EP0949077A1 - Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method - Google Patents

Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method Download PDF

Info

Publication number
EP0949077A1
EP0949077A1 EP99400831A EP99400831A EP0949077A1 EP 0949077 A1 EP0949077 A1 EP 0949077A1 EP 99400831 A EP99400831 A EP 99400831A EP 99400831 A EP99400831 A EP 99400831A EP 0949077 A1 EP0949077 A1 EP 0949077A1
Authority
EP
European Patent Office
Prior art keywords
drops
jet
jets
electrodes
breaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99400831A
Other languages
German (de)
French (fr)
Other versions
EP0949077B1 (en
Inventor
Stéphane Vago
Max Perrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
TOXOT Science and Applications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA, TOXOT Science and Applications filed Critical Imaje SA
Publication of EP0949077A1 publication Critical patent/EP0949077A1/en
Application granted granted Critical
Publication of EP0949077B1 publication Critical patent/EP0949077B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/105Ink jet characterised by jet control for binary-valued deflection

Definitions

  • the invention relates to a projection method of an electrically conductive liquid in the form at least one continuous stimulated jet.
  • the invention also relates to a device multi-nozzle printing using this process.
  • a printing device can be used in all industrial fields related to marking, coding, addressing and industrial decoration.
  • the continuous inkjet technique deflected, electrically conductive ink, maintained under pressure, escapes from a calibrated nozzle.
  • the ink jet thus formed breaks at time intervals regular at a single point in space.
  • This forced fragmentation of the inkjet is usually induced by periodic vibrations of a crystal piezoelectric placed upstream of the nozzle.
  • the continuous jet turns into a train of identical and regular ink drops spaced.
  • a first group of electrodes whose function is to transfer to each drop of the spray, selectively, a variable amount of electrical charge and predetermined. All the drops of the jet pass through then a second group of electrodes within which there is a constant electric field.
  • Each drop undergoes then a deflection proportional to the electric charge previously assigned to it, and which points to a specific point on a print medium.
  • the non-deflected drops are recovered by a gutter and recycled to an ink circuit.
  • a specific device is usually provided to ensure a constant synchronization between the moments of jet break and the application of the charge signals of the drops.
  • This technology is mainly characterized by the fact that a variable amount of electric charge is selectively transferred to each drop of jet, so that multiple levels of deflection are created.
  • This feature allows a nozzle unique to print, by segments (lines of points of a given width), the entire pattern (character or graphic pattern). Moving from one segment to another is carried out by the continuous displacement, perpendicularly to the segments, of the printing medium opposite the printing device.
  • multiple devices monobuses printing (generally two to four) can be grouped within the same box.
  • Document EP-A-0 512 907 describes a multi-nozzle printing device (eight nozzles) using inkjet technology continuously deflected. By juxtaposing several devices multi-nozzle printing, more printing widths important can be obtained.
  • Inkjet printing devices continuous stimulated using the continuous jet technique stand out from printing devices using the technique of continuous deflected jet mainly by the fact that only an amount of electric charge predetermined can be transferred on demand, with every drop of the spray. A single level of deflection of drops is then created.
  • Printing characters or of patterns therefore requires the use of devices multi-nozzle printing, in which the center distance the nozzles generally coincide with the spacing between impacts on the print medium.
  • drops intended for printing (“drops to print "in the rest of the text) are the drops not deflected. This technique is particularly suitable for high speed printing applications such as addressing, printing proofs in high resolution color, etc.
  • the cost problems originate from the multiplication of charge electrodes and multiplication high voltage electronic circuits connected to these electrodes, which induce a connection important and complex.
  • this article proposes to use two groups of electrodes, each of which is formed by a planar electrode.
  • each electrode is common to all jets and subject to constant electrical voltage.
  • the selection of drops to print and drops to recycle is done then by the individual control of the stimulation of each of the ink jets from the print head.
  • an individual stimulation device each of the jets is planned.
  • the associated connectors to stimulation devices is located upstream nozzles and therefore distant from the jets.
  • she carries lower voltage levels than those that are required to charge the drops. The effects of crosstalk are therefore reduced.
  • the jet breaking point is located opposite the first electrode, or charging electrode, brought to a constant voltage V c .
  • the drop which detaches at this instant then carries a charge Q1 and undergoes a deflection of angle ⁇ 1 in the field created by the second electrode, or deflection electrode, brought to a constant voltage V d .
  • This drop is collected by a gutter and recycled to the ink circuit of the printing device.
  • the breaking distance When the breaking distance is shorter, due to the application of a high level stimulation signal on the jet, the latter breaks at a point situated slightly before the charging electrode.
  • the charge Q2 carried by the drop is then lower than in the previous case.
  • the deflection ⁇ 2 induced by the deflection plane is therefore also less.
  • the drop then avoids the gutter and reaches the print medium.
  • the difference between the two levels of stimulation of the jet is such that the distance d between the breaking points of the jet for each of these two levels is equal to the wavelength ⁇ of the stimulated jet, that is to say ie the train of drops.
  • the start of such a device led printing, for ink jets escaping from the nozzles, during a transient phase during which aerodynamic braking predominates.
  • a jet forms at the end of each jet ink volume larger than that drops formed during the steady state, and the jet trajectory is temporarily altered.
  • any fluctuation of the trajectory of the jets around their axis can also deflect slightly spray and lead to dirt on the electrode load placed in the immediate vicinity of jets, which usually causes short circuits between the jet and the electrode.
  • document US-A-4 220 958 describes a method of stimulating an ink jet, in which jet disturbance is accomplished by excitation electro-hydrodynamics (EHD).
  • the stimulation device EHD proposed in this document is composed of one or several electrodes placed near the jet, in downstream of the nozzle, the length of each electrode being approximately equal to ⁇ / 2.
  • the main object of the invention is a method of electrically conductive liquid using the binary continuous jet technique described in the above-mentioned article by Donald J. DRAKE, without presenting the disadvantages of this technique.
  • the invention relates to a method projection of liquid by continuous jet, in which the process of charging the drops from jets are controlled regardless of the sequence of drops emitted, and the trajectory of the printable drops is not a strictly monotonic function of the position of the breaking point within the device charge.
  • said quantity is applied to the drops of different electrical charge by creating two contiguous areas located in the respective vicinity of the two breaking points and bringing these two areas to constant electrical potentials and opposite signs.
  • the jet can be passed successively between two pairs of oriented electrodes parallel to the jet and sized so that both break points are located between said electrodes, and applying on the two pairs of electrodes constant electrical voltages and signs opposites.
  • each electrode in order to avoid the inconvenience related to the immediate proximity between the surface of the jet and the load plan, we advantageously place each electrode at least equal distance from the jet axis twice the diameter of it.
  • the individual means of binary stimulation of each of the jets includes a piezoelectric element or thermo-resistive placed in the pressurized tank and individually controlled by an electronic circuit external.
  • the individual means of binary stimulation of each of the jets includes two elements thermo-resistive placed in the pressurized tank, an external electrical circuit permanently delivering a periodic electrical signal for supplying a first of the thermo-resistive elements, corresponding to first breaking point and, on request, a signal complementary electric supply of the second thermo-resistive element, corresponding to the second breaking point.
  • the individual means of stimulation binary of each of the jets includes a transducer individual placed in the pressurized tank and at minus a common electro-hydrodynamic excitation electrode placed near the jets, downstream of the nozzle, an external electrical circuit delivering permanently a periodic power signal electric excitation electrode electro-hydrodynamics, corresponding to the first point breakage and, on request, an electrical signal additional supply of the transducer individual, corresponding to the second breaking point.
  • Figure 1 schematically shows a continuous inkjet printing device putting implement the method of projecting a liquid electrically conductor according to the invention.
  • the device comprises a pressurized tank 10, equipped with a plurality of calibrated nozzles 12 (three in the figure) from which escape, at a given speed V j , ink jets 14 parallel to each other and having between them a constant spacing.
  • Each ink jet 14 is associated with an individual means 16 of binary stimulation, placed in the reservoir 10 and controlled individually by an external electronic circuit 18.
  • Each individual means 16 of binary stimulation fixes, on request, the place of breaking of each of the jets 14 at a short breaking point C , relatively close to the nozzle 12 or at a long breaking point L further from this nozzle.
  • the drops formed at points C and L are designated respectively by the references 22 and 24. the drops 22 and 24 are all emitted at the same given emission frequency F.
  • a charging means 20 which will be described in more detail detail later, is placed in the vicinity of breaking points C and L. This charging means 20 is common to all ink jets 14. It applies different amounts of charge in drops 22 and 24, according to their breaking points.
  • the device print Downstream of the charging means 20, the device print includes a sensor 26 designed to measure the speed of the ink jets 14. This sensor 26 is connected to an electronic circuit 28 which ensures the processing of data collected by the sensor. The circuit 28 is connected to a regulation loop (not shown) of the speed of the jets 14, according to an arrangement known to those skilled in the art. To simplify, the sensor 26 and its associated circuit have not been shown in Figures 2A to 4.
  • the printing device Downstream of sensor 26, the printing device includes deflection means 30 which applies a same constant electric field on ink drops 22 and 24 previously electrically charged in the load means 20.
  • This deflection means 30 comprises two flat electrodes 32 and 34, common to all ink jets 14. These electrodes 32 and 34 are arranged on both sides of the ink drop trains 22 and 24 and a constant voltage is applied between them by a supply circuit 36.
  • the deflection means 30 directs the charged drops 24 towards a gutter 38 which recycles them to a general ink circuit 40 of the device.
  • the charging means 20 comprises two groups of planar electrodes, respectively 42, 44 and 46, 48, the electrodes of each group being placed on either side of the jets 14.
  • the two groups of electrodes are separated one on the other by a distance D ( Figure 2A) parallel to the axes of the jets.
  • D Figure 2A
  • the total length of the two groups of electrodes, parallel to the axes of the jets, is called S.
  • supply circuits 50 and 52 apply the same constant voltage V1 to the two electrodes 42 and 44 of the first group of electrodes and supply circuits 54 and 56 apply a same constant voltage V2 , of opposite sign to V1 , on the two electrodes 46 and 48 of the second group of electrodes.
  • Two contiguous zones are thus created, in the vicinity of the breaking points C and L , respectively, brought to constant electrical potentials and of opposite signs.
  • the electrodes 42 and 44 of the first group of electrodes are arranged symmetrically on either side of the jets 14 and each placed at a distance E from the axes of the jets.
  • this distance E is greater than or equal to twice the diameter d j of the jets 14.
  • the electrodes 46 and 48 of the second group of electrodes are also arranged symmetrically on either side of the jets 14 and at the same distance E from their axes.
  • the selection of a drop 24 not intended for the printing of the support 42 takes place by controlling the individual means 16 of binary stimulation of the corresponding jet 14 by an electrical signal whose level Vl is determined in order to induce the breaking of the jet at the predetermined long breaking point L , inside the charging means 20.
  • the selection of a drop 22 intended for the printing of the support 42 is carried out by controlling the individual means 16 of binary stimulation of the corresponding jet by an electrical signal whose level V c will induce the breaking of the jet at the predetermined point of breaking short C also inside the charging means 20.
  • the distance ⁇ D between the two breaking points C and L is strictly less than the wavelength ⁇ of the stimulated jets.
  • Any sequence of drops 24 not intended for printing or of drops 22 intended for printing is created by generating, on the individual means 16 for stimulating each of the jets and at the frequency F of emission of the drops chosen, a signal gathering the corresponding sequence of level V c or Vl .
  • the trajectory of the drops to be printed 22 is therefore not a strictly monotonic function of the position of the breaking point within the charging device. On the contrary, the same point of impact is ensured on the printing medium, despite possible fluctuations in the short break point C. Print quality is thus ensured without any particular technical difficulty or increase in cost.
  • the length S of the charging means 20 can be less than 2.5 mm, the voltage V1 applied to the electrodes 42 and 44 equal to 300 V, and the voltage V2 applied to the electrodes 46 and 48 equal to - 300 V.
  • Each of the jets 14 has, for example, a diameter of 35 ⁇ m, a speed of 24 m / s and a stimulation frequency equal to 125 kHz.
  • each of the individual stimulation means 16 binary consists of a piezoelectric element placed in the tank 10 and controlled individually by the external electronic circuit 18.
  • the number of piezoelectric elements is equal to that nozzles 12 of the print head.
  • each of the piezoelectric elements constituting the individual stimulation means 16 binary can be replaced by an element thermo-resistive generating disturbances of nature thermal.
  • thermo-resistive their operation and manufacturing method, we will usefully refer to the document US-A-4,638,328.
  • thermo-resistive element When each individual means 16 of binary stimulation consists of a single thermo-resistive element associated with each nozzle 12 of the print head, this element is supplied by an electrical signal composed of a sequence of voltages V c and Vl , corresponding the pattern to be printed.
  • each of the individual means 16 of binary stimulation includes two heat-resistant elements 16a and 16b associated with each nozzle 12 of the print head.
  • the first element 16a is supplied uninterruptedly by a periodic electrical signal of amplitude Vl . When it is the only one to be supplied, the jet is therefore broken at point L furthest from the nozzle.
  • the second element 16b located as appropriate upstream or downstream of the first, is only activated when a drop 22 is to be printed. It then receives an electrical signal, preferably a voltage square wave, the amplitude and phase shift of which relative to the periodic signal applied to the first element 16a lead to displacement of the jet breaking point at the point C closest to the nozzle.
  • an electrical signal preferably a voltage square wave
  • a third embodiment of the means individual binary stimulation of each of the jets 14 is illustrated diagrammatically in FIG. 4.
  • each individual means 16 of binary stimulation comprises an electrode 58, placed immediately downstream of the nozzles 12 and common to all of the jets.
  • This electrode 58 constitutes a stimulation device by electrodynamic excitation (EHD).
  • EHD electrodynamic excitation
  • the electrode 58 the length of which is approximately equal to ⁇ / 2 , fixes the jets breaking point at the point L furthest from the nozzles, when no other stimulation is applied to the jets.
  • Each individual means 16 of binary stimulation further comprises an individual transducer 60, preferably of the thermoresistive type, associated with each of the jets inside the reservoir 10.
  • the transducers 60 are only activated to move the breaking points to the point C closest to the nozzle, when a drop 22 is to be printed.
  • the embodiment of FIG. 4 makes it possible to extend the life of the thermo-resistive transducers by reducing their stress.
  • this process allows you to control the charging process droplets from the jets whatever the sequence of drops emitted.
  • the electrodes of the charging device drops are not located at close proximity to jets.
  • the trajectory drops to print is not a strictly function monotonous of the position of the breaking point at within the charging device.
  • a jet printer multi-nozzle ink produced according to the invention can be used in all applications related to industrial marking and coding.
  • the domain of addressing, which requires speed and width printing, also represents an area of application of the invention.
  • the absence individual electrodes facing the jet increases the number of nozzles per unit length on the printing device tank. This allows application of the invention to industrial decoration which requires increased resolution, in addition high print speed.

