EP1002853B1 - Procédé de production d'essences à faible teneur en soufre - Google Patents

Procédé de production d'essences à faible teneur en soufre Download PDF

Info

Publication number
EP1002853B1
EP1002853B1 EP99402792A EP99402792A EP1002853B1 EP 1002853 B1 EP1002853 B1 EP 1002853B1 EP 99402792 A EP99402792 A EP 99402792A EP 99402792 A EP99402792 A EP 99402792A EP 1002853 B1 EP1002853 B1 EP 1002853B1
Authority
EP
European Patent Office
Prior art keywords
gasoline
fraction
light
process according
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99402792A
Other languages
German (de)
English (en)
Other versions
EP1002853A1 (fr
Inventor
Blaise Didillon
Denis Uzio
Jean-Luc Nocca
Jean Cosyns
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1002853A1 publication Critical patent/EP1002853A1/fr
Application granted granted Critical
Publication of EP1002853B1 publication Critical patent/EP1002853B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps

Definitions

  • the present invention relates to a process for the production of gasolines with a low sulfur content, which makes it possible to recover the totality of a petrol fraction containing sulfur, to reduce the total sulfur and mercaptan contents of said petrol fraction to very low levels. levels, with no significant decrease in fuel efficiency, and minimizing the decrease in octane number.
  • the production of reformulated species that meet the new environmental standards requires, in particular, that their concentration of olefins and / or aromatics (especially benzene) and sulfur (including mercaptans) be reduced.
  • the catalytic cracking gasolines have high olefin contents, and the sulfur present in the reformulated gasoline is attributable, to nearly 90%, to catalytic cracking gasoline (FCC). in a fluidized bed).
  • FCC catalytic cracking gasoline
  • the desulphurisation (hydrodesulphurisation) of gasolines and mainly of FCC species is therefore of obvious importance.
  • Hydrotreating (hydrodesulphurisation) of the feedstock sent to catalytic cracking leads to gasolines typically containing 100 ppm of sulfur.
  • the hydrocracking units of catalytic cracking feeds operate in severe conditions of temperature and pressure, which assumes a major investment effort.
  • the entire charge must be desulfurized, resulting in the processing of very large load volumes.
  • EP-A-0 725 126 discloses a method for hydrodesulphurizing a cracking gasoline in which the gasoline is separated into a plurality of fractions comprising at least a first fraction rich in compounds easy to desulphurize and a second fraction. rich in compounds difficult to desulphurize. Before carrying out this separation, it is necessary to first determine the distribution of the sulfur-containing products by means of analyzes. These analyzes are necessary to select the equipment and the separation conditions.
  • US-A-5,318,690 discloses a process with gasoline fractionation and softening of the light fraction, while the heavy fraction is desulfurized, then converted to ZSM-5 and desulfurized again under mild conditions. This technique is based on a separation of crude gasoline so as to obtain a light cut practically free of sulfur compounds other than mercaptans. This makes it possible to treat said cut only by means of a softening which removes the mercaptans.
  • the heavy cut contains a relatively large amount of olefins which are partly saturated during hydrotreatment.
  • the patent advocates cracking zeolite ZSM-5 which produces olefins, but at the expense of yield.
  • these olefins can recombine with H 2 S present in the medium to reform mercaptans. It is then necessary to perform additional softening or hydrodesulfurization.
  • the present invention relates to a process for the production of gasolines with a low sulfur content, which makes it possible to recover the totality of a petrol fraction containing sulfur, to reduce the total sulfur and mercaptan contents of said petrol fraction to very low levels. levels, with no significant decrease in fuel efficiency, and minimizing the decrease in octane number.
  • the process according to the invention is a process for the production of gasoline with a low sulfur content from a petrol cut containing sulfur.
  • the method according to the invention comprises a separation of said essence into a light fraction and a heavy fraction, hydrodesulfurization of the light gasoline on a nickel-based catalyst, hydrodesulfurization of the heavy fraction on a catalyst comprising at least cobalt and / or at least one Group VIb metal, and the mixture of the desulphurized fractions.
  • the feedstock of the process according to the invention is a sulfur-containing gasoline cutter, preferably a gasoline cutter from a catalytic cracking unit, whose boiling point range typically extends from about the boiling points of hydrocarbons having 5 carbon atoms (C5) up to about 220 ° C.
  • the end point of the gasoline cut depends on the refinery from which it comes and the constraints of the market, but generally remains within the limits indicated above.
  • the process according to the invention comprises a separation of the essence into two fractions: a light fraction (also hereinafter referred to as light cut or light gasoline), the end point of which is generally less than or equal to approximately 160 ° C., preferably lower at 140 ° C and more preferably below 120 ° C, a heavy fraction (also hereinafter referred to as heavy cut or heavy gasoline) which is constituted by the heavy fraction complementary to the light gasoline.
  • a light fraction also hereinafter referred to as light cut or light gasoline
  • heavy fraction also hereinafter referred to as heavy cut or heavy gasoline
  • the cutting point is chosen so as to maximize the olefin content in the light cut.
  • This content can be easily determined, for example by means of the determination of the bromine number, generally available on the site.
  • hydrodesulphurization also called hydrotreatment
  • hydrodesulphurization of the light gasoline is carried out on a nickel-based catalyst described in a patent application filed simultaneously, and the hydrodesulphurization of the heavy fraction on a conventional hydrotreatment (hydrodesulfurization) catalyst comprising a Group VIII metal and a Group VIb metal.
  • the light and heavy cuts thus desulfurized are then mixed.
  • the effluent obtained may optionally be stripped in order to remove the H 2 S produced during the hydrodesulfurization.
  • the gas to be desulphurized contains polyolefins (dienes), to perform a selective hydrogenation of the gasoline before fractionation.
  • the sulfur species contained in the feedstocks treated by the process of the invention may be mercaptans or heterocyclic compounds, such as, for example, thiophenes or alkylthiophenes, or heavier compounds, for example benzothiophene.
  • heterocyclic compounds unlike mercaptans, can not be removed by the extractive processes. These sulfur compounds are consequently eliminated by hydrotreatment, which leads to their decomposition into hydrocarbons and H 2 S.
  • sulfur compounds whose boiling points are below 160 ° C or even below 140 ° C and preferably below 120 ° C.
  • the sulfur content of catalytic cracked gasoline (FCC) gasoline cuts depends on the sulfur content of the FCC treated feed as well as the end point of the cut. Light fractions naturally have a lower sulfur content than heavier cuts.
  • the sulfur contents of the entirety of a petrol cut are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • the sulfur contents are often greater than 1000 ppm by weight, they can even in certain cases reach values of the order of 4000 to 5000 ppm by weight.
  • the hydrogenation of the dienes is an optional but advantageous step which makes it possible to eliminate, before hydrodesulphurization, almost all the dienes present in the petrol fraction containing sulfur to be treated. It generally takes place in the presence of a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, and a support.
  • a catalyst comprising at least one Group VIII metal, preferably selected from the group consisting of platinum, palladium and nickel, and a support.
  • a catalyst containing 1 to 20% by weight of nickel deposited on an inert support such as, for example, alumina, silica, silica-alumina or a support containing at least 50% alumina, will be used. .
  • This catalyst operates at a pressure of 0.4 to 5 MPa, at a temperature of 50 to 250 ° C, with a liquid hourly space velocity of 1 to 10 h -1 .
  • Another metal may be combined to form a bimetallic catalyst, such as, for example, molybdenum or tungsten.
  • the choice of operating conditions is particularly important.
  • the operation will generally be carried out under pressure in the presence of a quantity of hydrogen in small excess relative to the stoichiometric value necessary for hydrogenating the diolefins.
  • the hydrogen and the feedstock to be treated are injected in ascending or descending streams into a reactor preferably with a fixed bed of catalyst.
  • the temperature is most generally between about 50 and about 250 ° C, and preferably between 80 and 200 ° C, and more preferably between 160 and 190 ° C.
  • the pressure is sufficient to maintain more than 80%, and preferably more than 95% by weight of the gasoline to be treated in the liquid phase in the reactor; it is most generally between 0.4 and 5 MPa and preferably greater than 1 MPa.
  • the pressure is advantageously between 1 and 4 MPa.
  • the space velocity is from about 1 to about 10 h -1 , preferably from 4 to 10 h -1 .
  • the light fraction of the catalytic cracking gasoline fraction can contain up to a few% by weight of diolefins.
  • the diolefin content is generally reduced to less than 3000 ppm, or even less than 2500 ppm and more preferably less than 1500 ppm. In some cases, it can be obtained less than 500 ppm.
  • the diene content after selective hydrogenation can even if necessary be reduced to less than 250 ppm.
  • the step of hydrogenation of the dienes takes place in a catalytic hydrogenation reactor which comprises a catalytic reaction zone traversed by the entire charge and the amount of hydrogen necessary to effect the desired reactions. .
  • This step consists of splitting the gasoline into two fractions, a light fraction, also called light gasoline, and a heavy fraction also called heavy gasoline.
  • the cutting point between these two species corresponds to the point final boiling point (also known as the end point) of light gasoline, and the initial boiling point (also known as the initial point) of heavy gasoline. It is at a temperature generally below 160 ° C in terms of boiling point, preferably below 140 ° C, and more preferably below 120 ° C.
  • the light gasoline thus has an end point (cutting point between the light fraction and the heavy fraction) generally greater than or equal to about 160 ° C, preferably greater than 140 ° C and more preferably greater than 120 ° C.
  • Heavy gasoline is the heavy fraction complementary to light gasoline. It has an initial point generally greater than or equal to approximately 160 ° C, preferably greater than 140 ° C and more preferably greater than 120 ° C.
  • This separation can be carried out using any techniques known to those skilled in the art, such as, for example, distillation or adsorption.
  • the end point of the light gasoline cut depends of course on the refinery, but remains within the limits indicated above.
  • the filler is preferably a light gasoline derived from the separation of a catalytic cracking gasoline.
