EP1219265B1 - Hernia repair prosthesis and method - Google Patents

Hernia repair prosthesis and method Download PDF

Info

Publication number
EP1219265B1
EP1219265B1 EP20010303072 EP01303072A EP1219265B1 EP 1219265 B1 EP1219265 B1 EP 1219265B1 EP 20010303072 EP20010303072 EP 20010303072 EP 01303072 A EP01303072 A EP 01303072A EP 1219265 B1 EP1219265 B1 EP 1219265B1
Authority
EP
European Patent Office
Prior art keywords
prosthesis
filament
defect
sheet
occlusive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20010303072
Other languages
German (de)
French (fr)
Other versions
EP1219265A3 (en
EP1219265A2 (en
Inventor
Robert A. Rousseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/752,066 external-priority patent/US6755867B2/en
Application filed by Ethicon Inc filed Critical Ethicon Inc
Publication of EP1219265A2 publication Critical patent/EP1219265A2/en
Publication of EP1219265A3 publication Critical patent/EP1219265A3/en
Application granted granted Critical
Publication of EP1219265B1 publication Critical patent/EP1219265B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00597Implements comprising a membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/0061Implements located only on one side of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00898Material properties expandable upon contact with fluid

Definitions

  • the present invention relates to an implantable hernia repair prosthesis and a method for reinforcing and repairing damaged tissue or muscle walls.
  • the methods of executing a surgical repair can be segregated into two main approaches.
  • the repair can be made exclusively from the anterior side (closest to the surgeon) of the defect by dissecting the sac free of the fascia and pressing it back into the pre-peritoneal space and providing permanent closure of the defect.
  • the closure can be provided through the application of space filling prostheses and overlay patches (tension-free techniques) or can be accomplished through the use of sutures (tension techniques).
  • An example of a tension free anterior repair is to fold a sheet of surgical mesh fabric into a multi-layer cone configuration and then to insert the mesh plug into a hernia defect to occlude the void.
  • Such a multi-layer prosthesis is inherently stiff and may not fully conform to variations in the contour of the defect, leaving gaps between the implant and the abdominal wall that potentially could lead to recurrent herniation.
  • the stiff, multi-layered mesh plug also may be susceptible to kinking and buckling during placement.
  • U.S. Patent number 5,356,432 discloses an implantable prosthesis that is a conical plug formed of a knitted polypropylene monofilament mesh fabric. Longitudinal pleats are hot molded into the mesh body to enhance the flexibility of the conical implant, ideally allowing the implant to closely match the contour of the herniated opening when compressed within the defect.
  • the tip of the conical shaped plug presses into and against the visceral sac, potentially enabling long-term erosion of the peritoneum and underlying viscera.
  • the device in one embodiment, has filler material incorporated into the interior of the formed mesh cone in an attempt to minimize contraction of the device during healing.
  • the cross linking of the maturing collagen fibers causes the scar tissue (and encapsulated plug device) to contract.
  • This contraction of scar tissue within the defect and plug causes the surrounding diseased tissue to be subjected to tension, thus enabling re-occurrence of the hernia along the edge of the conical plug.
  • the use of the device requires the passage of a pre-expanded plug through the hernia defect and relies upon the radial expansion force of the single layer mesh cone and filler leaves to occlude the defect. Additionally, since the plug is secured in position by anchoring to the surrounding diseased tissue, the device may dislodge and migrate within the pre-peritoneal space.
  • a defect may be repaired through the use of posterior approaches that provide various prosthetic devices in the pre-peritoneal space to prevent the peritoneum from entering the fascial defect.
  • These devices require the use of laparoscopic techniques and, in other cases, require the application of the prosthesis from a remote location under the defect to be repaired.
  • Examples of posterior approaches are disclosed in United States Patent Nos. 5,116,357, 5,254,133 and 5,916,225.
  • procedures utilizing such devices are complicated, in addition to requiring the use of general anaesthesia and costly disposable instrumentation to support the laparoscopic surgery.
  • French patent application FR 2 778 554 A discloses a hernia repair prothesis comprising a generally circular sheet with a band gathered up into pleats and fixed to the circular sheet. A filament passes through the pleats and the pleats are slidably attached to the filament so that the pleats can be gathered together to allow the prosthesis to be implanted into the hernia.
  • a hernia repair implant comprising at least two expandable balloons made of a non-absorbable biocompatible material.
  • the balloons are connected to one another by means of a tube or pipe, and include a valve that permits inflow and prevents outflow of an expansion agent.
  • the valve communicates with a separate supply of the expansion agent.
  • European patent application EP 0 898 945 discloses a prosthetic obturating device consisting of two cone-shaped parts having a common vertex and axis. Each cone has a different sized aperture. The larger aperture cone is inserted into the hernial canal to expand against the inner wall of the abdomen, whilst the smaller aperture cone covers the access of the canal.