Abstract

The method involves spraying a continuous jet of liquid (14) at a given speed (Yj), cause the jet to split at two distinct predetermined break points (C,L) so as to form drops (22,24) of liquid at a given emission frequency, and apply to these drops quantities of a different electrical charges, according to their break points. The same electrical field is applied onto the drops, so as to deviate only those drops (24) formed at a first (L) of the break points. The jet acted upon so that the two break points are separated by a distance DELTA D strictly less than the wavelength lambda of the jet, defined by the relation lambda = Vj divided by F. The same quantity of charge is applied on all the drops formed in a zone centered on the second break point (C) of length sensibly equal to lambda divided by 4. An Independent claim is also included for an ink jet printer using the method described.

Description

Domaine techniqueTechnical area

L'invention concerne un procédé de projection d'un liquide électriquement conducteur sous la forme d'au moins un jet continu stimulé.The invention relates to a projection method of an electrically conductive liquid in the form at least one continuous stimulated jet.

L'invention concerne également un dispositif d'impression multibuses mettant en oeuvre ce procédé.The invention also relates to a device multi-nozzle printing using this process.

Un dispositif d'impression conforme à l'invention peut être utilisé dans tous les domaines industriels liés au marquage, au codage, à l'adressage et à la décoration industrielle.A printing device according to the invention can be used in all industrial fields related to marking, coding, addressing and industrial decoration.

Etat de la techniqueState of the art

Dans l'état actuel de la technique, il existe deux technologies majeures d'impression par jet d'encre continu stimulé. Il s'agit respectivement de la technique du jet d'encre continu dévié et de la technique du jet d'encre continu binaire.In the current state of the art, there are two major inkjet printing technologies continuously stimulated. These are respectively the technique deflected continuous inkjet and the technique of binary continuous inkjet.

Selon la technique du jet d'encre continu dévié, de l'encre électriquement conductrice, maintenue sous pression, s'échappe d'une buse calibrée. Sous l'action d'un dispositif de stimulation périodique, le jet d'encre ainsi formé se brise à intervalles temporels réguliers en un point unique de l'espace. Cette fragmentation forcée du jet d'encre est habituellement induite par les vibrations périodiques d'un cristal piézoélectrique placé en amont de la buse. A partir de ce point de brisure, le jet continu se transforme en un train de gouttes d'encre identiques et régulièrement espacées. Au voisinage du point de brisure est placé un premier groupe d'électrodes dont la fonction est de transférer à chaque goutte du jet, de manière sélective, une quantité de charge électrique variable et prédéterminée. L'ensemble des gouttes du jet traverse ensuite un second groupe d'électrodes au sein duquel règne un champ électrique constant. Chaque goutte subit alors une déflexion proportionnelle à la charge électrique qui lui a été précédemment attribuée, et qui la dirige vers un point précis d'un support d'impression. Les gouttes non défléchies sont récupérées par une gouttière et recyclées vers un circuit d'encre.Using the continuous inkjet technique deflected, electrically conductive ink, maintained under pressure, escapes from a calibrated nozzle. Under the action of a periodic stimulation device, the ink jet thus formed breaks at time intervals regular at a single point in space. This forced fragmentation of the inkjet is usually induced by periodic vibrations of a crystal piezoelectric placed upstream of the nozzle. From this breaking point, the continuous jet turns into a train of identical and regular ink drops spaced. In the vicinity of the breaking point is placed a first group of electrodes whose function is to transfer to each drop of the spray, selectively, a variable amount of electrical charge and predetermined. All the drops of the jet pass through then a second group of electrodes within which there is a constant electric field. Each drop undergoes then a deflection proportional to the electric charge previously assigned to it, and which points to a specific point on a print medium. The non-deflected drops are recovered by a gutter and recycled to an ink circuit.

Dans les imprimantes à jets d'encre fonctionnant selon cette technique, un dispositif spécifique est habituellement prévu pour assurer une constante synchronisation entre les instants de brisure du jet et l'application des signaux de charges des gouttes.In working inkjet printers according to this technique, a specific device is usually provided to ensure a constant synchronization between the moments of jet break and the application of the charge signals of the drops.

Cette technologie se caractérise principalement par le fait qu'une quantité de charge électrique variable est transférée sélectivement à chaque goutte du jet, de sorte que de multiples niveaux de déflexion sont créés. Cette caractéristique permet à une buse unique d'imprimer, par segments (lignes de points d'une largeur donnée), l'intégralité d'un motif (caractère ou motif graphique). Le passage d'un segment à l'autre s'effectue par le déplacement continu, perpendiculairement aux segments, du support d'impression en face du dispositif d'impression.This technology is mainly characterized by the fact that a variable amount of electric charge is selectively transferred to each drop of jet, so that multiple levels of deflection are created. This feature allows a nozzle unique to print, by segments (lines of points of a given width), the entire pattern (character or graphic pattern). Moving from one segment to another is carried out by the continuous displacement, perpendicularly to the segments, of the printing medium opposite the printing device.

Pour les applications nécessitant une largeur d'impression légèrement plus grande, plusieurs dispositifs d'impression monobuses (généralement deux à quatre) peuvent être regroupés au sein d'un même boítier. For applications requiring width slightly larger print, multiple devices monobuses printing (generally two to four) can be grouped within the same box.

Lorsque les largeurs d'impression deviennent importantes, l'utilisation de dispositifs d'impression multibuses devient obligatoire. Le document EP-A-0 512 907 décrit un dispositif d'impression multibuses (à huit buses) utilisant la technologie du jet d'encre continu dévié. En juxtaposant plusieurs dispositifs d'impression multibuses, des largeurs d'impression plus importantes peuvent être obtenues.When the print widths become important, the use of printing devices multi-nozzle becomes compulsory. Document EP-A-0 512 907 describes a multi-nozzle printing device (eight nozzles) using inkjet technology continuously deflected. By juxtaposing several devices multi-nozzle printing, more printing widths important can be obtained.

Les dispositifs d'impression à jet d'encre continu stimulé utilisant la technique du jet continu binaire se distinguent des dispositifs d'impression utilisant la technique du jet continu dévié principalement par le fait que seule une quantité de charge électrique prédéterminée peut être transférée à la demande, à chaque goutte du jet. Un seul niveau de déflexion des gouttes est alors créé. L'impression de caractères ou de motifs nécessite donc l'utilisation de dispositifs d'impression multibuses, dans lesquels l'entraxe entre les buses coïncide généralement avec l'écartement entre les impacts sur le support d'impression. En général, les gouttes destinées à l'impression ("gouttes à imprimer" dans la suite du texte) sont les gouttes non défléchies. Cette technique est particulièrement adaptée aux applications d'impression à haute vitesse telles que l'adressage, l'impression d'épreuves en couleur à haute résolution, etc..Inkjet printing devices continuous stimulated using the continuous jet technique stand out from printing devices using the technique of continuous deflected jet mainly by the fact that only an amount of electric charge predetermined can be transferred on demand, with every drop of the spray. A single level of deflection of drops is then created. Printing characters or of patterns therefore requires the use of devices multi-nozzle printing, in which the center distance the nozzles generally coincide with the spacing between impacts on the print medium. In general, drops intended for printing ("drops to print "in the rest of the text) are the drops not deflected. This technique is particularly suitable for high speed printing applications such as addressing, printing proofs in high resolution color, etc.

Dans les dispositifs d'impression par jet d'encre continu binaire, certains éléments constitutifs des groupes d'électrodes de charge et de déflexion peuvent être rendus communs à ces deux groupes d'électrodes. Dans tous les cas, les électrodes dédiées à la charge des gouttes de chaque jet doivent être pilotées individuellement, à la fréquence de formation des gouttes et à des niveaux de tension pouvant atteindre 350 V.In jet printing devices binary continuous ink, certain components groups of charge and deflection electrodes can be made common to these two groups of electrodes. In all cases, the dedicated electrodes borne drops of each spray must be piloted individually, at the training frequency drops and at voltage levels that can reach 350 V.

