EP1152245B1 - Structure mécanique micro-usinée et dispositif incorporant la structure - Google Patents

Structure mécanique micro-usinée et dispositif incorporant la structure Download PDF

Info

Publication number
EP1152245B1
EP1152245B1 EP01401050A EP01401050A EP1152245B1 EP 1152245 B1 EP1152245 B1 EP 1152245B1 EP 01401050 A EP01401050 A EP 01401050A EP 01401050 A EP01401050 A EP 01401050A EP 1152245 B1 EP1152245 B1 EP 1152245B1
Authority
EP
European Patent Office
Prior art keywords
elongation
suspension
moving mass
beams
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01401050A
Other languages
German (de)
English (en)
Other versions
EP1152245A3 (fr
EP1152245A2 (fr
Inventor
Elisabeth Orsier
Bernard Diem
Hélène Whebe-Alause
Olivier Lefort
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Thales SA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Thales SA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1152245A2 publication Critical patent/EP1152245A2/fr
Publication of EP1152245A3 publication Critical patent/EP1152245A3/fr
Application granted granted Critical
Publication of EP1152245B1 publication Critical patent/EP1152245B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0307Anchors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/051Translation according to an axis parallel to the substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention lies in the field of mechanical structures and more particularly those which are micro-machined, comprising a moving mass connected by at least one beam having two ends to an anchorage, the beam having one of its ends connected to the mobile mass and the other end connected to the anchor. It also relates to a device, in particular a sensor incorporating the structure.
  • the amplitude of the movement of the moving mass relative to the static position of the moving mass is amplified by a factor called "quality factor Q". This factor is all the stronger as the energy losses in the mechanical structure are low.
  • This amplification is used to obtain high amplitudes of oscillation with low excitation forces.
  • the mechanical transfer function (movement as a function of the excitation frequency) becomes asymmetric in the vicinity of the resonance frequency and then has an unstable character.
  • the phenomenon of non-linearity of the connection between the force applied to the moving mass and the amplitude of the movement of the moving mass limits the amplitude of the movement that can be accepted if we want to keep a stable character to the movement.
  • silicon microstructures comprising embedded-recessed type beams of a few hundred ⁇ m in length whose oscillation becomes unstable for movement amplitudes of a few ⁇ m are observed. For some systems, this limits important performance, such as the sensitivity of a measuring device incorporating such a structure.
  • To limit the nonlinearity phenomenon it has been sought to limit the amplitude of the oscillations of the mobile mass. We remain in the linear domain and we can have a stable movement. So, the DE-202 445 2 B attributed to IBM Corp. discloses a monolithic electromechanical oscillator comprising a semiconductor portion whose mechanical resonance frequency determines the oscillation frequency. A oscillation amplitude control circuit is built into the oscillator.
  • the oscillation amplitude control circuit controls the excitation energy, that is to say the flow of current through a heating resistor, as a function of a threshold value and the amplitude of the current. Actual oscillation noted.
  • a threshold value a threshold value of a heating resistor
  • the amplitude of the vibrations is sensed.
  • a means changes the rigidity of an elastic system so that the resonance frequency is changed and thus the amplitude of the vibrations is limited.
  • Known examples of mechanical structures incorporating an oscillating moving mass will now be described with reference to Figures 1A to 1D . In these figures, identical reference numbers denote elements having the same functions.
  • the Figure 1A represents a mechanical structure 1 incorporating a fixed frame 2 in which a moving mass oscillates 3.
  • the mobile mass 3 is connected via beams 4, 5 to the fixed frame 2.
  • the direction of movement represented by a double arrow 10 is perpendicular to the beams 4, 5 and lies in the plane XOY of the figure.
  • the movement of the moving mass is parallel to the direction OY.
  • the ends 11 and 12 of the beam 4 are respectively connected to the moving mass 3 and to an anchor 8 fixed in the direction OY of the movement of the moving mass.
  • ends 13, 14 of the beam 5 are respectively connected to the moving mass and to a anchor 9 fixed in the OY direction.
  • the Figure 1B represents a mechanical structure 1 comprising a mobile mass 3 as shown Figure 1A but in the case of the Figure 1B the moving mass 3 is connected by a set of four beams to the anchors 8 and 9 respectively, there being two additional beams 6, 7, each having ends 15, 16; 17, 18 respectively, these beams coupling the moving mass 3 anchors 8.9 respectively.
  • the Figures 1C and 1D also represent a mechanical structure 1 incorporating a mobile mass 3 in which the beams connecting the mobile mass 3 to the anchors 8, 9 respectively are not straight beams.
  • the shape of the beams 4, 5 or 6, 7 represented on the Figures 1C and 1D allows a deformation of the beam in the plane XOY and consequently a greater amplitude of the vibrations of the moving mass 3.
  • This greater amplitude of the vibrations of the moving mass 3 is made without appearing nonlinear phenomena this precisely because of the shape of the beams 4, 5, 6 or 7.
  • This kind of deformable beams that can be found for example in the application of WO 95/34798 attributed to BOSCH has the disadvantage of having a mobile mass 3 which oscillates not only in the Y direction of the XOY plane but also in the X direction of this same plane. This results in parasitic phenomena which disturb the signal that can be obtained with a device in particular a sensor having such a mechanical structure.
  • the elongation means have a symmetry relative to the stiffness. This means that the resistance to elongation has the same value for the same value of traction performed along the axial line of the suspension beam, exerted in one direction or in the opposite direction. Expressed otherwise, the deformation of the elongation means is the same as the traction is performed in one direction or in the opposite direction.
  • the aim of the invention is to provide a mechanical structure in which the oscillating mobile mass moves along a known axis without moving in other directions and this in a linear motion that does not have the instabilities that can be observed when the movement is not linear.
  • the aim of the invention is to offer this linear movement with a greater amplitude of oscillation than the amplitude of oscillation that can be obtained with the mechanical structures of the prior art as described, for example, in the Figures 1A and 1B or in Boeing Patent 5,920,012. Preserving the linearity of the movement, associated with a greater amplitude of oscillation then makes it possible to produce measurement sensors having improved performances.
  • the invention aims to provide a mechanical structure in which the movement of the vibratory mass is not or only slightly sensitive to accelerations or shocks along an axis perpendicular to the direction of movement of the moving mass.
  • the stress relief function is obtained using means distinct from the main beams such as 4, 5, 6 or 7 which support the suspension function.
  • the principle of the invention is as follows: the movement of the moving mass exerts a stress of elongation or compression type on the beam or beams which connect the moving mass to the anchors. This variation in stresses causes a variation in the stiffness of the connecting beams. This phenomenon is not very visible in the case of free embedded beams as long as the free end has the degree of freedom necessary to keep the stiffness of the beam or beams constant during the oscillation. On the other hand, it is very important in the frequent case of embedded-recessed beams like those represented on the Figures 1A to 1B .
  • the stress relieving means according to the invention has at least one beam whose section, length and curvature geometry is calculated so as to cancel the variation of stiffness in a main beam during the oscillation of the moving mass on the one hand. and, on the other hand, to introduce an asymmetry of the response of the stress release means of the suspension beam.
  • the apparent stiffness of the suspension means comprising the suspension beam and its elongation means, will be asymmetrical. This means that the same force exerted along the axial line of the suspension beam will change the apparent stiffness of the suspension means differently depending on whether this force is exercised in one direction or in the opposite direction.
  • the deformation of the elongation means will be different for a force of the same module depending on whether this force is exerted in one direction or in the opposite direction.
  • the apparent change in stiffness will be zero when the force is applied in one direction and strong when the same force is applied in the opposite direction.
  • a sensor equipped with the invention can be made less sensitive to acceleration along the axial line of the suspension means.
  • the stress release means is in the form of a beam.
  • This beam is fixed by means of two-point anchoring. These two points define a straight line perpendicular to an axial direction of the suspension means.
  • An axial line of stress relieving means is in the form of a curve having a symmetry with respect to the axial direction of the suspension means mechanically linked to this stress release beam so that this curve is in the form of symmetrical half-parts of each other.
  • This curve forms a hollow whose bottom coincides with the point of junction between the suspension beam and the stress release beam.
  • Each symmetrical half-part has a point of inflection.
  • the suspension means exerts a traction on the stress release beam.
  • the shape of this beam having a hollow and a double point of inflection, under the effect of the traction exerted on the bottom of the hollow, the beam tends to flatten and therefore to reduce its length so that it works in compression.
  • the stress release beam according to the invention is still working in compression.
  • the suspension beam undergoes an acceleration of which a component is directed in the axial direction of the beam so that a force in this axial direction is exerted on the bottom of the stress release beam substantially perpendicular to this beam, this force having a tendency to accentuate the hollow formed by this beam, this beam will work in tension.
  • the apparent stiffness of the strain relief beam working in tension is greater than the stiffness of the same beam working in compression.
  • the inventors use this dissymmetry of the apparent stiffness as one works in tension or compression of the stress release beam to make the suspension insensitive, or at least less sensitive to accelerations in the axial direction of the suspension beam. exerting in a direction tending to dig the stress relieving beam. If, in addition, it is desired to make the suspension insensitive or less sensitive to accelerations also acting in a direction opposite to the first direction, provision may be made to suspend the mass oscillating using two stress relief beams, symmetrical to each other with respect to an axis perpendicular to the axial direction of the suspension means.
  • the means which will be described hereinafter as “elongation means” is connected to the main beam which constitutes a “suspension element” at at least one of its two ends, in which case it constitutes the link between said suspension element and the anchorage and / or the moving mass.
  • the elongation means may also be connected to the suspension element at a partition of this element, for example, if an elongation means is composed of a plurality of beams.
  • the deformation of the elongation means will allow an extension of the dimension of the main beam and the elongation means as a function of the amplitude of the oscillation. This deformation is effected under the influence of the traction exerted by the main beam on the elongation means. This pulling force is such that the stress exerted in the main beam remains approximately constant.
  • the invention relates to a mechanical structure incorporating a mass, movable along an axis OY, this mobile mass being suspended by suspension elements mechanically connected on the one hand to the moving mass and, on the other hand, to fixed anchoring means, the structure comprising mechanically connected to each suspension element, an elongation means inserted between the anchoring means and the moving mass, this means forming with the suspension element an improved suspension means having a first end connected to the anchoring means and a second end connected to the moving mass, the elongation means being deformable in a plane XOY, the direction OX being the direction connecting the first to the second end of the improved suspension means, characterized in that the elongation means is asymmetrical stiffness, a force of the same modulus exerted in the axial direction OX causing an apparent variation in stiffness of the improved improved suspension means when the force is exerted in a first direction than when this force is exerted in the opposite direction.
  • the calculation by calculation of the shape of a mechanical means fulfilling this asymmetry condition can be carried out by numerical simulation, for example by the finite element method, using an ANSYS software.
  • the condition of dissymmetry can be expressed in the mechanical means by an asymmetry of the form of the medium, or its width or its thickness or a combination of these three dissymmetries.
  • At least one of the elongation means is in the form of at least one beam having two ends and an axial line forming a hollow having a bottom, this beam having a symmetry with respect to an axis of the suspension element which is connected to it, so that said axial line is in the form of two half-parts symmetrical to each other each half-part having a point of inflection.
  • the deformation of the elongation means must be such that the stiffness in the suspension element of the improved suspension means remains constant. This means that the tensile or contractive force generated in the suspension element by the displacement of the moving mass remains constant.