  • the prior art lacks an implantable hernia repair prosthesis for occluding and repairing damaged muscle and tissue wall ruptures, that is adaptable to irregularities in the shape of the defect, is simple to install, does not require the use of general anaesthesia during installation and resists radial collapse due to tissue incorporation.
  • a hernia repair prosthesis comprising: an occlusive member for aiding in the occlusion of a defect in facia tissue; an overlay sheet surgically attachable to a first side of the facia tissue; and characterised by: a filament joined to the overlay sheet at two spaced points, said filament extending substantially parallel to said overlay sheet between said spaced points, said occlusive member being slideably attached to said filament to permit said occlusive member to assume a selected position relative to said overlay sheet between said spaced points.
  • the present invention provides implantable prostheses and methods for reinforcing and repairing weakened abdominal walls.
  • the prostheses are formed of a biologically compatible, flexible and porous medical textile suitable for reinforcing tissue and occluding tissue defects.
  • the implantable prostheses are indicated particularly for the repair of hernias in the abdominal cavity, including inguinal (direct and indirect), femoral, incisional and recurrent, and provide at least a partial posterior repair.
  • the prostheses are able to be inserted easily in a stress-free condition into a fascia defect from an anterior approach and are capable of expanding radially, at least partially into the pre-peritoneal space, to substantially occlude and conform to the fascia wall of a fascia defect.
  • prostheses are suitable for the repair of varying sizes and shapes of hernias and can be anchored to the surrounding healthy tissue to prevent migration, thus extending beyond the edge of the defect on the anterior side of the defect.
  • the prostheses of the present invention comprise a hollow, radially-expandable member for placement within and occlusion of a fascia defect.
  • radially-expandable it is meant that the cross sectional area of the member expands from an initial, non-expanded configuration having an initial cross sectional area, sized such that the member may be placed within a fascia defect in a stress-free condition, to a final, expanded configuration having a final cross sectional area greater than the initial cross sectional area and effective to occlude all of, or at least a substantial portion of, the fascia defect.
  • This member can be manufactured out of biocompatible absorbable or non-absorbable material.
  • the prosthesis also comprises means for securing the prosthesis to the tissue wall.
  • the means for securing comprises an overlay sheet of medical textile fixedly or maneuverably attached to the radially-expandable member, as depicted in the figures.
  • the overlay sheet may be so-attached to the radially-expandable member by the use of a filament, or multiple filaments, passed through the looped suture or the proximal end of the expandable member and attached to the overlay patch at the terminal ends of the filament.
  • Prostheses comprising such a slidably, or maneuverably, attached means for securing the prostheses to the tissue wall and a member for occluding the defect also are included within the scope of inventions disclosed herein.
  • the occluding member need not be radially-expandable, but need only be effective to occlude the defect.
  • One of the advantages of such a prosthesis is that, once placed into the defect area, the securing means may be maneuvered such that attachment to stable or healthy tissue may be accomplished, thereby providing a more secure attachment to the tissue wall.
  • the means for securing the prosthesis may be an integral part of the radially-expandable member.
  • the prosthesis is passed into/through a defect in the fascial layer.
  • the radially-expandable member then is collapsed axially, thus causing radial expansion of the radially-expandable member.
  • the radial expansion of the radially-expandable member causes substantially complete occlusion of the fascial defect.
  • Slidable, or otherwise maneuverable, attachment of the radially-expandable member to the means for securing permits the overlay member to be maneuvered relative to the deployed expandable member and adjusted once placed within the fascia defect.
  • This provides added benefit of being positionable, relative to the cord and other anatomical structures once in place, over conventional prostheses for repairing fascia defects which are fixedly attached to the means for securing to surrounding tissue, and are not capable of being adjusted once the prostheses are placed and fixed within the fascia defect.
  • prostheses that are self-expanding, i.e. self-collapsing, when placed in position within the fascia defect are included within the scope of the present invention.
  • Such devices may be constructed such that they will deploy, i.e. collapse axially and radially-expand to occlude the defect, when positioned within a defect in response to conditions of the body surrounding the defect.
  • a looped suture passed longitudinally through the hollow cavity of the radially-expandable member along the axis thereof, may serve as a means for radially-expanding the member.
  • the radially-expandable member comprises opposing conical members fixedly attached one to the other at their respective bases, thus forming a cavity defined by the attached conical members.