La fabrication et la juxtaposition à un pas très fin de l'ensemble des buses et des électrodes d'un dispositif d'impression multibuses fonctionnant selon la technique du jet d'encre continu binaire font apparaítre des problèmes majeurs de coût et de conception.Manufacturing and juxtaposition one step away very thin set of nozzles and electrodes of a multi-nozzle printing device operating according to binary continuous inkjet technique show up major cost and design issues.

Les problèmes de coût ont pour origines la multiplication des électrodes de charge et la multiplication des circuits électroniques à haute tension reliés à ces électrodes, qui induisent une connectique importante et complexe.The cost problems originate from the multiplication of charge electrodes and multiplication high voltage electronic circuits connected to these electrodes, which induce a connection important and complex.

Les problèmes de conception sont liés à la connectique haute tension très dense à proximité des jets, qui provoque des diaphonies indésirables. L'effet de ces diaphonies sur la qualité d'impression ne peut être limité que par une réduction du taux d'utilisation des gouttes, et, par conséquent, de la vitesse d'impression.Design issues are related to the very dense high-voltage connectors near the jets, which causes unwanted crosstalk. The effect of these crosstalk on print quality can be limited only by reducing the usage rate drops, and therefore speed printing.

Dans l'article "Binary Continuous Thermal Ink Jet Break off Length Modulation" de Donald J. DRAKE, publié dans le Xerox Disclosure Journal, volume 14, n° 3 de mai-juin 1989, il est proposé un dispositif d'impression multibuses à jets continus binaires dont la conception a été modifiée en vue de palier les inconvénients susmentionnés.In the article "Binary Continuous Thermal Ink Jet Break off Length Modulation "by Donald J. DRAKE, published in the Xerox Disclosure Journal, volume 14, no. 3 of May-June 1989, a device is proposed binary continuous jet multi-nozzle printing including the design has been modified in order to overcome the disadvantages mentioned above.

Conformément à la technologie classique du jet continu binaire, cet article propose d'utiliser deux groupes d'électrodes, dont chacun est formé par une électrode plane. Toutefois, dans ce cas, chaque électrode est commune à l'ensemble des jets et soumise à une tension électrique constante. La sélection des gouttes à imprimer et des gouttes à recycler s'effectue alors par la commande individuelle de la stimulation de chacun des jets d'encre de la tête d'impression. A cet effet, un dispositif de stimulation individuelle de chacun des jets est prévu.In accordance with conventional jet technology binary continuous, this article proposes to use two groups of electrodes, each of which is formed by a planar electrode. However, in this case, each electrode is common to all jets and subject to constant electrical voltage. The selection of drops to print and drops to recycle is done then by the individual control of the stimulation of each of the ink jets from the print head. In this effect, an individual stimulation device each of the jets is planned.

Dans cet agencement, la connectique associée aux dispositifs de stimulation est localisée en amont des buses et donc éloignée des jets. De plus, elle véhicule des niveaux de tension inférieurs a ceux qui sont requis pour la charge des gouttes. Les effets de diaphonie sont donc réduits.In this arrangement, the associated connectors to stimulation devices is located upstream nozzles and therefore distant from the jets. In addition, she carries lower voltage levels than those that are required to charge the drops. The effects of crosstalk are therefore reduced.

Selon l'article de Donald J. DRAKE, on applique à la demande à chacun des jets un signal de stimulation de niveau bas ou de niveau élevé. Lorsqu'un signal de stimulation de niveau bas est appliqué, le lieu de brisure du jet est fixé en un point plus éloigné de la buse que lorsque le signal de stimulation appliquée au jet présente un niveau élevé.According to the article by Donald J. DRAKE, we apply on request to each jet a stimulation signal low or high level. When a signal from low level stimulation is applied, the place of breaking jet is fixed at a point farther from the nozzle only when the stimulation signal applied to the jet has a high standard.

Dans le premier cas, le point de brisure du jet est situé en face de la première électrode, ou électrode de charge, portée à une tension Vc constante. La goutte qui se détache à cet instant emporte alors une charge Q1 et subit une déflexion d'angle δ1 dans le champ créé par la seconde électrode, ou électrode de déflexion, portée à une tension constante Vd . Cette goutte est récupérée par une gouttière et recyclée vers le circuit d'encre du dispositif d'impression.In the first case, the jet breaking point is located opposite the first electrode, or charging electrode, brought to a constant voltage V c . The drop which detaches at this instant then carries a charge Q1 and undergoes a deflection of angle δ1 in the field created by the second electrode, or deflection electrode, brought to a constant voltage V d . This drop is collected by a gutter and recycled to the ink circuit of the printing device.

Lorsque la distance de brisure est plus courte, du fait de l'application d'un signal de stimulation de niveau élevé sur le jet, celui-ci se brise en un point situé légèrement avant l'électrode de charge. La charge Q2 emportée par la goutte est alors plus faible que dans le cas précédent. La déflexion δ2 induite par le plan de déflexion est donc également moindre. La goutte évite alors la gouttière et atteint le support d'impression.When the breaking distance is shorter, due to the application of a high level stimulation signal on the jet, the latter breaks at a point situated slightly before the charging electrode. The charge Q2 carried by the drop is then lower than in the previous case. The deflection δ2 induced by the deflection plane is therefore also less. The drop then avoids the gutter and reaches the print medium.

Dans cet article, la différence entre les deux niveaux de stimulation du jet est telle que la distance d entre les points de brisure du jet pour chacun de ces deux niveaux est égale à la longueur d'onde λ du jet stimulé, c'est-à-dire du train de gouttes. La valeur de λ est fournie par le rapport de la vitesse Vj du jet sur la fréquence F du signal de stimulation : λ = Vj /F.In this article, the difference between the two levels of stimulation of the jet is such that the distance d between the breaking points of the jet for each of these two levels is equal to the wavelength λ of the stimulated jet, that is to say ie the train of drops. The value of λ is provided by the ratio of the speed V j of the jet to the frequency F of the stimulation signal: λ = V j / F .

Le mode de fonctionnement et la conception proposés dans cet article souffrent toutefois de trois handicaps majeurs qui limitent les possibilités d'application de ce procédé à une imprimante à jet d'encre continu.Operating mode and design offered in this article however suffer from three major handicaps that limit the possibilities application of this process to a jet printer continuous ink.

Le premier handicap découle du fait que la distance d entre les deux points de brisure du jet est égale à la longueur d'onde λ du train de gouttes. Cela conduit à une difficulté d'exploitation du jet lors des transitions brisure longue-brisure courte. On s'aperçoit en effet que lorsqu'une goutte à imprimer est suivie d'une goutte à recycler, la condition d = λ conduit théoriquement au détachement simultané des deux gouttes. La cinétique des transferts de charge est alors différente de celle qui est associée à une transition brisure courte-brisure longue, pouvant induire des trajectoires différentes. De plus, toute fluctuation de l'une ou l'autre des distances de brisure, inévitable dans une mise en oeuvre réelle du procédé, conduit à une modification des conditions d'exploitation du jet. Par exemple, si d devient légèrement supérieur à λ, un amas transitoire de deux gouttes sera créé lors des transitions brisure longue- brisure courte. Une redistribution des charges induites, difficile à déterminer à priori, va s'opérer et la trajectoire de la goutte à imprimer sera altérée.The first handicap stems from the fact that the distance d between the two break points of the jet is equal to the wavelength λ of the drop train. This leads to a difficulty in operating the jet during the long break-short break transitions. In fact, it can be seen that when a drop to be printed is followed by a drop to be recycled, the condition d = λ theoretically leads to the simultaneous detachment of the two drops. The kinetics of charge transfers are then different from that associated with a short break-long break transition, which can induce different trajectories. In addition, any fluctuation of one or the other of the breaking distances, inevitable in an actual implementation of the method, leads to a modification of the operating conditions of the jet. For example, if d becomes slightly greater than λ, a transient cluster of two drops will be created during the long break-short break transitions. A redistribution of the induced charges, difficult to determine a priori, will take place and the trajectory of the drop to be printed will be altered.

Le second handicap du procédé décrit dans l'article de Donald J. DRAKE découle des agencements d'électrodes proposés, qui imposent une faible distance entre la surface du jet et l'électrode de charge (de l'ordre du diamètre du jet) afin d'obtenir une sélection suffisante des gouttes d'impression. La réalisation et l'exploitation d'une telle géométrie au sein d'un dispositif d'impression à jet continu multibuses soulèvent plusieurs difficultés.The second handicap of the process described in Donald J. DRAKE's article stems from layouts proposed electrodes, which require a short distance between the surface of the jet and the charging electrode (from jet diameter order) to obtain a selection sufficient printing drops. The realization and the exploitation of such geometry within of a multi-nozzle continuous jet printing device raise several difficulties.

En premier lieu, le démarrage d'un tel dispositif d'impression conduit, pour les jets d'encre s'échappant des buses, à une phase transitoire pendant laquelle le freinage aérodynamique prédomine. En particulier, il se forme à l'extrémité de chaque jet un volume d'encre dont la taille est supérieure à celle des gouttes formées pendant le régime permanent, et la trajectoire du jet s'en trouve momentanément altérée.First, the start of such a device led printing, for ink jets escaping from the nozzles, during a transient phase during which aerodynamic braking predominates. In particular, a jet forms at the end of each jet ink volume larger than that drops formed during the steady state, and the jet trajectory is temporarily altered.

Une conséquence du démarrage des jets est donc la salissure de l'électrode de charge placée au voisinage immédiat de l'axe du jet. Cet effet, est rendu inévitable par la dispersion angulaire de chacun des jets, elle-même issue des niveaux de précision et de répétabilité atteints lors de la fabrication des buses. Il perturbe fortement le fonctionnement du dispositif d'impression et limite sa fiabilité. Le nettoyage de l'électrode de charge est alors obligatoire.A consequence of starting the jets is therefore soiling of the nearby charging electrode immediately from the jet axis. This effect is rendered inevitable by the angular dispersion of each of the jets, itself derived from the levels of precision and repeatability achieved during the manufacture of the nozzles. It strongly disrupts the functioning of the device and limits its reliability. The cleaning of the charging electrode is then compulsory.

De plus, en régime permanent, toute fluctuation de la trajectoire des jets autour de leur axe (due, par exemple, à la présence passagère d'une impureté dans le conduit d'éjection d'un jet) peut également dévier légèrement le jet et mener à la salissure de l'électrode de charge disposée à proximité immédiate des jets, ce qui provoque généralement des courts-circuits entre le jet et l'électrode.In addition, in steady state, any fluctuation of the trajectory of the jets around their axis (due, for example, to the passing presence of an impurity in the jet jet duct) can also deflect slightly spray and lead to dirt on the electrode load placed in the immediate vicinity of jets, which usually causes short circuits between the jet and the electrode.

Enfin, la géométrie de l'électrode de charge décrite dans l'article précité, qui induit l'application de quantités de charge électrique tant sur les gouttes d'impression que sur les gouttes non imprimées, constitue un troisième handicap. En effet, ces quantités de charge et, par conséquent, les niveaux de déflexion des gouttes, varient de manière strictement monotone avec les positions des points de brisure au sein du champ électrique créé par l'électrode de charge Cela signifie que la qualité d'impression d'un dispositif d'impression multibuses comprenant une telle électrode de charge dépend directement de la précision avec laquelle est positionné et régulé le point de brisure court pour l'ensemble des jets du dispositif d'impression. A tout point de brisure différent de celui-ci correspond un point d'impact différent sur le support d'impression. La gestion et la maítrise d'une telle contrainte est extrêmement difficile d'un point de vue technique et alourdirait fortement le coût d'un dispositif d'impression fonctionnant de cette manière.Finally, the geometry of the charging electrode described in the aforementioned article, which induces the application quantities of electric charge both on the printing drops only on unprinted drops, constitutes a third handicap. Indeed, these quantities of charge and therefore the levels of deflection of the drops, vary strictly monotonous with the positions of the breaking points at within the electric field created by the electrode of load This means that the print quality of a multi-nozzle printing device comprising such a charging electrode directly depends on the accuracy with which the breaking point is positioned and regulated short for all jets of the device printing. At any breaking point different from this corresponds to a different point of impact on the print media. The management and control of a such a constraint is extremely difficult from a point from a technical point of view and would greatly increase the cost of a printing device operating in this manner.

