nach Sperrspannung verschieden dick und entsprechend dotiert ist. Das darüberliegende Gate aus n+-Polysilizium ist in isolierendes Siliziumdioxid einge- bettet und dient als Implantationsmaske für die P-Wanne und für die n+-Sourcezone. Die Sourcemetallisierung überdeckt die gesamte Struktur und schaltet die einzelnen Transistorzellen des Chips parallel. Weitere Einzelheiten sind auf Seite 30 ff. des Datenbucheε zu entnehmen.
Nachteil einer derartigen Anordnung ist, daß der Durchlaßwi¬ derstand Ron der Drain-Source-Laststrecke mit zunehmender Spannungsfestigkeit des Halbleiterbauelements zunimmt, da die Dicke der Epitaxieschicht zunehmen muß. Bei 50 V liegt der flächenbezogene Durchlaßwiderstand Ron bei ungefähr 0,20 Ωmm2 und steigt bei einer Sperrspannung von 1000 V beispielsweise auf einen Wert von circa 10 Ωmm2 an.
Zur Lösung dieses Problems wurde der IGBT entwickelt, welcher MOS- und Epolafunktionen mischt, um besser leitend zu werden. Ein derartiger Transistor ist aber langsamer als ein MOSFET. Es ist bekannt bei lateralen Feldeffekttransistoren das Gate derart auszubilden, daß dieses in Richtung zur Drain-Elek¬ trode beispielsweise stufenartig oder linear ansteigt, wobei die Durchbruchsspannung mit zunehmendem Abstand der Gate- Elektrode von dem Kanalbereich zunimmt und die Sättigungs¬ spannung auch zunimmt. Durch einen derartigen Aufbau wird prinzipiell eine Kettenschaltung von mehreren Feldeffekttran¬ sistoren mit zunehmenden Durchbruchspannungen und niedrigeren Sättungsspannungen realisiert. Laterale Transistoren benöti- gen jedoch eine große Fläche.
Aus der US 5,216,275 ist ein Halbleiterbauelement bekannt, bei dem die auf dem Substrat aufgebrachte Drainschicht aus vertikalen abwechselnd p- und n-dotierten Schichten besteht. Die US 5,216,275 zeigt diese Schichten beispielsweise in Fi¬ gur 4 der Beschreibung. Die p-Schichten sind mit 7 und die n- Schicht mit 6 bezeichnet. Aus der Beschreibung, insbesondere aus Spalte 2, Zeile 8 geht hervor, daß die abwechselnden p- und n-Schichten jeweils mit der p+- bzw. der p"-Region ver- bunden werden müssen. Dies führt jedoch zu einer starken Ein¬ schränkung im Design eines Halbleiterbauelementes, da die Randbereiche nicht mehr frei gestaltet werden können.
Aus der US 5,438,215 ist ein hochsperrender Leistungs-MOSFET bekannt, der einen verminderten Durchlaßwiderstand aufweist. Ein derartiges Bauelement ist jedoch schwierig herzustellen.
Aufgabe der vorliegenden Erfindung ist es daher, ein neues, durch Feldeffekt steuerbares Halbleiterbauelement anzugeben, welches trotz hoher Sperrspannung einen niedrigen Durchlaßwi¬ derstand bereit stellt.
Diese Aufgabe wird durch den kennzeichnenden Teil des An¬ spruchs 1 gelöst. Weiterbildungen sind Kennzeichen der Un- teransprüche. Vorteil der vorliegenden Erfindung ist es, daß die zuvor ge¬ nannten Vorteile eines lateralen Feldeffekttransistors erfin¬ dungsgemäß auch bei einem vertikalen Feldeffekttransistor ausgenutzt werden können, indem das Gate bzw. eine isolierte zusätzliche Feldplattenelektrode, welche in vertikaler Rich¬ tung in das Substrat eingebracht ist, mit zunehmender Tiefe einen zunehmenden Abstand des umgebenden isolierenden Ga¬ teoxyds aufweist .
Ein weiterer Vorteil ist, daß eine derartige Grabenstruktur gitterföπrtig oder streifenförmig um die einzelnen Transistor¬ zellen herum angeordnet werden kann, und somit eine optimale Beeinflussung der Raumladungszone ermöglicht wird.