  • Suitable catalysts are catalysts consisting of supported nickel.
  • the nickel content of the catalyst used according to the invention is generally between about 1 and about 80% by weight, preferably between 5 and 70% by weight and even more preferably between 10 and 50% by weight.
  • the catalyst is generally shaped, preferably in the form of beads, extrudates, pellets, or trilobes.
  • the nickel may be incorporated in the catalyst on the preformed support, it may also be mixed with the support before the shaping step.
  • Nickel is generally introduced in the form of a precursor salt, generally soluble in water, such as, for example, nickel nitrate. This mode of introduction is not specific to the invention. Any other mode of introduction known to those skilled in the art is suitable for the invention
  • the supports of the catalysts used in the process of the invention are generally porous solids chosen from refractory oxides, such as, for example, aluminas, silicas and silica-aluminas, magnesia, as well as titanium oxide and zinc oxide, the latter oxides may be used alone or in admixture with alumina or silica-alumina.
  • the supports are transition aluminas or silicas whose specific surface area is between 25 and 350 m 2 / g.
  • the supports chosen from natural compounds for example kieselguhr or kaolin may also be suitable as supports for the catalysts of the process according to the invention.
  • the catalyst After introducing the nickel and possibly forming the catalyst (when this step is carried out on a mixture already containing nickel), the catalyst is in a first activated step.
  • This activation may correspond to either an oxidation, then a reduction, or a direct reduction, or a calcination only.
  • the calcination step is generally carried out at temperatures of from about 100 to about 600 ° C and preferably from 200 to 450 ° C under an air flow rate.
  • the reduction step is performed under conditions to convert at least a portion of the oxidized forms of nickel to metal. Generally, it consists of treating the catalyst under a flow of hydrogen at a temperature of at least 300 ° C.
  • the reduction can also be achieved in part by means of chemical reducers.
  • the catalyst is preferably used at least in part in its sulfurized form. This has the advantage of minimizing the risks of hydrogenation of unsaturated compounds such as olefins or aromatic compounds during the start-up phase.
  • the introduction of sulfur can occur between different activation steps. Preferably, no oxidation step is performed when the sulfur or a sulfur compound is introduced on the catalyst.
  • the sulfur or a sulfur compound can be introduced ex situ, that is to say outside the reactor where the process according to the invention is carried out, or in situ, that is to say in the reactor used for process according to the invention. In the latter case, the catalyst is preferably reduced under the conditions described above, then sulphurized by passing a feed containing at least one sulfur compound, which once decomposed leads to the fixation of sulfur on the catalyst.
  • This charge may be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur compound.
  • the sulfur compound is added to the ex situ catalyst .
  • a sulfur compound may be introduced onto the catalyst in the presence of possibly another compound.
  • the catalyst is then dried and then transferred to the reactor for carrying out the process of the invention.
  • the catalyst is then treated in hydrogen in order to convert at least a portion of the nickel into sulfide.
  • a procedure which is particularly suitable for the invention is that described in patents FR-B-2,708,596 and FR-B-2,708,597.
  • the sulfur content of the catalyst is generally between 0.5 and 25% by weight, preferably between 4 and 20% by weight.
  • the hydrodesulphurization of the light fraction of gasoline is intended, by using the catalyst described above, to convert the sulfur-containing compounds of the cut into H 2 S, so as to obtain an effluent, which after mixing with the Desulfurized heavy gasoline will meet the desired specifications in terms of sulfur compound content.
  • the light cut produced has the same distillation range and a slightly lower octane number, due to the partial but inevitable saturation of the olefins.
  • the operating conditions of the hydrotreatment reactor according to the present invention must be adjusted so as to reach the desired level of hydrodesulfurization, and in order to minimize the octane loss resulting from the saturation of the olefins.
  • the catalyst used in the process according to the invention generally makes it possible to convert at most 70% of the olefins, preferably at most 60-65% of the olefins, and more preferably less than 20% of the olefins (the diolefins being totally or almost totally hydrogenated). ). With the catalyst of the process according to the invention, it is thus possible to achieve high levels of hydrodesulphurization while limiting the loss of olefins and therefore the reduction of the octane number.
  • the hydrodesulfurization of the light fraction is carried out in the presence of hydrogen, with the nickel-based catalyst having a temperature of between about 160 ° C and about 420 ° C, at low to moderate pressure, generally between about 0.5 and about 8 MPa.
  • the space velocity of the liquid is between about 0.5 and about 10 h -1 (expressed as volume of liquid per volume of catalyst per hour), preferably between 1 and 8 h -1 .
  • the H 2 / HC ratio is adjusted according to the desired hydrodesulphurization rates in the range of from about 100 to about 600 liters per liter.
  • the temperature is between 200 ° C and 400 ° C, and very preferably between 290 ° C and 350 ° C.
  • the pressure is between 1 and 3 MPa.
  • the fraction corresponding to heavy gasoline is subjected to conventional hydrotreatment (hydrodesulphurization) carried out on a conventional hydrotreating catalyst in order to convert the sulfur-containing compounds of the cut into H 2 S, and so as to obtain an effluent, after mixing with the light desulfurized gasoline, which meets the desired specifications in terms of content of sulfur compounds.
  • hydrotreatment hydrodesulphurization
  • the heavy fraction thus desulphurized has the same distillation range and a slightly lower octane number than before hydrotreatment, because of the total saturation of the olefins. This loss of octane is limited because the heavy fraction (heavy gasoline) has an olefin content generally less than 20% by weight and preferably less than 10% by weight.
  • the operating conditions of the hydrotreating reactor according to the present invention must be adjusted to await the desired level of desulfurization. At least 90% of the sulfur compounds present in heavy gasoline are generally converted to H 2 S.
  • the heavy fraction is hydrotreated in the presence of hydrogen with a catalyst consisting of cobalt and at least one Group VIb metal supported at a temperature of from about 160 ° C to about 420 ° C under generally from about 0.5 to about 8 MPa.
  • the space velocity of the liquid is between about 0.5 and about 10 h -1 (expressed as volume of liquid per volume of catalyst per hour), preferably between 1 and 6 h -1 .
  • the H 2 / HC ratio is adjusted according to the desired desulfurization rates in the range of 100 to 600 liters per liter and preferably 300 to 600 liters per liter.
  • the temperature is between 200 ° C and 300 ° C.
  • the pressure is between 2 and 4 MPa.
  • At least one conventional hydrodesulphurization catalyst comprising cobalt and at least one metal from group VIb (Group 6 metals).
  • group VIb Group 6 metals
  • the metal of group Vlb when present, is usually molybdenum or tungsten. Combinations such as cobalt-molybdenum are preferred.
  • the catalyst support is usually a porous solid, such as for example an alumina, a silica-alumina or other porous solids, such as, for example, magnesia, silica or titanium oxide, alone or in mixture with alumina or silica-alumina.
  • Each of the two fractions is then subjected to hydrodesulfurization, under the conditions described above, in order to eliminate almost completely the sulfur of the heavy fraction and to eliminate a part of the sulfur present in the light fraction, preferably limiting to to reach the sulfur content necessary for the product obtained by mixing the two hydrodesulphurized sections has a sulfur content corresponding to the desired specifications.
  • reaction zones where the hydrodesulphurization reactions of the light and heavy gasoline fractions are carried out outside the distillation zone, but to use reaction zones as feedstock.
  • hydrodesulphurizing the liquid fractions taken from trays in the distillation zone with recycling of the desulphurized effluents to said distillation zone, at one or more levels above or below, preferably in the vicinity, of the sampling levels.
  • Example 1 hydrodesulphurization of unfractionated gasoline.
  • HR306C® catalyst marketed by the company Procatalyse
  • the catalyst is first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane.
  • Example 2 hydrodesulphurization of fractionated gasoline.
  • the heavy fraction of the gasoline is subjected to hydrodesulfurization on a conventional hydrotreating catalyst in an isothermal tubular reactor.
  • 25 ml of HR306C® catalyst, marketed by the company Procatalyse, are placed in the hydrodesulfurization reactor.
  • the catalyst is first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane.
  • the light fraction of the gasoline is subjected to hydrotreatment on a supported nickel catalyst in an isothermal tubular reactor.
  • the catalyst is prepared as follows.
  • the catalyst is prepared from a transition alumina of 140 m 2 / g in the form of beads 2 mm in diameter.
  • the pore volume is 1 ml / g of support.
  • 1 kilogram of support is impregnated with 1 liter of nickel nitrate solution.
  • the catalyst is then dried at 120 ° C and calcined under a stream of air at 400 ° C for one hour.
  • the nickel content of the catalyst is 20% by weight.
  • the catalyst (100 ml) is then sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C. in contact with a filler containing 4% sulfur as dimethyl disulphide in n-heptane.
  • the hydrodesulfurization of the light gasoline is then carried out.
  • the temperature is 280 ° C
  • the charge rate is 200 ml / hour.
  • the H 2 / charge ratio expressed in liters of hydrogen per liter of filler is 400, the operating pressure is 2.7 MPa.
  • Example 3 hydrodesulphurization of fractionated gasoline using a cobalt-molybdenum catalyst.
  • the heavy fraction of the gasoline is subjected to hydrodesulfurization on a conventional hydrotreating catalyst in an isothermal tubular reactor.
  • 25 ml of HR306C® catalyst, marketed by the company Procatalyse, are placed in the hydrodesulfurization reactor.
  • the catalyst is first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane.
  • the light fraction of the gasoline is subjected to hydrodesulfurization on the HR306C® catalyst in an isothermal tubular reactor.
  • the catalyst is first sulphurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a feedstock consisting of 2% of sulfur in the form of dimethyl disulphide in n-heptane.
  • Table 7 Hydrodesulfurization of light gasoline over HR 306CP catalyst Light petrol Lightly desulphurated gasoline S total (ppm) 1600 700 S ex mercaptans (ppm) 0 250 Olefins (% vol.) 46 36 Initial point (° C) 80 80 End point (° C) 110 110