  • the elongation means itself has at least two ends.
  • the suspension element is always mechanically coupled to the point of symmetry, which is therefore the midpoint of the suspension element.
  • An elongation means may be constituted by one or more elongation beams, preferably identical and parallel to each other.
  • a suspension element can be coupled at one of its ends only to an elongation beam, in which case this elongation beam constitutes the elongation means, and the elongation means then has two ends that can be connected. either by means of anchoring or to the moving mass.
  • a suspension element may also be coupled at each of its ends to an elongation beam in which case these elongation beams together constitute the elongation means. In this case, the two ends of a first elongation beam are mechanically connected to the anchoring means and the two ends of the other are connected to the moving mass.
  • the elongation means may comprise a first group of beams whose recesses are oriented in the same direction.
  • the beams of this group are identical and parallel to each other.
  • Each beam of the group is connected to the suspension element, and the two ends of each of these beams of the first group are connected to the anchoring means or to the oscillating mass.
  • the elongation beam has a rectilinear portion constituting the bottom of the hollow formed by the beam.
  • the figures 2 and 3 represent a mechanical structure comprising a moving mass 3 such as that described for example in relation to the Figure 1B .
  • Examples of mechanical structures 100 represented on the figure 2 differ from the example of the prior art shown in the Figure 1B by adding elongation means 23, 25 in the anchoring element 9 and 24, 26 in the anchoring element 8.
  • the elongation means 23, 25 and 24, 26 are incorporated at the level of the moving mass 3.
  • the elongation means 23 to 26 are incorporated in the recesses 19, 21 of the anchorage 9 and 20, 22 of the anchor 8 for the figure 2 . These same recesses 19 to 22 are practiced at the level of the mobile mass 3 on the figure 3 .
  • the means of elongation figures 2 and 3 are in the form of a small beam 23 to 26.
  • Each of these beams has two ends and the ends of each of these beams are in mechanical connection with the edges of the recesses 19 to 22 in which they are respectively housed.
  • the deformations of these beams 23-26 in the XOY plane of the movement of the mobile mass 3 allow a displacement of the moving mass without increasing the stress present at the level of the beams 4 to 7 and thus allow to have a movement of the mass.
  • mobile 3 linear according to the excitation.
  • the elongation means 23 to 26 are placed at the end of the suspension elements 4 to 7 located either at the anchors 8 and 9 ( figure 2 ) at the level of the moving mass 3 ( figure 3 ).
  • the suspension element 5 and the elongation means 23 together form an improved suspension means 50.
  • the elements 7-25, 4-24, and 6-26 together form improved suspension means 70 , 40 and 60.
  • the ends of the improved suspension means 40, 50, 60 to 70 are constituted as follows.
  • the ends of the improved suspension means 50 consist on the one hand of the end 13 of the suspension element 5 connected to the moving mass 3 and by the ends of the elongation means 23 connected to the recess 19. It is likewise for the three other improved suspension means 40, 60 and 70, one of the ends of each of these improved suspension means is constituted by an end of a suspension element, for example 17 for the suspension element 7 , 11 for the suspension element 4 and 15 for the suspension element 6. The other end of the improved suspension means 70 is constituted by the ends of the elongation means 25. The same applies to the means of improved suspension 40 and 60.
  • Axial line means a line located equidistant from lateral edges of the beam.
  • the beam having an elongated shape, the shape of the axial line is representative of the curvatures of this beam.
  • Each of the curves delimits a hollow 32 turned in this example to the negative X's.
  • Each curve 23 has an axis of symmetry AA 'parallel to the axis OX, the bottom 33 of the recess 32 being on this axis of symmetry so that a tangent to the curve 23 at the bottom of the recess is parallel to the axis OY displacement of the oscillating mass 3.
  • the tangent to the ends 34, 35 of the beam 23 is, in this example, parallel to the direction OY.
  • the angle of this tangent with the direction OY can be between 0 and 45 °.
  • figure 4 represents a first axial line 23a which is the shape of the beam 23 in the absence of force exerted in a direction perpendicular to the tangent to the bottom 33 of the recess 32.
  • the hollow of the curve 23b is shallower than that of the curve 23a.
  • Curve 23a represents as on the figure 4 the shape of the beam 23 when no force is exerted on the bottom of the hollow.
  • Curve 23c represents this same form when a force equal to and in the opposite direction to that causing the deformation passing from the curve 23a to the curve 23b is exerted on the bottom 33 of the hollow. This force is on the figure 5 , oriented towards the positive X's.
  • the oscillating mass 3 is suspended by at least two elements 4, 5 symmetrical to each other with respect to a direction parallel to the axis OY and that the corresponding elongation beams 23, 24 are more symmetrical l one of the other with respect to this same axis, then a force exerted in the direction OX, whatever its direction, will be exerted on one of the beams 23 or 24 to make it work in tension.
  • the beams 23-26 work in compression when the moving mass 3 moves in the direction OY.
  • Two of the beams 23-26 work in tension when an acceleration according to OX is printed to the structure 100.
  • FIG. 6 represents an axial line 37 of an elongation beam such as for example the beam 23.
  • This beam has the same characteristics, in particular asymmetry of tensile response or compression as those described in connection with the description of the axial line 23a. It has the distinction of having a bottom of hollow 32 flat. This is reflected on the axial line 37 in that it comprises a central segment of line 36. The ends 34, 35 are symmetrical to each other with respect to the axial line of the beam for example 5.
  • This structure has the advantage that the segment 36 can pivot about an axis OZ perpendicular to the plane XOY at point 33 crossing the axial line of the beam 23 and its axis of symmetry AA 'virtually freely.
  • This pivoting around the point is illustrated by the curve 37b which illustrates the shape of the axial line when the beam is urged by the moving mass when the mass has left its rest position.
  • This solicitation is represented by an arrow F .
  • the elongation means 23, 26 each have the shape represented by the curve 23a, figure 4 or advantageously 37, figure 6 .
  • the elongation means 23-26 is either on the anchors 8, 9 ( figure 2 ) on the mobile mass 3 ( figure 3 ).
  • the improved suspension element 50 has been shown in a modified form with the references 51, 53 on each of the Figures 7, 8 respectively.
  • the improved suspension means 40 is constructed in the same way or symmetrically with respect to an axis parallel to OY.
  • the means 60 and 70 are constructed in the same way or symmetrically to each other with respect to an axis parallel to OY.
  • references 3 and 9 respectively representing the oscillating weight and the anchoring have been worn on squares symbolizing these elements.
  • the improved suspension means 51 consists of the suspension beam 5, and two elongation beams 27, 28.
  • the two ends of the beam 27 are mechanically connected to the anchor 9.
  • the two ends of the beam 28 are mechanically connected to the oscillating mass 3.
  • the recesses of the elongation beams 27, 28 are turned on the same side and the suspension beam 5 at one of its ends connected to the bottom of the hollow of the elongation beam 27 and the other end connected to the top of the hump forming the underside of the hollow of the elongation beam.
  • Another embodiment is to turn the hollow of the elongation beam on the other side.
  • the improved suspension means 53 consists of the suspension beam 5, and several elongation beams whose ends are connected for example to the anchor.
  • the midpoint of one of the elongation beams is connected to one end of the suspension beam.
  • the midpoint of the second elongation beam 39 and possibly additional beams is connected between the two ends of the suspension beam 5.
  • a set of several beams replacing at least one of the single beams 23-30.
  • a first group of beams such as the beams 38, 39 represented by way of example figure 8 can replace each of the single elongation beams such as 27, shown figures 7 .
  • An improved suspension means such as the means 51 may also comprise a second group of beams, these groups having for example same shape and same hollow orientation as the beam 28 shown figure 7 .
  • the elongation means 23-28 and 38, 39 have in common to be deformable in view of the forces applied to them, in the XOY plane defined on the one hand by the direction of the movements of the moving mass 3 and on the other hand, by the direction of the suspension elements 4, 5, 6, 7.
  • the elongation means 23-28 and 37-39 make it possible to release the stresses induced in the suspension elements such as the element 4 without disrupt the characteristics of the movement of the moving mass and this for displacements much larger than those authorized without this means.
  • the elongation means 23-28 and 36, 38, 39 do not introduce a parasitic mode close to the resonance of the system.
  • the additional degree of freedom introduced by the means of elongation is effective by adding only very little flexibility in the complete system.
  • stress relieving means in the form of elongation means 23-28 and 37-39 must be added to each of the beams under stress when moving a moving mass of the complete system. Nonlinearities are clearly weakened and the amplitude limit of the movement of the moving mass to maintain the linearity is then rejected.
  • the invention makes it possible to increase the amplitude of the movement of the moving mass by several orders of magnitude.
  • the geometry of the beam (s) constituting the elongation means may be various, for example of rectangular or round section constant over the entire length of the beam, the asymmetry of stiffness being introduced as in the examples commented in connection with the Figures 2 to 8 by the shape of the axial line. As explained above, this asymmetry of stiffness can also be obtained by variations in the shape of the cross section of the elongation means between its first and second ends.
  • the elongation means according to the invention also have the advantage of being insensitive to accelerations perpendicular to the movement of the oscillating mass.
  • the elastic stiffness of the elongation means is calculated so that the deformation of the elongation means during the movement of the moving mass prevents the occurrence of too much variation of stiffness in the element or elements of improved suspension (s) under the effect of the stress applied to said suspension element.
  • the figure 9 represents in the case of a beam of rectangular section and recessed-recessed type constituting a suspension element for a mobile mass, oscillating along the Y axis, the evolution of the deformation of the beam constituting the next suspension element the X axis as a function of the amplitude of oscillation along Y.
  • the amplitude of the oscillation of the moving mass is plotted on the abscissa while on the ordinate we have the elongation of the suspension means expressed in ⁇ m. From the value of the deformation, and in the case of an indeformable beam along its length (direction X) and having no means of elongation, the figure 10 represents the evolution of the equivalent stiffness of the beam.
  • the amplitude of the oscillation is plotted on the abscissa and the stiffness expressed in Kg / s 2 is ordinate.
  • the stiffness of the elongation means is determined so that its deformation is of a size comparable to the value of the elongation as determined and represented by means of the curve represented figure 9 .
  • these calculations of the value of the stiffness are based on the classical laws of the resistance of the materials.
  • the dimensioning of the elongation means must also take into account that the deformation of this means must remain such that it does not cause a significant variation in the stiffness thereof. This is a limitation of the capacity of the elongation means to favor even larger oscillation amplitudes of the moving mass.
  • Y represents the elongation of the movement of the moving mass
  • t represents the time
  • represents a damping coefficient
  • ⁇ 0 represents the resonance frequency
  • ⁇ and ⁇ are nonlinearity coefficients
  • F 0 represents the applied force.
  • the coefficients ⁇ and ⁇ are chosen such that ⁇ Y max is much smaller than ⁇ 0 2 and ⁇ Y 2 max is much smaller than ⁇ 0 2 .
  • Yl is the limit value of the amplitude of oscillation and Q is equal to ⁇ 0 2 ⁇ ⁇ . . Q represents the mechanical quality factor of the structure.
  • the value of the coefficient ⁇ of the equivalent beam formed by the elongation means and the suspension means is proportional to WH
  • W, H and L respectively represent the width, height and length of the equivalent beam which suspends the moving mass.
  • the elongation means is in the form of a single beam having both ends connected to a mechanical element which can be considered as fixed with respect to the movement of the moving mass.
  • This mechanical element 23 to 28 or 36, 38, 39 is itself connected to the fixed support of the system or to the mobile mass.
  • the suspension element is constituted, for example, by a main beam whose length is of the order of mm, this beam allowing an oscillation of the movable element only a few microns when the quality factor Q is high (greater than a few hundred)
  • the means of elongation used by example at at least one end of each of the main beams may have a section equivalent to the section of the main beams.
  • a length of a few hundred ⁇ m of the elongation means makes it possible to obtain oscillations of a few tens of ⁇ m, ie an improvement of the amplitude of oscillation by several orders of magnitude.
  • a sensor for example an accelerator, a gyro, a pressure switch incorporating a mechanical structure 100 according to the invention will have improved sensitivity and discrimination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Vibration Prevention Devices (AREA)