Je nach Ausgestaltung der vertikalen Zusatzelektrode kann diese elektrisch mit Source oder Gate verbunden sein oder auch derart ausgebildet sein, daß sie einen Teil der Gate¬ elektrode oder die Gateelektrode selbst bildet.
Die Erfindung wird nachfolgend anhand von 5 Figuren näher er¬ läutert. Es zeigen
Figur 1 ein erstes Ausführungsbeispiel eines erfindungsgema¬ ßen vertikalen MOS-Feldeffekttransistors, Figur 2 einen Ausschnitt einer Draufsicht auf einen erfin¬ dungsgemäßen Feldeffekttransistor gemäß Figur 1,
Figur 3 ein zweites Ausfuhrungsbeispiel eines erfindungsgemä¬ ßen MOS-Feldeffekttransistors,
Figur 4 ein drittes Ausführungsbeispiel eines erfindungsgemä- ßen MOS-Feldeffekttransistors, und
Figur 5 einen Ausschnitt einer Grabenstruktur eines weiteren erfindungsgemäßen MOS-Feldeffekttransistors .
Der in Figur 1 dargestellte vertikale MOSFET weist eine n+- dotiertes Substrat auf, welches rückseitig mit einem Drain- Anschluß, z. B. einer Metallisierung, versehen ist. Über die¬ ser Schicht 1 ist eine n"-dotierte Epitaxieschicht 2 abge- schieden, in welcher p-dotierte Sourcebereiche 3 eingebracht sind. Diese p-dotierten Sourcebereiche 3 weisen eingebettete n+-Bereiche 4 auf. Eine Source-Metallisierung 7 bildet einen Kurzschluß zwiεchen diesen n+- und p-Sourcegebiet 3, 4. In der Figur 1 sind zwei dieser Sourcebereiche 3, 4 dargestellt, die voneinander beabstandet sind und deren Zwischenbereich jeweils in Verbindung mit der Drain-Zone 1, 2 einen Kanal de¬ finiert wird, über dem, eingebettet in Gateoxyd 5, ein Gate 6 angeordnet ist.
Unterhalb des Gates erstreckt sich in die Epitaxieschicht 2 eine grabenförmige Aussparung, innerhalb der sich eine Hilfs¬ elektrode 10b befindet, die von isolierendem Gateoxyd 9b um¬ geben ist. Diese Hilfselektrode 10b ist keilförmig ausgebil- det, so daß mit zunehmendem Abstand von der dem Gate zuge¬ wandten Oberfläche in die Epitaxieschicht 2 die Dicke des isolierenden Gateoxyds 9b zunimmt. Im dargestellten Beispiel ist somit der Abstand dl geringerer als der Abstand d2 und d3. Im dargestellten Ausfuhrungsbeispiel gemäß Figur 1 sind zudem die Grabenwände 11b n+-dotiert. Zusätzlich zu der unter dem Gate befindlichen Grabenstruktur 8b ist außerdem eine ähnliche Grabenstruktur unterhalb der Source-Elektrode ausge¬ bildet. Der dort gebildete Graben 8a erstreckt sich von der Source-Metallisierung 13 durch das Sourcegebiet 3 in Richtung des Drains durch die Epitaxieschicht 2. Die keilförmig ausge¬ bildete Zusatzelektrode erstreckt sich hier von der Source- Metallisierung, mit der sie leitend verbunden ist, in Rich¬ tung des Drains in gleicher Weise wie die Hilfselektrode 10b. Beginnend unterhalb der Source-Elektrode 3 sind wiederum die Grabenwände 11a n*-dotiert.
Figur 2 zeigt, wie die Hilfselektroden 10a und 10b miteinan¬ der und mit den Sourcegebieten verbunden werden können. Die Hilfs- elektroden 10a und 10b und weitere in Figur 1 nicht dargestellte Hilfselektroden bilden eine gitterformige Struk¬ tur aufweisen, die einerseits die Sourcegebiete umgeben und andererseits die Sourcegebiete durchqueren. Dabei können, wie in Figur 1 dargestellt, die zusätzlichen Hilfselektroden 10a, 10b durch einzelne Sourcezellen hindurch mit der Source-Me¬ tallisierung in Verbindung stehen. Selbstverständlich können alle Hilfselektroden, welche Sourcegebiete durchqueren, je- weils mit der Source-Metallisierung verbunden werden. An den Kreuzungspunkten der gitterförmig ausgebildeten Hilfselektro¬ den 10a und 10b sind die Hilfselektroden ebenfalls miteinan¬ der verbunden und bilden so eine ringförmige Struktur, die die einzelnen Transiεtorzellen umgibt. Eε ist auch eine Streifenstruktur möglich.
