EP1155065A1 - Polyetheresteramides et compositions de polymeres antistatiques les contenant - Google Patents

Polyetheresteramides et compositions de polymeres antistatiques les contenant

Info

Publication number
EP1155065A1
EP1155065A1 EP00968057A EP00968057A EP1155065A1 EP 1155065 A1 EP1155065 A1 EP 1155065A1 EP 00968057 A EP00968057 A EP 00968057A EP 00968057 A EP00968057 A EP 00968057A EP 1155065 A1 EP1155065 A1 EP 1155065A1
Authority
EP
European Patent Office
Prior art keywords
polyamide
dicarboxylic acid
acid
polyetheresteramides
blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00968057A
Other languages
German (de)
English (en)
Inventor
Reinhard Linemann
Thierry Briffaud
Hermann Hilgers
Christophe Lacroix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atofina SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina SA filed Critical Atofina SA
Publication of EP1155065A1 publication Critical patent/EP1155065A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to polyetheresteramides (B) having in their chain elements carrying sulfonate groups.
  • the polyetheresteramides (B) are copolymers originating from the condensation of polyamide blocks with ends of carboxylic chains with polyetherdiol blocks essentially comprising alkylene oxide units and preferably ethylene oxide units - (C2H4 - O) -.
  • the incorporation of elements carrying sulfonate groups in the polyetheresteramide chain makes it possible to improve its intrinsic antistatic properties.
  • the present invention also relates to the addition of these polyetheresteramides (B) in thermoplastic polymers (A) to make them antistatic.
  • thermoplastic polymer (A) antistatic properties This is to give the thermoplastic polymer (A) antistatic properties.
  • the formation and retention of static electricity charges on the surface of most plastics is known.
  • the presence of static electricity on thermoplastic films leads for example these films to stick to each other making their separation difficult.
  • the presence of static electricity on packaging films can cause the accumulation of dust on the objects to be packaged and thus hinder their use.
  • Static electricity can also damage microprocessors or components of electronic circuits.
  • Static electricity can also cause the combustion or explosion of flammable materials such as, for example, expandable polystyrene beads that contain pentane.
  • antistatic agents such as ionic surfactants of the ethoxylated amino or sulfonate type which are added to polymers.
  • antistatic properties of polymers depend on ambient humidity and they are not permanent since these agents migrate to the surface of the polymers and disappear. It was then proposed as antistatic agents copolymers with polyamide blocks and hydrophilic polyether blocks, these agents have the advantage of not migrating and therefore of giving permanent antistatic properties and more independent of ambient humidity.
  • US Pat. No. 3,296,204 describes fibers of linear polyamide obtained by the reaction of 5-sulfoisophthalic acid with a diamine followed by polycondensation with an amino acid or a salt of diamine and of diacid such as hexamethylene adipate. These fibers have good dyeability and absorb moisture like natural fibers. They are not polyetheresteramides.
  • Patent application JP 11 029 685 A published on February 2, 1999 describes antistatic acrylic resins containing polyetheresters obtained by condensation of polyoxyalkylene glycol and dicarboxylic acids. Some of these diacids contain sulfonic groups. These polyetheresters are not polyetheresteramides.
  • Patent application JP 08 208 830 A published on August 13, 1996 describes hydrophilic elastomers containing salts of 5-sulfoisophthalic acid and adducts of ethylene oxide on an aromatic diol. Polyetheresteramides are not clearly described. It is not described blocks consisting of copolyamide or oligomers of polyamide of low molecular weights.
  • US Pat. No. 5,096,995 describes polyetheresteramides having two types of polyether blocks, namely polyether blocks of polyethylene glycol type and blocks which are adducts of ethylene oxide on an aromatic diol.
  • the chain limiter of the polyamide blocks is a dicarboxylic acid, it is mentioned diacids carrying a sulfonate group such as the sodium salt of 3-sulfoisophthalic acid and unsubstituted diacids but it is prefers to use unsubstituted acids such as terephthalic acid, isophthalic acid, 1,4-cyclohexanedicarboxylic acid, sebacic acid, adipic acid and decanedicarboxylic acid.
  • Patent application JP 05 140 541 A published on June 8, 1993 describes polyetheresteramides having polyamide blocks formed by the condensation of caprolactam in the presence of the sodium salt of 3-sulfoisophthalic acid and polyether blocks which are adducts of l ethylene oxide on bisphenol A. It is not described blocks consisting of copolyamide or oligomers of polyamide of low molecular weights.
  • Patent EP 613 919 describes polyetheresteramides having polyether blocks which are adducts of ethylene oxide on bisphenol A.
  • the chain limiter of the polyamide blocks is a dicarboxylic acid, it is mentioned of the diacids carrying a sulfonate group such than the sodium salt of 3-sulfoisophthalic acid and unsubstituted diacids such as terephthalic acid, isophthalic acid, sebacic acid, adipic acid and decanedicarboxylic acid. None of the examples uses diacids carrying sulfonate groups.
  • polyetheresteramides having polyamide blocks comprising sulfonates of dicarboxylic acids either as chain limiters of the polyamide block or associated with a diamine as one of the constituent monomers of the polyamide block .
  • the polyether blocks consist essentially of alkylene oxide units, preferably ethylene oxide, but do not include aromatic diols, that is to say that it is advantageously polyethylene glycol.
  • the Applicant has found new polyetheresteramides having polyamide blocks of the oligomeric type of low molecular weight polyamide or of the copolyamide type which comprise sulfonates of dicarboxylic acids and whose polyether blocks are adducts of alkylene oxide, preferably ethylene oxide, on an aromatic diol. This combination is particularly advantageous for improving the thermal resistance.
  • the applicant has found that the polyetheresteramides of the first and second form of the invention are particularly useful for rendering a thermoplastic polymer (A) antistatic.
  • the present invention relates to polyetheresteramides (B) having polyamide blocks comprising sulfonates of dicarboxylic acids either as chain limiters of the polyamide block or associated with a diamine as one of the constituent monomers of the polyamide block and having polyether blocks consisting essentially of alkylene oxide units.
  • the present invention relates to polyetheresteramides (B) having polyamide blocks of the oligomer type of low molecular weight polyamide or copolyamide type which include sulfonates of dicarboxylic acids and having polyether blocks which are adducts of alkylene oxide on an aromatic diol.
  • the present invention relates to anti-static or non-breathable polymer compositions comprising a thermoplastic polymer (A) and at least one polyetheresteramide (B) according to one of the preceding forms.
  • Dicarboxylic acid sulfonates are alkali metal or ammonium salts of aromatic diacids. These are, for example, sodium, potassium, lithium and ammonium salts of acids and / or alkyl esters of 2-sulfoisophthalic acid, 4-sulfoisophthalic acid, 5-sulfoisophthalic acid (3- sulfoisophthalic), 2-sulfotherephthalic acid, 2,6-dicarboxynaphthalene-4-sulfonic acid, 2,7-dicarboxynaphthalene-4-sulfonic acid and diphenylsulfoterephthalic acid.
  • Polyetheresteramides (B) are polymers containing polyamide blocks and polyether blocks which result from the copolycondensation of dicarboxylic polyamide sequences (at the ends of carboxylic chains) with polyetherdiols.
  • polyamide sequences with dicarboxylic chain ends originate, for example, from the condensation of alpha-omega aminocarboxylic acids, lactams or dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid.
  • the number-average molar mass Mn of the polyamide blocks is between 300 and 15,000 and preferably between 400 and 5,000.
  • the mass Mn of the polyether blocks is between 100 and 6,000 and preferably between 200 and 3,000.
  • polyamide blocks and polyether blocks can also include patterns distributed randomly. These polymers can be prepared by the simultaneous reaction of polyether and precursors of polyamide blocks.
  • polyetherdiol, a lactam (or an alpha-omega amino acid) and a chain-limiting diacid can be reacted in the presence of a little water.
  • a polymer is obtained which essentially has polyether blocks, polyamide blocks of very variable length, but also the various reactants which have reacted randomly which are distributed statistically along the polymer chain.
  • polymers containing polyamide blocks and polyether blocks whether they originate from the copolycondensation of polyamide and polyether blocks prepared beforehand or from a one-step reaction have, for example, an inherent viscosity between 0.4 and 2.5 measured in metacresol at 25 ° C for an initial concentration of 0.5 g / 100 ml.
  • the polyamide sequences with dicarboxylic chain ends originate from the condensation either of alpha-omega aminocarboxylic acids or of lactams or of dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid. If the polyamide block is formed by reaction of a diacid and a diamine, the chain limiter may be the diacid used in excess or another diacid.
  • the excess dicarboxylic acid used as chain limiter or the dicarboxylic acid used as chain limiter is wholly or partly a dicarboxylic acid sulfonate.
  • alpha omega aminocarboxylic acids mention may be made of aminoundecanoic acid, by way of example of lactam, mention may be made of caprolactam and lauryllactam, as example of dicarboxylic acid, mention may be made of adipic acid.
  • decanedioic acid and dodecanedioic acid, as an example of diamine can be cite hexamethylene diamine.
  • the polyamide blocks are made of polyamide12, of polyamide 6 or of polyamide 6-6 and preferably of PA 6 or of PA 12 and the limiter is SIPNA (sodium salt of 5-sulfoisophthalic acid).
  • the melting point of these polyamide blocks, which is also that of the copolymer (B), is generally 10 to 15 ° C. below that of PA 12 or PA 6.
  • the polyamide sequences are oligomers which result from the condensation of one or more alpha omega aminocarboxylic acids and / or of one or more lactams having from 6 to 12 carbon atoms in the presence of an acid sulfonate.
  • alpha omega aminocarboxylic acid mention may be made of aminoundecanoic acid and aminododecanoic acid.
  • dicarboxylic acid having from 6 to 12 carbon atoms mention may be made of adipic acid, sebacic acid, isophthalic acid, butanedioic acid, 1,4 cyclohexyldicarboxylic acid, terephthalic acid, dimerized fatty acids (these dimerized fatty acids have a dimer content of at least 98% and are preferably hydrogenated) and dodecanedioic acid.