Description

    Domaine de l'invention
  • L'invention se situe dans le domaine des structures mécaniques et plus particulièrement celles qui sont micro-usinées, comprenant une masse mobile reliée par au moins une poutre ayant deux extrémités à un ancrage, la poutre ayant l'une de ses extrémités reliée à la masse mobile et l'autre extrémité reliée à l'ancrage. Elle est relative aussi à un dispositif en particulier un capteur incorporant la structure.
  • Etat de la technique
  • Il existe des oscillateurs mécaniques dans lesquels la force appliquée à une masse mobile et le mouvement de cette masse mobile sont liés par une relation non linéaire, dans ce cas la raideur d'une poutre couplant la masse mobile à une structure fixe de l'oscillateur est variable en fonction de l'amplitude du déplacement de la masse mobile. Cet effet de la variation de la raideur de la poutre est d'autant plus sensible que l'amplitude du mouvement de la masse mobile augmente. L'effet induit peut être sublinéaire ou supralinéaire. La relation non linéaire entre la force appliquée à la masse mobile et l'amplitude du mouvement de la masse mobile induit qu'aux fréquences proches de la résonance pour une fréquence donnée, on peut avoir deux amplitudes possibles du mouvement. Le mouvement devient donc instable. Lorsqu'une structure est excitée au voisinage de sa fréquence de résonance, l'amplitude du mouvement de la masse mobile par rapport à la position statique de la masse mobile est amplifiée par un facteur qu'on appelle "facteur de qualité Q". Ce facteur est d'autant plus fort que les pertes d'énergie dans la structure mécanique sont faibles. Cette amplification est mise à profit pour obtenir de fortes amplitudes d'oscillation avec de faibles forces d'excitation. La fonction de transfert mécanique (mouvement en fonction de la fréquence d'excitation) devient asymétrique au voisinage de la fréquence de résonance puis présente un caractère instable. Le phénomène de non linéarité de la liaison entre la force appliquée à la masse mobile et l'amplitude du mouvement de la masse mobile limite l'amplitude du mouvement que l'on peut accepter si l'on veut garder un caractère stable au mouvement. On observe par exemple des micro-structures en silicium comportant des poutres de type encastré-encastré de quelques centaines de µm de longueur dont l'oscillation devient instable pour des amplitudes de mouvement de quelques µm. Pour certains systèmes, cela limite des performances importantes, comme par exemple la sensibilité d'un dispositif de mesure incorporant une telle structure. Pour limiter le phénomène de non linéarité on a cherché à limiter l'amplitude des oscillations de la masse mobile. On reste ainsi dans le domaine linéaire et on peut avoir un mouvement stable. Ainsi, le brevet DE-202 445 2 B attribué à IBM Corp. décrit un oscillateur électromécanique monolithique comprenant une partie semi-conductrice dont la fréquence de résonance mécanique détermine la fréquence d'oscillation. Un circuit de contrôle de l'amplitude d'oscillation est intégré dans l'oscillateur. Le circuit de contrôle de l'amplitude des oscillations contrôle l'énergie d'excitation c'est-à-dire le flux de courant à travers une résistance de chauffage, en fonction d'une valeur seuil et de l'amplitude de l'oscillation réelle constatée. Un autre exemple de limitation de l'amplitude des oscillations est décrit dans le brevet SU 493 770 A attribué à KAUN POLY. Dans ce brevet, l'amplitude des vibrations est captée. Lorsque l'amplitude des vibrations dépasse un seuil prédéterminé, un moyen change la rigidité d'un système élastique de telle sorte que la fréquence de résonance est changée et donc on limite l'amplitude des vibrations. Des exemple connus de structures mécaniques incorporant une masse mobile oscillante seront maintenant décrits en référence aux figures 1A à 1D. Sur ces figures des numéros de références identiques désignent des éléments ayant les mêmes fonctions.
  • La figure 1A représente une structure mécanique 1 incorporant un cadre fixe 2 dans lequel oscille une masse mobile 3. La masse mobile 3 est reliée par l'intermédiaire de poutres 4, 5, au cadre fixe 2. La direction du mouvement représentée par une double flèche 10 est perpendiculaire aux poutres 4, 5 et se situe dans le plan XOY de la figure. Le mouvement de la masse mobile est parallèle à la direction OY. Les extrémités 11 et 12 de la poutre 4 sont reliées respectivement à la masse mobile 3 et à un ancrage 8 fixe dans la direction OY du mouvement de la masse mobile. De même, des extrémités 13, 14 de la poutre 5 sont reliées respectivement à la masse mobile et à un ancrage 9 fixe dans la direction OY. La figure 1B, représente une structure mécanique 1 comportant une masse mobile 3 comme représenté figure 1A, mais dans le cas de la figure 1B la masse mobile 3 est reliée par un ensemble de quatre poutres aux ancrages 8 et 9 respectivement, il y a donc deux poutres additionnelles 6, 7, ayant chacune des extrémités 15, 16 ; 17, 18 respectivement, ces poutres couplant la masse mobile 3 aux ancrages 8,9 respectivement. Les figures 1C et 1D représentent également une structure mécanique 1 incorporant une masse mobile 3 dans laquelle les poutres reliant la masse mobile 3 aux ancrages 8, 9 respectivement ne sont pas des poutres droites. La forme des poutres 4, 5 ou 6, 7 représentée sur les figures 1C et 1D permet une déformation de la poutre dans le plan XOY et par conséquent une plus grande amplitude des vibrations de la masse mobile 3. Cette plus grande amplitude des vibrations de la masse mobile 3 se fait sans qu'apparaissent des phénomènes non linéaires ceci en raison précisément de la forme des poutres 4, 5, 6 ou 7. Ce genre de poutres déformables que l'on peut trouver par exemple dans la demande de brevet WO 95/34798 attribuée à BOSCH présente l'inconvénient d'avoir une masse mobile 3 qui oscille non seulement dans la direction Y du plan XOY mais aussi dans la direction X de ce même plan. Il en résulte des phénomènes parasites qui viennent perturber le signal que l'on peut obtenir avec un dispositif en particulier un capteur disposant d'une telle structure mécanique. Ces phénomènes parasites peuvent se traduire par exemple par un déplacement de la fréquence de résonance, par l'apparition de modes de déformation mécanique pouvant éventuellement se coupler avec le mode d'excitation recherché dans la direction Y, et enfin par une sensibilité accrue aux accélérations suivant plusieurs axes. Dans ce dernier cas, il en résulte une réduction du contrôle de la directivité du mouvement.
  • Le problème de la dépendance entre l'amplitude des vibrations de la masse oscillante et la fréquence de vibration de cette masse est abordée dans le brevet US-A-5 920 012 attribué à BOEING NORTH AMERICAN.
  • Il est observé dans ce brevet (col. 1, lignes 44-48) que l'amplitude de la vibration peut atteindre 20 % de la longueur des poutres de suspension de la masse oscillante et que dans ces conditions, l'élongation des poutres dans leur direction axiale ne peut plus être négligée. Pour remédier à cet état de fait, il est proposé dans ce brevet (col. 1, ligne 63 - col. 2, ligne 2) de donner à la poutre de suspension une meilleure aptitude à l'élongation et pour cela de modifier la poutre ou encore la configuration du cadre ou de la masse à l'endroit où cette poutre de suspension est attachée.
  • Cette meilleure aptitude à l'élongation est obtenue soit :
    • en donnant à chaque poutre de suspension une forme incurvée dans le plan de vibration de la masse oscillante comme représenté en figure 1 de ce brevet ; ou encore
    • en prévoyant des parties permettant une relaxation de la contrainte d'élongation, par exemple sous forme de découpes effectuées au niveau des liaisons entre la poutre et le cadre fixe et/ou la masse oscillante ou encore sous forme de découpes effectuées sur la poutre d'élongation, comme représenté figure 2 à 5 de ce brevet.
  • On remarque que dans tous les exemples représentés, les moyens d'élongation présentent une symétrie relativement à la raideur. On veut dire par là que la résistance à l'élongation a la même valeur pour une même valeur de traction effectuée selon la ligne axiale de la poutre de suspension, exercée dans un sens ou dans le sens opposé. Exprimé autrement, la déformation des moyens d'élongation est la même que la traction soit effectuée dans un sens ou dans le sens opposé.
  • Brève description de l'invention
  • L'invention est telle que définie dans les revendications. L'invention vise à offrir une structure mécanique dans laquelle la masse mobile oscillante se déplace selon un axe connu sans se déplacer dans d'autres directions et ceci selon un mouvement linéaire ne présentant pas les instabilités que l'on peut observer lorsque le mouvement n'est pas linéaire. L'invention vise à offrir ce mouvement linéaire avec une amplitude d'oscillation plus importante que l'amplitude d'oscillation que l'on peut obtenir avec les structures mécaniques de l'art antérieur comme décrite par exemple dans les figures 1A et 1B ou dans le brevet Boeing 5 920 012. La conservation de la linéarité du mouvement, associée à une plus grande amplitude d'oscillation permet alors de réaliser des capteurs de mesure ayant des performances améliorées.
  • L'invention vise enfin à fournir une structure mécanique dans laquelle le mouvement de la masse vibratoire n'est pas ou peu sensible aux accélérations ou aux chocs selon un axe perpendiculaire à la direction du mouvement de la masse mobile.