Description

  • La présente invention concerne un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre, de réduire les teneurs en soufre total et en mercaptans de ladite coupe essence à de très faibles niveaux, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane.
  • Art antérieur :
  • La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue leur concentration en oléfines et/ou en aromatiques (surtout le benzène) et en soufre (dont les mercaptans). Ainsi, les essences de craquage catalytique présentent des teneurs en oléfines élevées, et le soufre présent dans les essences reformulées est notamment imputable, à près de 90%, à l'essence de craquage catalytique (FCC, « Fluid Catalytic Cracking » ou craquage catalytique en lit fluidisé). La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente.
  • L'hydrotraitement (hydrodésulfuration) de la charge envoyée au craquage catalytique conduit à des essences contenant typiquement 100 ppm de soufre. Les unités d'hydrotraitement de charges de craquage catalytique opèrent cependant dans des conditions sévères de température et de pression, ce qui suppose un effort d'investissement important. De plus, la totalité de la charge doit être désulfurée, ce qui entraîne le traitement de volumes de charge très importants.
  • L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement.
  • La séparation de l'essence légère et de l'essence lourde avant hydrotraitement a déjà été revendiquée dans le brevet US-A-4 397 739. Dans ce brevet, il est revendiqué un procédé de hydrodésulfuration des essences comprenant un fractionnement de l'essence en une fraction légère et une fraction lourde et la hydrodésulfuration spécifique de la fraction lourde.
  • D'autre part, dans le brevet US-A- 4 131 537 il est enseigné qu'il est intéressant de fractionner l'essence en plusieurs coupes, de préférence trois, en fonction de leur point d'ébullition, et de les désulfurer dans des conditions qui peuvent être différentes. Il est indiqué dans ce brevet que le plus grand bénéfice est obtenu lorsque l'on fractionne l'essence en trois coupes et que lorsque la coupe présentant des points d'ébullition intermédiaires est traitée dans des conditions douces.
  • La demande de brevet EP-A- 0 725 126 décrit un procédé de hydrodésulfuration d'une essence de craquage dans lequel l'essence est séparée en une pluralité de fractions comprenant au moins une première fraction riche en composés faciles à désulfurer et une seconde fraction riche en composés difficiles à désulfurer. Avant d'effectuer cette séparation, il faut au préalable déterminer la distribution des produits soufrés au moyen d'analyses. Ces analyses sont nécessaires pour sélectionner l'appareillage et les conditions de séparation.
  • Dans cette demande il est ainsi indiqué qu'une fraction légère d'essence de craquage voit sa teneur en oléfine et son indice d'octane chuter de manière importante lorsque qu'elle est désulfurée sans être fractionnée. Par contre, le fractionnement de ladite fraction légère en 7 à 20 fractions suivi d'analyses des teneurs en soufre et en oléfines de ces fractions permet de déterminer la ou les fractions les plus riches en composés soufrés qui sont ensuite désulfurées simultanément ou séparément et mélangées aux autres fractions désulfurées ou non. Une telle procédure est complexe et doit être reproduite à chaque changement de la composition de l'essence à traiter.
  • Il est par ailleurs intéressant de noter que les composés dits "faciles" à désulfurer sont notamment, selon les indications de la demande de brevet EP-A- 0 725 126, le benzothiophène et le methylbenzothiophène dont les points d'ébullitions sont respectivement de 220°C et 244°C. Ces composés se retrouvent par conséquent dans la coupe dite « à point d'ébulition élevé » du brevet US-A- 4 131 537, coupe qui nécessite selon ce brevet les traitements les plus sévères pour être désulfurée.
  • Il a également été proposé, dans le brevet US-A- 5 290 427, des procédés d'hydrotraitement des essences consistant à fractionner l'essence, puis à désulfurer les fractions et convertir les fractions désulfurées sur une zéolithe ZSM-5, afin de compenser par une isomérisation la perte d'octane enregistrée.
  • Le brevet US-A- 5 318 690 propose un procédé avec un fractionnement de l'essence et un adoucissement de la fraction légère, tandis que la fraction lourde est désulfurée, puis convertie sur ZSM-5 et désulfurée à nouveau dans des conditions douces. Cette technique est basée sur une séparation de l'essence brute de façon à obtenir une coupe légère pratiquement dépourvue de composés soufrés autres que les mercaptans. Ceci permet de traiter ladite coupe uniquement au moyen d'un adoucissement qui enlève les mercaptans.
  • De ce fait, la coupe lourde contient une quantité relativement importante d'oléfines qui sont en partie saturées lors de l'hydrotraitement. Pour compenser la chute de l'indice d'octane liée à l'hydrogénation des oléfines, le brevet préconise un craquage sur zéolithe ZSM-5 qui produit des oléfines, mais au détriment du rendement. De plus, ces oléfines peuvent se recombiner avec l'H2S présent dans le milieu pour reformer des mercaptans. Il est alors nécessaire d'effectuer un adoucissement ou une hydrodésulfuration supplémentaire.
  • Résumé de l'invention :
  • La présente invention concerne un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre, de réduire les teneurs en soufre total et en mercaptans de ladite coupe essence à de très faibles niveaux, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane.
  • Le procédé selon l'invention est un procédé de production d'essence à faible teneur en soufre, à partir d'une coupe essence contenant du soufre. Le procédé selon l'invention comprend une séparation de ladite essence en une fraction légère et une fraction lourde, une hydrodésulfuration de l'essence légère sur un catalyseur à base de nickel, une hydrodésulfuration de la fraction lourde sur un catalyseur comprenant au moins du cobalt et/ou au moins un métal du groupe Vlb, et le mélange des fractions désulfurées.
  • La charge du procédé selon l'invention est une coupe essence contenant du soufre, de préférence une coupe essence issue d'une unité de craquage catalytique, dont la gamme de points d'ébullition s'étend typiquement depuis environ les points d'ébullitions des hydrocarbures à 5 atomes de carbone (C5) jusqu'à environ 220°C. Le point final de la coupe essence dépend de la raffinerie dont elle est issue et des contraintes du marché, mais reste généralement dans les limites indiquées ci-avant.
  • Le procédé selon l'invention comprend une séparation de l'essence en deux fractions : une fraction légère (également appelée ci-après coupe légère ou essence légère) dont le point final est généralement inférieur ou égal à environ 160°C, de préférence inférieur à 140°C et de manière plus préférée inférieur à 120°C, une fraction lourde (également appelée ci-après coupe lourde ou essence lourde) qui est constitué par la fraction lourde complémentaire de l'essence légère.
  • D'une façon générale, le point de coupe est choisi de façon à maximiser la teneur en oléfines dans la coupe légère. Cette teneur peut être aisément déterminée, par exemple au moyen de la détermination de l'indice de brome, généralement disponible sur le site.
  • L'hydrodésulfuration (également appelée hydrotraitement) de l'essence légère est effectuée sur un catalyseur à base de nickel décrit dans une demande de brevet déposée simultanément, et l'hydrodésulfuration de la fraction lourde sur un catalyseur d'hydrotraitement (hydrodésulfuration) conventionnel comprenant un métal du groupe VIII et un métal du groupe Vlb.
  • Les coupes légères et lourdes ainsi désulfurées sont ensuite mélangées. L'effluent obtenu peut éventuellement être strippé, afin d'éliminer l'H2S produit lors de la hydrodésulfuration.
  • Il est également possible, et préféré notamment lorsque l'essence à désulfurer contient des polyoléfines (diènes), de réaliser une hydrogénation sélective de l'essence avant fractionnement.
  • Description détaillée l'invention :