Die Wirkungsweise eineε derartigen vertikalen MOSFETS ent¬ spricht im wesentlichen der der bekannten lateralen MOSFETS mit einer zusätzlichen Feldplatte, deren Abstand zur Epita- xieschicht in Richtung des Drains zunimmt.
Ein weiteres Ausführungsbeispiel ist in Figur 3 dargestellt. Hier ist die Hilfselektrode ebenfalls keilförmig in vertika¬ ler Richtung ausgebildet, jedoch direkt mit dem Gate 6 ver- bunden. Gleiche Elemente weisen die gleichen Bezugszeichen auf. Die zusätzliche keilförmig ausgebildete Hilfselektrode 13 ist hier somit Teil des Gates und somit vollständig in das Gateoxyd 5 sowie das Gateoxyd 12 des Grabens 8 eingebettet. Der Graben erstreckt sich hier bis in das Substrat 1, wobei in diesem Ausfuhrungsbeispiel nur die Seitenwände 14 ^-do¬ tiert sind.
Figur 4 zeigt eine Weiterbildung der in Figur 3 dargestellten Anordnung, wobei hier die aus der Speichertechnik bekannte Trench-Technologie verwendet wird. Der Unterschied zu bisher bekannten Trenchgräben liegt darin, daß die kombinierte Gate- Feldplatten hier wiederum teilweise keilförmig gebildet sind, so daß das sie umgebende Gateoxyd 12 in seiner Dicke in Rich¬ tung des Drains zunimmt. Diese kombinierte Gate-Feldplatten- Struktur ist in Figur 4 mit 15 bezeichnet. Die keilförmige Ausgestaltung beginnt hier ungefähr ab dem Ende der Source- zone 3 in Richtung zum Drainanschluß. Die außerhalb des Grabens eingepflanzte n+-Schicht weist eine Dotierung kleiner als etwa 1012 1/cm2 auf. Sie soll so hoch sein, daß bei vollem Ausräumen noch kein Lawinendurchbruch in den Schichten 14 auftritt. Wie dargestellt, kann die zusätz¬ liche Hilfselektrode aus n+-Polysilizium bestehen und deren Anschluß sowohl an den Sourcekontakt oder auch an den Gatean¬ schluß erfolgen.
In Figur 5 ist ein Ausschnitt der Grabenstruktur gemäß Figur 3 dargestellt. Zusätzlich ist hier eine weitere p-dotierte Schicht 16 in den Randbereich des Grabens eingebracht. Es können auch mehrere abwechselnde p- oder n-dotierte Schichten eingebracht werden, oder die Anordnung gemäß Figur 5 ver- tauscht werden, so daß die n+-Schicht 14 innen und die p- Schicht 16 außen liegt. Die Schicht 16 kann durch Ionenim¬ plantation erzeugt werden.
Die erfindungsgemäßen Strukturen wurden als N-Kanal-FET er- läutert, sind jedoch genausogut auch bei entsprechender um- kehrter Dotierung in einer P-Kanal-Version realisierbar.
Der Rand eines derartig aufgebauten Transistors kann wie bei den zur Zeit gängigen Leistungs-MOSFETS ausgeführt sein.
Die Dotierung der Grabenwände 11a, 11b, 14, 16 kann z. B. durch Ionenimplantation mit einem Winkel zur Trenchwand er¬ folgen. Sie soll so hoch sein, daß bei vollem Ausräumen noch kein Lawinendurchbruch in den Schichten 14 auftritt.