  • Il est connu comme déjà expliqué plus haut que l'on sort du cadre de la mécanique linéaire lorsque la raideur des poutres tenant la masse mobile varie en fonction de l'amplitude du déplacement. Ce phénomène connu en mécanique est par exemple expliqué dans : GW Van SANTEL, "vibration mécanique, bibliothèque technique Philipps, Dunod Paris, 1957. D'autres références font état de ce phénomène comme l'illustrent les deux références suivantes : Muck-G ; Muller-G ; Kupke-W ; Nave-P ; Seidel-H , "Observation of non linear effect in the resonance behaviour of a micro-machined silicone accelerometer" in Transducers '95, 25-29 June 1995, pp 562-565, vol. 2; et Paneva-R ; Gotchev-D , "non linear vibration behaviour of thin multilayer diaphragms in Sensors and Actuators, vol. 72, no. 1, pp 79-87. Pour obtenir un mouvement linéaire, donc sans variation de la raideur, mais aussi dans une seule direction, les inventeurs ont imaginé de séparer la fonction suspension de la fonction relâchement de contraintes. Selon l'invention, la fonction relâchement de contraintes est obtenue à l'aide de moyens distincts des poutres principales telles que 4, 5, 6 ou 7 qui supportent la fonctionnalité suspension. Ces moyens qui supportent la fonction relâchement de contraintes permettent d'accroître l'amplitude de l'oscillation sans introduire des degrés de liberté susceptibles d'en modifier les autres propriétés, notamment la fréquence d'oscillation. Ces moyens permettent, de plus, de réduire la perturbation apportée au mouvement de la masse mobile oscillante par une accélération ou un choc selon une direction perpendiculaire à la direction du mouvement de la masse mobile. Le principe de l'invention est le suivant : le mouvement de la masse mobile exerce une contrainte de type élongation ou compression sur la ou les poutres qui relient la masse mobile aux ancrages. Cette variation de contraintes entraîne une variation de la raideur des poutres de liaison. Ce phénomène est peu visible dans le cas de poutres encastrées libres tant que l'extrémité libre présente le degré de liberté nécessaire à maintenir constante la raideur de la ou des poutres durant l'oscillation. Par contre, il est très important dans le cas fréquent des poutres encastrées-encastrées comme celles représentées sur les figures 1A à 1B. Le moyen de relâchement des contraintes selon l'invention présente au moins une poutre dont la géométrie section, longueur et courbure est calculée de façon à annuler la variation de raideur dans une poutre principale lors de l'oscillation de la masse mobile d'une part, et, d'autre part à introduire une dissymétrie de la réponse du moyen de relâchement de contrainte de la poutre de suspension. On veut dire par là, que contrairement aux moyens d'élongation décrits dans le brevets US-A-5 920 012 déjà cité, la raideur apparente des moyens de suspension, comprenant la poutre de suspension et son moyen d'élongation, sera dissymétrique. On veut dire par là, qu'une même force exercée selon la ligne axiale de la poutre de suspension modifiera la raideur apparente du moyen de suspension de façon différente selon que cette force est exercée dans un sens ou dans le sens opposé. Dit autrement, la déformation du moyen d'élongation sera différente pour une force de même module selon que cette force est exercée dans un sens ou dans le sens opposé. Idéalement, la variation apparente de raideur sera nulle lorsque la force est appliquée dans un sens et forte lorsque la même force est appliquée dans le sens opposé.
  • Grâce à cette dissymétrie de la réponse en raideur du moyens d'élongation, un capteur équipé de l'invention pourra être rendu moins sensible à une accélération selon la ligne axiale du moyen de suspension.
  • Dans un exemple de réalisation qui sera commenté plus en détail par la suite, le moyen de relâchement de contrainte se présente sous la forme d'une poutre. Cette poutre est fixée au moyen d'ancrage en deux points. Ces deux points définissent une droite perpendiculaire à une direction axiale du moyen de suspension. Une ligne axiale de moyen de relâchement de contrainte se présente sous la forme d'une courbe présentant une symétrie par rapport à la direction axiale du moyen de suspension mécaniquement lié à cette poutre de relâchement de contrainte en sorte que cette courbe se présente sous la forme de demi-parties symétriques l'une de l'autre. Cette courbe forme un creux dont le fond coïncide avec le point de jonction entre la poutre de suspension et la poutre de relâchement des contraintes. Chaque demi-partie symétrique présente un point d'inflexion.
  • Lorsque la masse mobile s'éloigne de sa position de repos, le moyen de suspension exerce une traction sur la poutre de relâchement de contrainte. La forme de cette poutre présentant un creux et un double point d'inflexion, sous l'effet de la traction exercée sur le fond du creux, la poutre tend à s'aplatir et donc à diminuer sa longueur en sorte qu'elle travaille en compression. Il en résulte, qu'au cours du mouvement oscillatoire de la masse mobile, la poutre de relâchement de contrainte selon l'invention travaille toujours en compression.
  • Si la poutre de suspension subit une accélération dont une composante est dirigée selon la direction axiale de la poutre de telle sorte qu'une force selon cette direction axiale est exercée sur le fond de la poutre de relâchement de contrainte sensiblement perpendiculairement à cette poutre, cette force ayant tendance à accentuer le creux formé par cette poutre, cette poutre va travailler en traction. Les inventeurs ont noté qu'avec cette forme, la raideur apparente de la poutre de relâchement de contrainte travaillant en traction est plus grande que la raideur de la même poutre travaillant en compression.
  • Les inventeurs utilisent cette dissymétrie de la raideur apparente selon que l'on travaille en traction ou en compression de la poutre de relâchement de contrainte pour rendre la suspension insensible, ou au minimum moins sensible aux accélérations selon la direction axiale de la poutre de suspension s'exerçant dans un sens tendant à creuser la poutre de relâchement de contrainte. Si, de plus, l'on veut rendre la suspension insensible ou moins sensible aux accélérations s'exerçant aussi dans un sens opposé au premier sens, on pourra prévoir de suspendre la masse oscillante en utilisant deux poutres de relâchement de contrainte, symétriques l'une de l'autre par rapport à un axe perpendiculaire à la direction axiale des moyens de suspension. Le moyen que l'on qualifiera par la suite de "moyen d'élongation" est connecté à la poutre principale qui constitue un "élément de suspension", à l'une au moins de ses deux extrémités, auquel cas, il constitue la liaison entre ledit élément de suspension et l'ancrage et/ou la masse mobile. Le moyen d'élongation peut aussi être connecté à l'élément de suspension au niveau d'une partition de cet élément, par exemple, si un moyen d'élongation est composé de plusieurs poutres. Selon l'invention, la déformation du moyen d'élongation va permettre un allongement de la dimension de la poutre principale et du moyen d'élongation en fonction de l'amplitude de l'oscillation. Cette déformation s'effectue sous l'influence de la traction exercée par la poutre principale sur le moyen d'élongation. Cette force de traction est telle que la contrainte exercée dans la poutre principale reste à peu près constante.
  • En résumé, l'invention est relative à une structure mécanique incorporant une masse, mobile selon un axe OY, cette masse mobile étant suspendue par des éléments de suspension reliés mécaniquement d'une part, à la masse mobile et, d'autre part, à des moyens d'ancrage fixes, la structure comportant relié mécaniquement à chaque élément de suspension, un moyen d'élongation inséré entre le moyen d'ancrage et la masse mobile, ce moyen formant avec l'élément de suspension un moyen de suspension amélioré ayant une première extrémité reliée au moyen d'ancrage et une seconde extrémité reliée à la masse mobile, le moyen d'élongation étant déformable dans un plan XOY, la direction OX étant la direction reliant la première à la seconde extrémité du moyen de suspension améliorée, structure caractérisée en ce que le moyen d'élongation est dissymétrique en raideur, une force de même module exercée dans la direction axiale OX provoquant une variation apparente de raideur du moyen de suspension amélioré plus faible lorsque la force est exercée dans un premier sens que lorsque cette force est exercée dans le sens opposé.
  • La détermination par le calcul de la forme d'un moyen mécanique remplissant cette condition de dissymétrie peut être effectuée par une simulation numérique, par la méthode des éléments finis par exemple, au moyen d'un logiciel ANSYS. La condition de dissymétrie peut se traduire dans le moyen mécanique par une dissymétrie de la forme du moyen, ou encore de sa largeur ou de son épaisseur ou d'une combinaison de ces trois dissymétries.
  • Selon un exemple de réalisation qui sera décrit succinctement ci-dessous et plus en détail par la suite, au moins l'un des moyens d'élongation se présente sous la forme d'au moins une poutre ayant deux extrémités et une ligne axiale formant un creux ayant un fond, cette poutre présentant une symétrie par rapport à un axe de l'élément de suspension qui lui est connecté, en sorte que ladite ligne axiale se présente sous la forme de deux demi-parties symétriques l'une de l'autre, chaque demi-partie ayant un point d'inflexion.
  • De façon idéale, la déformation du moyen d'élongation doit être telle que la raideur dans l'élément de suspension du moyen de suspension améliorée reste constante. Cela signifie que la force de traction ou de contraction engendrée dans l'élément de suspension par le déplacement de la masse mobile reste constante. Le moyen d'élongation a lui-même au moins deux extrémités.
  • Comme expliqué plus haut, l'élément de suspension est toujours couplé mécaniquement au point de symétrie, qui est donc le point milieu de l'élément de suspension.
  • Un moyen d'élongation peut être constitué par une ou plusieurs poutres d'élongation, de préférence identiques et parallèles entre elles.
  • Un élément de suspension peut être couplé à l'une de ses extrémités seulement à une poutre d'élongation, auquel cas cette poutre d'élongation constitue le moyen d'élongation, et le moyen d'élongation a alors deux extrémités qui peuvent être raccordées soit au moyen d'ancrage, soit à la masse mobile. Un élément de suspension peut aussi être couplé à chacune de ses extrémités à une poutre d'élongation auquel cas ces poutres d'élongation constituent ensemble les moyens d'élongation. Dans ce cas, les deux extrémités d'une première poutre d'élongation sont reliées mécaniquement au moyen d'ancrage et les deux extrémités de l'autre sont reliées à la masse mobile.
  • Enfin, les moyens d'élongation peuvent comporter un premier groupe de poutres dont les creux sont orientés dans le même sens.
  • De préférence, les poutres de ce groupe sont identiques et parallèles entre elles. Chaque poutre du groupe est connectée à l'élément de suspension, et les deux extrémités de chacune de ces poutres du premier groupe sont connectées au moyen d'ancrage ou à la masse oscillante.
  • Dans un mode avantageux de réalisation, la poutre d'élongation présente une partie rectiligne constituant le fond du creux formé par la poutre.
  • Brève description des dessins
  • Des exemples non limitatifs de réalisation de l'invention seront maintenant décrits en référence aux dessins annexés dans lesquels :
    • les figures 1A à 1D déjà commentées représentent des exemples de réalisation d'une structure mécanique comportant une masse mobile selon l'art antérieur ;
    • les figures 2 et 3 représentent des modes de réalisation de l'invention ;
    • la figure 4 représente des lignes axiales d'une poutre d'élongation ;
    • en l'absence de contrainte exercée en son centre par un élément de suspension,