  • II a été observé de manière inattendue que l'association de ce fractionnement simple d'une essence avec une hydrodésulfuration sur catalyseur constitué par du Nickel supporté de la fraction légère et une hydrodésulfuration sur un catalyseur conventionnel de la fraction lourde, permet d'obtenir, après mélange des fractions désulfurées, une essence désulfurée ne présentant pas de diminution importante de la teneur en oléfine ou de l'indice d'octane.
  • Les espèces soufrées contenues dans les charges traitées par le procédé de l'invention peuvent être des mercaptans ou des composés hétérocycliques, tels que par exemple les thiophènes ou les alkyl-thiophènes, ou des composés plus lourds, comme par exemple le benzothiophène. Ces composés hétérocycliques, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs. Ces composés soufrés sont par conséquent éliminés par un hydrotraitement, qui conduit à leur décomposition en hydrocarbures et H2S.
  • Dans la fraction légère on peut retrouver les composés soufrés dont les points d'ébullition sont inférieurs à 160°C voire inférieurs à 140°C et de préférence inférieurs à 120°C. Parmi ceux-ci, on peut citer le méthanethiol (Peb = 6°C), l'éthanethiol (Peb = 35°C), le propanethiol (Pteb = 68°C), le thiophène (Peb = 84°C), le thiacyclobutane (Peb = 95°C), le pentanethiol (Peb = 99°C), le 2-méthylthiophène (Peb = 113°C), le 3-méthylthiophène (Peb = 115°C), le thiacyclopentane (Peb = 121°C), le 2-méthylthiacyclopentane (Peb = 133°C), le 2-éthylthiophène (Peb = 134°C), le 3-éthylthiophène (Peb = 136°C), le 2-5 diméthylthiophène (Peb = 137°C), le 3-méthylthiacyclopentane (Peb = 139°C), le 2,4-diméthylthiophène (Peb = 141°C), le 2,3-diméthylthiophène (Peb = 142°C), le 2,5-diméthylthiacyclopentane (Peb = 142°C), le 3,3-diméthylthiacyclopentane (Peb = 145°C), le 3,4-diméthylthiophene (Peb = 145°C), le 2,3-diméthylthicyclopentane (Peb = 148°C), le 2-isopropyl thiophène (Peb = 153°C), le 3-isopropylthiophène (Peb = 157°C) et le 3-éthyl2methylthiophène (Peb = 157°C).
  • La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée au FCC, ainsi que du point final de la coupe. Les fractions légères ont naturellement une teneur en soufre plus faible que les coupes plus lourdes.
  • Généralement, les teneurs en soufre de l'intégralité d'une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles pouvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
  • Les étapes du procédé selon l'invention sont décrites plus en détail ci après.
  • - Hydrogénation des diènes :
  • L'hydrogénation des diènes est une étape facultative mais avantageuse, qui permet d'éliminer, avant hydrodésulfuration, la presque totalité des diènes présents dans la coupe essence contenant du soufre à traiter. Elle se déroule généralement en présence d'un catalyseur comprenant au moins un métal du groupe VIII, de préférence choisi dans le groupe formé par le platine le palladium et le nickel, et un support. On emploiera par exemple un catalyseur contenant 1 à 20 % en poids de nickel déposé sur un support inerte, tel que par exemple de l'alumine, de la silice, de la silice-alumine ou un support contenant au moins 50 % d'alumine. Ce catalyseur opère sous une pression de 0,4 à 5 MPa, à une température de 50 à 250 °C, avec une vitesse spatiale horaire du liquide de 1 à 10 h-1. Un autre métal peut être associé pour former un catalyseur bimétallique, tel que par exemple le molybdène ou le tungstène.
  • Il peut être particulièrement avantageux, surtout lorsqu'on traite des coupes dont le point d'ébullition est inférieur à 160 °C d'opérer dans des conditions telles qu'un adoucissement au moins partiel de l'essence soit obtenu, c'est-à-dire une certaine réduction de la teneur en mercaptans. Pour ce faire, on peut utiliser la procédure décrite dans la demande de brevet FR-A-2 753 717, qui utilise un catalyseur à base de palladium.
  • Le choix des conditions opératoires est particulièrement important. On opérera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre environ 50 et environ 250 °C, et de préférence entre 80 et 200 °C, et de manière plus préférée entre 160 et 190 °C.
  • La pression est suffisante pour maintenir plus de 80 %, et de préférence plus de 95 % en poids de l'essence à traiter en phase liquide dans le réacteur ; elle est le plus généralement comprise entre 0,4 et 5 MPa et de préférence supérieure à 1 MPa. La pression est avantageusement comprise entre 1 et 4 MPa. La vitesse spatiale est comprise entre environ 1 et environ 10 h-1, de préférence entre 4 et 10 h-1.
  • La fraction légère de la coupe essence de craquage catalytique peut contenir jusqu'à quelques % poids de dioléfines. Après hydrogénation, la teneur en dioléfines est généralement réduite à moins de 3000 ppm, voire moins de 2500 ppm et de manière plus préférée moins de 1500 ppm. Dans certains cas, il peut être obtenu moins de 500 ppm. La teneur en diènes après hydrogénation sélective peut même si nécessaire être réduite à moins de 250 ppm.
  • Selon une réalisation de l'invention, l'étape d'hydrogénation des diènes se déroule dans un réacteur catalytique d'hydrogénation qui comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.
  • - Séparation de l'essence légère et de l'essence lourde :
  • Cette étape consiste à fractionner l'essence en deux fractions, une fraction légère, également appelée essence légère, et une fraction lourde également appelée essence lourde. Le point de coupe entre ces deux essences correspond au point d'ébullition final (également appelé point final) de l'essence légère, et au point d'ébullition initial (également appelé point initial) de l'essence lourde. Il se situe à une température généralement inférieure à 160°C en terme de point d'ébullition, de préférence inférieure à 140°C, et de façon encore préférée inférieure à 120°C.
  • L'essence légère présente donc un point final (point de coupe entre la fraction légère et la fraction lourde) généralement supérieur ou égal à environ 160°C, de préférence supérieur à 140°C et de manière plus préférée supérieur à 120°C.
  • L'essence lourde correspond à la fraction lourde complémentaire de l'essence légère. Elle présente un point initial généralement supérieur ou égal à environ 160°C, de préférence supérieur à 140°C et de manière plus préférée supérieur à 120°C.
  • Cette séparation peut être réalisée au moyen de toutes techniques connues de l'homme du métier, telles que par exemple la distillation ou l'adsorption.
  • - Hydrodésulfuration de la fraction légère :
  • Le point final de la coupe essence légère dépend bien sûr de la raffinerie, mais reste dans les limites indiquées ci-avant. La charge est de préférence une essence légère issue de la séparation d'une essence de craquage catalytique.
  • Les catalyseurs qui conviennent sont des catalyseurs constitués par du nickel supporté.
  • La teneur en nickel du catalyseur utilisé selon l'invention est généralement comprise entre environ 1 et environ 80 % poids, de préférence entre 5 et 70 % poids et, de façon encore plus préférée, entre 10 et 50 % poids. De façon préférée, le catalyseur est généralement mis en forme, de préférence sous forme de billes, d'extrudés, de pastilles, ou de trilobes. Le nickel peut être incorporé au catalyseur sur le support préformé, il peut également être mélangé avec le support avant l'étape de mise en forme. Le nickel est généralement introduit sous forme d'un sel précurseur, généralement soluble dans l'eau, tel que par exemple le nitrate de nickel. Ce mode d'introduction n'est pas spécifique de l'invention. Tout autre mode d'introduction connu de l'homme du métier convient à l'invention
  • Les supports des catalyseurs utilisés dans le procédé de l'invention sont généralement des solides poreux choisis parmi les oxydes réfractaires, tels que par exemple, les alumines, les silices et les silices-alumines, la magnésie, ainsi que l'oxyde de titane et l'oxyde de zinc, ces derniers oxydes pouvant être utilisés seuls ou en mélange avec de l'alumine ou de la silice-alumine. De préférence, les supports sont des alumines de transition ou des silices dont la surface spécifique est comprise en 25 et 350 m2/g. Les supports choisis parmi les composés naturels (par exemple kieselguhr ou kaolin) peuvent aussi convenir comme supports pour les catalyseurs du procédé selon l'invention.