Claims

Patentansprüche
1. Durch Feldeffekt steuerbares Halbleiterbauelement mit
- einer Drainzone vom ersten Leitungεtyp, - wenigεtenε einer aus polykriεtalliden Silizium bestehenden Gateelektrode, wobei diese gegenüber der Drainzone isoliert ist,
- wenigstens einem in der Drainzone eingebrachten Sourcebe- reich vom zweiten Leitungstyp, d a d u r c h g e k e n n z e i c h n e t , daß in der Drainzone wenigstens eine Grabenstruktur (8, 8a, 8b) eingebracht ist, die von der Oberfläche des Halbleiter¬ bauelementes in die Drainzone (2, 1) hineinreicht, innerhalb der eine von einer Oxydschicht (9a, 9b, 12)umgebene Feldplat- te (10a, 10b, 13, 15) eingebracht ist, wobei die Dicke der Oxydschicht (9a, 9b, 12) in Richtung der Drain-Elektrode zu¬ nimmt.
2. Durch Feldeffekt steuerbares Halbleiterbauelement nach An- spruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die die Feldplatte umgebende Oxydschicht (9a, 9b, 12) von einer vom ersten Leitungstyp im Vergleich zur Drainzone (2) stärker dotierten Schicht (11a, 11b, 14) umgeben ist.
3. Durch Feldeffekt steuerbares Halbleiterbauelement nach An¬ spruch 2, d a d u r c h g e k e n n z e i c h n e t , daß in die die Feldplatte umgebende Oxydschicht (9a, 9b, 12) wenigstens eine weitere Schicht (16) vom zweiten Leitungstyp eingebracht ist.
4. Durch Feldeffekt steuerbares Halbleiterbauelement nach ei¬ nem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß eine Vielzahl von Grabenstrukturen (8a, 8b, 8) gitterför- mig oder streifenförmig in dem Halbleiterbauelement angeord¬ net sind.
5. Durch Feldeffekt steuerbares Halbleiterbauelement nach ei¬ nem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Feldplatte (10a, 10b) elektrisch mit dem Sourcean- schluß (s) verbunden ist.
6. Durch Feldeffekt steuerbares Halbleiterbauelement nach ei¬ nem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß die Feldplatte (13, 15) elektrisch mit der Gateelektrode (G) verbunden ist.
7. Durch Feldeffekt steuerbares Halbleiterbauelement nach An¬ spruch 6, d a d u r c h g e k e n n z e i c h n e t , daß die Feldplatte (15) vertikal ausgebildet ist, und das sie gleichzeitig als Gate dient.
8. Durch Feldeffekt steuerbares Halbleiterbauelement nach ei¬ nem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t , daß die Feld¬ platte aus Polysilizium besteht.
EP97917263A 1996-03-20 1997-03-14 Durch feldeffekt steuerbares halbleiterbauelement Withdrawn EP0888639A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19611045 1996-03-20
DE19611045A DE19611045C1 (de) 1996-03-20 1996-03-20 Durch Feldeffekt steuerbares Halbleiterbauelement
PCT/DE1997/000528 WO1997035346A1 (de) 1996-03-20 1997-03-14 Durch feldeffekt steuerbares halbleiterbauelement

Publications (1)

Publication Number Publication Date
EP0888639A1 true EP0888639A1 (de) 1999-01-07

Family

ID=7788907

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97917263A Withdrawn EP0888639A1 (de) 1996-03-20 1997-03-14 Durch feldeffekt steuerbares halbleiterbauelement

Country Status (4)

Country Link
US (1) US5973360A (de)
EP (1) EP0888639A1 (de)
DE (1) DE19611045C1 (de)
WO (1) WO1997035346A1 (de)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057558A (en) * 1997-03-05 2000-05-02 Denson Corporation Silicon carbide semiconductor device and manufacturing method thereof
DE19743342C2 (de) * 1997-09-30 2002-02-28 Infineon Technologies Ag Feldeffekttransistor hoher Packungsdichte und Verfahren zu seiner Herstellung
DE19840032C1 (de) 1998-09-02 1999-11-18 Siemens Ag Halbleiterbauelement und Herstellungsverfahren dazu
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US6545316B1 (en) * 2000-06-23 2003-04-08 Silicon Wireless Corporation MOSFET devices having linear transfer characteristics when operating in velocity saturation mode and methods of forming and operating same
DE19854915C2 (de) * 1998-11-27 2002-09-05 Infineon Technologies Ag MOS-Feldeffekttransistor mit Hilfselektrode
DE19859502C2 (de) * 1998-12-22 2000-12-07 Siemens Ag Sperrschicht-Feldeffekttransistor mit höher dotiertem Verbindungsgebiet
US6191447B1 (en) * 1999-05-28 2001-02-20 Micro-Ohm Corporation Power semiconductor devices that utilize tapered trench-based insulating regions to improve electric field profiles in highly doped drift region mesas and methods of forming same
KR100773380B1 (ko) 1999-06-03 2007-11-06 제네럴 세미컨덕터, 인코포레이티드 전력 mosfet, 이를 형성하는 방법, 및 이 방법에 의해 형성되는 다른 전력 mosfet
IT1313198B1 (it) * 1999-07-22 2002-06-17 St Microelectronics Srl Cella eeprom con ottime prestazioni di corrente.