Dans le document US-A-4 638 328, on a proposé de remplacer les éléments de stimulation piézoélectriques par des éléments thermo-résistifs générant des perturbations de nature thermique.In document US-A-4 638 328, it has been proposed to replace the piezoelectric stimulation elements by thermo-resistive elements generating thermal disturbances.

Par ailleurs, le document US-A-4 220 958 décrit un procédé de stimulation d'un jet d'encre, dans lequel la perturbation du jet est accomplie par excitation électro-hydrodynamique (EHD). Le dispositif de stimulation EHD proposé dans ce document est composé d'une ou plusieurs électrodes placées à proximité du jet, en aval de la buse, la longueur de chaque électrode étant approximativement égale à λ/2.Furthermore, document US-A-4 220 958 describes a method of stimulating an ink jet, in which jet disturbance is accomplished by excitation electro-hydrodynamics (EHD). The stimulation device EHD proposed in this document is composed of one or several electrodes placed near the jet, in downstream of the nozzle, the length of each electrode being approximately equal to λ / 2.

Exposé de l'inventionStatement of the invention

L'invention a principalement pour objet un procédé de projection de liquide électriquement conducteur utilisant la technique du jet continu binaire décrite dans l'article de Donald J. DRAKE précité, sans présenter les inconvénients liés à cette technique.The main object of the invention is a method of electrically conductive liquid using the binary continuous jet technique described in the above-mentioned article by Donald J. DRAKE, without presenting the disadvantages of this technique.

Plus précisément, l'invention concerne un procédé de projection de liquide par jet continu, dans lequel le processus de charge des gouttes issues des jets est contrôlé quelle que soit la séquence des gouttes émises, et la trajectoire des gouttes imprimables n'est pas une fonction strictement monotone de la position du point de brisure au sein du dispositif de charge.More specifically, the invention relates to a method projection of liquid by continuous jet, in which the process of charging the drops from jets are controlled regardless of the sequence of drops emitted, and the trajectory of the printable drops is not a strictly monotonic function of the position of the breaking point within the device charge.

Selon la définition la plus générale de l'invention, ce résultat est obtenu au moyen d'un procédé de projection de liquide électriquement conducteur, dans lequel :

  • on émet au moins un jet continu de liquide à une vitesse Vj donnée ;
  • on stimule le jet de façon à le fragmenter, à la demande, en deux points de brisure prédéterminés distincts, pour former des gouttes de liquide à une fréquence d'émission F donnée
  • on applique sur les gouttes des quantités de charge électrique différentes, selon leurs points de brisure ; puis
  • on applique un même champ électrique sur les gouttes, de façon à ne dévier que les gouttes formées en un premier desdits points de brisure, relativement éloigné ;
    caractérisé par le fait qu'on stimule le jet de façon telle que les deux points de brisure soient séparés par une distance ΔD strictement inférieure à la longueur d'onde λ du jet, définie par la relation λ = vj/F et on applique approximativement une même quantité de charge sur toutes les gouttes formées dans une zone centrée sur le deuxième point de brisure et de longueur sensiblement égale à λ/4.
According to the most general definition of the invention, this result is obtained by means of an electrically conductive liquid spraying process, in which:
  • at least one continuous jet of liquid is emitted at a given speed V j ;
  • the jet is stimulated so as to fragment it, on demand, into two distinct predetermined breaking points, to form drops of liquid at a given emission frequency F
  • different amounts of electric charge are applied to the drops, according to their breaking points; then
  • the same electric field is applied to the drops, so as to deflect only the drops formed in a first of said breaking points, relatively distant;
    characterized by the fact that the jet is stimulated in such a way that the two breaking points are separated by a distance ΔD strictly less than the wavelength λ of the jet, defined by the relation λ = v j / F and approximately the same amount of charge is applied to all the drops formed in an area centered on the second breaking point and of length substantially equal to λ / 4 .

Selon une forme de réalisation préférée de l'invention, on applique sur les gouttes lesdites quantité de charge électrique différentes en créant deux zones contiguës situées au voisinage respectif des deux points de brisure et en portant ces deux zones à des potentiels électriques constants et de signes opposés.According to a preferred embodiment of the invention, said quantity is applied to the drops of different electrical charge by creating two contiguous areas located in the respective vicinity of the two breaking points and bringing these two areas to constant electrical potentials and opposite signs.

A cet effet, on peut faire passer le jet successivement entre deux paires d'électrodes orientées parallèlement au jet et dimensionnées afin que les deux points de brisure soient localisés entre lesdites électrodes, et en appliquant sur les deux paires d'électrodes des tensions électriques constantes et de signes opposés.For this purpose, the jet can be passed successively between two pairs of oriented electrodes parallel to the jet and sized so that both break points are located between said electrodes, and applying on the two pairs of electrodes constant electrical voltages and signs opposites.

Dans ce cas, afin d'éviter les inconvénients liés à la proximité immédiate entre la surface du jet et le plan de charge, on place avantageusement chaque électrode à une distance de l'axe du jet au moins égale à deux fois le diamètre de celui-ci.In this case, in order to avoid the inconvenience related to the immediate proximity between the surface of the jet and the load plan, we advantageously place each electrode at least equal distance from the jet axis twice the diameter of it.

De préférence, on émet simultanément plusieurs jets continus de liquide, parallèles entre eux, on stimule séparément chaque jet, on applique simultanément sur les gouttes de tous les jets lesdites quantités de charge électrique différentes, puis on applique simultanément un même champ électrique sur ces gouttes.Preferably, several transmissions are simultaneously transmitted continuous jets of liquid, parallel to each other, we stimulate separately each spray, we apply simultaneously on the drops of all the jets said quantities of different electrical charge, then apply simultaneously the same electric field on these drops.

L'invention a aussi pour objet un dispositif d'impression par jets d'encre continus, comprenant :

  • un réservoir pressurisé équipé de plusieurs buses aptes à émettre simultanément, à une vitesse Vj donnée, une pluralité de jets d'encre continus parallèles entre eux ;
  • un moyen individuel de stimulation binaire de chacun des jets, apte à fragmenter ceux-ci, à la demande, en deux points de brisure prédéterminés distincts, pour former des gouttes d'encre à une fréquence d'émission F donnée ;
  • un moyen de charge, commun à la pluralité de jets d'encre, pour appliquer sur les gouttes d'encre des quantités de charge électrique différentes, selon leurs points de brisure ;
  • un moyen de déflexion, commun à la pluralité de jets d'encre, pour appliquer un même champ électrique sur les gouttes, de façon à ne dévier que les gouttes formées en un premier des points de brisure, relativement éloigné des buses ; et
  • une gouttière de recyclage des gouttes déviées vers le réservoir pressurisé ;
    caractérisé par le fait que le moyen individuel de stimulation binaire de chacun des jets est piloté par des niveaux de tension prédéfinis tels que les deux points de brisure soient séparés par une distance strictement inférieure à la longueur d'onde λ du jet, définie par la relation λ = Vj/F , le moyen de charge étant apte à appliquer approximativement une même quantité de charge sur toutes les gouttes formées dans une zone centrée sur le deuxième point de brisure et de longueur sensiblement égale à λ/4.
The subject of the invention is also a device for printing by continuous ink jets, comprising:
  • a pressurized tank equipped with several nozzles capable of simultaneously emitting, at a given speed V j , a plurality of continuous ink jets parallel to each other;
  • an individual means of binary stimulation of each of the jets, capable of fragmenting these, on demand, into two distinct predetermined breaking points, to form drops of ink at a given emission frequency F ;
  • charging means, common to the plurality of ink jets, for applying different amounts of electric charge to the ink drops, according to their breaking points;
  • deflection means, common to the plurality of ink jets, for applying the same electric field to the drops, so as to deflect only the drops formed at a first of the breaking points, relatively distant from the nozzles; and
  • a recycling gutter for the drops diverted to the pressurized tank;
    characterized in that the individual means of binary stimulation of each of the jets is controlled by predefined voltage levels such that the two breaking points are separated by a distance strictly less than the wavelength λ of the jet, defined by the relationship λ = V j / F , the charging means being able to apply approximately the same amount of charge to all the drops formed in an area centered on the second breaking point and of length substantially equal to λ / 4 .

Selon une première forme de réalisation de l'invention, le moyen individuel de stimulation binaire de chacun des jets comprend un élément piézoélectrique ou thermo-résistif placé dans le réservoir pressurisé et piloté individuellement par un circuit électronique externe.According to a first embodiment of the invention, the individual means of binary stimulation of each of the jets includes a piezoelectric element or thermo-resistive placed in the pressurized tank and individually controlled by an electronic circuit external.

Selon une deuxième forme de réalisation de l'invention, le moyen individuel de stimulation binaire de chacun des jets comprend deux éléments thermo-résistifs placés dans le réservoir pressurisé, un circuit électrique externe délivrant en permanence un signal électrique périodique d'alimentation d'un premier des éléments thermo-résistifs, correspondant au premier point de brisure et, à la demande, un signal électrique complémentaire d'alimentation du deuxième élément thermo-résistif, correspondant au deuxième point de brisure.According to a second embodiment of the invention, the individual means of binary stimulation of each of the jets includes two elements thermo-resistive placed in the pressurized tank, an external electrical circuit permanently delivering a periodic electrical signal for supplying a first of the thermo-resistive elements, corresponding to first breaking point and, on request, a signal complementary electric supply of the second thermo-resistive element, corresponding to the second breaking point.

Enfin, selon une troisième forme de réalisation de l'invention, le moyen individuel de stimulation binaire de chacun des jets comprend un transducteur individuel placé dans le réservoir pressurisé et au moins une électrode commune d'excitation électro-hydrodynamique placée à proximité des jets, en aval de la buse, un circuit électrique externe délivrant en permanence un signal périodique d'alimentation électrique de l'électrode d'excitation électro-hydrodynamique, correspondant au premier point de brisure et, à la demande, un signal électrique complémentaire d'alimentation du transducteur individuel, correspondant au deuxième point de brisure. Finally, according to a third embodiment of the invention, the individual means of stimulation binary of each of the jets includes a transducer individual placed in the pressurized tank and at minus a common electro-hydrodynamic excitation electrode placed near the jets, downstream of the nozzle, an external electrical circuit delivering permanently a periodic power signal electric excitation electrode electro-hydrodynamics, corresponding to the first point breakage and, on request, an electrical signal additional supply of the transducer individual, corresponding to the second breaking point.