  • Après introduction du nickel et éventuellement mise en forme du catalyseur (lorsque cette étape est réalisée sur un mélange contenant déjà le nickel), le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation, puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L'étape de calcination est généralement réalisée à des températures allant d'environ 100 à environ 600 °C et de préférence comprises entre 200 et 450 °C, sous un débit d'air. L'étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du nickel en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d'hydrogène à une température au moins égale à 300 °C. La réduction peut aussi être réalisée en partie au moyen de réducteurs chimiques.
  • Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. Ceci présente l'avantage de limiter au maximum les risques d'hydrogénation des composés insaturés tels que les oléfines ou les composés aromatiques pendant la phase de démarrage. L'introduction du soufre peut intervenir entre différentes étapes d'activation. De préférence, aucune étape d'oxydation n'est réalisée lorsque le soufre ou un composé soufré est introduit sur le catalyseur. Le soufre ou un composé soufré peut être introduit ex situ, c'est-à-dire en dehors du réacteur où le procédé selon l'invention est réalisé, ou in situ, c'est-à-dire dans le réacteur utilisé pour le procédé selon l'invention. Dans ce dernier cas, le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré.
  • D'une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l'étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d'un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en oeuvre le procédé de l'invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du nickel en sulfure. Une procédure qui convient particulièrement à l'invention est celle décrite dans les brevets FR-B- 2 708 596 et FR-B- 2 708 597.
  • Après sulfuration, la teneur en soufre du catalyseur est en général comprise entre 0,5 et 25 % poids, de préférence entre 4 et 20 % poids.
  • L'hydrodésulfuration de la fraction légère de l'essence a pour but, en utilisant le catalyseur décrit ci-avant, de convertir en H2S les composés soufrés de la coupe, de façon à obtenir un effluent, qui après mélange avec l'essence lourde désulfurée répondra aux spécifications désirées en terme de teneur en composés soufrés. La coupe légère produite possède le même intervalle de distillation et un indice d'octane un peu plus faible, du fait de la saturation partielle, mais inévitable, des oléfines.
  • Les conditions opératoires du réacteur d'hydrotraitement selon la présente invention doivent être ajustées de manière à atteindre le niveau de hydrodésulfuration désiré, et afin de minimiser la perte en octane résultant de la saturation des oléfines. Le catalyseur utilisé dans le procédé selon l'invention permet généralement de convertir au plus 70 % des oléfines, de préférence au plus 60-65 % des oléfines, et plus préférentiellement moins de 20 % des oléfines (les dioléfines étant totalement ou pratiquement totalement hydrogénées). Avec le catalyseur du procédé selon l'invention, il est ainsi possible d'atteindre des taux de hydrodésulfuration élevés tout en limitant la perte en oléfines et par conséquent la diminution de l'indice d'octane.
  • L'hydrodésulfuration de la fraction légère est effectuée en présence d'hydrogène, avec le catalyseur à base de nickel a une température comprise entre environ 160 °C et environ 420 °C, sous une pression faible à modérée, généralement comprise entre environ 0,5 et environ 8 MPa. La vitesse spatiale du liquide est comprise entre environ 0,5 et environ 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 8 h-1. Le rapport H2/HC est ajusté en fonction des taux d'hydrodésulfuration désirés dans la gamme comprise entre environ 100 et environ 600 litres par litres.
  • De préférence la température est comprise entre 200 °C et 400 °C, et de manière très préférée entre 290 °C et 350 °C. De préférence la pression est comprise entre 1 et 3 MPa.
  • - Hydrodésulfuration de la fraction lourde :
  • La fraction correspondant à l'essence lourde est soumise à un hydrotraitement (hydrodésulfuration) conventionnel réalisé sur un catalyseur d'hydrotraitement conventionnel afin de convertir en H2S les composés soufrés de la coupe, et de façon à obtenir un effluent, après mélange avec l'essence légère désulfurée, qui répond aux spécifications désirées en terme de teneur en composés soufrés.
  • La fraction lourde ainsi désulfurée présente le même intervalle de distillation et un indice d'octane un peu plus faible qu'avant hydrotraitement, du fait de la saturation totale des oléfines. Cette perte d'octane est limitée car la fraction lourde (l'essence lourde) présente une teneur en oléfines généralement inférieure à 20 % poids et de préférence inférieure à 10% poids.
  • Les conditions opératoires du réacteur d'hydrotraitement selon la présente invention doivent être ajustées pour attendre le niveau de désulfuration désiré. On convertit généralement au moins 90 % des composés soufrés présents dans l'essence lourde en H2S.
  • La fraction lourde est soumise à un hydrotraitement, en présence d'hydrogène, avec un catalyseur constitué par du cobalt et au moins un métal du groupe VIb supportés à une température comprise entre environ 160 °C et environ 420 °C, sous une pression généralement comprise entre environ 0,5 et environ 8 MPa. La vitesse spatiale du liquide est comprise entre environ 0,5 et environ 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 6 h-1. Le rapport H2/HC est ajusté en fonction des taux de désulfuration désirés dans la gamme de 100 à 600 litres par litre et préférentiellement de 300 à 600 litres par litre.
  • De préférence la température est comprise entre 200 °C et 300 °C. De préférence la pression est comprise entre 2 et 4 MPa.
  • Pour réaliser la réaction d'hydrotraitement de l'essence lourde selon le procédé de l'invention, on utilise en général au moins un catalyseur conventionnel d'hydrodésulfuration, comprenant le cobalt et au moins un métal du groupe Vlb (métaux du groupe 6 de la nouvelle classification, c'est-à-dire le chrome, le molybdène ou le tungstène), sur un support approprié. Le métal du groupe Vlb, lorsqu'il est présent, est généralement le molybdène ou le tungstène. Des combinaisons telles que cobalt-molybdène sont préférées. Le support du catalyseur est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine.
  • - Mise en oeuvre du procédé selon l'invention :
  • Le procédé selon l'invention tel qu'il est décrit plus haut peut être par exemple mis en oeuvre dans une configuration qui comprend, dans un premier temps, la séparation, par exemple une distillation, de l'essence en deux fractions :
    • une fraction légère, dont les points intitial et final sont par exemple de 20 °C et 160 °C respectivement, et qui renferme la plus grande partie des oléfines et une partie des composés soufrés.
    • une fraction lourde, dont le point initial est par exemple supérieur à 160 °C, et qui renferme les composés soufrés les plus lourds et, comme composés insaturés, peu d'oléfines mais principalement des composes aromatiques.
  • Chacune des deux fractions est alors soumise à une hydrodésulfuration, dans les conditions décrites plus haut, afin d'éliminer quasi totalement le soufre de la fraction lourde et d'éliminer une partie du soufre présent dans la fraction légère, en se limitant de préférence à atteindre de la teneur en soufre nécessaire pour que le produit obtenu par le mélange des deux coupes hydrodésulfurées présente une teneur en soufre correspondant aux spécifications recherchées.