  • a lactam mention may be made of caprolactam and lauryllactam. Polyamide sequences obtained by condensation of lauryllactam in the presence of SIPNA and of mass Mn 750 have a melting temperature of 127-130 ° C.
  • the polyamide sequences result from the condensation of at least one alpha omega aminocarboxylic acid (or a lactam), at least one diamine and at least one dicarboxylic acid.
  • the chain limiter can be an excess of the acid dicarboxylic or another dicarboxylic acid, all or part of the chain limiter being replaced by a dicarboxylic acid sulfonate.
  • the amount of dicarboxylic acid sulfonate may be greater than the amount necessary as a chain limiter and even replace all or part of the dicarboxylic acids used in combination with the diamine to constitute the polyamide block of this third type.
  • the alpha omega aminocarboxylic acid, the lactam and the dicarboxylic acid can be chosen from those mentioned above.
  • the diamine can be an aliphatic diamine having from 6 to 12 atoms, it can be arylic and / or cyclic saturated.
  • hexamethylenediamine piperazine, ⁇ -aminoethylpiperazine, bisaminopropylpiperazine, tetramethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, 1.5 diaminohexane, 2.2, 4-trimethyl-1, 6-diamino-hexane, polyols diamine, isophorone diamine (IPD), methyl pentamethylenediamine (MPDM), bis (aminocyclohexyl) methane (BACM), bis (3-methyl-4 aminocyclohexyl ) methane (BMACM).
  • IPD isophorone diamine
  • MPDM methyl pentamethylenediamine
  • ALM bis (aminocyclohexyl) methane
  • BMACM bis (3-methyl-4 aminocyclohexyl ) methane
  • the various constituents of the polyamide block and their proportion are chosen to obtain a melting temperature below 150 ° C. and advantageously between 90 and 135 ° C.
  • Copolyamides with low melting temperature are described in US Patents 4,483,975, DE 3,730,504, US 5,459,230, the same proportions of the constituents are used for the polyamide blocks of (B).
  • (B) can also be the copolymers described in US 5,489,667.
  • the polyether blocks can represent 5 to 85% by weight of (B) and advantageously from 15 to 50%.
  • the blocks consist of one or more alkylene oxide units distributed in an orderly or random fashion or consist of a mixture of these compounds.
  • alkylene oxide of ethylene oxide, propylene oxide and tetrahydrofuran.
  • essentially ethylene oxide is used.
  • PEG blocks that is to say those made up of ethylene oxide units
  • PPG blocks that is to say those made up of ethylene oxide units.
  • propylene and PTMG blocks ie those consisting of tetramethylene glycol units also called polytetrahydrofuran.
  • the polyetheresteramides have polyamide blocks identical to those of the polyetheresteramides of the second and third type of the first form.
  • the polyether blocks are adducts of alkylene oxide on an aromatic diol.
  • Z-] and Z2 are chosen from alkyl groups having from 1 to 4 carbon atoms, aralkyl groups having from 6 to 10 carbon atoms, aryl groups and halogens; Z- ⁇ and ⁇ 2 may be the same or different; Y is a covalent bond, an alkylidene group, an arylalkylidene group, an oxygen atom, a sulfur atom, a sulfonyl group, a bistrifluoromethylmethylene group or a carbonyl group; n and m are integers from 0 to 4.
  • the polyetheresteramides according to the first and second form of the invention can be prepared by any means allowing the polyamide blocks and the polyether blocks to be attached. In practice, essentially two methods are used, one said in 2 steps, the other in one step. In the description processes the general expressions of chain limiter and polyamide precursor are used without detailing their exact nature, knowing that they have been described above in the description of polyetheresteramides.
  • the 2-step process consists first of all in preparing the polyamide blocks with carboxylic ends by condensation of the polyamide precursors in the presence of a chain-limiting dicarboxylic acid, then in a second step in adding the polyether and a catalyst.
  • the reaction is usually carried out between 180 and 300 ° C, preferably 200 to 260 ° C for about 2 hours.
  • the pressure in the reactor can for example be between 5 and 30 bars. The pressure is slowly reduced by putting the reactor into the atmosphere and then the excess water is distilled, for example an hour or two.
  • the polyamide with carboxylic acid ends having been prepared, the polyether and a catalyst are then added.
  • the polyether can be added one or more times, as can the catalyst.
  • the polyether is first added, the reaction of the OH ends of the polyether and of the COOH ends of the polyamide begins with ester bond formations and elimination of water; Water is removed as much as possible from the reaction medium by distillation and then the catalyst is introduced to complete the bonding of the polyamide blocks and of the polyether blocks.
  • This second step is carried out with stirring preferably under a vacuum of at least 5 mm Hg (650 Pa) at a temperature such that the reagents and the copolymers obtained are in the molten state.
  • this temperature can be between 100 and 400 ° C.
  • the reaction is followed by measuring the torsional torque exerted by the molten polymer on the agitator or by measuring the electric power consumed by the agitator. The end of the reaction is determined by the value of the target torque or power.
  • the catalyst is defined as being any product making it possible to facilitate the bonding of the polyamide blocks and of the polyether blocks by esterification.
  • the catalyst is advantageously a derivative of a metal (M) chosen from the group formed by titanium, zirconium and hafnium.
  • M represents titanium, zirconium or hafnium and R, identical or different, denote alkyl radicals, linear or branched, having from 1 to 24 carbon atoms.
  • C- alkyl radicals to C24 from which are chosen the radicals R of the tetraalkoxides used as catalysts in the process according to the invention are for example such as methyl, ethyl, propyl, isopropyl, butyl, ethylhexyl, decyl, dodecyl, hexadodecyl.
  • the preferred catalysts are the tetraalkoxides for which the radicals R, identical or different, are alkyl radicals C-
  • Examples of such catalysts are in particular Z r (OC2H 5 ) 4, Z r (0-isoC3H7) 4, Z r (OC4Hg) 4, Z r (OC5H-
  • the catalyst used in this process according to the invention can consist solely of one or more of the tetraalkoxides of formula M (OR) 4 defined above. It can also be formed by the association of one or more of these tetraalkoxides with one or more alkali or alkaline-earth alcoholates of formula (R-
  • Y represents an alkali or alkaline earth metal and p is the valence of Y.
  • the amounts of alkali or alkaline earth alcoholate and of zirconium or hafnium tetraalkoxides which are combined to constitute the mixed catalyst can vary within wide limits limits. However, it is preferred to use amounts of alcoholate and tetraalkoxides such that the molar proportion of alcoholate is substantially equal to the molar proportion of tetraalkoxide.
  • the proportion by weight of catalyst that is to say of the tetraalkoxide (s) when the catalyst does not contain alkali or alkaline earth alcoholate or of all of the tetraalkoxide (s) and of alkaline or alkaline alcoholate (s) earthy when the catalyst is formed by the association of these two types of compounds, advantageously varies from 0.01 to 5% of the weight of the mixture of the polyamide dicarboxylic with the polyoxyalkylene glycol, and is preferably between 0.05 and 2% of this weight.
  • salts of the metal (M) in particular the salts of (M) and of an organic acid and the complex salts between the oxide of (M) and / or l hydroxide of (M) and an organic acid.
  • the organic acid can be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauryac acid, acid myristic, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, cyclohexane carboxylic acid, phenylacetic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid and crotonic acid.
  • Acetic and propionic acids are particularly preferred.
  • M is zirconium.
  • zirconyl salts These salts can be called zirconyl salts.
  • the Applicant without being bound by this explanation, believes that these zirconium and organic acid salts or the complex salts mentioned above release ZrO ++ during the process.
  • the product sold under the name of zirconyl acetate is used.
  • the quantity to be used is the same as for the derivatives M (OR) 4.
  • all the reagents used in the two-step process are mixed, that is to say the polyamide precursors, the chain-limiting dicarboxylic acid, the polyether and the catalyst. These are the same reagents and the same catalyst as in the two-step process described above.
  • the reactor is closed and heated with stirring as in the first step of the two-step process described above.
  • the reaction is followed as above for the two-step process.
  • the catalyst used in the one-step process is preferably a salt of the metal (M) and an organic acid or a complex salt between the oxide of (M) and / or the hydroxide of (M) and an acid organic.
  • polymers (A) mention may be made of polyolefins, polyamides, fluorinated polymers, saturated polyesters, polycarbonate, styrene resins, PMMA, polyurethanes thermoplastics (TPU), PVC, copolymers of ethylene and vinyl acetate (EVA), copolymers of ethylene and an alkyl (meth) acrylate, ABS, SAN, polyacetal and polyketones.
  • Polyolefins within the meaning of the invention also denote the copolymers of ethylene and of an alpha olefin. It would not be departing from the scope of the invention to use a mixture of two or more polymers (A). With regard to the proportions of (A) and (B) the amount of (B) depends on the level of antistatism required and on the proportion of polyether in (B). The proportion of (A) and (B) varies from 2 to 40 parts of (B) for 98 to 60 parts of (A), advantageously 2 to 20 parts of (B) are used for 98 to 80 parts of (A) .
  • compositions according to the invention may also contain at least one additive chosen from: fillers (mineral, fire-resistant, etc.), fibers, inorganic and / or organic and / or polyeectrolyte salts - dyes; pigments; brighteners; antioxidants; UV stabilizers.
  • fillers mineral, fire-resistant, etc.
  • fibers inorganic and / or organic and / or polyeectrolyte salts - dyes
  • pigments pigments
  • brighteners antioxidants
  • UV stabilizers UV stabilizers.
  • the compositions of the invention are prepared by the usual techniques of thermoplastics such as for example by extrusion or using twin-screw mixers.
  • AA chain limiter (example A1 (example SIPNa SIPNa SIPNa SIPNa outside the invention) Outside the invention)
  • AA adipic acid
  • SIPNa sodium salt of sulphoisophthalic acid
  • Example 7 we first describe Example 7 before Example 6.
  • Example 6 the procedure is as in Example 7 but without using SIPNA.
  • Examples 8 and 9 the procedure is as in Example 7 but by modifying the catalyst and / or the proportion of SIPNA and / or the proportion of PEG.
  • Table 2 Composition and resistivity of Examples 6 - 9 polyetheresteramide limited by SIPNa
  • SIPNa (% by weight) 0 9.4 9.4 7.1
  • SIPNa sodium salt of sulphoisophthalic acid