    • en présence d'une traction exercée en son centre par un élément de suspension, cette traction étant exercée dans la direction où elle tend à réduire l'importance du creux,
    • la figure 5 représente des lignes axiales d'une poutre d'élongation ;
    • en l'absence de contrainte exercée en son centre par un élément de suspension,
    • en présence d'une poussée exercée en son centre sur le fond du creux par un élément de suspension ;
    • la figure 6 représente une forme particulièrement avantageuse de ligne axiale d'une poutre d'élongation et des déformations de cette forme sous l'effet de contrainte ;
    • les figures 7 et 8 montrent des exemples d'utilisation de poutres d'élongation pour constituer des moyens de suspension améliorés ;
    • les figures 9 et 10 sont des courbes illustrant des modes de calcul des moyens d'élongation.
  • Dans les figures, les éléments ayant mêmes fonctions que les éléments déjà décrits dans les figures 1 portent le même numéro de référence que dans les figures 1.
  • Les figures 2 et 3 représentent une structure mécanique comportant une masse mobile 3 comme celle décrite par exemple en relation avec la figure 1B. Les exemples de structures mécaniques 100 représentés sur la figure 2 se différencient de l'exemple de l'art antérieur représenté sur la figure 1B par l'ajout de moyens d'élongation 23, 25 dans l'élément d'ancrage 9 et 24, 26 dans l'élément d'ancrage 8. Par contre, dans la figure 3 les moyens d'élongation 23, 25 et 24, 26 sont incorporés au niveau de la masse mobile 3. Les moyens d'élongation 23 à 26 sont incorporés dans des évidements 19, 21 de l'ancrage 9 et 20, 22 de l'ancrage 8 pour la figure 2. Ces mêmes évidements 19 à 22 sont pratiqués au niveau de la masse mobile 3 sur la figure 3. Les moyens d'élongation des figures 2 et 3 se présentent sous la forme d'une petite poutre 23 à 26. Chacune de ces poutres a deux extrémités et les extrémités de chacune de ces poutres sont en liaison mécanique avec les bords des évidements 19 à 22 dans lesquels elles sont respectivement logées. Les déformations de ces poutres 23-26 dans le plan XOY du mouvement de la masse mobile 3 permettent un déplacement de la masse mobile sans augmentation de la contrainte présente au niveau des poutres 4 à 7 et donc permettent d'avoir un mouvement de la masse mobile 3 linéaire en fonction de l'excitation. Dans les cas représentés figures 2 et 3, les moyens d'élongation 23 à 26 sont placés à l'extrémité des éléments de suspension 4 à 7 se trouvant soit au niveau des ancrages 8 et 9 (figure 2) soit au niveau de la masse mobile 3 (figure 3). Du point de vue du calcul de la longueur et de la section des moyens d'élongation 23 à 26 il revient au même que ce moyen soit fixé dans un évidement au niveau de l'une des masses d'ancrage 8 ou 9, ou au niveau de la masse mobile 3. En règle générale, des considérations additionnelles relatives aux dimensions de la masse mobile 3 ou des points d'ancrage 8 et 9 conduiront à installer ces moyens d'élongation 23 à 26 au niveau des masses d'ancrage.
  • Sur les figures 2 et 3, l'élément de suspension 5 et le moyen d'élongation 23 forment ensemble un moyen de suspension amélioré 50. De même, les éléments 7-25, 4-24, et 6-26, forment ensemble respectivement des moyens de suspension améliorés 70, 40 et 60. Les extrémités des moyens de suspension améliorés 40, 50, 60 à 70 sont constituées comme suit.
  • Sur la figure 2, les extrémités du moyen de suspension amélioré 50 sont constituées d'une part par l'extrémité 13 de l'élément de suspension 5 raccordée à la masse mobile 3 et par les extrémités du moyen d'élongation 23 raccordées à l'évidement 19. Il en est de même pour les trois autres moyens de suspension améliorés 40, 60 et 70, l'une des extrémités de chacun de ces moyens de suspension améliorés est constituée par une extrémité d'un élément de suspension par exemple 17 pour l'élément de suspension 7, 11 pour l'élément de suspension 4 et 15 pour l'élément de suspension 6. L'autre extrémité du moyen de suspension améliorée 70 est constituée par les extrémités du moyen d'élongation 25. Il en va de même pour les moyens de suspension améliorée 40 et 60.
  • La forme et les déformations de moyens d'élongation selon l'invention seront maintenant décrits plus en détail en liaison avec les figures 4 à 6.
  • Ces figures représentent toutes des lignes axiales de poutres d'élongation par exemple 23, 25 telles que représentées figure 2.
  • Par ligne axiale, on entend une ligne située à égale distance de bords latéraux de la poutre. La poutre ayant une forme longiligne, la forme de la ligne axiale est représentative des courbures de cette poutre.
  • Ces lignes sont représentées dans le plan XOY de déplacement de la masse mobile 3 tel que représenté par des axes figures 2 et 3. Ces mêmes axes sont représentés sur les figures 4 à 6. La référence 23 est attribuée à chacune des courbes représentées sur les figures 4 à 6 indiquant ainsi, qu'il s'agit par exemple de la ligne axiale de la poutre 23, logée dans l'évidement 19 de la figure 2.
  • Chacune des courbes délimite un creux 32 tourné dans cet exemple vers les X négatifs. Chaque courbe 23 présente un axe de symétrie AA' parallèle à l'axe OX, le fond 33 du creux 32 se trouvant sur cet axe de symétrie en sorte qu'une tangente à la courbe 23 au fond du creux est parallèle à l'axe OY de déplacement de la masse oscillante 3. La tangente aux extrémités 34, 35 de la poutre 23 est, dans cet exemple, parallèle à la direction OY. L'angle de cette tangente avec la direction OY peut être compris entre 0 et 45°.
  • Il y a donc un point d'inflexion de la courbe 23 entre le fond du creux 33 et chacun des points extrêmes 34, 35. La figure 4 représente une première ligne axiale 23a qui est la forme de la poutre 23 en l'absence de force exercée selon une direction perpendiculaire à la tangente au fond 33 du creux 32.
  • Elle représente également une seconde ligne axiale 23b qui est la forme de la courbe 23 lorsqu'une traction est effectuée sur le fond 33 du creux 32 par la poutre 5 dans la direction de l'axe X et orientée, dans le cas représenté sur la figure 4, vers les X négatifs. Le creux de la courbe 23b est moins profond que celui de la courbe 23a.
  • La différence de profondeur est nettement perceptible, par contre les points extrêmes 34, 35 qui sont les points d'ancrage, étant les mêmes, la courbe 23b est plus renflée que la courbe 23a entre le point 33 et chacun des points 34, 35. Lorsqu'une traction dans le sens de la flèche est effectuée sur le fond 33 du creux, la poutre 33 travaille en compression..
  • Sur la figure 5, on a représenté également deux lignes axiales 23a et 23c. La courbe 23a représente comme sur la figure 4 la forme de la poutre 23 lorsqu'aucune force n'est exercée sur le fond du creux. La courbe 23c représente cette même forme lorsqu'une force égale et de sens opposé à celle ayant provoqué la déformation faisant passer de la courbe 23a à la courbe 23b est exercée sur le fond 33 du creux. Cette force est sur la figure 5, orientée vers les X positifs.
  • On voit sur la figure 5 que les courbes 23a et 23c sont pratiquement confondues l'une avec l'autre au point de ne former ensemble qu'un seul trait épais. Lorsqu'une force tendant à approfondir le creux est exercée sur le fond du creux, comme représenté figure 5, la poutre travaille en traction.
  • Le fait qu'une force suffisante pour déformer sensiblement la poutre, lorsque la poutre travaille en compression, est insuffisante pour faire apparaître une déformation perceptible lorsque cette même poutre travaille en traction résulte de la différence de raideur apparente de la poutre 23 lorsqu'elle travaille en compression et lorsqu'elle travaille en traction.
  • Il en résulte que si une accélération ou un choc est exercée sur la structure se traduisant par une force ayant une composante dirigée vers les X négatifs, cette force n'entraînera pas ou peu de déformation de la suspension. Il en résulte qu'un capteur équipé d'une telle structure sera insensible aux accélérations se traduisant par des forces exercées dans le sens des X positifs.
  • Si comme représenté sur les figures 2 ou 3, la masse oscillante 3 est suspendue par au moins deux éléments 4, 5 symétriques l'un de l'autre par rapport à une direction parallèle à l'axe OY et que les poutres d'élongation 23, 24 correspondantes sont de plus symétriques l'une de l'autre par rapport à ce même axe, alors une force exercée selon la direction OX, quel que soit son sens, s'exercera sur l'une des poutres 23 ou 24 pour la faire travailler en traction.
  • Ainsi, dans le mode de réalisation représenté figure 2 ou 3, les poutres 23-26 travaillent en compression lorsque la masse mobile 3 se déplace dans la direction OY. Deux des poutres 23-26 travaillent en traction lorsque une accélération selon OX est imprimée à la structure 100.
  • Une forme avantageuse de poutre d'élongation sera maintenant commentée en liaison avec la figure 6. Cette figure représente une ligne axiale 37 d'une poutre d'élongation telle que par exemple la poutre 23. Cette poutre a les mêmes caractéristiques, en particulier de dissymétrie de réponse à la traction ou la compression que celles décrites en liaison avec la description de la ligne axiale 23a. Elle a la particularité d'avoir un fond de creux 32 plat. Cela se traduit sur la ligne axiale 37 par le fait qu'elle comporte un segment central de droite 36. Les extrémités 34, 35 sont symétriques l'une de l'autre par rapport à la ligne axiale de la poutre par exemple 5.
  • Cette structure présente l'avantage que le segment 36 peut pivoter autour d'un axe OZ perpendiculaire au plan XOY au point 33 de croisement de la ligne axiale de la poutre 23 et de son axe de symétrie AA' pratiquement librement. Ce pivotement autour du point est illustré par la courbe 37b qui illustre la forme de la ligne axiale lorsque la poutre est sollicitée par la masse mobile lorsque cette masse a quitté sa position de repos. Cette sollicitation est représentée par une flèche F.
  • Sur les figures 2 et 3 les moyens d'élongation 23, 26 ont chacun la forme représentée par la courbe 23a, figure 4 ou avantageusement 37, figure 6. Sur ces figures le moyen d'élongation 23-26 est soit sur les ancrages 8,9 (figure 2) soit sur la masse mobile 3 (figure 3).
  • D'autres exemples d'utilisation de moyens d'élongation ayant la forme décrite en relation avec la figure 4 ou la figure 6 seront maintenant décrit en référence aux figures 7 et 8.