Brève description des dessinsBrief description of the drawings

On décrira à présent, à titre d'exemples non limitatifs, différentes formes de réalisation de l'invention, en se référant aux dessins annexés, dans lesquels :

  • la figure 1 est une vue en perspective qui représente schématiquement un dispositif d'impression par jet d'encre continu conforme à l'invention ;
  • les figures 2A et 2B sont des vues de côté qui illustrent très schématiquement les processus de charge et de déflexion dans le dispositif de la figure 1, respectivement pour les gouttes destinées au recyclage et pour les gouttes servant à l'impression ;
  • la figure 3 est une vue en coupe comparable aux figures 2A et 2B illustrant une deuxième forme de réalisation de l'invention, dans laquelle chaque moyen individuel de stimulation binaire comprend deux éléments thermo-résistifs ; et
  • la figure 4 est une vue en coupe schématique comparable aux figures 2A, 2B et 3, illustrant une troisième forme de réalisation de l'invention, dans laquelle chaque moyen individuel de stimulation binaire comprend un élément thermo-résistif et un dispositif commun de stimulation EHD.
We will now describe, by way of nonlimiting examples, various embodiments of the invention, with reference to the accompanying drawings, in which:
  • Figure 1 is a perspective view which schematically shows a continuous ink jet printing device according to the invention;
  • FIGS. 2A and 2B are side views which very schematically illustrate the loading and deflection processes in the device of FIG. 1, respectively for the drops intended for recycling and for the drops used for printing;
  • FIG. 3 is a sectional view comparable to FIGS. 2A and 2B illustrating a second embodiment of the invention, in which each individual means of binary stimulation comprises two thermo-resistive elements; and
  • FIG. 4 is a schematic sectional view comparable to FIGS. 2A, 2B and 3, illustrating a third embodiment of the invention, in which each individual binary stimulation means comprises a thermoresistive element and a common EHD stimulation device .

Description détaillée de plusieurs formes de réalisation préférentiellesDetailed description of several embodiments preferential

La figure 1 représente schématiquement un dispositif d'impression par jet d'encre continu mettant en oeuvre le procédé de projection d'un liquide électriquement conducteur, conforme à l'invention. Figure 1 schematically shows a continuous inkjet printing device putting implement the method of projecting a liquid electrically conductor according to the invention.

Le dispositif comprend un réservoir pressurisé 10, équipé d'une pluralité de buses calibrées 12 (trois sur la figure) d'où s'échappent, à une vitesse V j donnée, des jets d'encre 14 parallèles les uns aux autres et présentant entre eux un écartement constant.The device comprises a pressurized tank 10, equipped with a plurality of calibrated nozzles 12 (three in the figure) from which escape, at a given speed V j , ink jets 14 parallel to each other and having between them a constant spacing.

A chaque jet d'encre 14 est associé un moyen individuel 16 de stimulation binaire, placé dans le réservoir 10 et piloté individuellement par un circuit électronique externe 18. Chaque moyen individuel 16 de stimulation binaire fixe, à la demande, le lieu de brisure de chacun des jets 14 en un point de brisure courte C, relativement proche de la buse 12 ou en un point de brisure longue L plus éloigné de cette buse. Les gouttes formées aux points C et L sont désignés respectivement par les références 22 et 24. les gouttes 22 et 24 sont toutes émises à une même fréquence d'émission F donnée.Each ink jet 14 is associated with an individual means 16 of binary stimulation, placed in the reservoir 10 and controlled individually by an external electronic circuit 18. Each individual means 16 of binary stimulation fixes, on request, the place of breaking of each of the jets 14 at a short breaking point C , relatively close to the nozzle 12 or at a long breaking point L further from this nozzle. The drops formed at points C and L are designated respectively by the references 22 and 24. the drops 22 and 24 are all emitted at the same given emission frequency F.

Un moyen de charge 20, qui sera décrit plus en détail ultérieurement, est placé au voisinage des points de brisure C et L. Ce moyen de charge 20 est commun à tous les jets d'encre 14. Il applique des quantités de charge différentes aux gouttes 22 et 24, selon leurs points de brisure.A charging means 20, which will be described in more detail detail later, is placed in the vicinity of breaking points C and L. This charging means 20 is common to all ink jets 14. It applies different amounts of charge in drops 22 and 24, according to their breaking points.

En aval du moyen de charge 20, le dispositif d'impression comprend un capteur 26 conçu pour mesurer la vitesse des jets d'encre 14. Ce capteur 26 est connecté à un circuit électronique 28 qui assure le traitement des données recueillies par le capteur. Le circuit 28 est relié à une boucle de régulation (non représentée) de la vitesse des jets 14, selon un agencement connu de l'homme du métier. Pour simplifier, le capteur 26 et son circuit associé n'ont pas été représentés sur les figures 2A à 4. Downstream of the charging means 20, the device print includes a sensor 26 designed to measure the speed of the ink jets 14. This sensor 26 is connected to an electronic circuit 28 which ensures the processing of data collected by the sensor. The circuit 28 is connected to a regulation loop (not shown) of the speed of the jets 14, according to an arrangement known to those skilled in the art. To simplify, the sensor 26 and its associated circuit have not been shown in Figures 2A to 4.

En aval du capteur 26, le dispositif d'impression comprend un moyen de déflexion 30 qui applique un même champ électrique constant sur les gouttes d'encre 22 et 24 préalablement chargées électriquement dans le moyen de charge 20. Ce moyen de déflexion 30 comprend deux électrodes planes 32 et 34, communes à tous les jets d'encre 14. Ces électrodes 32 et 34 sont disposées de part et d'autre des trains de gouttes d'encre 22 et 24 et une tension constante est appliquée entre elles par un circuit d'alimentation 36. Le moyen de déflexion 30 dirige les gouttes chargées 24 vers une gouttière 38 qui les recycle vers un circuit d'encre général 40 du dispositif. La trajectoire des autres gouttes 22, approximativement non chargées, n'est pas affectée par le moyen de déflexion 30, de sorte que ces gouttes non chargées viennent frapper un support d'impression 42.Downstream of sensor 26, the printing device includes deflection means 30 which applies a same constant electric field on ink drops 22 and 24 previously electrically charged in the load means 20. This deflection means 30 comprises two flat electrodes 32 and 34, common to all ink jets 14. These electrodes 32 and 34 are arranged on both sides of the ink drop trains 22 and 24 and a constant voltage is applied between them by a supply circuit 36. The deflection means 30 directs the charged drops 24 towards a gutter 38 which recycles them to a general ink circuit 40 of the device. The trajectory of the other drops 22, approximately uncharged, unaffected by the deflection means 30, so that these drops not loaded hit a print medium 42.

Le moyen de charge 20 comprend deux groupes d'électrodes planes, respectivement 42, 44 et 46, 48, les électrodes de chaque groupe étant placées de part et d'autre des jets 14. Les deux groupes d'électrodes sont séparés l'un de l'autre par une distance D (figure 2A) parallèlement aux axes des jets. La longueur totale des deux groupes d'électrodes, parallèlement aux axes des jets, est appelée S. Comme on l'a illustré schématiquement sur la figure 1, des circuits d'alimentation 50 et 52 appliquent une même tension constante V1 sur les deux électrodes 42 et 44 du premier groupe d'électrodes et des circuits d'alimentation 54 et 56 appliquent une même tension constante V2, de signe opposé à V1, sur les deux électrodes 46 et 48 du deuxième groupe d'électrodes. On crée ainsi deux zones contiguës, au voisinage des points de brisure C et L, respectivement, portées à des potentiels électriques constants et de signes opposés.The charging means 20 comprises two groups of planar electrodes, respectively 42, 44 and 46, 48, the electrodes of each group being placed on either side of the jets 14. The two groups of electrodes are separated one on the other by a distance D (Figure 2A) parallel to the axes of the jets. The total length of the two groups of electrodes, parallel to the axes of the jets, is called S. As illustrated diagrammatically in FIG. 1, supply circuits 50 and 52 apply the same constant voltage V1 to the two electrodes 42 and 44 of the first group of electrodes and supply circuits 54 and 56 apply a same constant voltage V2 , of opposite sign to V1 , on the two electrodes 46 and 48 of the second group of electrodes. Two contiguous zones are thus created, in the vicinity of the breaking points C and L , respectively, brought to constant electrical potentials and of opposite signs.

Comme l'illustrent plus précisément les figures 2A et 2B, les électrodes 42 et 44 du premier groupe d'électrodes sont disposées symétriquement de part et d'autre des jets 14 et placées chacune à une distance E des axes des jets. De préférence, cette distance E est supérieure ou égale à deux fois le diamètre d j des jets 14. Cette caractéristique permet d'éviter la salissure des électrodes, aussi bien lors du démarrage des jets qu'en régime permanent, en présence d'une impureté dans le conduit d'éjection. La fiabilité du dispositif d'impression s'en trouve accrue.As illustrated more precisely in FIGS. 2A and 2B, the electrodes 42 and 44 of the first group of electrodes are arranged symmetrically on either side of the jets 14 and each placed at a distance E from the axes of the jets. Preferably, this distance E is greater than or equal to twice the diameter d j of the jets 14. This characteristic makes it possible to avoid soiling of the electrodes, both when the jets are started up and in steady state, in the presence of a impurity in the ejection duct. The reliability of the printing device is thereby increased.

Les électrodes 46 et 48 du deuxième groupe d'électrodes sont également disposées symétriquement de part et d'autre des jets 14 et à la même distance E de leurs axes.The electrodes 46 and 48 of the second group of electrodes are also arranged symmetrically on either side of the jets 14 and at the same distance E from their axes.

Lorsque le dispositif d'impression est en fonctionnement, la sélection d'une goutte 24 non destinée à l'impression du support 42, s'opère en pilotant le moyen individuel 16 de stimulation binaire du jet 14 correspondant par un signal électrique dont le niveau Vℓ est déterminé afin d'induire la brisure du jet au point prédéterminé de brisure longue L, à l'intérieur du moyen de charge 20.When the printing device is in operation, the selection of a drop 24 not intended for the printing of the support 42 takes place by controlling the individual means 16 of binary stimulation of the corresponding jet 14 by an electrical signal whose level Vℓ is determined in order to induce the breaking of the jet at the predetermined long breaking point L , inside the charging means 20.

La sélection d'une goutte 22 destinée à l'impression du support 42 s'effectue en pilotant le moyen individuel 16 de stimulation binaire du jet correspondant par un signal électrique dont le niveau V c va induire la brisure du jet au point prédéterminé de brisure courte C également à l'intérieur du moyen de charge 20. The selection of a drop 22 intended for the printing of the support 42 is carried out by controlling the individual means 16 of binary stimulation of the corresponding jet by an electrical signal whose level V c will induce the breaking of the jet at the predetermined point of breaking short C also inside the charging means 20.

Conformément à l'invention, la distance ΔD entre les deux points de brisure C et L est strictement inférieure à la longueur d'onde λ des jets stimulés. La valeur de la longueur d'onde λ est fournie par la relation λ = V j /F . Tout risque de création d'un amas transitoire de deux gouttes, lors des transitions brisure longue-brisure courte est ainsi évitée. Par conséquent, d'éventuelles altérations de la trajectoire de la goutte à imprimer sont supprimées.According to the invention, the distance ΔD between the two breaking points C and L is strictly less than the wavelength λ of the stimulated jets. The value of the wavelength λ is provided by the relation λ = V j / F . Any risk of creating a transient cluster of two drops, during the long break-short break transitions is thus avoided. Consequently, possible alterations in the trajectory of the drop to be printed are eliminated.

Une séquence quelconque de gouttes 24 non destinées à l'impression ou de gouttes 22 destinées à l'impression se crée en générant, sur le moyen individuel 16 de stimulation de chacun des jets et à la fréquence F d'émission des gouttes choisie, un signal rassemblant la séquence correspondante de niveau V c ou Vℓ.Any sequence of drops 24 not intended for printing or of drops 22 intended for printing is created by generating, on the individual means 16 for stimulating each of the jets and at the frequency F of emission of the drops chosen, a signal gathering the corresponding sequence of level V c or Vℓ .