Abstract

La présente invention concerne des polyetheresteramides (B) ayant des blocs polyamide comprenant des sulfonates d'acides dicarboxyliques soit comme limiteurs de chaîne du bloc polyamide soit associés à une diamine comme l'un des monomères constitutifs du bloc polyamide et ayant des blocs polyethers constitués essentiellement de motifs oxyde d'alkylène. Elle concerne aussi des polyetheresteramides (B) ayant des blocs polyamide du type oligomère de polyamide de faibles masses moléculaires ou du type copolyamide qui comprennent des sulfonates d'acides dicarboxyliques et ayant des blocs polyether qui sont des adducts d'oxyde d'alkylène sur un diol aromatique. Elle concerne aussi des compositions de polymères antistatiques ou imperrespirantes comprenant un polymère thermoplastique (A) et au moins un des polyétheresteramides (B) précédents.

Description

POLYETHERESTERAMIDES ET COMPOSITIONS DE POLYMÈRES ANTISTATIQUES LES CONTENANT
[Domaine de l'invention]
La présente invention concerne des polyetheresteramides (B) ayant dans leur chaîne des éléments portant des groupements sulfonates. Les polyetheresteramides (B) sont des copolymères provenant de la condensation de blocs polyamides à bouts de chaînes carboxyliques avec des blocs polyetherdiols comprenant essentiellement des motifs oxyde d'alkylène et de préférence des motifs oxyde d'éthylène — (C2H4 — O) — . L'incorporation d'éléments portant des groupements sulfonates dans la chaîne du polyetheresteramide permet d'améliorer ses propriétés antistatiques intrinsèques.
La présente invention concerne aussi l'ajout de ces polyetheresteramides (B) dans des polymères thermoplastiques (A) pour les rendre antistatiques.
Il s'agit de donner au polymère thermoplastique (A) des propriétés antistatiques. La formation et la rétention de charges d'électricité statique à la surface de la plupart des matières plastiques sont connues. La présence d'électricité statique sur des films thermoplastiques conduit par exemple ces films à se coller les uns sur les autres rendant leur séparation difficile. La présence d'électricité statique sur des films d'emballage peut provoquer l'accumulation de poussières sur les objets à emballer et ainsi gêner leur utilisation. L'électricité statique peut aussi endommager des microprocesseurs ou des constituants de circuits électroniques. L'électricité statique peut aussi provoquer la combustion ou l'explosion de matières inflammables telles que par exemple les billes de polystyrène expansible qui contiennent du pentane. L'art antérieur a décrit des agents antistatiques tels que des surfactants ioniques du type aminés ethoxylées ou sulfonates qu'on ajoute dans des polymères. Cependant les propriétés antistatiques des polymères dépendent de l'humidité ambiante et elles ne sont pas permanentes puisque ces agents migrent à la surface des polymères et disparaissent. Il a alors été proposé comme agents antistatiques des copolymères à blocs polyamides et blocs polyethers hydrophiles, ces agents ont l'avantage de ne pas migrer et donc de donner des propriétés antistatiques permanentes et de plus indépendantes de l'humidité ambiante.
[L'art antérieur]
Le brevet US 3 296 204 décrit des fibres de polyamide linéaire obtenu par la réaction de l'acide 5-sulfoisophtalique avec une diamine suivie de la polycondensation avec un amino acide ou un sel de diamine et de diacide tel que l'hexaméthylène adipate. Ces fibres ont une bonne aptitude à la teinture et absorbent l'humidité comme les fibres naturelles. Ce ne sont pas des polyetheresteramides.
La demande de brevet JP 11 029 685 A publiée le 2 février 1999 décrit des résines acryliques antistatiques contenant des polyetheresters obtenus par condensation de polyoxyalkylèneglycol et de diacides carboxyliques. Une partie de ces diacides contient des groupes sulfoniques. Ces polyetheresters ne sont pas des polyetheresteramides.
La demande de brevet JP 08 208 830 A publiée le 13 août 1996 décrit des élastomères hydrophiles contenant des sels de l'acide 5-sulfoisophtalique et des adducts de l'oxyde d'éthylène sur un diol aromatique. Les polyetheresteramides ne sont pas clairement décrits. Il n'est pas décrit de blocs constitués de copolyamide ou d'oligomères de polyamide de faibles masses moléculaires.
Le brevet US 5 096 995 décrit des polyetheresteramides ayant deux types de blocs polyether à savoir des blocs polyethers de type polyéthylène glycol et des blocs qui sont des adducts de l'oxyde d'éthylène sur un diol aromatique. Le limiteur de chaîne des blocs polyamide est un diacide carboxylique, il est cité des diacides portant un groupe sulfonate tel que le sel de sodium de l'acide 3-sulfoisophtalique et des diacides non substitués mais on préfère utiliser des acides non substitués tels que l'acide téréphtalique, l'acide isophtalique, l'acide 1 ,4-cyclohexanedicarboxylique, l'acide sébacique, l'acide adipique et l'acide decanedicarboxylique. Aucun des exemples n'utilise de diacides portant des groupes sulfonates. Les blocs polyamides décrits dans les exemples sont constitués de caprolactame ou de lauryllactame, les copolyamides et les oligomères de polyamide de faibles masses moléculaires ne sont pas décrits.
La demande de brevet JP 05 140 541 A publiée le 8 juin 1993 décrit des polyetheresteramides ayant des blocs polyamides constitués par la condensation du caprolactame en présence du sel de sodium de l'acide 3- sulfoisophtalique et des blocs polyether qui sont des adducts de l'oxyde d'éthylène sur le bisphénol A. Il n'est pas décrit de blocs constitués de copolyamide ou d'oligomères de polyamide de faibles masses moléculaires.
Le brevet EP 613 919 décrit des polyetheresteramides ayant des blocs polyether qui sont des adducts de l'oxyde d'éthylène sur le bisphénol A. Le limiteur de chaîne des blocs polyamide est un diacide carboxylique, il est cité des diacides portant un groupe sulfonate tel que le sel de sodium de l'acide 3- sulfoisophtalique et des diacides non substitués tels que l'acide téréphtalique, l'acide isophtalique, l'acide sébacique, l'acide adipique et l'acide decanedicarboxylique. Aucun des exemples n'utilise de diacides portant des groupes sulfonates. De plus, l'avantage spécifique apporté par l'incorporation de groupement ioniques, tel que les groupements sulfonates, dans la chaîne de polyétheresteramide pour améliorer les propriétés antistatiques n'est pas décrit. Tel que montré dans ce brevet, l'utilisation d'un adduct de bisphénol-A joue un rôle de stabilisation thermique. En revanche, les propriétés antistatiques intrinsèques du produit ne sont pas améliorées. Les blocs polyamides décrits dans les exemples sont constitués de caprolactame, les copolyamides ne sont pas décrits. Ces polyetheresteramides sont ajoutés à différents polymères thermoplastiques pour les rendre antistatiques mais il est nécessaire d'ajouter aussi des sels choisis parmi les halogénures de métaux alcalins ou alcalino terreux. Selon une première forme de l'invention la demanderesse a maintenant trouvé de nouveaux polyetheresteramides ayant des blocs polyamide comprenant des sulfonates d'acides dicarboxyliques soit comme limiteurs de chaîne du bloc polyamide soit associés à une diamine comme l'un des monomères constitutifs du bloc polyamide. Les blocs polyethers sont constitués essentiellement de motifs oxyde d'alkylene, de préférence de l'oxyde d'éthylène, mais ne comprennent pas de diols aromatiques, c'est à dire que c'est avantageusement du polyéthylène glycol. Ces polyetheresteramides de structure très simple ont de très bonnes propriétés antistatiques ainsi qu'une bonne stabilité thermique.