  • Une autre possibilité consiste à placer les zones réactionnelles où s'effectuent les réactions d'hydrodésulfuration des fractions légères et lourde de l'essence à l'extérieur de la zone de distillation, mais d'utiliser en tant que charge des zones réactionnelles d'hydrodésulfuration des fractions liquides prélevées sur des plateaux de la zone de distillation, avec recyclage des effluents désulfurés vers ladite zone de distillation, à un ou des niveaux situés au-dessus ou au-dessous, de préférence au voisinage, des niveaux de prélèvement.
  • Il est également possible de mettre en oeuvre une autre configuration, dans laquelle les catalyseurs d'hydrotraitement visant à traiter les fractions légères et lourdes de l'essence sont placés directement dans la zone de distillation permettant la séparation de la fraction légère de la fraction lourde.
  • Les exemples ci-après illustrent l'invention sans en limiter la portée.
  • Le tableau 1 présente les caractéristiques de la charge (essences de craquage catalytique) traitées par le procédé selon l'invention. Les méthodes d'analyses utilisées pour caractériser les charges et effluents sont les suivantes :
    • chromatographie en phase gaz (CPG) pour les constituants hydrocarbonés ;
    • méthode NF M 07022/ASTM D 3227 pour les mercaptans ;
    • méthode NF M 07052 pour le soufre total :
    • méthode NF EN 25164/M 07026-2/ISO 5164/ASTM D 2699 pour l'indice d'octane recherche ;
    • méthode NF EN 25163/M 07026-1 ISO 5163/ASTM D 2700 pour l'indice d'octane moteur.
    Tableau 1 : Caractéristiques de la charge utilisée.
    Charge
    Densité 0,75
    Point initial (°C) 80°C
    Point final (°C) 240°C
    teneur en oléfines (% vol.) 25
    S total (ppm) 4500
    S ex mercaptans (ppm) 0
    RON 95
    MON 82
    (RON + MON)/2 88.5
    Exemple 1 (comparatif): hydrodésulfuration de l'essence non fractionnée.
  • 25 ml de catalyseur HR306C®, commercialisé par la société Procatalyse, sont placés dans le réacteur de hydrodésulfuration. Le catalyseur est d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • Les conditions opératoires de hydrodésulfuration sont les suivantes : T = 270 °C, VVH=4 h-1, H2/HC = 125 l/l, P=2,7 MPa. Dans ces conditions, l'effluent après désulfuration a les caractéristiques décrites dans le tableau 2. Tableau 2 : Comparaison des caractéristiques de la charge et de l'effluent désulfuré.
    Charge Effluent
    S total (ppm) 4500 315
    S ex mercaptans (ppm) 0 150
    Oléfines (% vol.) 25 8
    MON 82 76
    RON 95 85
    (RON + MON)/2 88.5 80.5
    Perte en octane -- 8
    % HDS* 93.1
    % HDO** 68
    *% HDS désigne le taux d'hydrodésulfuration
    **% HDO désigne le taux d'hydrogénation des oléfines
  • Exemple 2 (selon l'invention): hydrodésulfuration de l'essence fractionnée.
  • L'essence dont les caractéristiques sont décrites au tableau 1 est fractionnée en deux coupes, l'une présentant un point final de 110°C (coupe légère) l'autre un point initial de 110°C (coupe lourde). Les caractéristiques des essences distillées et le rendement de chaque coupe est décrit dans le tableau 3. Tableau 3: Caractéristiques des essences distillées et rendement de chaque coupe
    Charge Essence légère Essence lourde
    Volume (%) 45 55
    S total (ppm) 4500 1600 6900
    S ex mercaptans (ppm) 0 0 0
    Oléfines (% vol.) 25 46 7.5
    Point initial (°C) 80 80 110
    Point final (°C) 240 110 240
  • La fraction lourde de l'essence est soumise à une hydrodésulfuration sur un catalyseur d'hydrotraitement conventionnel en réacteur tubulaire isotherme. 25 ml de catalyseur HR306C®, commercialisé par la société Procatalyse, sont placés dans le réacteur de hydrodésulfuration. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • Les conditions opératoires de l'hydrodésulfuration sont les suivantes : T = 280 °C, VVH = 4 h-1, H2/HC = 125 l/l, P=2,7 MPa. Dans ces conditions, l'effluent après hydrodésulfuration présente une teneur en soufre inférieure à 1 ppm et une teneur en oléfine inférieure 1 % vol.
  • La fraction légère de l'essence est soumise à un hydrotraitement sur un catalyseur constitué par du nickel supporté, en réacteur tubulaire isotherme. Le catalyseur est préparé comme suit.
  • Il est préparé à partir d'une alumine de transition de 140 m2/g se présentant sous forme de billes de 2 mm de diamètre. Le volume poreux est de 1 ml/g de support. 1 kilogramme de support est imprégné par 1 litre de solution de nitrate de nickel. Le catalyseur est ensuite séché à 120°C et calciné sous courant d'air à 400°C pendant une heure. La teneur en nickel du catalyseur est de 20 % poids. Le catalyseur (100 ml) est ensuite sulfuré par traitement pendant 4 ncuros sous une pression de 3,4 MPa à 350°C, au contact d'une charge contenant de 4% de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • L'hydrodésulfuration de l'essence légère est alors réalisée. La température est de 280°C, le débit de charge est de 200 ml/heure. Le rapport H2/charge exprimé en litre d'hydrogène par litre de charge est de 400, la pression opératoire est de 2,7 MPa.
  • Dans ces conditions, l'analyse de l'effluent liquide conduit aux résultats présentés dans le tableau 5. Tableau 5: Hydrodésulfuration de l'essence légère sur catalyseur au Nickel
    Essence légère Essence légère désulfurée
    S total (ppm) 1600 700
    S ex mercaptans (ppm) 0 20
    Oléfines (% vol.) 46 43
    Point initial (°C) 80 80
    Point final (°C) 110 110
  • L'essence légère et l'essence lourde désulfurées séparément sont alors mélangées. Le produit obtenu présente les caractéristiques suivantes : Tableau 6: Caractéristiques du mélange essence légère - essence lourde après hydrodésulfurations
    Charge Essence désulfurée
    S total (ppm) 4500 315
    S ex mercaptans (ppm) 0 9
    Oléfines (% vol.) 25 19.5
    MON 82 81.2
    RON 95 92
    (RON + MON)/2 88.5 86.6
    Perte en octane -- 1.9
    % HDS* 93.1
    % HDO** 22
    *% HDS désigne le taux d'hydrodesulfuration
    **% HDO désigne le taux d'hydrogenation des oléfines
  • Exemple 3 (comparatif): hydrodésulfuration de l'essence fractionnée au moyen d'un catalyseur cobalt-molybdène.
  • L'essence dont les caractéristiques sont décrites au tableau 1 est fractionnée en deux coupes, l'une présentant un point final de 110°C (coupe légère) l'autre un point initial de 110°C (coupe lourde). Les caractéristiques des essences distillées et le rendement de chaque coupe sont décrits dans le tableau 3 de l'exemple 2.
  • La fraction lourde de l'essence est soumise à une hydrodésulfuration sur un catalyseur d'hydrotraitement conventionnel en réacteur tubulaire isotherme. 25 ml de catalyseur HR306C®, commercialisé par la société Procatalyse, sont placés dans le réacteur de hydrodésulfuration. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • Les conditions opératoires de l'hydrodésulfuration sont les suivantes : T = 280 °C, VVH = 4 h-1, H2/HC = 125 l/l, P = 2,7 MPa. Dans ces conditions, l'effluent après hydrodésulfuration présente une teneur en soufre inférieure à 1 ppm et une teneur en oléfine inférieure 1 % vol.
  • La fraction légère de l'essence est soumise à une hydrodésulfuration sur le catalyseur HR306C® en réacteur tubulaire isotherme. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
  • L'hydrodésulfuration de l'essence légère est alors réalisée dans les conditions suivantes : T = 220 °C, VVH = 4 h-1, H2/HC = 400 l/l, P=2.7 MPa.
  • Dans ces conditions, l'analyse de l'effluent liquide conduit aux résultats présentés dans le tableau 7. Tableau 7: Hydrodésulfuration de essence légère sur catalyseur HR 306CⓅ
    Essence légère Essence légère désulfurée
    S total (ppm) 1600 700
    S ex mercaptans (ppm) 0 250
    Oléfines (% vol.) 46 36
    Point initial (°C) 80 80
    Point final (°C) 110 110
  • L'essence légère et l'essence lourde désulfurées séparément sont alors mélangées. Le produit obtenu présente les caractéristiques suivantes : Tableau 8: Caractéristiques du mélange essence légère - essence lourde après hydrodésulfurations
    Charge Essence désulfurée
    S total (ppm) 4500 315
    S ex mercaptans (ppm) 0 113
    Oléfines (% vol.) 25 16
    MON 82 78.6
    RON 95 88.6
    (RON+MON)/2 88.5 83.6
    Perte en octane -- 4.9
    % HDS* 93.1
    % HDO** 36
    *% HDS désigne le taux d'hydrodésulfuration
    ** % HDO désigne le taux d'hydrogénation des oléfines