En plaçant le moyen de charge 20 à une distance H (figure 2A) des buses 12, pour laquelle les points de brisure C et L sont compris entre H et H + S (c'est-à-dire placés à l'intérieur du moyen de charge 20 des gouttes) on fixe les valeurs de H, S, D, E, V1 et V2 afin que :

  • la charge induite sur les gouttes à recycler 24, détachées du jet au point de brisure longue L, soit telle que le champ électrique constant engendré par le moyen de déflexion 30 incurve la trajectoire de ces gouttes vers la gouttière 38 (figure 2A) ;
  • la charge induite sur les gouttes à imprimer 22, détachées du jet au point de brisure courte C, ainsi que dans une zone centrée autour de ce point et de longueur approximativement égale à λ/4, soit telle que le champ électrique constant produit par le moyen de déflexion 30 ne modifie pas la trajectoire de ces gouttes, qui peuvent ensuite atteindre le support d'impression 42 (figure 2B).
By placing the charging means 20 at a distance H (FIG. 2A) from the nozzles 12, for which the breaking points C and L are between H and H + S (that is to say placed inside the means of charging 20 of the drops) the values of H , S , D , E , V1 and V2 are fixed so that:
  • the charge induced on the drops to be recycled 24, detached from the jet at the long breaking point L , or such that the constant electric field generated by the deflection means 30 curves the trajectory of these drops towards the gutter 38 (FIG. 2A);
  • the charge induced on the drops to be printed 22, detached from the jet at the short breaking point C , as well as in an area centered around this point and of length approximately equal to λ / 4 , ie such that the constant electric field produced by the deflection means 30 does not modify the trajectory of these drops, which can then reach the printing medium 42 (FIG. 2B).

La trajectoire des gouttes à imprimer 22 n'est donc pas une fonction strictement monotone de la position du point de brisure au sein du dispositif de charge. Au contraire, un même point d'impact est assuré sur le support d'impression, malgré d'éventuelles fluctuations du point de brisure court C. La qualité d'impression est ainsi assurée sans difficulté technique particulière, ni accroissement du coût.The trajectory of the drops to be printed 22 is therefore not a strictly monotonic function of the position of the breaking point within the charging device. On the contrary, the same point of impact is ensured on the printing medium, despite possible fluctuations in the short break point C. Print quality is thus ensured without any particular technical difficulty or increase in cost.

A titre d'exemple non limitatif, la longueur S du moyen de charge 20 peut être inférieure à 2,5 mm, la tension V1 appliquée sur les électrodes 42 et 44 égale à 300 V, et la tension V2 appliquée sur les électrodes 46 et 48 égale à - 300 V. Chacun des jets 14 a, par exemple, un diamètre de 35 µm, une vitesse de 24 m/s et une fréquence de stimulation valant 125 kHz.By way of nonlimiting example, the length S of the charging means 20 can be less than 2.5 mm, the voltage V1 applied to the electrodes 42 and 44 equal to 300 V, and the voltage V2 applied to the electrodes 46 and 48 equal to - 300 V. Each of the jets 14 has, for example, a diameter of 35 μm, a speed of 24 m / s and a stimulation frequency equal to 125 kHz.

Dans la première forme de réalisation de l'invention illustrée schématiquement sur les figures 1, 2A et 2B, chacun des moyens individuels 16 de stimulation binaire est constitué par un élément piézoélectrique placé dans le réservoir 10 et piloté individuellement par le circuit électronique externe 18. Le nombre des éléments piézoélectriques est égal à celui des buses 12 de la tête d'impression.In the first embodiment of the invention illustrated schematically in the figures 1, 2A and 2B, each of the individual stimulation means 16 binary consists of a piezoelectric element placed in the tank 10 and controlled individually by the external electronic circuit 18. The number of piezoelectric elements is equal to that nozzles 12 of the print head.

En variante, chacun des éléments piézoélectriques constituant les moyens individuels 16 de stimulation binaire peut être remplacé par un élément thermo-résistif générant des perturbations de nature thermique. Pour plus de détail concernant de tels éléments thermo-résistifs, leur fonctionnement et leur mode de fabrication, on se reportera utilement au document US-A-4 638 328. Alternatively, each of the piezoelectric elements constituting the individual stimulation means 16 binary can be replaced by an element thermo-resistive generating disturbances of nature thermal. For more details on such items thermo-resistive, their operation and manufacturing method, we will usefully refer to the document US-A-4,638,328.

Lorsque chaque moyen individuel 16 de stimulation binaire est constitué par un unique élément thermo-résistif associé à chaque buse 12 de la tête d'impression, cet élément est alimenté par un signal électrique composé d'une séquence de tensions V c et Vℓ, correspondant au motif qui doit être imprimé.When each individual means 16 of binary stimulation consists of a single thermo-resistive element associated with each nozzle 12 of the print head, this element is supplied by an electrical signal composed of a sequence of voltages V c and Vℓ , corresponding the pattern to be printed.

Selon une deuxième forme de réalisation de l'invention, illustrée schématiquement sur la figure 3, chacun des moyens individuels 16 de stimulation binaire comprend deux éléments thermo-résistifs 16a et 16b associés à chaque buse 12 de la tête d'impression.According to a second embodiment of the invention, illustrated schematically in FIG. 3, each of the individual means 16 of binary stimulation includes two heat-resistant elements 16a and 16b associated with each nozzle 12 of the print head.

Le premier élément 16a est alimenté de manière ininterrompue par un signal électrique périodique d'amplitude Vℓ. Lorsqu'il est le seul à être alimenté, la brisure du jet s'effectue donc au point L le plus éloigné de la buse.The first element 16a is supplied uninterruptedly by a periodic electrical signal of amplitude Vℓ . When it is the only one to be supplied, the jet is therefore broken at point L furthest from the nozzle.

Le second élément 16b, situé selon le cas en amont ou en aval du premier, n'est activé que lorsqu'une goutte 22 doit être imprimée. Il reçoit alors un signal électrique, préférentiellement un créneau de tension, dont l'amplitude et le déphasage par rapport au signal périodique appliqué sur le premier élément 16a conduisent à déplacer le point de brisure du jet au point C le plus proche de la buse.The second element 16b, located as appropriate upstream or downstream of the first, is only activated when a drop 22 is to be printed. It then receives an electrical signal, preferably a voltage square wave, the amplitude and phase shift of which relative to the periodic signal applied to the first element 16a lead to displacement of the jet breaking point at the point C closest to the nozzle.

Une troisième forme de réalisation des moyens individuels de stimulation binaire de chacun des jets 14 est illustrée schématiquement sur la figure 4.A third embodiment of the means individual binary stimulation of each of the jets 14 is illustrated diagrammatically in FIG. 4.

Dans ce cas, chaque moyen individuel 16 de stimulation binaire comprend une électrode 58, placée immédiatement en aval des buses 12 et commune à l'ensemble des jets. Cette électrode 58 constitue un dispositif de stimulation par excitation électrodynamique (EHD). Un tel dispositif ainsi que son fonctionnement sont décrits dans le document US-A- 4 220 958. L'électrode 58, dont la longueur est approximativement égale à λ/2, fixe le point de brisure des jets au point L le plus éloigné des buses, lorsqu'aucune autre stimulation n'est appliquée sur les jets.In this case, each individual means 16 of binary stimulation comprises an electrode 58, placed immediately downstream of the nozzles 12 and common to all of the jets. This electrode 58 constitutes a stimulation device by electrodynamic excitation (EHD). Such a device and its operation are described in document US-A-4 220 958. The electrode 58, the length of which is approximately equal to λ / 2 , fixes the jets breaking point at the point L furthest from the nozzles, when no other stimulation is applied to the jets.

Chaque moyen individuel 16 de stimulation binaire comprend de plus un transducteur individuel 60, préférentiellement de type thermo-résistif, associé à chacun des jets à l'intérieur du réservoir 10. les transducteurs 60 ne sont activés que pour déplacer les points de brisure au point C le plus proche de la buse, lorsqu'une goutte 22 doit être imprimée. Par rapport aux formes de réalisation décrites précédemment, la forme de réalisation de la figure 4 permet d'allonger la durée de vie des transducteurs thermo-résistifs en diminuant leur sollicitation.Each individual means 16 of binary stimulation further comprises an individual transducer 60, preferably of the thermoresistive type, associated with each of the jets inside the reservoir 10. the transducers 60 are only activated to move the breaking points to the point C closest to the nozzle, when a drop 22 is to be printed. Compared to the embodiments described above, the embodiment of FIG. 4 makes it possible to extend the life of the thermo-resistive transducers by reducing their stress.

Il est à noter que le procédé mis en oeuvre par le dispositif d'impression décrit peut être appliqué à la projection sélective de tout liquide électriquement conducteur.It should be noted that the process implemented by the printing device described can be applied to selective projection of any liquid electrically driver.

Par rapport au procédé de projection de liquide par jet continu selon la technique antérieure, ce procédé permet de contrôler le processus de charge des gouttelettes issues des jets quelle que soit la séquence des gouttes émises. De plus, les électrodes du dispositif de charge des gouttes ne sont pas situées à proximité immédiate des jets. En outre, la trajectoire des gouttes à imprimer n'est pas une fonction strictement monotone de la position du point de brisure au sein du dispositif de charge.Compared to the liquid spraying process by continuous jet according to the prior art, this process allows you to control the charging process droplets from the jets whatever the sequence of drops emitted. In addition, the electrodes of the charging device drops are not located at close proximity to jets. In addition, the trajectory drops to print is not a strictly function monotonous of the position of the breaking point at within the charging device.

Comme on l'a déjà observé, une imprimante à jet d'encre multibuses réalisée selon l'invention est utilisable dans toutes les applications relatives au marquage et au codage industriels. Le domaine de l'adressage, qui requiert une vitesse et une largeur d'impression accrues, représente aussi un domaine d'application de l'invention. En outre, l'absence d'électrodes individuelles face au jet permet d'augmenter le nombre de buses par unité de longueur sur le réservoir du dispositif d'impression. Cela autorise l'application de l'invention à la décoration industrielle qui nécessite une résolution accrue, en plus d'une vitesse d'impression élevée.As we have already observed, a jet printer multi-nozzle ink produced according to the invention can be used in all applications related to industrial marking and coding. The domain of addressing, which requires speed and width printing, also represents an area of application of the invention. In addition, the absence individual electrodes facing the jet increases the number of nozzles per unit length on the printing device tank. This allows application of the invention to industrial decoration which requires increased resolution, in addition high print speed.