  • Pour des raisons de simplification sur les figures 7 et 8, seul l'élément de suspension améliorée 50 a été représenté sous une forme modifiée portant les références 51, 53 sur chacune des figures 7, 8 respectivement. Il convient de comprendre que le moyen de suspension amélioré 40 est construit de la même façon ou de façon symétrique par rapport à un axe parallèle à OY. De même, si la suspension comporte quatre moyens de suspension améliorés, les moyens 60 et 70 sont construits de la même façon ou de façon symétrique l'une de l'autre par rapport à un axe parallèle à OY.
  • Sur les figures 7 et 8, les références 3 et 9 représentant respectivement la masse oscillante et l'ancrage ont été portés sur des carrés symbolisant ces éléments.
  • Il convient cependant de noter que ces références 3, 9, et donc les éléments correspondants pourraient être permutés sans que le fonctionnement de la structure 100 en soit modifié.
  • Sur la figure 7, le moyen de suspension amélioré 51 est constitué de la poutre de suspension 5, et de deux poutres d'élongation 27, 28. Les deux extrémités de la poutre 27 sont connectées mécaniquement à l'ancrage 9. Les deux extrémités de la poutre 28 sont connectées mécaniquement à la masse oscillante 3. Dans le mode de réalisation représenté figure 7, les creux des poutres d'élongation 27, 28 sont tournés d'un même côté et la poutre de suspension 5 a l'une de ses extrémités raccordées au fond du creux de la poutre d'élongation 27 et l'autre extrémité raccordée au sommet de la bosse formant l'envers du creux de la poutre d'élongation. Un autre mode de réalisation est de tourner le creux de la poutre d'élongation de l'autre côté.
  • Sur la figure 8, le moyen de suspension amélioré 53 est constitué de la poutre de suspension 5, et de plusieurs poutres d'élongation dont les extrémités sont connectées par exemple à l'ancrage. Dans l'exemple représenté figure 8, il y a deux poutres 38, 39. Le point milieu de l'une des poutres d'élongation est connecté à une extrémité de la poutre 5 de suspension. Le point milieu de la seconde poutre 39 d'élongation et éventuellement de poutres additionnelles est connecté entre les deux extrémités de la poutre de suspension 5.
  • Compte tenu de ce qui a déjà été dit plus haut, sur les possibles symétries et similitudes, il convient de comprendre que de telles configurations avec plusieurs poutres d'élongation à une extrémité peuvent être utilisés comme dans les cas décrits en relation avec les figures 2, 3, et 7, un ensemble de plusieurs poutres remplaçant l'une au moins des poutres uniques 23-30. Ainsi, un premier groupe de poutres telles que les poutres 38, 39 représentées à titre d'exemple figure 8 peut remplacer chacune des poutres d'élongation uniques telles que 27, représentées figures 7. Un moyen de suspension amélioré tel que le moyen 51 peut également comporter un second groupe de poutres, ces groupes ayant par exemple même forme et même orientation de creux que la poutre 28 représenté figure 7.
  • Dans tous les exemples de réalisation présentés sur les figures 2, 3 et 7, 8, les moyens d'élongation 23-28 et 38, 39 ont en commun d'être déformables compte tenu des forces qui leur sont appliquées, dans le plan XOY défini d'une part, par la direction des mouvements de la masse mobile 3 et, d'autre part, par la direction des éléments de suspension 4, 5, 6, 7. Les moyens d'élongation 23-28 et 37-39 permettent de relâcher les contraintes induites dans les éléments de suspension comme l'élément 4 sans perturber les caractéristiques du mouvement de la masse mobile et ceci pour des déplacements beaucoup plus importants que ceux autorisés sans ce moyen. Le moyen d'élongation 23-28 et 36, 38, 39 n'introduit pas de mode parasite proche de la résonance du système. Il ne perturbe quasiment pas la fréquence propre du mouvement : le degré de liberté supplémentaire introduit par le moyen d'élongation est efficace en n'ajoutant que très peu de souplesse dans le système complet. Il faut comprendre que des moyens de relâchement de contrainte sous forme de moyens d'élongation 23-28 et 37-39 doivent être ajoutés à chacune des poutres subissant une contrainte lors du déplacement d'une masse mobile du système complet. Les non linéarités en sont nettement affaiblies et la limite d'amplitude du mouvement de la masse mobile permettant de conserver la linéarité est alors repoussée. L'invention permet d'augmenter l'amplitude du mouvement de la masse mobile de plusieurs ordres de grandeurs. La géométrie de la ou des poutres qui constitue le moyen d'élongation peut être diverse comme par exemple de section rectangulaire ou ronde constante sur toute la longueur de la poutre, la dissymétrie de raideur étant introduite comme dans les exemples commentés en liaison avec les figures 2 à 8 par la forme de la ligne axiale. Comme expliqué plus haut, cette dissymétrie de raideur peut également être obtenue par des variations de la forme de la section droite du moyen d'élongation entre sa première et sa seconde extrémités. Les moyens d'élongation selon l'invention ont en outre l'avantage d'être insensibles aux accélérations perpendiculaires au mouvement de la masse oscillante.
  • La démarche à suivre pour dimensionner le moyen d'élongation est expliquée maintenant.
  • La raideur élastique du moyen d'élongation est calculée de façon à ce que la déformation du moyen d'élongation au cours du mouvement de la masse mobile évite l'apparition d'une trop forte variation de raideur dans l'élément ou les éléments de suspension amélioré(s) sous l'effet de la contrainte appliquée audit élément de suspension. Tout d'abord on évalue l'effet de la contrainte induite dans chacun des éléments de suspension qui soutiennent la masse mobile lors du mouvement d'oscillation de cette masse et lorsqu'aucun moyen d'élongation n'est utilisé. Cette contrainte est facilement calculée en appliquant les relations classiques de la résistance des matériaux et dépend de la géométrie des éléments de suspension.
  • La figure 9 représente dans le cas d'une poutre de section rectangulaire et de type encastré-encastré constituant un élément de suspension pour une masse mobile, oscillant suivant l'axe Y, l'évolution de la déformation de la poutre constituant l'élément de suspension suivant l'axe X en fonction de l'amplitude d'oscillation suivant Y. L'amplitude de l'oscillation de la masse mobile est portée en abscisse alors qu'en ordonnée on a l'élongation du moyen de suspension exprimé en µm. A partir de la valeur de la déformation, et dans le cas d'une poutre indéformable suivant sa longueur (direction X) et ne possédant pas de moyen d'élongation, la figure 10 représente l'évolution de la raideur équivalente de la poutre. On a porté en abscisse l'amplitude de l'oscillation et en ordonnée, la raideur exprimée en Kg/s2. On détermine la raideur du moyen d'élongation de façon à ce que sa déformation soit d'une dimension comparable à la valeur de l'élongation telle que déterminée et représentée au moyen de la courbe représentée figure 9. Une fois encore ces calculs de la valeur de la raideur s'appuient sur les lois classiques de la résistance des matériaux. Le dimensionnement du moyen d'élongation doit également prendre en compte que la déformation de ce moyen doit rester telle qu'elle ne provoque pas une variation importante de la raideur de celui-ci. Il s'agit là d'une limitation de la capacité du moyen d'élongation à favoriser des amplitudes d'oscillation de la masse mobile encore plus importantes. Dans le cas particulier tel que représenté figure 1A ou figure 1B où la suspension en l'absence du moyen d'élongation est constitué par une ou plusieurs poutres de type encastré-encastré l'équation du mouvement de la masse mobile peut s'exprimer sous la forme générale bien connue : d 2 Y d t 2 + 2 λ dY dt + ω 0 2 Y + α Y 2 + β Y 3 = F 0 sin ωt
    Figure imgb0001
  • Dans cette équation Y représente l'élongation du mouvement de la masse mobile, t représente le temps, λ représente un coefficient d'amortissement, ω0 représente la fréquence de résonance et α et β sont des coefficients de non linéarité. F0 représente la force appliquée. Les coefficients α et β sont choisis tels que αYmax est très inférieur à ω0 2 et βY2 max est très inférieur à ω0 2. De façon connue, un mouvement ayant cette équation devient instable lorsque l'amplitude du mouvement dépasse la valeur limite donnée par la formulation suivante : Y 2 = 32 9 3 ω 0 2 β Q
    Figure imgb0002
  • Dans cette équation Yℓ est la valeur limite de l'amplitude d'oscillation et Q est égal à ω 0 2 λ .
    Figure imgb0003
    . Q représente le facteur de qualité mécanique de la structure. Si l'on veut rendre linéaire l'équation du mouvement de la masse mobile, il faut ajouter un moyen d'élongation tel que les coefficients α et β de l'équation vont être nuls ou très faibles. Le coefficient α peut être considéré comme négligeable, on va donc chercher à minimiser le coefficient β. Il convient que le coefficient β du moyen de suspension améliorée constitué d'une part, par l'élément de suspension et, d'autre part par le moyen d'élongation soit aussi petit que possible. Pour les exemples représentés sur l'une des figures 2, 3 et 7, 8, dans lesquels les poutres sont de section rectangulaire et de type encastré-encastré, la valeur du coefficient β de la poutre équivalente formée par le moyen d'élongation et le moyen de suspension est proportionnelle à WH L 3 .
    Figure imgb0004
    W,H et L représentent respectivement les largeur, hauteur et longueur de la poutre équivalente qui suspend la masse mobile. Quand plusieurs poutres soutiennent la masse mobile on applique les règles classiques de superposition pour déterminer la poutre équivalente. Dans les exemples de réalisation tels que représentés sur les figures 2, 3 et 7, 8, le moyen d'élongation se présente sous la forme d'une poutre unique ayant ses deux extrémités reliées à un élément mécanique qui peut être considéré comme fixe par rapport au mouvement de la masse mobile. Cet élément mécanique 23 à 28 ou 36, 38, 39 est lui-même relié au support fixe du système ou à la masse mobile. Lorsque l'élément de suspension est constitué, par exemple, par une poutre principale dont la longueur est de l'ordre du mm, cette poutre ne permettant une oscillation de l'élément mobile que de quelques µm lorsque le facteur de qualité Q est élevé (supérieur à quelques centaines), le moyen d'élongation utilisé par exemple à une extrémité au moins de chacune des poutres principales peut présenter une section équivalente à la section des poutres principales. Une longueur de quelques centaines de µm du moyen d'élongation permet d'obtenir des oscillations de quelques dizaines de µm, soit une amélioration de l'amplitude d'oscillation de plusieurs ordres de grandeur.
  • Il en résulte qu'un capteur, par exemple un accélérateur, un gyromètre, un pressostat incorporant une structure mécanique 100 selon l'invention présentera une sensibilité et une discrimination améliorées.