Claims (8)

  1. Procédé de production d'essence à faible teneur en soufre, dans lequel ledit procédé comprend :
    - une séparation d'une essence contenant du soufre en une fraction légère et une fraction lourde, le point de coupe étant choisi de façon à ce que la fraction légère renferme la plus grande partie des oléfines de la charge et la fraction lourde présente une teneur en oléfine inférieure à 20% poids,
    - une hydrodésulfuration de la fraction légère sur un catalyseur constitué par du nickel supporté,
    - une hydrodésulfuration de la fraction lourde sur un catalyseur constitué par du cobalt et au moins un métal du groupe Vlb supportés, et
    - le mélange des fractions désulfurées.
  2. Procédé selon la revendication 1 dans lequel l'essence contenant du soufre est issue d'un procédé de craquage catalytique.
  3. Procédé selon la revendication 1 ou 2 dans lequel le métal du groupe Vlb est le molybdène ou le tungstène.
  4. Procédé selon l'une des revendications précédentes dans lequel on effectue, avant la séparation, une hydrogénation des diènes présents dans la coupe essence contenant du soufre.
  5. Procédé selon l'une des revendications précédentes dans lequel le point de coupe entre la fraction légère et la fraction lourde se situe à une température inférieure à 160°C.
  6. Procédé selon l'une des revendications précédentes dans lequel l'hydrodésulfuration de la fraction légère et l'hydrodésulfuration de la fraction lourde sont effectuées en présence d'hydrogène, à une température comprise entre 160°C et 420°C, sous une pression comprise entre environ 0,5 et environ 8 MPa, avec une vitesse spatiale du liquide comprise entre environ 0,5 et environ 10 h-1 et un rapport H2/HC compris entre environ 100 et environ 600 litres par litre.
  7. Procédé selon l'une des revendications précédentes dans lequel la séparation est effectuée dans une colonne de distillation et dans lequel les charges des réacteurs d'hydrodésulfurations sont prélevées à deux niveaux différents de ladite colonne et les effluents desdits réacteurs sont renvoyés dans ladite colonne.
  8. Procédé selon l'une des revendications précédentes dans lequel la séparation est effectuée dans une colonne de distillation et dans lequel les catalyseurs d'hydrodésulfuration sont placés à l'intérieur de ladite colonne.
EP99402792A 1998-11-18 1999-11-09 Procédé de production d'essences à faible teneur en soufre Expired - Lifetime EP1002853B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9814480A FR2785908B1 (fr) 1998-11-18 1998-11-18 Procede de production d'essences a faible teneur en soufre
FR9814480 1998-11-18

Publications (2)

Publication Number Publication Date
EP1002853A1 EP1002853A1 (fr) 2000-05-24
EP1002853B1 true EP1002853B1 (fr) 2006-06-14

Family

ID=9532861

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99402792A Expired - Lifetime EP1002853B1 (fr) 1998-11-18 1999-11-09 Procédé de production d'essences à faible teneur en soufre

Country Status (8)