Selon une deuxième forme de l'invention la demanderesse a trouvé de nouveaux polyetheresteramides ayant des blocs polyamide du type oligomère de polyamide de faibles masses moléculaires ou du type copolyamide qui comprennent des sulfonates d'acides dicarboxyliques et dont les blocs polyether sont des adducts d'oxyde d'alkylene, de préférence d'oxyde d'éthylène, sur un diol aromatique. Cette combinaison est particulièrement avantageuse pour améliorer la tenue thermique.
Selon une troisième forme de l'invention la demanderesse a trouvé que les polyetheresteramides des première et deuxième forme de l'invention sont particulièrement utiles pour rendre antistatique un polymère thermoplastique (A).
[Brève description de l'invention]
Selon une première forme la présente invention concerne des polyetheresteramides (B) ayant des blocs polyamide comprenant des sulfonates d'acides dicarboxyliques soit comme limiteurs de chaîne du bloc polyamide soit associés à une diamine comme l'un des monomères constitutifs du bloc polyamide et ayant des blocs polyethers constitués essentiellement de motifs oxyde d'alkylene.
Selon une deuxième forme la présente invention concerne des polyetheresteramides (B) ayant des blocs polyamide du type oligomère de polyamide de faibles masses moléculaires ou du type copolyamide qui comprennent des sulfonates d'acides dicarboxyliques et ayant des blocs polyether qui sont des adducts d'oxyde d'alkylene sur un diol aromatique.
Selon une troisième forme la présente invention concerne des compositions de polymères antistatiques ou imperrespirantes comprenant un polymère thermoplastique (A) et au moins un polyétheresteramide (B) selon l'une des formes précédentes.
[description détaillée de l'invention]
Les sulfonates d'acides dicarboxyliques sont des sels de métaux alcalins ou d'ammonium de diacides aromatiques. Il s'agit par exemple des sels de sodium, de potassium, de lithium et d'ammonium des acides et / ou des esters d'alkyle d'acide 2-sulfoisophtalique, acide 4-sulfoisophtalique, acide 5- sulfoisophtalique (acide 3-sulfoisophthalique), acide 2-sulfothéréphthalique, acide 2,6-dicarboxynaphtalène-4-sulfonique, acide 2,7-dicarboxynaphtalène-4- sulfonique et diphenylsulfotéréphtalique.
Les polyetheresteramides (B) sont des polymères à blocs polyamide et blocs polyethers qui résultent de la copolycondensation de séquences polyamides dicarboxyliques (à bouts de chaînes carboxyliques) avec des polyétherdiols.
Les séquences polyamides à bouts de chaînes dicarboxyliques proviennent, par exemple, de la condensation d'acides alpha-oméga aminocarboxyliques, de lactames ou de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne.
La masse molaire en nombre Mn des séquences polyamides est comprise entre 300 et 15 000 et de préférence entre 400 et 5 000. La masse Mn des séquences polyether est comprise entre 100 et 6 000 et de préférence entre 200 et 3 000. Les polymères à blocs polyamides et blocs polyethers peuvent aussi comprendre des motifs répartis de façon aléatoire. Ces polymères peuvent être préparés par la réaction simultanée du polyether et des précurseurs des blocs polyamides.
Par exemple, on peut faire réagir du polyétherdiol, un lactame (ou un alpha-oméga amino acide) et un diacide limiteur de chaîne en présence d'un peu d'eau. On obtient un polymère ayant essentiellement des blocs polyethers, des blocs polyamides de longueur très variable, mais aussi les différents réactifs ayant réagi de façon aléatoire qui sont répartis de façon statistique le long de la chaîne polymère.
Ces polymères à blocs polyamides et blocs polyethers qu'ils proviennent de la copolycondensation de séquences polyamides et polyethers préparées auparavant ou d'une réaction en une étape présentent, par exemple, une viscosité inhérente entre 0.4 et 2,5 mesurée dans le métacrésol à 25° C pour une concentration initiale de 0.5 g/100 ml.
Des polymères à blocs polyamides et polyethers sont décrits dans les brevets US 4 331 786, US 4 115 475, US 4 195 015, US 4 839 441 , US 4 864 014, US 4 230 838 et US 4 332 920.
On va décrire maintenant trois types de polyetheresteramides de cette première forme de l'invention, ces types différent par la nature des blocs polyamide. Selon un premier type les séquences polyamides à bouts de chaînes dicarboxyliques proviennent de la condensation soit d'acides alpha-oméga aminocarboxyliques soit de lactames soit de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne. Si le bloc polyamide est formé par réaction d'un diacide et d'une diamine le limiteur de chaîne peut être le diacide utilisé en excédent ou un autre diacide. Selon la présente invention le diacide carboxylique excédentaire utilisé comme limiteur de chaîne ou le diacide carboxylique utilisé comme limiteur de chaîne est en tout ou en partie un sulfonate d'acide dicarboxylique. A titre d'exemple d'acides alpha oméga aminocarboxyliques on peut citer l'acide aminoundecanoïque, à titre d'exemple de lactame on peut citer le caprolactame et le lauryllactame, à titre d'exemple de diacide carboxylique on peut citer l'acide adipique, l'acide decanedioïque et l'acide dodecanedioïque, à titre d'exemple de diamine on peut citer l'hexamethylène diamine. Avantageusement les blocs polyamides sont en polyamide12, en polyamide 6 ou en polyamide 6-6 et de préférence en PA 6 ou en PA 12 et le limiteur est le SIPNA (sel de sodium de l'acide 5- sulfoisophtalique). La température de fusion de ces séquences polyamides qui est aussi celle du copolymère (B) est en général 10 à 15°C en dessous de celle du PA 12 ou du PA 6.
Selon la nature de (A) il peut être utile d'utiliser un polyétheresteramide (B) ayant une température de fusion moins élevée pour ne pas dégrader (A) pendant l'incorporation de (B), c'est ce qui fait l'objet des deuxième et troisième types de polyetheresteramides ci dessous.
Selon un deuxième type les séquences polyamides sont des oligomères qui résultent de la condensation d'un ou plusieurs acides alpha oméga aminocarboxyliques et/ou d'un ou plusieurs lactames ayant de 6 à 12 atomes de carbone en présence d'un sulfonate d'acide dicarboxylique et éventuellement d'un diacide carboxylique ayant de 4 à 12 atomes de carbone et sont de faible masse moléculaire c'est-à-dire Mn de 400 à 900. C'est à dire que le limiteur de chaîne est en tout ou partie un sulfonate d'acide dicarboxylique. A titre d'exemple d'acide alpha oméga aminocarboxylique on peut citer l'acide aminoundécanoïque et l'acide aminododécanoïque. A titre d'exemple d'acide dicarboxylique ayant de 6 à 12 atomes de carbone on peut citer l'acide adipique, l'acide sébacique, l'acide isophtalique, l'acide butanedioïque, l'acide 1 ,4 cyclohexyldicarboxylique, l'acide téréphtalique, les acides gras dimérisés(ces acides gras dimérisés ont une teneur en dimère d'au moins 98% et sont de préférence hydrogénés) et l'acide dodécanédioïque . A titre d'exemple de lactame on peut citer le caprolactame et le lauryllactame. Des séquences polyamides obtenues par condensation du lauryllactame en présence de SIPNA et de masse Mn 750 ont une température de fusion de 127 - 130°C.