FR2797094B1 (fr) * 1999-07-28 2001-10-12 St Microelectronics Sa Procede de fabrication de composants unipolaires
GB0005650D0 (en) * 2000-03-10 2000-05-03 Koninkl Philips Electronics Nv Field-effect semiconductor devices
TW479363B (en) * 2000-03-17 2002-03-11 Gen Semiconductor Inc Trench DMOS transistor having a double gate structure
US6660571B2 (en) 2000-06-02 2003-12-09 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
US6479352B2 (en) 2000-06-02 2002-11-12 General Semiconductor, Inc. Method of fabricating high voltage power MOSFET having low on-resistance
US6627949B2 (en) * 2000-06-02 2003-09-30 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
US6784486B2 (en) * 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
US6781194B2 (en) * 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
JP4528460B2 (ja) * 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US7745289B2 (en) 2000-08-16 2010-06-29 Fairchild Semiconductor Corporation Method of forming a FET having ultra-low on-resistance and low gate charge
US6649975B2 (en) * 2000-11-16 2003-11-18 Silicon Semiconductor Corporation Vertical power devices having trench-based electrodes therein
US6768171B2 (en) 2000-11-27 2004-07-27 Power Integrations, Inc. High-voltage transistor with JFET conduction channels
US20030091556A1 (en) * 2000-12-04 2003-05-15 Ruoslahti Erkki I. Methods of inhibiting tumor growth and angiogenesis with anastellin
US6677641B2 (en) 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6803626B2 (en) 2002-07-18 2004-10-12 Fairchild Semiconductor Corporation Vertical charge control semiconductor device
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
US6818513B2 (en) * 2001-01-30 2004-11-16 Fairchild Semiconductor Corporation Method of forming a field effect transistor having a lateral depletion structure
US6713813B2 (en) 2001-01-30 2004-03-30 Fairchild Semiconductor Corporation Field effect transistor having a lateral depletion structure
EP1396030B1 (de) * 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertikale Leistungshalbleiteranordnung und Verfahren zu deren Herstellung
US6878989B2 (en) * 2001-05-25 2005-04-12 Kabushiki Kaisha Toshiba Power MOSFET semiconductor device and method of manufacturing the same
US6683363B2 (en) * 2001-07-03 2004-01-27 Fairchild Semiconductor Corporation Trench structure for semiconductor devices
US7221011B2 (en) * 2001-09-07 2007-05-22 Power Integrations, Inc. High-voltage vertical transistor with a multi-gradient drain doping profile
US6635544B2 (en) 2001-09-07 2003-10-21 Power Intergrations, Inc. Method of fabricating a high-voltage transistor with a multi-layered extended drain structure
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6555873B2 (en) 2001-09-07 2003-04-29 Power Integrations, Inc. High-voltage lateral transistor with a multi-layered extended drain structure
US7786533B2 (en) 2001-09-07 2010-08-31 Power Integrations, Inc. High-voltage vertical transistor with edge termination structure
US6555883B1 (en) 2001-10-29 2003-04-29 Power Integrations, Inc. Lateral power MOSFET for high switching speeds
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6828609B2 (en) 2001-11-09 2004-12-07 Infineon Technologies Ag High-voltage semiconductor component
US7091573B2 (en) * 2002-03-19 2006-08-15 Infineon Technologies Ag Power transistor
JP3993458B2 (ja) * 2002-04-17 2007-10-17 株式会社東芝 半導体装置
US7576388B1 (en) 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US6710418B1 (en) 2002-10-11 2004-03-23 Fairchild Semiconductor Corporation Schottky rectifier with insulation-filled trenches and method of forming the same