Country Link
US (1) US6334948B1 (fr)
EP (1) EP1002853B1 (fr)
JP (1) JP4547745B2 (fr)
KR (1) KR100626623B1 (fr)
CN (1) CN1158378C (fr)
DE (1) DE69931876T2 (fr)
ES (1) ES2267238T3 (fr)
FR (1) FR2785908B1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6649043B1 (en) 1996-08-23 2003-11-18 Exxonmobil Research And Engineering Company Regeneration of hydrogen sulfide sorbents
FR2797639B1 (fr) * 1999-08-19 2001-09-21 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
FR2811328B1 (fr) * 2000-07-06 2002-08-23 Inst Francais Du Petrole Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape
US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
US7090767B2 (en) * 2002-05-02 2006-08-15 Equistar Chemicals, Lp Hydrodesulfurization of gasoline fractions
JP2006500202A (ja) * 2002-09-23 2006-01-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 触媒粒子及びその脱硫への使用法
BR0317814A (pt) * 2002-12-30 2005-11-29 Shell Int Research Processos para a preparação de detergentes, de combustìveis de hidrocarbonetos, e de hidrocarbonetos detergentes
CN1312257C (zh) * 2003-01-30 2007-04-25 中国石油化工股份有限公司 一种降低汽油中烯烃、硫含量的方法
AR044779A1 (es) * 2003-06-16 2005-10-05 Shell Int Research Un proceso y un catalizador para la hidrogenacion selectiva de las diolefinas de una corriente de olefinas y para la remocion de arsenico de la misma y un metodo de elaboracion de dicho catalizador
FR2857975B1 (fr) * 2003-07-25 2008-01-11 Inst Francais Du Petrole Procede de disulfuration des essences
CN1313576C (zh) * 2003-09-15 2007-05-02 中国石油化工股份有限公司 一种劣质汽油加氢处理方法
CN1313575C (zh) * 2003-09-15 2007-05-02 中国石油化工股份有限公司 一种劣质汽油加氢改质方法
US7341657B2 (en) 2003-12-22 2008-03-11 China Petroleum & Chemical Corporation Process for reducing sulfur and olefin contents in gasoline
EP1702045A4 (fr) * 2003-12-23 2011-08-17 China Petroleum & Chemical Procede de reduction de la teneur en soufre et en olefines dans l'essence
CN100478425C (zh) * 2004-07-29 2009-04-15 中国石油化工股份有限公司 一种柴油馏分的改质方法
FR2900157B1 (fr) * 2006-04-24 2010-09-24 Inst Francais Du Petrole Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration
CN101089130B (zh) * 2006-06-16 2010-10-27 中国石油化工股份有限公司 一种生产低硫汽油的方法
CN101191079B (zh) * 2006-11-21 2011-03-23 中国石油化工股份有限公司上海石油化工研究院 用于全馏分裂解汽油选择性加氢的方法
US7842181B2 (en) * 2006-12-06 2010-11-30 Saudi Arabian Oil Company Composition and process for the removal of sulfur from middle distillate fuels
CN101307255B (zh) * 2007-05-18 2011-12-21 中国石油化工股份有限公司 一种劣质汽油馏分生产低硫汽油的方法
JP5431656B2 (ja) * 2007-06-06 2014-03-05 出光興産株式会社 脱硫重質分解ガソリンの製造方法
US7780847B2 (en) * 2007-10-01 2010-08-24 Saudi Arabian Oil Company Method of producing low sulfur, high octane gasoline
CN101429447B (zh) * 2007-11-09 2012-11-14 丁冉峰 一种催化烃重组制备高质量汽油的系统及其方法
CN101429442B (zh) * 2007-11-09 2013-02-06 丁冉峰 一种催化烃重组制备高质量汽油的设备及其方法
CN101429444B (zh) * 2007-11-09 2012-11-14 丁冉峰 一种催化烃重组制备高质量汽油的系统及其方法
WO2009067885A1 (fr) * 2007-11-09 2009-06-04 Ranfeng Ding Système et procédé de fabrication d'essence de qualité élevée par recombinaison catalytique d'hydrocarbures
CN101429448B (zh) * 2007-11-09 2012-11-14 丁冉峰 一种催化烃重组制备高质量汽油的系统及其方法
US20090145808A1 (en) * 2007-11-30 2009-06-11 Saudi Arabian Oil Company Catalyst to attain low sulfur diesel
US8142646B2 (en) * 2007-11-30 2012-03-27 Saudi Arabian Oil Company Process to produce low sulfur catalytically cracked gasoline without saturation of olefinic compounds
EP2250129A2 (fr) 2008-02-21 2010-11-17 Saudi Arabian Oil Company Catalyseur pour parvenir à une essence à faible teneur en soufre
CN101993725B (zh) * 2009-08-27 2013-06-26 中国石油化工股份有限公司 一种生产低硫汽油的方法
CN102051223B (zh) * 2009-10-27 2013-08-28 中国石油化工股份有限公司 一种催化裂化汽油加氢工艺方法
WO2011114352A2 (fr) 2010-03-17 2011-09-22 Indian Oil Corporation Limited Procédé pour extraction sélective de mercaptan d'un carburéacteur
CN102284300B (zh) * 2010-06-21 2013-04-24 中国石油天然气股份有限公司 一种劣质柴油加氢处理催化剂及制备方法
US9005432B2 (en) 2010-06-29 2015-04-14 Saudi Arabian Oil Company Removal of sulfur compounds from petroleum stream
WO2012066572A2 (fr) 2010-11-19 2012-05-24 Indian Oil Corporation Ltd. Procédé de désulfuration profonde d'essence de craquage à perte d'octane minimale
US8535518B2 (en) 2011-01-19 2013-09-17 Saudi Arabian Oil Company Petroleum upgrading and desulfurizing process
CN103059966B (zh) * 2011-10-21 2015-04-15 中国石油化工股份有限公司 一种生产低硫汽油的方法
CN103059945B (zh) * 2011-10-21 2015-09-30 中国石油化工股份有限公司 一种催化汽油加氢脱硫方法
CN103242904B (zh) * 2012-02-06 2015-09-30 中国石油化工股份有限公司 一种加氢精制联合工艺方法
FR2993569B1 (fr) 2012-07-17 2015-12-04 IFP Energies Nouvelles Procede de desulfuration d'une essence
FR2993570B1 (fr) 2012-07-17 2015-12-04 IFP Energies Nouvelles Procede de production d'une essence legere basse teneur en soufre
FR2997415B1 (fr) 2012-10-29 2015-10-02 IFP Energies Nouvelles Procede de production d'une essence a basse teneur en soufre
FR3000964B1 (fr) 2013-01-14 2016-01-01 IFP Energies Nouvelles Procede de production d'une essence basse teneur en soufre
US10308883B2 (en) 2015-10-07 2019-06-04 Axens Process for desulfurizing cracked naphtha
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
US10703999B2 (en) 2017-03-14 2020-07-07 Saudi Arabian Oil Company Integrated supercritical water and steam cracking process
US10526552B1 (en) 2018-10-12 2020-01-07 Saudi Arabian Oil Company Upgrading of heavy oil for steam cracking process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512570A (en) * 1948-07-20 1950-06-20 Shell Dev Desulfurization of hydrocarbon oils
US2904501A (en) * 1955-03-01 1959-09-15 Exxon Research Engineering Co Hydroforming catalytic pentenes
US3133013A (en) * 1961-01-23 1964-05-12 Universal Oil Prod Co Hydrorefining of coke-forming hydrocarbon distillates
US4131537A (en) * 1977-10-04 1978-12-26 Exxon Research & Engineering Co. Naphtha hydrofining process
FR2476118B1 (fr) * 1980-02-19 1987-03-20 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage catalytique ou de craquage a la vapeur
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5360532A (en) * 1991-08-15 1994-11-01 Mobil Oil Corporation Gasoline upgrading process
SA95160068B1 (ar) * 1994-12-13 2006-05-28 كيميكال ريسيرتش اند ليسنسنج كومباني عملية لإزالة المركبتانات mercaptans وكبرتيد هيدروجين hydrogen sulfide من تيارات هيدروكربون hydrocarbon
JP3443474B2 (ja) * 1995-02-03 2003-09-02 新日本石油株式会社 接触分解ガソリンの脱硫処理方法
FR2743080B1 (fr) * 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede de reduction selective de la teneur en benzene et en composes insatures legers d'une coupe d'hydrocarbures
JP3729621B2 (ja) * 1997-09-24 2005-12-21 新日本石油株式会社 接触分解ガソリンの水素化脱硫方法及びガソリン
JP3868128B2 (ja) * 1998-10-05 2007-01-17 新日本石油株式会社 軽油の水素化脱硫装置及び方法

Also Published As

Publication number Publication date
DE69931876T2 (de) 2006-10-05
ES2267238T3 (es) 2007-03-01
CN1158378C (zh) 2004-07-21
US6334948B1 (en) 2002-01-01
DE69931876D1 (de) 2006-07-27
JP4547745B2 (ja) 2010-09-22
FR2785908B1 (fr) 2005-12-16
JP2000160169A (ja) 2000-06-13
EP1002853A1 (fr) 2000-05-24
CN1253993A (zh) 2000-05-24
KR100626623B1 (ko) 2006-09-25
KR20000035520A (ko) 2000-06-26
FR2785908A1 (fr) 2000-05-19

Similar Documents

Publication Publication Date Title
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1138749B1 (fr) Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
FR2993570A1 (fr) Procede de production d'une essence legere basse teneur en soufre
EP2816094A1 (fr) Procédé de production d'une essence à basse teneur en soufre et en mercaptans
FR2837831A1 (fr) Procede de production d'hydrocarbures a faible teneur en soufre et en mercaptans
EP1369466B1 (fr) Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB
EP3228683B1 (fr) Procede de traitement d'une essence
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
WO2014108612A1 (fr) Procede de production d'une essence basse teneur en soufre
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
WO2015165664A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
EP1370629B1 (fr) Procede de production d'essence a faible teneur en soufre
FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001124

AKX Designation fees paid

Free format text: DE ES IT NL

17Q First examination report despatched

Effective date: 20030807

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

REF Corresponds to:

Ref document number: 69931876

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2267238

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69931876

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20141112

Year of fee payment: 16

Ref country code: DE

Payment date: 20141126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141121

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69931876

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151109

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151110