Selon un troisième type les séquences polyamides résultent de la condensation d'au moins un acide alpha oméga aminocarboxylique (ou un lactame), au moins une diamine et au moins un diacide carboxylique. Comme pour le premier type le limiteur de chaîne peut être un excédent de l'acide dicarboxylique ou un autre acide dicarboxylique, tout ou partie du limiteur de chaîne étant remplacé par un sulfonate d'acide dicarboxylique. Selon une variante de ce troisième type la quantité de sulfonate d'acide dicarboxylique peut être supérieure à la quantité nécessaire comme limiteur de chaîne et même remplacer tout ou partie des acides dicarboxyliques utilisé en association avec la diamine pour constituer le bloc polyamide de ce troisième type. L'acide alpha oméga aminocarboxylique, le lactame et le diacide carboxylique peuvent être choisis parmi ceux cités plus haut.
La diamine peut être une diamine aliphatique ayant de 6 à 12 atomes, elle peut être arylique et/ou cyclique saturée.
A titre d'exemples on peut citer l'hexaméthylènediamine, la pipérazine, π-aminoethylpipérazine, la bisaminopropylpipérazine, la tetraméthylène diamine, l'octaméthylène diamine, la decaméthylène diamine, la dodecaméthylène diamine, le 1 ,5 diaminohexane, le 2,2,4-triméthyl-1 ,6- diamino-hexane, les polyols diamine, l'isophorone diamine (IPD), le méthyle pentaméthylènediamine (MPDM), la bis(aminocyclohéxyl) méthane (BACM), la bis(3-méthyl-4 aminocyclohéxyl) méthane (BMACM).
Dans les deuxième et troisième type de blocs polyamide les différents constituants de la séquence polyamide et leur proportion sont choisis pour obtenir une température de fusion inférieure à 150°C et avantageusement comprise entre 90 et 135°C. Des copolyamides à basse température de fusion sont décrits dans les brevets US 4 483 975, DE 3 730 504, US 5 459 230 on reprend les mêmes proportions des constituants pour les blocs polyamides de (B). (B) peut être aussi les copolymères décrits dans US 5 489 667. Les blocs polyether peuvent représenter 5 à 85 % en poids de (B) et avantageusement de 15 à 50%. Les blocs sont constitués d'un ou plusieurs motifs d'oxyde d'alkylene répartis de manière ordonnée ou statistique ou être constitués d'un mélange de ces composés. A titre d'oxyde d'alkylene on peut citer l'oxyde d'éthylène, l'oxyde de propylène et le tétrahydrofurane. Avantageusement on utilise essentiellement l'oxyde d'éthylène. On peut par exemple utiliser des blocs PEG c'est à dire ceux constitués de motifs oxyde d'éthylène, des blocs PPG c'est à dire ceux constitués de motifs oxyde de propylène et des blocs PTMG c'est à dire ceux constitués de motifs tetraméthylène glycol appelés aussi polytétrahydrofurane.
S'agissant de la deuxième forme de l'invention les polyetheresteramides ont des blocs polyamides identiques à ceux des polyetheresteramides du deuxième et troisième type de la première forme. Dans cette deuxième forme les blocs polyether sont des adducts d'oxyde d'alkylene sur un diol aromatique.
A titre d'exemple de diol aromatique on peut citer les produits de formule(1 ) suivante :
dans laquelle :
Z-] et Z2 sont choisis parmi les groupes alkyles ayant de 1 à 4 atomes de carbone, les groupes aralkyles ayant de 6 à 10 atomes de carbone, les groupes aryles et les halogènes ; Z-\ et ∑2 peuvent être identiques ou différents; Y est une liaison covalente, un groupe alkylidène, un groupe arylalkylidène, un atome d'oxygène, un atome de soufre, un groupe sulfonyle, un groupe bistrifluorométhylméthylène ou un groupe carbonyle; n et m sont des entiers de 0 à 4. Ces composés sont des bisphénols, à titre d'exemple on peut citer le dihydroxydiphényle, le bisphénol substitué par des alkyles, les bisphénols halogènes, les alkylene bisphénols tels que le bisphénol F, les alkylidène bisphénols tels que le bisphénol A, le cyclohéxylidène bisphénol, le bistrifluorométhylméthylène bisphénol, l'aryle alkylidène bisphénol, le bisphénol S et l'hydroxybenzophénone. On préfère le bisphénol A. Les polyetheresteramides selon la première et deuxième forme de l'invention peuvent être préparés par tout moyen permettant d'accrocher les blocs polyamide et les blocs polyether. En pratique on utilise essentiellement deux procédés l'un dit en 2 étapes, l'autre en une étape. Dans la description des procédés on utilise les expressions générales de limiteur de chaîne et de précurseur de polyamide sans détailler leur nature exacte sachant qu'ils ont été décrits plus haut dans la description des polyetheresteramides.
Le procédé en 2 étapes consiste d'abord à préparer les blocs polyamide à extrémités carboxyliques par condensation des précurseurs de polyamide en présence d'un diacide carboxylique limiteur de chaîne puis dans une deuxième étape à ajouter le polyether et un catalyseur. La réaction se fait habituellement entre 180 et 300°C, de préférence 200 à 260°C pendant environ 2 heures. La pression dans le réacteur peut s'établir par exemple entre 5 et 30 bars. On réduit lentement la pression en mettant le réacteur à l'atmosphère puis on distille l'eau excédentaire par exemple une heure ou deux.
Le polyamide à extrémités acide carboxylique ayant été préparé on ajoute ensuite le polyether et un catalyseur. On peut ajouter le polyether en une ou plusieurs fois, de même pour le catalyseur. Selon une forme avantageuse on ajoute d'abord le polyether, la réaction des extrémités OH du polyether et des extrémités COOH du polyamide commence avec formations de liaison ester et élimination d'eau ; On élimine le plus possible l'eau du milieu réactionnel par distillation puis on introduit le catalyseur pour achever la liaison des blocs polyamide et des blocs polyether. Cette deuxième étape s'effectue sous agitation de préférence sous un vide d'au moins 5 mm Hg (650 Pa) à une température telle que les réactifs et les copolymères obtenus soient à l'état fondu. A titre d'exemple cette température peut être comprise entre 100 et 400°C et le plus souvent 200 et 300°C. La réaction est suivie par la mesure du couple de torsion exercée par le polymère fondu sur l'agitateur ou par la mesure de la puissance électrique consommée par l'agitateur. La fin de la réaction est déterminée par la valeur du couple ou de la puissance cible. Le catalyseur est défini comme étant tout produit permettant de faciliter la liaison des blocs polyamide et des blocs polyether par estérification. Le catalyseur est avantageusement un dérivé d'un métal (M) choisi dans le groupe formé par le titane, le zirconium et le hafnium.
A titre d'exemple de dérivé on peut citer les tétraalcoxydes qui répondent à la formule générale M(OR)4, dans laquelle M représente le titane, le zirconium ou le hafnium et les R, identiques ou différents, désignent des radicaux alcoyles, linéaires ou ramifiés, ayant de 1 à 24 atomes de carbone.
Les radicaux alcoyles en C-| à C24 parmi lesquels sont choisis les radicaux R des tétraalcoxydes utilisés comme catalyseurs dans le procédé suivant l'invention sont par exemple tels que méthyle, éthyle, propyl, isopropyl, butyle, éthylhexyl, décyl, dodécyl, hexadodécyl. Les catalyseurs préférés sont les tétraalcoxydes pour lesquels les radicaux R, identiques ou différents, sont des radicaux alcoyles en C-| à Cg- Des exemples de tels catalyseurs sont notamment Zr (OC2H5)4, Zr (0-isoC3H7)4, Zr(OC4Hg)4, Zr(OC5H-| i )4, Zr(OC6H13)4, Hf(OC2H5)4, Hf(OC4H9)4, Hf(0-isoC3H7)4.
Le catalyseur utilisé dans ce procédé suivant l'invention peut consister uniquement en un ou plusieurs des tétraalcoxydes de formule M(OR)4 définis précédemment. Il peut encore être formé par l'association d'un ou plusieurs de ces tétraalcoxydes avec un ou plusieurs alcoolates alcalins ou alcalino-terreux de formule (R-|0)pY dans laquelle R-j désigne un reste hydrocarboné, avantageusement un reste alcoyle en C-| à C24, et de préférence en C-| à Ce,