Claims (10)

  1. Structure mécanique (100) incorporant au moins une masse mobile (3) selon un axe OY, cette masse mobile étant suspendue par des éléments (4,5,6,7) de suspension reliés mécaniquement d'une part, à la masse mobile (3) et, d'autre part, à des moyens d'ancrage (8,9) fixes, la structure (100) comportant relié à chaque élément (4,5,6,7) de suspension, un moyen d'élongation (23-28 ; 37-39) inséré entre le moyen d'ancrage (8,9) et la masse mobile (3), ce moyen (23-28 ; 37-39) formant avec l'élément de suspension (4,5,6,7) un moyen (40,50-53,60,70) de suspension amélioré ayant des premières extrémités reliées mécaniquement au moyen d'ancrage (8,9) et des secondes extrémités reliées à la masse mobile (3), le moyen d'élongation (23-28) étant déformable dans un plan XOY, la direction OX étant la direction reliant la première à la seconde extrémité du moyen (40,50-53,60,70) de suspension améliorée, structure caractérisée en ce que le moyen d'élongation se présente sous la forme d'une poutre dont les extrémités sont fixées mécaniquement soit aux dits moyens d'ancrage, soit à la masse mobile, de sorte que le moyen d'élongation est dissymétrique en raideur, une force de même module exercée dans la direction axiale OX provoquant une variation apparente de raideur du moyen de suspension amélioré plus faible lorsque la force est exercée dans un premier sens que lorsque cette force est exercée dans le sens opposé.
  2. Structure (100) selon la revendication 1, caractérisée en ce que ladite poutre présente une ligne axiale (36) formant un creux (32) ayant un fond (33), cette poutre (23-28 ; 37-39) présentant une symétrie par rapport à un axe (AA') de l'élément de suspension (4-7) qui lui est connecté, en sorte que ladite ligne axiale (36) se présente sous la forme de deux demi-parties symétriques l'une de l'autre, chaque demi-partie ayant un point d'inflexion.
  3. Structure (100) selon la revendication 2, caractérisée en ce que la tangente à la ligne axiale (36) à chacune de ses extrémités (34,35) fait un angle compris entre 0 et 45 DEG avec une direction perpendiculaire à l'axe de symétrie (AA') de la ligne axiale.
  4. Structure (100) selon la revendication 2 ou 3, caractérisée en ce que la tangente à la ligne axiale (36) au point d'intersection (33) de cette ligne avec l'axe de symétrie est perpendiculaire à l'axe de symétrie (AA').
  5. Structure (100) selon la revendication 2, caractérisée en ce qu'un moyen (23-28, 37-39) d'élongation est connecté à l'ancrage et en ce qu'un moyen d'élongation (23-30; 37-39) est connecté à la masse mobile (3).
  6. Structure (100) selon la revendication 5, caractérisée en ce qu'un moyen d'élongation (23-28, 37-39) est composé de plusieurs poutres d'élongation (38, 39).
  7. Structure (100) selon la revendication 1 ou 2, caractérisée en ce qu'elle comporte deux moyens de suspension améliorés (23-28, 37-39) symétriques l'un de l'autre par rapport à un axe.
  8. Structure (100) selon la revendication 1, caractérisée en ce qu'elle comporte quatre moyens (23-28, 37-39) de suspension améliorés symétriques l'un de l'autre deux à deux.
  9. Structure (100) selon la revendication 2, caractérisée en ce que la ligne axiale (36) de l'un au moins des moyens d'élongation (37) présente un creux (32) dont le fond (33, 36) est constitué par un segment de droite (36).
  10. Dispositif, en particulier capteur incorporant une structure mécanique selon l'une des revendications 1 à 9.
EP01401050A 2000-04-28 2001-04-25 Structure mécanique micro-usinée et dispositif incorporant la structure Expired - Lifetime EP1152245B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0005487 2000-04-28
FR0005487A FR2808264B1 (fr) 2000-04-28 2000-04-28 Structure mecanique micro-usinee et dispositif incorporant la structure