US8227860B2 (en) * 2003-02-28 2012-07-24 Micrel, Inc. System for vertical DMOS with slots
US7087491B1 (en) * 2003-02-28 2006-08-08 Micrel, Inc. Method and system for vertical DMOS with slots
DE10317383B4 (de) * 2003-04-15 2008-10-16 Infineon Technologies Ag Sperrschicht-Feldeffekttransistor (JFET) mit Kompensationsgebiet und Feldplatte
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6865093B2 (en) * 2003-05-27 2005-03-08 Power Integrations, Inc. Electronic circuit control element with tap element
DE10339455B3 (de) * 2003-08-27 2005-05-04 Infineon Technologies Ag Vertikales Halbleiterbauelement mit einer eine Feldelektrode aufweisenden Driftzone und Verfahren zur Herstellung einer solchen Driftzone
GB0326030D0 (en) * 2003-11-06 2003-12-10 Koninkl Philips Electronics Nv Insulated gate field effect transistor
KR100994719B1 (ko) 2003-11-28 2010-11-16 페어차일드코리아반도체 주식회사 슈퍼정션 반도체장치
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
JP2005322700A (ja) * 2004-05-06 2005-11-17 Toshiba Corp 半導体装置及びその製造方法
US7002398B2 (en) * 2004-07-08 2006-02-21 Power Integrations, Inc. Method and apparatus for controlling a circuit with a high voltage sense device
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
DE102004045944B4 (de) 2004-09-22 2018-08-16 Infineon Technologies Ag MOS-Feldeffekttransistor
US7767527B2 (en) * 2004-09-30 2010-08-03 Infineon Technologies Ag Method for producing a vertical transistor component
JP2006147700A (ja) * 2004-11-17 2006-06-08 Sanyo Electric Co Ltd 半導体装置
WO2006085267A2 (en) * 2005-02-08 2006-08-17 Nxp B.V. Semiconductor device with trench field plate
CN101882583A (zh) 2005-04-06 2010-11-10 飞兆半导体公司 沟栅场效应晶体管及其形成方法
CN101536163B (zh) 2005-06-10 2013-03-06 飞兆半导体公司 电荷平衡场效应晶体管
DE102005041108B3 (de) * 2005-08-30 2007-05-31 Infineon Technologies Ag Verfahren zur Herstellung eines Trench-Transistors und Trench-Transistor
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
US7595523B2 (en) * 2007-02-16 2009-09-29 Power Integrations, Inc. Gate pullback at ends of high-voltage vertical transistor structure
US8653583B2 (en) 2007-02-16 2014-02-18 Power Integrations, Inc. Sensing FET integrated with a high-voltage transistor
US7859037B2 (en) 2007-02-16 2010-12-28 Power Integrations, Inc. Checkerboarded high-voltage vertical transistor layout
US7468536B2 (en) 2007-02-16 2008-12-23 Power Integrations, Inc. Gate metal routing for transistor with checkerboarded layout
US7557406B2 (en) 2007-02-16 2009-07-07 Power Integrations, Inc. Segmented pillar layout for a high-voltage vertical transistor
US7615847B2 (en) * 2007-03-23 2009-11-10 Infineon Technologies Austria Ag Method for producing a semiconductor component
DE102007014038B4 (de) 2007-03-23 2015-02-12 Infineon Technologies Austria Ag Verfahren zur Herstellung eines Halbleiterbauelements
CN101868856B (zh) 2007-09-21 2014-03-12 飞兆半导体公司 用于功率器件的超结结构及制造方法
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US8866255B2 (en) * 2008-03-12 2014-10-21 Infineon Technologies Austria Ag Semiconductor device with staggered oxide-filled trenches at edge region
US8809966B2 (en) 2008-03-12 2014-08-19 Infineon Technologies Ag Semiconductor device
WO2009130648A1 (en) * 2008-04-21 2009-10-29 Nxp B.V. Semiconductor devices including a field reducing structure and methods of manufacture thereof
DE102008024949B3 (de) * 2008-05-23 2009-12-10 Infineon Technologies Ag Verfahren zur Herstellung einer Feldplatte in einem Graben eines Leistungstransistors
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US7910983B2 (en) * 2008-09-30 2011-03-22 Infineon Technologies Austria Ag MOS transistor having an increased gate-drain capacitance