Y représente un métal alcalin ou alcalino-terreux et p est la valence de Y. Les quantités d'alcoolate alcalin ou alcalino-terreux et de tétraalcoxydes de zirconium ou de hafnium que l'on associe pour constituer le catalyseur mixte peuvent varier dans de larges limites. On préfère toutefois utiliser des quantités d'alcoolate et de tétraalcoxydes telles que la proportion molaire d'alcoolate soit sensiblement égale à la proportion molaire de tétraalcoxyde.
La proportion pondérale de catalyseur, c'est-à-dire du ou des tétraalcoxydes lorsque le catalyseur ne renferme pas d'alcoolate alcalin ou alcalino-terreux ou bien de l'ensemble du ou des tétraalcoxydes et du ou des alcoolates alcalins ou alcalino-terreux lorsque le catalyseur est formé par l'association de ces deux types de composés, varie avantageusement de 0,01 à 5 % du poids du mélange du polyamide dicarboxylique avec le polyoxyalcoylène glycol, et se situe de préférence entre 0,05 et 2 % de ce poids. A titre d'exemple d'autres dérivés on peut citer aussi les sels du métal (M) en particulier les sels de (M) et d'un acide organique et les sels complexes entre l'oxyde de (M) et/ou l'hydroxyde de (M) et un acide organique. Avantageusement l'acide organique peut être l'acide formique, l'acide acétique, l'acide propionique, l'acide butyrique, l'acide valérique, l'acide caproïque, l'acide caprylique, l'acide lauryque, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide oléique, l'acide linoléique, l'acide linolénique, l'acide cyclohexane carboxylique, l'acide phénylacétique, l'acide benzoïque, l'acide salicylique, l'acide oxalique, l'acide malonique, l'acide succinique, l'acide glutarique, l'acide adipique, l'acide maleique, l'acide fumarique, l'acide phtalique et l'acide crotonique. Les acides acétique et propionique sont particulièrement préférés. Avantageusement M est le zirconium. Ces sels peuvent s'appeler sels de zirconyle. La demanderesse sans être liée par cette explication pense que ces sels de zirconium et d'un acide organique ou les sels complexes cités plus haut libèrent ZrO++ au cours du procédé. On utilise le produit vendu sous le nom d'acétate de zirconyle. La quantité à utiliser est la même que pour les dérivés M(OR)4.
Ce procédé et ces catalyseurs sont décrits dans les brevets US 4,332,920, US 4,230,838, US 4,331 ,786, US 4,252,920, JP 07145368A, JP 06287547A, et EP 613919.
S'agissant du procédé en une étape on mélange tous les réactifs utilisés dans le procédé en deux étapes c'est-à-dire les précurseurs de polyamide, le diacide carboxylique limiteur de chaîne, le polyether et le catalyseur. Il s'agit des mêmes réactifs et du même catalyseur que dans le procédé en deux étapes décrit plus haut.
On ferme et on chauffe le réacteur sous agitation comme dans la première étape du procédé en deux étapes décrit plus haut. La réaction est suivie comme précédemment pour le procédé en deux étapes.
Le catalyseur utilisé dans le procédé en une étape est de préférence un sel du métal (M) et d'un acide organique ou un sel complexe entre l'oxyde de (M) et/ou l'hydroxyde de (M) et un acide organique. S'agissant de la troisième forme de l'invention à titre d'exemple de polymères (A) on peut citer les polyoléfines, les polyamides, les polymères fluorés, les polyesters saturés, le polycarbonate, les résines styréniques, le PMMA, les polyuréthanes thermoplastiques (TPU), le PVC, les copolymères de l'éthylène et de l'acétate de vinyle (EVA), les copolymères de l'éthylène et d'un (méth)acrylate d'alkyle, l'ABS, le SAN, le polyacétal et les polycétones. Les polyoléfines au sens de l'invention désignent aussi les copolymères de l'éthylène et d'une alpha oléfine. On ne sortirait pas du cadre de l'invention en utilisant un mélange de deux ou plusieurs polymères (A). S'agissant des proportions de (A) et (B) la quantité de (B) dépend du niveau d'antistatisme demandé et de la proportion de polyether dans (B). La proportion de (A) et (B) varie de 2 à 40 parties de (B) pour 98 à 60 parties de (A), avantageusement on utilise 2 à 20 parties de (B) pour 98 à 80 parties de (A). Les compositions selon l'invention peuvent renfermer en outre au moins un additif choisi parmi : les charges (minérales, anti-feu...), les fibres les sels inorganiques et/ou organiques et/ou de polyéiectrolyte - les colorants ; les pigments ; les azurants ; les anti-oxydants ; les stabilisateurs UV. Les compositions de l'invention se préparent par les techniques habituelles des thermoplastiques telles que par exemple par extrusion ou à l'aide de mélangeurs bivis.
[Exemples]
On a préparé des polyetheresteramides selon les procédés décrits plus haut. Les détails figurent dans le tableau 1 suivant. Tableau 1 : Composition et résistivité des exemples 1 - 5 bis polyetheresteramide limité par SIPNa
Exemple 1 (comparatif) 2 (comparatif) 3 4 5 5 bis
Bloc-PA PA12 PA12 PA12 PA12 PA 12 PA12
Limiteur de chaîne AA (exemple Al (exemple SIPNa SIPNa SIPNa SIPNa hors l'invention) Hors l'invention)
Mn PA 1500 1500 1500 2500 4000 600
Mn PEG 1500 1500 1500 1500 1500 600
Catalyseur Butylate de Butylate de Butylate de Butylate de Butylate de Butylate de zirconium zirconium zirconium zirconium zirconium zirconium
Résistivité transversale 3.5 E+09 3.7 E+10 1.3 E+08 4.4 E+08 1.5 E+09 6 E+08
(ohm. cm)
Norme :IEC93
Résistivité superficielle 4.0 E+10 1.5 E+13 2.4 E+10 5.6 E+10 5.6 E+11 5 E+10
(ohm/ )
Norme :IEC93
AA : acide adipique Al : acide isophthalique SIPNa : sel de sodium de l'acide sulphoisophthalique
Pour simplifier l'écriture des exemples on décrit d'abord l'exemple 7 avant l'exemple 6.
Exemple 7: Synthèse d'un polyetheresteramide limité SIPNA:
6/11/6.12/PEG. SIPNA de proportions en poids 24,5/24,5/21/30
Dans un réacteur de 1 litre on introduit 147g de Caprolactame, 147g d'acide undecanoïque, 42,2g de hexaméthylènediamine et 83,8g d'acide dodecandioïque ainsi qu'une solution de 55,6g de SIPNA dans 190,2g d'eau déminéralisée. Le mélange est mis sous atmosphère inerte et chauffé jusqu'à ce que la température atteigne 230 °C en maintenant une agitation vigoureuse dès la fusion des réactifs, pendant 2h. Puis on augmente la température à 260 °C pendant une heure. En travaillant à pression atmosphérique on distille continuellement l'eau qui s'évapore du mélange réactionnel. Sous balayage d'azote et à T=245 °C on introduit la solution de 124,4 g de Polyethyeneglycol de Mn = 600 g/mol et 1 ,05 g d'une solution d' acétate de zirconyle dans l'eau / acide acétique (0,625% charge totale d' acétate de zirconyle; pH = 3,0-3,5). Le mélange obtenu est mis sous pression réduite de ca. 5 mbar. La réaction est poursuivie pendant une durée de 2 heures. Le produit obtenu a une viscosité inhérente égale à 0.80 dl/g ; température de fusion (optiquement déterminée) : 105-115 °C.
Exemple 6 : on opère comme dans l'exemple 7 mais sans utiliser de SIPNA. Exemples 8 et 9 : on opère comme dans l'exemple 7 mais en modifiant le catalyseur et /ou la proportion de SIPNA et /ou la proportion de PEG.
Tableau 2 : Composition et résistivité des exemples 6 - 9 polyetheresteramide limité par SIPNa
Exemple 6 (comparatif) 7 8 9
23.1% en poids PEG600 21.4% en poids PEG600 21.4% en poids PEG600 40.5% en poids PEG 1500
Bloc-PA PA 6/11/6.12 PA 6/11/6.12/6.SIPNa PA 6/11/6.12/6.SIPNa PA 6/11/6.12/6.SIPNa
SIPNa (% en poids) 0 9.4 9.4 7.1
Mn PA 2000 2200 2200 2200
Mn PEG 600 600 600 1500
Catalyseur Butylate de zirconium Acétate de Zirconyle Butylate de zirconium Butylate de zirconium
Résistivité transversale 7.2 E+10 3.2 E+07 5.1 E+07 1.2 E+08
(ohm. cm)
Norme :IEC93
Résistivité superficielle 2.1 E+13 1.2 E+10 3.9 E+10 1.3 E+10
(ohm)
Norme :IEC93
SIPNa : sel de sodium de l'acide sulphoisophthalique