Claims (11)

Procédé de projection de liquide électriquement conducteur, dans lequel : on émet au moins un jet continu de liquide (14) à une vitesse Vj donnée ; on stimule le jet de façon à le fragmenter, à la demande, en deux points de brisure prédéterminés distincts (C, L), pour former des gouttes (22,24) de liquide à une fréquence d'émission F donnée ; on applique sur les gouttes (22,24) des quantités de charge électrique différentes, selon leurs points de brisure (C, L) ; puis on applique un même champ électrique sur les gouttes, de façon à ne dévier que les gouttes (24) formées en un premier (L) desdits points de brisure, relativement éloigné ;
caractérisé par le fait qu'on stimule le jet (14) de façon telle que les deux points de brisure (C, L) soient séparés par une distance ΔD strictement inférieure à la longueur d'onde λ du jet, définie par la relation λ = Vj/F , et on applique approximativement une même quantité de charge sur toutes les gouttes (22) formées dans une zone centrée sur le deuxième point de brisure (C) et de longueur sensiblement égale à λ/4.
Method for spraying an electrically conductive liquid, in which: at least one continuous jet of liquid (14) is emitted at a given speed V j ; the jet is stimulated so as to fragment it, on demand, into two distinct predetermined breaking points ( C , L ), to form drops (22, 24) of liquid at a given emission frequency F ; applying different amounts of electric charge to the drops (22,24), according to their breaking points ( C , L ); then the same electric field is applied to the drops, so as to deflect only the drops (24) formed in a first ( L ) of said breaking points, relatively distant;
characterized by the fact that the jet (14) is stimulated so that the two breaking points ( C , L ) are separated by a distance ΔD strictly less than the wavelength λ of the jet, defined by the relation λ = V j / F , and approximately the same amount of charge is applied to all the drops (22) formed in an area centered on the second breaking point ( C ) and of length substantially equal to λ / 4 .
Procédé selon la revendication 1, dans lequel on applique sur les gouttes (22,24) lesdites quantités de charge électrique différentes en créant deux zones contiguës situées au voisinage respectif des deux points de brisure (C, L) et en portant ces deux zones à des potentiels électriques constants et de signes opposés. Method according to claim 1, in which said different amounts of electric charge are applied to the drops (22,24) by creating two contiguous zones located in the respective vicinity of the two breaking points ( C , L ) and by bringing these two zones to constant electrical potentials and opposite signs. Procédé selon la revendication 2, dans lequel on fait passer le jet successivement entre deux paires d'électrodes (42,44 ; 46,48) orientées parallèlement au jet (14) et dimensionnées afin que les deux points de brisure (C,L) soient localisés entre lesdites électrodes, et en appliquant sur les deux paires d'électrodes des tensions électriques (V1,V2) constantes et de signes opposés.Method according to claim 2, in which the jet is passed successively between two pairs of electrodes (42,44; 46,48) oriented parallel to the jet (14) and dimensioned so that the two breaking points ( C , L ) are located between said electrodes, and by applying constant electric voltages ( V1 , V2 ) of opposite signs to the two pairs of electrodes. Procédé selon la revendication 3, dans lequel on place chaque électrode (42,44 ; 46,48) à une distance (E) de l'axe du jet (14) au moins égale à deux fois le diamètre de celui-ci.Method according to claim 3, in which each electrode (42,44; 46,48) is placed at a distance ( E ) from the axis of the jet (14) at least twice the diameter of the latter. Procédé selon l'une quelconque des revendications précédentes, dans lequel on émet simultanément plusieurs jets continus de liquide (14), parallèles entre eux, on stimule séparément chaque jet, on applique simultanément sur les gouttes (22,24) de tous les jets lesdites quantités de charge électrique différentes, puis on applique simultanément un même champ électrique sur les gouttes.Method according to any of the claims previous, in which we transmit simultaneously several continuous jets of liquid (14), parallel between them, we stimulate each spray separately, we apply simultaneously on the drops (22,24) of all throw said different quantities of electric charge, then we apply the same field simultaneously electric on the drops. Dispositif d'impression par jets d'encre continus, comprenant : un réservoir pressurisé (10) équipé de plusieurs buses (12) aptes à émettre simultanément, à une vitesse Vj donnée, une pluralité de jets d'encre continus (14) parallèles entre eux ; un moyen individuel (16) de stimulation binaire de chacun des jets, apte à fragmenter ceux-ci, à la demande, en deux points de brisure prédéterminés distincts (C, L), pour former des gouttes d'encre (22,24) à une fréquence d'émission F donnée ; un moyen de charge (20), commun à la pluralité de jets d'encre (14), pour appliquer sur les gouttes d'encre (22,24) des quantités de charge électrique différentes, selon leurs points de brisure ; un moyen de déflexion (30), commun à la pluralité de jets d'encre (14), pour appliquer un même champ électrique sur les gouttes, de façon à ne dévier que les gouttes (24) formées en un premier (L) des points de brisure, relativement éloigné des buses ; et une gouttière (38) de recyclage des gouttes déviées (24) vers le réservoir pressurisé (10) ;
caractérisé par le fait que le moyen individuel (16) de stimulation binaire de chacun des jets (14) est piloté par des niveaux de tension prédéfinis (Vc , Vl ) tels que les deux points de brisure (C,L) soient séparés par une distance (ΔD) strictement inférieure à la longueur d'onde λ du jet définie par la relation λ = Vj/F , le moyen de charge (20) étant apte à appliquer approximativement une même quantité de charge sur toutes les gouttes (22) formées dans une zone centrée sur le deuxième point de brisure (C) et de longueur sensiblement égale à λ/4.
Continuous inkjet printing device, comprising: a pressurized tank (10) equipped with several nozzles (12) capable of simultaneously emitting, at a given speed V j , a plurality of continuous ink jets (14) parallel to each other; an individual means (16) of binary stimulation of each of the jets, capable of fragmenting them, on demand, into two distinct predetermined breaking points ( C , L ), to form drops of ink (22,24) at a given transmission frequency F ; charging means (20), common to the plurality of ink jets (14), for applying different amounts of electric charge to the ink drops (22,24) according to their breaking points; deflection means (30), common to the plurality of ink jets (14), for applying the same electric field to the drops, so as to deflect only the drops (24) formed in a first ( L ) of the break points, relatively distant from the nozzles; and a gutter (38) for recycling the deviated drops (24) to the pressurized tank (10);
characterized by the fact that the individual means (16) of binary stimulation of each of the jets (14) is controlled by predefined voltage levels ( V c , V l ) such that the two breaking points ( C , L ) are separated by a distance ( ΔD ) strictly less than the wavelength λ of the jet defined by the relation λ = V j / F , the charging means (20) being able to apply approximately the same amount of charge to all the drops (22) formed in an area centered on the second breaking point ( C ) and of length substantially equal to λ / 4 .
Dispositif selon la revendication 6, dans lequel le moyen de charge (20) comprend deux paires d'électrodes (42,44 ; 46,48) orientées parallèlement aux jets et dimensionnées afin que les points de brisure (C,L) soient localisés entre lesdites électrodes, et des moyens (50,52 ; 54,56) pour appliquer des tensions électriques constantes et de signes opposés sur les deux paires d'électrodes.Device according to claim 6, in which the charging means (20) comprises two pairs of electrodes (42,44; 46,48) oriented parallel to the jets and dimensioned so that the breaking points ( C , L ) are located between said electrodes, and means (50,52; 54,56) for applying constant electrical voltages and of opposite signs to the two pairs of electrodes. Dispositif selon la revendication 7, dans lequel les électrodes (42,44 ; 46,48) sont planes et placées à une distance (E) de l'axe de chacun des jets (14), au moins égale à deux fois le diamètre des jets. Device according to claim 7, in which the electrodes (42,44; 46,48) are planar and placed at a distance ( E ) from the axis of each of the jets (14), at least equal to twice the diameter of the jets. Dispositif selon l'une quelconque des revendications 6 à 8, dans lequel le moyen individuel de stimulation binaire de chacun des jets (14) comprend un élément (16) piézoélectrique ou thermo-résistif placé dans le réservoir pressurisé (10) et piloté individuellement par un circuit électronique externe (18).Device according to any one of the claims 6 to 8, in which the individual means of binary stimulation of each of the jets (14) includes a piezoelectric or thermoresistive element (16) placed in the pressurized tank (10) and controlled individually by an external electronic circuit (18). Dispositif selon l'une quelconque des revendications 6 à 8, dans lequel le moyen individuel (16) de stimulation binaire de chacun des jets (14) comprend deux éléments thermo-résistifs (16a,16b) placés dans le réservoir pressurisé (10), un circuit électrique externe (18) délivrant en permanence un signal électrique périodique d'alimentation d'un premier des éléments thermo-résistifs, correspondant au premier point de brisure (L) et, à la demande, un signal électrique complémentaire d'alimentation du deuxième élément thermo-résistif (16b), correspondant au deuxième point de brisure (C).Device according to any one of Claims 6 to 8, in which the individual means (16) for binary stimulation of each of the jets (14) comprises two thermo-resistive elements (16a, 16b) placed in the pressurized reservoir (10), an external electrical circuit (18) permanently delivering a periodic electrical signal for supplying a first of the heat-resistive elements, corresponding to the first breaking point ( L ) and, on request, an additional electrical signal for supplying the second thermo-resistive element (16b), corresponding to the second breaking point ( C ). Dispositif selon l'une quelconque des revendications 6 à 8, dans lequel le moyen individuel (16) de stimulation binaire de chacun des jets (14) comprend un transducteur individuel (60) placé dans le réservoir pressurisé (10) et au moins une électrode (58) commune d'excitation électro-hydrodynamique placée à proximité des jets, en aval de la buse (12), un circuit électrique externe (18) délivrant en permanence un signal périodique d'alimentation électrique de l'électrode (58) d'excitation électro-hydrodynamique, correspondant au premier point de brisure (L) et, à la demande, un signal électrique complémentaire d'alimentation du transducteur individuel (60), correspondant au deuxième point de brisure (C).Device according to any one of Claims 6 to 8, in which the individual means (16) for binary stimulation of each of the jets (14) comprises an individual transducer (60) placed in the pressurized reservoir (10) and at least one electrode (58) common electro-hydrodynamic excitation placed near the jets, downstream of the nozzle (12), an external electrical circuit (18) permanently delivering a periodic signal of electrical supply to the electrode (58) d electro-hydrodynamic excitation, corresponding to the first breaking point ( L ) and, on request, an additional electrical signal supplying the individual transducer (60), corresponding to the second breaking point ( C ).
EP99400831A 1998-04-10 1999-04-06 Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method Expired - Lifetime EP0949077B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9804561 1998-04-10
FR9804561A FR2777211B1 (en) 1998-04-10 1998-04-10 PROCESS FOR PROJECTING AN ELECTRICALLY CONDUCTIVE LIQUID AND CONTINUOUS INKJET PRINTING DEVICE USING THIS PROCESS

Publications (2)

Publication Number Publication Date
EP0949077A1 true EP0949077A1 (en) 1999-10-13
EP0949077B1 EP0949077B1 (en) 2003-09-17

Family

ID=9525153

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99400831A Expired - Lifetime EP0949077B1 (en) 1998-04-10 1999-04-06 Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method

Country Status (5)

Country Link
US (1) US6273559B1 (en)
EP (1) EP0949077B1 (en)
DE (1) DE69911289T2 (en)
ES (1) ES2207918T3 (en)
FR (1) FR2777211B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092542A1 (en) * 1999-10-15 2001-04-18 Imaje S.A. Ink jet printer and printing process
FR2851495A1 (en) * 2003-02-25 2004-08-27 Imaje Sa Inkjet printer, has stimulation circuit to equally provoke controlled joint of jet in downstream joint position to emit continuous jet, which is transformed into electrically charged and uncharged ink drops in downstream zone
FR2890596A1 (en) 2005-09-13 2007-03-16 Imaje Sa Sa Conducting liquid e.g. ink, drops selective charging device for ink jet print head, has charge electrode and air gap, at constant potential, to transfer charge to jet sections, where electrode is provided downstream gap along jet path
FR2938207A1 (en) * 2008-11-12 2010-05-14 Imaje Sa PRINTER HAVING AN OPTIMUM BINARY CONTINUOUS JET DROP GENERATOR WITH OPTIMAL PRINT SPEED
US8104879B2 (en) 2005-10-13 2012-01-31 Imaje S.A. Printing by differential ink jet deflection
US8162450B2 (en) 2006-10-05 2012-04-24 Markem-Imaje Printing by deflecting an ink jet through a variable field
US8955948B2 (en) 2010-02-01 2015-02-17 Markem-Imaje Device forming a continuous inkjet printer cabinet with reduced concentrations of solvent vapor inside and around the cabinet
CN105015166A (en) * 2015-07-20 2015-11-04 厦门英杰华机电科技有限公司 Sectional-type high-pressure deflection system of CIJ ink-jet printer
CN109808310B (en) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 Continuous ink jet printing device of ink jet printer