US8174067B2 (en) 2008-12-08 2012-05-08 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8487371B2 (en) 2011-03-29 2013-07-16 Fairchild Semiconductor Corporation Vertical MOSFET transistor having source/drain contacts disposed on the same side and method for manufacturing the same
US8673700B2 (en) 2011-04-27 2014-03-18 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8772868B2 (en) 2011-04-27 2014-07-08 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8786010B2 (en) 2011-04-27 2014-07-22 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
US8633539B2 (en) 2011-06-27 2014-01-21 Infineon Technologies Austria Ag Trench transistor and manufacturing method of the trench transistor
US8889532B2 (en) 2011-06-27 2014-11-18 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device and structure
US9224852B2 (en) 2011-08-25 2015-12-29 Alpha And Omega Semiconductor Incorporated Corner layout for high voltage semiconductor devices
US8680613B2 (en) 2012-07-30 2014-03-25 Alpha And Omega Semiconductor Incorporated Termination design for high voltage device
US8785279B2 (en) 2012-07-30 2014-07-22 Alpha And Omega Semiconductor Incorporated High voltage field balance metal oxide field effect transistor (FBM)
US9356133B2 (en) * 2012-02-01 2016-05-31 Texas Instruments Incorporated Medium voltage MOSFET device
US8816431B2 (en) 2012-03-09 2014-08-26 Fairchild Semiconductor Corporation Shielded gate MOSFET device with a funnel-shaped trench
US8642425B2 (en) 2012-05-29 2014-02-04 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device and structure
US8778764B2 (en) 2012-07-16 2014-07-15 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device having a shield electrode structure and structure therefor
US9818743B2 (en) * 2013-06-21 2017-11-14 Infineon Technologies Americas Corp. Power semiconductor device with contiguous gate trenches and offset source trenches
US10395970B2 (en) 2013-12-05 2019-08-27 Vishay-Siliconix Dual trench structure
US9543396B2 (en) 2013-12-13 2017-01-10 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped regions
US10325988B2 (en) 2013-12-13 2019-06-18 Power Integrations, Inc. Vertical transistor device structure with cylindrically-shaped field plates
CN104112773A (zh) * 2014-01-14 2014-10-22 西安后羿半导体科技有限公司 一种垂直双扩散金属氧化物半导体场效应管
US20150325685A1 (en) * 2014-05-07 2015-11-12 International Rectifier Corporation Power Semiconductor Device with Low RDSON and High Breakdown Voltage
US9269779B2 (en) 2014-07-21 2016-02-23 Semiconductor Components Industries, Llc Insulated gate semiconductor device having a shield electrode structure
CN104241383B (zh) * 2014-09-17 2017-05-17 中航(重庆)微电子有限公司 功率半导体器件及制造工艺
JP6299581B2 (ja) * 2014-12-17 2018-03-28 三菱電機株式会社 半導体装置
US9425788B1 (en) 2015-03-18 2016-08-23 Infineon Technologies Austria Ag Current sensors and methods of improving accuracy thereof
US9673314B2 (en) * 2015-07-08 2017-06-06 Vishay-Siliconix Semiconductor device with non-uniform trench oxide layer
CN107134491B (zh) * 2017-03-29 2019-11-29 西安电子科技大学 基于弧形源场板的垂直结构电力电子器件
US10135357B1 (en) 2017-09-07 2018-11-20 Power Integrations, Inc. Threshold detection with tap
JP2019091822A (ja) * 2017-11-15 2019-06-13 株式会社東芝 半導体装置
DE102018107417B4 (de) * 2018-03-28 2024-02-08 Infineon Technologies Austria Ag Nadelzellengraben-MOSFET und Verfahren zur Herstellung desselben
CN110875237B (zh) * 2018-08-29 2021-12-14 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
JP7249269B2 (ja) * 2019-12-27 2023-03-30 株式会社東芝 半導体装置およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089118A (en) * 1980-12-10 1982-06-16 Philips Electronic Associated Field-effect semiconductor device