Publications (3)

Publication Number Publication Date
EP1152245A2 EP1152245A2 (fr) 2001-11-07
EP1152245A3 EP1152245A3 (fr) 2005-01-05
EP1152245B1 true EP1152245B1 (fr) 2010-08-11

Family

ID=8849729

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01401050A Expired - Lifetime EP1152245B1 (fr) 2000-04-28 2001-04-25 Structure mécanique micro-usinée et dispositif incorporant la structure

Country Status (6)

Country Link
US (1) US6546801B2 (fr)
EP (1) EP1152245B1 (fr)
JP (1) JP2001337099A (fr)
CA (1) CA2344728A1 (fr)
DE (1) DE60142760D1 (fr)
FR (1) FR2808264B1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656382A (zh) * 2001-05-15 2005-08-17 霍尼韦尔国际公司 加速度计应变消除结构
FR2834055B1 (fr) * 2001-12-20 2004-02-13 Thales Sa Capteur inertiel micro-usine pour la mesure de mouvements de rotation
FR2838423B1 (fr) * 2002-04-12 2005-06-24 Thales Sa Procede de fabrication d'une microstructure comportant une cavite sous vide et microstructure correspondante
US20040140415A1 (en) * 2003-01-21 2004-07-22 Nikon Corporation Vibration-attenuation devices having low lateral stiffness, and apparatus comprising same
US6912902B2 (en) * 2003-03-26 2005-07-05 Honeywell International Inc. Bending beam accelerometer with differential capacitive pickoff
US7542188B2 (en) * 2004-01-20 2009-06-02 National University Of Singapore Optical scanning using vibratory diffraction gratings
EP1735591B1 (fr) * 2004-04-14 2014-01-22 Analog Devices, Inc. Capteur inertiel a reseau lineaire d'elements de capteurs
US7187486B2 (en) * 2004-04-27 2007-03-06 Intel Corporation Electromechanical drives adapted to provide two degrees of mobility
US7180650B2 (en) * 2005-03-29 2007-02-20 Intel Corporation Electromechanical drives adapted to provide three degrees of mobility
US7802475B2 (en) * 2006-10-13 2010-09-28 Seiko Epson Corporation Acceleration sensor
EP2327960B1 (fr) 2008-08-18 2019-10-09 Hitachi, Ltd. Système micro-électromécanique
JP5130237B2 (ja) * 2009-02-20 2013-01-30 パナソニック株式会社 半導体物理量センサ
JP5206709B2 (ja) * 2009-03-18 2013-06-12 株式会社豊田中央研究所 可動体を備えている装置
DE102009002701B4 (de) * 2009-04-28 2018-01-18 Hanking Electronics, Ltd. Mikromechanischer Sensor
GB2470398B (en) * 2009-05-21 2014-03-19 Ge Infrastructure Sensing Inc A resonant sensor for measuring the pressure of a fluid
JP5083635B2 (ja) * 2009-11-12 2012-11-28 三菱電機株式会社 加速度センサ
JP4905574B2 (ja) * 2010-03-25 2012-03-28 株式会社豊田中央研究所 可動部分を備えている積層構造体
CN101798053B (zh) * 2010-04-15 2011-07-27 西安电子科技大学 一种全柔性五稳态机构及五稳态机构的实现方法
FR2964652B1 (fr) 2010-09-13 2015-05-15 Commissariat Energie Atomique Dispositif resonant, a detection piezoresistive et a resonateur relie de facon elastique au support du dispositif, et procede de fabrication de celui-ci
US20140144232A1 (en) * 2012-11-28 2014-05-29 Yizhen Lin Spring for microelectromechanical systems (mems) device
US9638524B2 (en) * 2012-11-30 2017-05-02 Robert Bosch Gmbh Chip level sensor with multiple degrees of freedom
DE102014215038A1 (de) * 2014-07-31 2016-02-04 Robert Bosch Gmbh Mikromechanischer Sensor und Verfahren zur Herstellung eines mikromechanischen Sensors
US10345330B2 (en) 2015-09-25 2019-07-09 Apple Inc. Mechanical low pass filter for motion sensors
US10324105B2 (en) * 2015-09-25 2019-06-18 Apple Inc. Mechanical low pass filter for motion sensors
US10196259B2 (en) 2015-12-30 2019-02-05 Mems Drive, Inc. MEMS actuator structures resistant to shock
FR3074793B1 (fr) * 2017-12-12 2021-07-16 Commissariat Energie Atomique Dispositif microelectromecanique et/ou nanoelectromecanique offrant une robustesse augmentee
JP6964102B2 (ja) * 2019-01-16 2021-11-10 株式会社鷺宮製作所 Mems梁構造およびmems振動発電素子
US11044572B2 (en) 2019-08-29 2021-06-22 Digital Factory Technologies, Inc. System and method for clustering end users to select and deliver a notification to mobile device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU493770A1 (ru) 1972-02-07 1975-11-28 Каунасский Политехнический Институт Устройство дл измерени амплитуды колебаний вращающейс упругой системы при переходе через резонанс
US5025346A (en) * 1989-02-17 1991-06-18 Regents Of The University Of California Laterally driven resonant microstructures
US5144184A (en) * 1990-01-26 1992-09-01 The Charles Stark Draper Laboratory, Inc. Micromechanical device with a trimmable resonant frequency structure and method of trimming same
DE4126107C2 (de) * 1991-08-07 1993-12-16 Bosch Gmbh Robert Beschleunigungssensor und Verfahren zur Herstellung
US5220835A (en) * 1991-09-12 1993-06-22 Ford Motor Company Torsion beam accelerometer
US5650568A (en) * 1993-02-10 1997-07-22 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope having strain relief features
EP0765464B1 (fr) 1994-06-16 2003-05-14 Robert Bosch Gmbh Capteur de vitesse angulaire
US5583291A (en) * 1995-07-31 1996-12-10 Motorola, Inc. Micromechanical anchor structure
JPH11337571A (ja) * 1998-05-27 1999-12-10 Japan Aviation Electronics Ind Ltd 慣性センサ
US5920012A (en) 1998-06-16 1999-07-06 Boeing North American Micromechanical inertial sensor
JP2000046862A (ja) * 1998-07-28 2000-02-18 Matsushita Electric Works Ltd 半導体加速度センサ

Also Published As

Publication number Publication date
EP1152245A3 (fr) 2005-01-05
FR2808264B1 (fr) 2002-06-07
JP2001337099A (ja) 2001-12-07
DE60142760D1 (de) 2010-09-23
FR2808264A1 (fr) 2001-11-02
EP1152245A2 (fr) 2001-11-07
US20020011117A1 (en) 2002-01-31
CA2344728A1 (fr) 2001-10-28
US6546801B2 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
EP1152245B1 (fr) Structure mécanique micro-usinée et dispositif incorporant la structure
EP2791048B1 (fr) Liaison mecanique formant pivot pour structures mecaniques mems et nems
EP1626282B1 (fr) Micro gyromètre a détection frequentielle
EP0373040B1 (fr) Transducteur force-fréquence à poutres vibrantes et accéléromètre pendulaire en comportant application
EP2008965B1 (fr) Dispositif résonant à détection piézorésistive réalisé en technologies de surface
EP2430397B1 (fr) Structure de couplage pour gyromètre resonnant
EP1515119B1 (fr) Gyromètre micro-usiné à double diapason
EP1960736B1 (fr) Gyrometre vibrant equilibre par un dispositif electrostatique
EP2449344B1 (fr) Gyroscope micro-usine a detection dans le plan de la plaque usine.
EP2656006B1 (fr) Structure planaire pour gyromètre tri-axe
EP2520940A1 (fr) Centrale inertielle a plusieurs axes de détection
FR2964652A1 (fr) Dispositif resonant, a detection piezoresistive et a resonateur relie de facon elastique au support du dispositif, et procede de fabrication de celui-ci
EP1558896B1 (fr) Capteur gyrometrique micro-usine, a detection dans le plan de la plaque usinee
EP3394564B1 (fr) Système de suspension d'une masse mobile comprenant des moyens de liaison de la masse mobile à linéarité optimisée
EP0915323A1 (fr) Microgyromètre vibrant
WO2004053503A1 (fr) Accelerometre a poutre vibrante
FR2862761A1 (fr) Accelerometre differentiel micro-usine multiaxes
EP1515118B1 (fr) Gyromètre micro-usine à structure vibrante et à détection dans le plan de la plaque usinée
EP1151246B1 (fr) Structure monolithique de gyrometre vibrant
EP3498661A1 (fr) Dispositif microelectromecanique et/ou nanoelectromecanique offrant une robustesse augmentee
EP4148432B1 (fr) Capteur microelectromecanique resonant avec masse de decouplage interposee entre resonateur et masse d'epreuve
CA2673442C (fr) Lame de guidage de masse d'epreuve et systeme electromecanique micro-usine comportant une telle lame
FR2821433A1 (fr) Accelerometre a lames vibrantes
EP3572885B1 (fr) Oscillateur mécanique d'horlogerie isochrone en toute position
FR3140621A1 (fr) Dispositif micro-électromécanique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 01C 19/56 B

Ipc: 7B 81B 3/00 B

Ipc: 7G 01P 15/00 A

17P Request for examination filed

Effective date: 20050326

AKX Designation fees paid

Designated state(s): CH DE FI FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

17Q First examination report despatched

Effective date: 20080602

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FI FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60142760

Country of ref document: DE

Date of ref document: 20100923

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60142760

Country of ref document: DE

Effective date: 20110512

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120423

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 60142760

Country of ref document: DE

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERG, FR

Free format text: FORMER OWNERS: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, PARIS, FR; THALES, PARIS, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160616 AND 20160622

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERG, FR

Effective date: 20160718

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170420

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200430

Year of fee payment: 20

Ref country code: DE

Payment date: 20200408

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60142760

Country of ref document: DE