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457807B1 (en) * 2001-02-16 2002-10-01 Eastman Kodak Company Continuous ink jet printhead having two-dimensional nozzle array and method of redundant printing
US7273270B2 (en) * 2005-09-16 2007-09-25 Eastman Kodak Company Ink jet printing device with improved drop selection control
US7673976B2 (en) * 2005-09-16 2010-03-09 Eastman Kodak Company Continuous ink jet apparatus and method using a plurality of break-off times
US7892461B2 (en) * 2005-11-04 2011-02-22 Heubach Gmbh Method for the production and use of pigmented thermoplastic material comprising a flow enhancer in the form of a dissolved salt
US8740359B2 (en) 2008-08-07 2014-06-03 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed from two different break off lengths
US7938516B2 (en) * 2008-08-07 2011-05-10 Eastman Kodak Company Continuous inkjet printing system and method for producing selective deflection of droplets formed during different phases of a common charge electrode
US8573757B2 (en) * 2009-03-26 2013-11-05 North Carolina Agricultural And Technical State University Methods and apparatus of manufacturing micro and nano-scale features
US8398210B2 (en) 2011-04-19 2013-03-19 Eastman Kodak Company Continuous ejection system including compliant membrane transducer
US8529021B2 (en) 2011-04-19 2013-09-10 Eastman Kodak Company Continuous liquid ejection using compliant membrane transducer
CN103619598A (en) 2011-04-19 2014-03-05 伊斯曼柯达公司 Continuous ejection system including compliant membrane transducer
US8382259B2 (en) 2011-05-25 2013-02-26 Eastman Kodak Company Ejecting liquid using drop charge and mass
JP2014515326A (en) 2011-05-25 2014-06-30 イーストマン コダック カンパニー Liquid discharge using droplet charging and mass
US8465129B2 (en) 2011-05-25 2013-06-18 Eastman Kodak Company Liquid ejection using drop charge and mass
US8469496B2 (en) 2011-05-25 2013-06-25 Eastman Kodak Company Liquid ejection method using drop velocity modulation
BR112013030233A2 (en) 2011-05-25 2019-09-24 Eastman Kodak Co continuous liquid ejection system, and liquid droplet ejection method
US8657419B2 (en) 2011-05-25 2014-02-25 Eastman Kodak Company Liquid ejection system including drop velocity modulation
FR2975632A1 (en) * 2011-05-27 2012-11-30 Markem Imaje BINARY CONTINUOUS INKJET PRINTER
US8646883B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8646882B2 (en) 2012-03-20 2014-02-11 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8651633B2 (en) 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8651632B2 (en) 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
US8585189B1 (en) 2012-06-22 2013-11-19 Eastman Kodak Company Controlling drop charge using drop merging during printing
US8641175B2 (en) 2012-06-22 2014-02-04 Eastman Kodak Company Variable drop volume continuous liquid jet printing
US8888256B2 (en) 2012-07-09 2014-11-18 Eastman Kodak Company Electrode print speed synchronization in electrostatic printer
US8696094B2 (en) 2012-07-09 2014-04-15 Eastman Kodak Company Printing with merged drops using electrostatic deflection
FR3045459B1 (en) 2015-12-22 2020-06-12 Dover Europe Sarl PRINTHEAD OR INK JET PRINTER WITH REDUCED SOLVENT CONSUMPTION

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
US4346387A (en) * 1979-12-07 1982-08-24 Hertz Carl H Method and apparatus for controlling the electric charge on droplets and ink-jet recorder incorporating the same
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
EP0512907A1 (en) 1991-05-03 1992-11-11 Imaje S.A. Modular multijet deflection head and manufacturing process
US5523778A (en) * 1993-12-07 1996-06-04 Videojet Systems International, Inc. Segmented charge tunnel for drop charging in a printhead

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417256A (en) * 1980-05-09 1983-11-22 International Business Machines Corporation Break-off uniformity maintenance
JPS5831765A (en) * 1981-08-20 1983-02-24 Ricoh Co Ltd Ink jet recording device
ATE36136T1 (en) * 1984-01-20 1988-08-15 Codi Jet Markierungs Systeme G METHOD AND ARRANGEMENT FOR THE INK DELIVERY SYSTEM OF AN INK-JET PRINTER.
US4734705A (en) * 1986-08-11 1988-03-29 Xerox Corporation Ink jet printer with satellite droplet control
JPH06183003A (en) * 1992-08-03 1994-07-05 Nec Eng Ltd Ink jet printer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4220958A (en) 1978-12-21 1980-09-02 Xerox Corporation Ink jet electrohydrodynamic exciter
US4346387A (en) * 1979-12-07 1982-08-24 Hertz Carl H Method and apparatus for controlling the electric charge on droplets and ink-jet recorder incorporating the same
US4638328A (en) 1986-05-01 1987-01-20 Xerox Corporation Printhead for an ink jet printer
EP0512907A1 (en) 1991-05-03 1992-11-11 Imaje S.A. Modular multijet deflection head and manufacturing process
US5523778A (en) * 1993-12-07 1996-06-04 Videojet Systems International, Inc. Segmented charge tunnel for drop charging in a printhead

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONALD J. DRAKE: "Binary continuous thermal ink jet break off length modulation", XEROX DISCLOSURE JOURNAL., vol. 14, no. 3, June 1989 (1989-06-01), STAMFORD, CONN US, pages 95 - 100, XP000027460 *
G. RYDGREN AND C. H. HERTZ: "Ink Jet Marking by Ultrasonic Jet Control", JOURNAL OF IMAGING TECHNOLOGY, vol. 12, no. 2, April 1986 (1986-04-01), Springfield US, pages 88 - 94, XP002088885 *
ROBERT A. LONIS: "Breakoff length detection and control", XEROX DISCLOSURE JOURNAL., vol. 12, no. 6, December 1987 (1987-12-01), STAMFORD, CONN US, pages 261 - 263, XP000006578 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2799688A1 (en) * 1999-10-15 2001-04-20 Imaje Sa PRINTER AND INK JET PRINTING METHOD
EP1092542A1 (en) * 1999-10-15 2001-04-18 Imaje S.A. Ink jet printer and printing process
US7192121B2 (en) 2003-02-25 2007-03-20 Imaje Sa Inkjet printer
FR2851495A1 (en) * 2003-02-25 2004-08-27 Imaje Sa Inkjet printer, has stimulation circuit to equally provoke controlled joint of jet in downstream joint position to emit continuous jet, which is transformed into electrically charged and uncharged ink drops in downstream zone
WO2005070676A2 (en) * 2003-02-25 2005-08-04 Imaje Sa Continuous inkjet printer
WO2005070676A3 (en) * 2003-02-25 2005-12-22 Imaje Sa Continuous inkjet printer
US7712879B2 (en) 2005-09-13 2010-05-11 Imaje S.A. Drop charge and deflection device for ink jet printing
WO2007031500A1 (en) 2005-09-13 2007-03-22 Imaje S.A. Drop charge and deflection device for ink jet printing
FR2890596A1 (en) 2005-09-13 2007-03-16 Imaje Sa Sa Conducting liquid e.g. ink, drops selective charging device for ink jet print head, has charge electrode and air gap, at constant potential, to transfer charge to jet sections, where electrode is provided downstream gap along jet path
US8104879B2 (en) 2005-10-13 2012-01-31 Imaje S.A. Printing by differential ink jet deflection
US8162450B2 (en) 2006-10-05 2012-04-24 Markem-Imaje Printing by deflecting an ink jet through a variable field
FR2938207A1 (en) * 2008-11-12 2010-05-14 Imaje Sa PRINTER HAVING AN OPTIMUM BINARY CONTINUOUS JET DROP GENERATOR WITH OPTIMAL PRINT SPEED
WO2010055035A1 (en) * 2008-11-12 2010-05-20 Markem-Imaje Inkjet printer operating a binary continuous-jet with optimum deflection and maximised print speed
US8955948B2 (en) 2010-02-01 2015-02-17 Markem-Imaje Device forming a continuous inkjet printer cabinet with reduced concentrations of solvent vapor inside and around the cabinet
CN105015166A (en) * 2015-07-20 2015-11-04 厦门英杰华机电科技有限公司 Sectional-type high-pressure deflection system of CIJ ink-jet printer
CN109808310B (en) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 Continuous ink jet printing device of ink jet printer

Also Published As

Publication number Publication date
FR2777211B1 (en) 2000-06-16
US6273559B1 (en) 2001-08-14
FR2777211A1 (en) 1999-10-15
DE69911289T2 (en) 2004-06-17
EP0949077B1 (en) 2003-09-17
ES2207918T3 (en) 2004-06-01
DE69911289D1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
EP0949077B1 (en) Method for ejecting an electrically conductive liquid and continuous ink jet printing device using this method
EP0521764B1 (en) Liquid projecting process and high resolution printing device in a continuous ink jet printer to perform this process
EP1628832B1 (en) Inkjet printer
EP1469997B1 (en) Converging axis dual-nozzled print head and printer fitted therewith
US6022099A (en) Ink printing with drop separation
US6509917B1 (en) Continuous ink jet printer with binary electrostatic deflection
EP0911168B1 (en) Continuous ink jet printer with asymmetric heating drop deflection
EP1106371B1 (en) Printer with simplified manufacturing and manufacturing method
EP1234670B1 (en) Printhead and printer with improved deflection electrodes
FR2892052A1 (en) Inkjet printing method in which an inket's hydraulic trajectory is controlled by the application of an electric field upstream of a point at which a continuous jet is broken up into jet sections
FR2906755A1 (en) Liquid jet e.g. ink jet, deflecting method for use during ink-jet printing, involves generating variable electric field along hydraulic path, and deflecting liquid jet by field by mobilization of charges within jet
FR2952851A1 (en) CONTINUOUS INK JET PRINTER WITH IMPROVED QUALITY AND AUTONOMY OF PRINTING
EP0911165A2 (en) Continuous ink jet printer with variable contact drop deflection
EP3216607A1 (en) Robust drop generator
US8100510B2 (en) Inkjet printhead system and method using laser-based heating
EP1092542B1 (en) Ink jet printer and printing process
US6498615B1 (en) Ink printing with variable drop volume separation
FR2975632A1 (en) BINARY CONTINUOUS INKJET PRINTER
FR2676022A1 (en) RECORDING HEAD WITH INK JET.
KR100982840B1 (en) Photosensor activation of an ejection element of a fluid ejection device
JPH05261941A (en) Ink jet recording method and ink jet recording head
US20060284950A1 (en) Printing apparatus
JPH08252918A (en) Ink jet recording apparatus
EP0911166A2 (en) Continuous ink jet printer with electrostatic drop deflection
EP1110731B1 (en) Method for preventing ink drop misdirection in an asymmetric heat deflection type ink jet printer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991217

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IMAJE S.A.

AKX Designation fees paid

Free format text: DE ES GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PERRIN, MAX

Inventor name: VAGO, STEPHANE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69911289

Country of ref document: DE

Date of ref document: 20031023

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040322

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040503

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2207918

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050406

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050406

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050407