JPS598375A (ja) * 1982-07-05 1984-01-17 Matsushita Electronics Corp 縦型構造電界効果トランジスタ
JPS60208863A (ja) * 1984-04-03 1985-10-21 Nec Corp Mosトランジスタ及びその製造方法
US4941026A (en) * 1986-12-05 1990-07-10 General Electric Company Semiconductor devices exhibiting minimum on-resistance
US4914058A (en) * 1987-12-29 1990-04-03 Siliconix Incorporated Grooved DMOS process with varying gate dielectric thickness
DE68926793T2 (de) * 1988-03-15 1997-01-09 Toshiba Kawasaki Kk Dynamischer RAM
US5126807A (en) * 1990-06-13 1992-06-30 Kabushiki Kaisha Toshiba Vertical MOS transistor and its production method
JPH04363069A (ja) * 1990-09-24 1992-12-15 Nippondenso Co Ltd 縦型半導体装置
CN1019720B (zh) * 1991-03-19 1992-12-30 电子科技大学 半导体功率器件
DE4309764C2 (de) * 1993-03-25 1997-01-30 Siemens Ag Leistungs-MOSFET
US5430315A (en) * 1993-07-22 1995-07-04 Rumennik; Vladimir Bi-directional power trench MOS field effect transistor having low on-state resistance and low leakage current
DE4341667C1 (de) * 1993-12-07 1994-12-01 Siemens Ag Integrierte Schaltungsanordnung mit mindestens einem CMOS-NAND-Gatter und Verfahren zu deren Herstellung
DE4423068C1 (de) * 1994-07-01 1995-08-17 Daimler Benz Ag Feldeffekt-Transistoren aus SiC und Verfahren zu ihrer Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9735346A1 *

Also Published As

Publication number Publication date
DE19611045C1 (de) 1997-05-22
US5973360A (en) 1999-10-26
WO1997035346A1 (de) 1997-09-25

Similar Documents

Publication Publication Date Title
DE19611045C1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
DE19539541B4 (de) Lateraler Trench-MISFET und Verfahren zu seiner Herstellung
DE102004052678B3 (de) Leistungs- Trenchtransistor
DE102007030755B3 (de) Halbleiterbauelement mit einem einen Graben aufweisenden Randabschluss und Verfahren zur Herstellung eines Randabschlusses
DE102008044408B4 (de) Halbleiterbauelementanordnung mit niedrigem Einschaltwiderstand
DE102005041322B4 (de) Trenchtransistorstruktur mit Feldelektrodenanordnung und Herstellungsverfahren hierfür
DE102006046853B4 (de) Randkonstruktion für ein Halbleiterbauelement und Verfahren zur Herstellung derselben
DE102014110366B4 (de) Mos-leistungstransistor mit integriertem gatewiderstand
EP1051756A1 (de) Mos-feldeffekttransistor mit hilfselektrode
DE19702102A1 (de) Halbleitervorrichtung und Verfahren zur Herstellung der Halbleitervorrichtung
DE102015121497B4 (de) Halbleitervorrichtung mit einem ersten gategraben und einem zweiten gategraben
DE112007001578T5 (de) Lateraler Fet mit Trench-Gate mit direktem Source-Drain-Strompfad
DE10322594A1 (de) MIS-Halbleiterbauteil und Verfahren zu seiner Herstellung
DE102004029435A1 (de) Feldplattentrenchtransistor
DE69533134T2 (de) Leistungsbauteil hoher Dichte in MOS-Technologie
DE102020116653B4 (de) Siliziumcarbid-halbleiterbauelement
EP1264350B1 (de) Vertikales hochvolt-halbleiterbauelement
DE10127391B4 (de) Halbleiter-Vorrichtung
EP1097482B1 (de) J-fet-halbleiteranordnung
WO1998038681A1 (de) Durch feldeffekt steuerbares halbleiterbauelement
DE102006009942B4 (de) Laterales Halbleiterbauelement mit niedrigem Einschaltwiderstand
DE102005048447A1 (de) Halbleiterleistungsbauelement mit Ladungskompensationsstruktur und Verfahren zur Herstellung desselben
DE102004047772B4 (de) Lateraler Halbleitertransistor
EP1245050B1 (de) Steuerbares in beide richtungen sperrendes halbleiterschaltelement
DE102021108386A1 (de) Isolationsstruktur für igbt-vorrichtungen mit einer integrierten diode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20010605

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011218