Claims

REVENDICATIONS
1 Polyetheresteramides (B) ayant des blocs polyamide comprenant des sulfonates d'acides dicarboxyliques soit comme limiteurs de chaîne du bloc polyamide soit associés à une diamine comme l'un des monomères constitutifs du bloc polyamide et ayant des blocs polyethers constitués essentiellement de motifs oxyde d'alkylene.
2 Polyetheresteramides (B) selon la revendication 1 dans lesquels les séquences polyamides sont à bouts de chaînes dicarboxyliques et proviennent de la condensation :
(i) soit d'acides alpha-oméga aminocarboxyliques soit de lactames en présence d'un diacide carboxylique limiteur de chaîne, (ii) soit de diacides carboxyliques et diamines en présence d'un diacide carboxylique limiteur de chaîne ou d'un excédent du (ou des) diacides carboxyliques utilisés dans les séquences polyamides, et tels que le diacide carboxylique en excédent utilisé comme limiteur de chaîne ou le diacide carboxylique utilisé comme limiteur de chaîne est en tout ou en partie un sulfonate d'acide dicarboxylique.
3 Polyetheresteramides (B) selon la revendication 1 dans lesquels les séquences polyamides sont des oligomères qui résultent de la condensation d'un ou plusieurs acides alpha oméga aminocarboxyliques et/ou d'un ou plusieurs lactames ayant de 6 à 12 atomes de carbone en présence d'un sulfonate d'acide dicarboxylique et éventuellement d'un diacide carboxylique ayant de 4 à 12 atomes de carbone et sont de masse moléculaire Mn entre 400 et 900.
4 Polyetheresteramides (B) selon la revendication 1 dans lesquels les séquences polyamides résultent de la condensation d'au moins un acide alpha oméga aminocarboxylique (ou un lactame), au moins une diamine et au moins un diacide carboxylique et tels que le limiteur de chaîne peut être un excédent de l'acide dicarboxylique ou un autre acide dicarboxylique, tout ou partie du limiteur de chaîne étant remplacé par un sulfonate d'acide dicarboxylique.
5 Polyetheresteramides (B) selon la revendication 4 dans lesquels la quantité de sulfonate d'acide dicarboxylique est supérieure à la quantité nécessaire comme limiteur de chaîne et remplace tout ou partie des acides dicarboxyliques utilisés en association avec la diamine pour constituer le bloc polyamide.
6 Polyetheresteramides (B) ayant (i) des blocs polyamide du type oligomère de polyamide de masse moléculaire Mn comprise entre 400 et 900 ou du type copolyamide ces blocs polyamides comprenant des sulfonates d'acides dicarboxyliques et ayant (ii) des blocs polyether qui sont des adducts d'oxyde d'alkylene sur un diol aromatique.
7 Compositions de polymères antistatiques ou imperrespirantes comprenant un polymère thermoplastique (A) et au moins un polyetheresteramide (B) selon l'une quelconque des revendications précédentes.
8 Compositions selon la revendication 7 dans lesquelles le polymère thermoplastique (A) est choisi parmi les polyoléfines, les polyamides, les polymères fluorés, les polyesters saturés, le polycarbonate, les résines styréniques, le PMMA, les polyuréthanes thermoplastiques (TPU), le PVC, les copolymères de l'éthylène et de l'acétate de vinyle (EVA), les copolymères de l'éthylène et d'un (méth)acrylate d'alkyle, l'ABS, le SAN, le polyacétal et les polycétones.
EP00968057A 1999-10-18 2000-10-17 Polyetheresteramides et compositions de polymeres antistatiques les contenant Ceased EP1155065A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9912956 1999-10-18
FR9912956 1999-10-18
PCT/FR2000/002889 WO2001029113A1 (fr) 1999-10-18 2000-10-17 Polyetheresteramides et compositions de polymeres antistatiques les contenant

Publications (1)

Publication Number Publication Date
EP1155065A1 true EP1155065A1 (fr) 2001-11-21

Family

ID=9551039

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00968057A Ceased EP1155065A1 (fr) 1999-10-18 2000-10-17 Polyetheresteramides et compositions de polymeres antistatiques les contenant

Country Status (8)

Country Link
US (2) USRE39994E1 (fr)
EP (1) EP1155065A1 (fr)
JP (1) JP2003512487A (fr)
KR (1) KR100629122B1 (fr)
CN (1) CN1210330C (fr)
AU (1) AU7801800A (fr)
CA (1) CA2355705C (fr)
WO (1) WO2001029113A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090629A2 (fr) 2008-02-15 2009-08-19 Arkema France Utilisation d'un promoteur d'adhérence dans une solution de nettoyage
WO2010086574A2 (fr) 2009-02-02 2010-08-05 Arkema France Procede de synthese d'un alliage de copolymere a blocs presentant des proprietes antistatiques ameliorees
WO2011073356A2 (fr) 2009-12-17 2011-06-23 L'oreal Utilisation d'une composition cosmétique comprenant au moins un polymère élastomère filmogène pour traiter la transpiration humaine
WO2011124833A1 (fr) 2010-04-07 2011-10-13 Arkema France Copolymere a blocs issu de matieres renouvelables et procede de fabrication d'un tel copolymere a blocs
WO2011151203A2 (fr) 2010-06-03 2011-12-08 L'oreal Processus de traitement cosmétique utilisant un revêtement à base d'un copolymère contenant des blocs de polyamide et des blocs de polyéther
WO2012084848A1 (fr) 2010-12-23 2012-06-28 Bayer Materialscience Ag Matières moulables antistatiques à base de polycarbonate
WO2012120114A1 (fr) 2011-03-09 2012-09-13 L'oreal Procédé de traitement cosmétique de la transpiration humaine qui comprend l'application d'un film polymère antiperspirant solubilisable
EP3196226A1 (fr) 2008-10-06 2017-07-26 Arkema France Copolymère à blocs issu de matières renouvelables et procédé de fabrication d'un tel copolymère à blocs
WO2017186690A1 (fr) 2016-04-27 2017-11-02 Covestro Deutschland Ag Masses de moulage thermoplastiques, antistatiques et stables à la lumière en polycarbonate
WO2017186663A1 (fr) 2016-04-27 2017-11-02 Covestro Deutschland Ag Masses moulées thermoplastiques antistatiques
WO2020240132A1 (fr) 2019-05-29 2020-12-03 Arkema France Copolymère à blocs à résistance améliorée au sébum
WO2020240133A1 (fr) 2019-05-27 2020-12-03 Arkema France Copolyesteramide auto-ignifuge

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812647B1 (fr) * 2000-08-04 2003-02-21 Atofina Film imper-respirant
FR2824329B1 (fr) * 2001-05-03 2003-06-13 Atofina Compositions de polymeres antistatique
US6962956B2 (en) 2002-01-31 2005-11-08 Atofina Antistatic strenique polymer compositions
US7022764B2 (en) * 2002-12-18 2006-04-04 General Electric Company Static dissipating resin composition and methods for manufacture thereof
US20070049703A1 (en) * 2002-12-18 2007-03-01 Murray Michael C Static dissipating resin compositions, methods for manufacture and articles made therefrom
JP2004208943A (ja) * 2002-12-27 2004-07-29 Sharp Corp 集塵容器およびそれを備えた電気掃除機
ES2265603T3 (es) * 2003-01-24 2007-02-16 Ciba Specialty Chemicals Holding Inc. Composicion antiestatica.
FR2941238B1 (fr) 2009-01-22 2012-06-08 Arkema France Utilisation d'une composition transparente pour photobioreacteurs.
KR101798237B1 (ko) 2011-05-06 2017-11-15 심천 워트 어드밴스드 머티리얼즈 주식회사 전방향족 폴리에스테르 아미드 공중합체 수지, 상기 전방향족 폴리에스테르 아미드 공중합체 수지를 포함하는 고분자 필름, 상기 고분자 필름을 포함하는 연성 금속박 적층판, 및 상기 연성 금속박 적층판을 구비하는 연성 인쇄 회로기판
US9966629B2 (en) 2015-02-03 2018-05-08 Samsung Electronics Co., Ltd. Sodium-conducting solid electrolyte
CN112175174B (zh) * 2019-07-02 2023-03-28 财团法人工业技术研究院 液晶聚合物、积层材料、液晶聚合物溶液与液晶聚合物薄膜的形成方法
JP6807478B1 (ja) * 2020-05-28 2021-01-06 三洋化成工業株式会社 帯電防止剤
CN115124714B (zh) * 2021-03-24 2023-07-04 杭州聚合顺新材料股份有限公司 亲水性两性离子改性聚酰胺及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466478B2 (fr) 1979-10-02 1986-03-14 Ato Chimie Procede de preparation de copolyetheresteramides aliphatiques elastomeres
EP0242158B1 (fr) 1986-04-14 1994-01-19 Toray Industries, Inc. Compositions de résine thermoplastique intrinsèquement antistatique
US4899521A (en) 1986-10-14 1990-02-13 W. R. Grace & Co. - Conn. Antistatic thermoplastic/polyamide-polyether compositions and antistatic polymeric films made therefrom
DE3714267A1 (de) 1987-04-29 1988-11-10 Degussa Schlagzaehe polyoxymethylen-formmassen
JPH07774B2 (ja) * 1991-11-20 1995-01-11 三洋化成工業株式会社 帯電防止剤
EP0555197A3 (en) 1992-01-29 1993-11-18 Monsanto Co Antistatic agent for thermoplastic polymers
US5652326A (en) 1993-03-03 1997-07-29 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
DE60026262T2 (de) 1999-04-23 2007-02-15 Arkema Antistatische Polymerzusammensetzungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0129113A1 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2090629A2 (fr) 2008-02-15 2009-08-19 Arkema France Utilisation d'un promoteur d'adhérence dans une solution de nettoyage
EP3660076A1 (fr) 2008-10-06 2020-06-03 Arkema France Copolymère à blocs issu de matières renouvelables et procédé de fabrication d'un tel copolymère à blocs
EP3196226A1 (fr) 2008-10-06 2017-07-26 Arkema France Copolymère à blocs issu de matières renouvelables et procédé de fabrication d'un tel copolymère à blocs
WO2010086574A2 (fr) 2009-02-02 2010-08-05 Arkema France Procede de synthese d'un alliage de copolymere a blocs presentant des proprietes antistatiques ameliorees
EP2502950A1 (fr) 2009-02-02 2012-09-26 Arkema France Procédé de synthèse d'un alliage de copolymère à blocs présentant des propriétés antistatiques améliorées
WO2011073356A2 (fr) 2009-12-17 2011-06-23 L'oreal Utilisation d'une composition cosmétique comprenant au moins un polymère élastomère filmogène pour traiter la transpiration humaine
EP3085725A1 (fr) 2010-04-07 2016-10-26 Arkema France Copolymère à blocs issu de matières renouvelables et procédé de fabrication d'un tel copolymère à blocs
WO2011124833A1 (fr) 2010-04-07 2011-10-13 Arkema France Copolymere a blocs issu de matieres renouvelables et procede de fabrication d'un tel copolymere a blocs
WO2011151203A2 (fr) 2010-06-03 2011-12-08 L'oreal Processus de traitement cosmétique utilisant un revêtement à base d'un copolymère contenant des blocs de polyamide et des blocs de polyéther
WO2012084848A1 (fr) 2010-12-23 2012-06-28 Bayer Materialscience Ag Matières moulables antistatiques à base de polycarbonate
WO2012120114A1 (fr) 2011-03-09 2012-09-13 L'oreal Procédé de traitement cosmétique de la transpiration humaine qui comprend l'application d'un film polymère antiperspirant solubilisable
WO2017186690A1 (fr) 2016-04-27 2017-11-02 Covestro Deutschland Ag Masses de moulage thermoplastiques, antistatiques et stables à la lumière en polycarbonate
WO2017186663A1 (fr) 2016-04-27 2017-11-02 Covestro Deutschland Ag Masses moulées thermoplastiques antistatiques
US10655011B2 (en) 2016-04-27 2020-05-19 Covestro Deutschland Ag Antistatic and light-stable thermoplastic polycarbonate moulding compounds
US11352494B2 (en) 2016-04-27 2022-06-07 Covestro Deutschland Ag Anti-static thermoplastic molding materials
WO2020240133A1 (fr) 2019-05-27 2020-12-03 Arkema France Copolyesteramide auto-ignifuge
FR3096683A1 (fr) 2019-05-27 2020-12-04 Arkema France copolyesteramide auto-ignifugé
WO2020240132A1 (fr) 2019-05-29 2020-12-03 Arkema France Copolymère à blocs à résistance améliorée au sébum
FR3096684A1 (fr) 2019-05-29 2020-12-04 Arkema France Copolymère à blocs à résistance améliorée au sébum

Also Published As

Publication number Publication date
WO2001029113A1 (fr) 2001-04-26
CN1210330C (zh) 2005-07-13
US6706851B1 (en) 2004-03-16
USRE39994E1 (en) 2008-01-01
AU7801800A (en) 2001-04-30
KR100629122B1 (ko) 2006-09-27
KR20010082367A (ko) 2001-08-29
CA2355705C (fr) 2007-04-24
CA2355705A1 (fr) 2001-04-26
JP2003512487A (ja) 2003-04-02
CN1327461A (zh) 2001-12-19

Similar Documents

Publication Publication Date Title
CA2355705C (fr) Polyetheresteramides et compositions de polymeres antistatiques les contenant
CA2306336C (fr) Compositions de polymeres antistatiques
EP1262527B1 (fr) Composition de polyméres antistatiques
WO2004037898A1 (fr) Copolymères transparents à blocs polyamides et blocs polyéthers
EP0030903B1 (fr) Compositions de polyamides polyphasées ayant des propriétés de résistance au choc améliorées et leurs procédés de préparation
WO1999033659A1 (fr) Structure multicouches comprenant un materiau recouvert par un copolymere a blocs polyamides et blocs hydrophiles
CA2369325A1 (fr) Composition transparente a base de polyamide
EP1144505A3 (fr) Compositions de polymeres acryliques antistatiques
EP1121391A1 (fr) Compositions de polymeres styreniques antistatiques
CA2228735C (fr) Compositions de resines thermoplastiques multiphases
EP0553581B1 (fr) Compositions amorphes transparentes à tenue aux agents chimiques élévée
CA2305930C (fr) Compositions de resines thermoplastiques comprenant une phase dispersee rigide
CA2474557A1 (fr) Compositions de polymeres styreniques antistatiques
CA2474551A1 (fr) Composition de polymeres styreniques antistatiques
WO2023007092A1 (fr) Composition polymérique transparente antistatique
EP0298884A1 (fr) Copolyesteramides aromatiques thermotropes
FR2798666A1 (fr) Compositions de polymeres acryliques antistatiques
EP0272992A2 (fr) Procédé pour l'obtention de copolyesters amides aromatiques thermotropes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20041105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAK Date of receipt of statement of grounds of an appeal modified

Free format text: ORIGINAL CODE: EPIDOSCNOA3E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARKEMA FRANCE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080718