  • Each cone comprises pleated surfaces that increase the axial rigidity of the prosthesis, thus allowing the prosthesis to exert a radial expansion force, while ultimately maintaining the ability to conform to irregularities in the tissue or muscle wall surrounding the opening.
  • One or more tubular structure of textile material may be contained within the cavity of the radially-expandable member to impart additional axial rigidity to the prosthesis, thus improving the handling characteristics during insertion into the defect.
  • Tubular structure is meant to include those structures where the cross sectional configuration is tubular in nature.
  • Tubular structure specifically includes cylindrical rolls of materials, e.g. meshes, where the cross section configuration is circular, as well as structures where the cross sectional configuration may be elliptical, triangular, rectangular, etc.
  • the tubular structure also improves the radial expandability of the prosthesis when it is compressed axially and the cylinder collapses, ensuring a solid expansion of the prosthesis against and below the tissue or wall structure defining the defect.
  • the prostheses and radially-expandable member may be constructed from any suitable biologically compatible, flexible and porous medical textile known for reinforcing tissue and occluding tissue defects.
  • Preferred mesh materials include knitted polypropylene monofilament mesh fabrics such as those available from Ethicon, Inc. under the Prolene trademark, as well as meshes available from Ethicon, Inc. under the Vicryl trademark.
  • Other mesh materials useful in the invention include those available under the Marlex, Dacron, Teflon and Merselene trademarks.
  • the desired effect of forcing tissue re-generation under the overlay patch can be accomplished through the selection of biocompatible absorbable materials for use in the fabrication of the expandable member. Examples of suitable materials are Vicryl and Panacryl sutures, available from Ethicon, Inc, and Polysorb suture, available from United States Surgical Corporation.
  • Prosthesis 10 comprises radially-expandable member 12, comprising first and second conical members 14.
  • Each conical member 14 comprises longitudinal pleats 16 terminating at apex 18 and base 20 of each cone, respectively.
  • the number and spacial relationship of longitudinal pleats 16 are effective to enhance the axial rigidity of the prosthesis and to allow the prosthesis to more closely match the contour of the fascia defect when compressed and placed within the defect.
  • the pleats are thermoformed into the mesh body. Looped suture 22, with a non-reversing knot 24, is passed through the inner diameter of opposing conical members 14.
  • Sheet 26 of polypropylene mesh is fixedly attached to apex 18 of one of opposing conical members 14 through the use of looped suture 22. Sheet 26 is utilized to attach and secure the prosthesis to the surrounding healthy tissue.
  • prosthesis 10 may comprise one or more tubular structures 28 of polypropylene mesh contained within cavity 30 formed when opposing conical members 14 are attached at their respective bases 20. Tubular structure 28 provides additional axial rigidity to the prosthesis during handling and insertion of the device into the defect.
  • Suture 22 is passed through the inner diameter of the opposing conical members 14, passing from the apex of one through the apex of the other. Suture 22 then is looped and returned back through the inner diameter of the prosthesis in the opposite direction. Looped suture 22 is passed through the ends of the tubular structure 28 causing it to buckle, or collapse, when looped suture 22 is constricted during use. In the particular embodiment illustrated, both ends of looped suture 22 are passed through flat overlay sheet 26. Non-reversing knot 24 is tied in looped suture 22 and flat overlay sheet 26 is held in proximity to apex 18 of the upper one of the conical members 14. The dead tail of the knot 24 is trimmed to length. The finished prosthesis is subjected to sterilization prior to use.
  • Prosthesis 10 may be fabricated from any biocompatible medical woven, knitted or non-woven textile.
  • the prosthesis is fabricated from medical grade polypropylene mesh.
  • Radially-expandable member 12 comprises conical members 14 fixedly attached one to the other at respective bases 20.
  • Conical members 14 are configured to have an initial, non-expanded, maximum diameter that is substantially the same size or less than the diameter of the defect to be repaired. While the conical members 14 are shown in the figure to be identical in structure, embodiments in which one is taller than the other are contemplated by the invention.
  • the conical members 14 are positioned in opposition one to the other and bases 20 are aligned.
  • prosthesis 10 comprises at least one flat sheet of mesh rolled into tubular structure 28 (Figure 1) and permanently located within cavity 30 ( Figure 1) formed by fixedly attached conical members 14.
  • Tubular structure 28 is fabricated from a flat sheet of polypropylene mesh that, once rolled into cylindrical shape, can been secured about its circumference with suture. Alternatively, tubular structure 28 may be formed by rolling a flat sheet of mesh into the cylindrical configuration and welding, stitching or otherwise bonding the rolled sheet at the ends.
  • Tubular structure 28 ( Figure 1) is disposed inside cavity 30 ( Figure 1) formed by fixedly attached opposing conical members 14 and extends axially from the internal apex 18 of one to the internal apex 18 of the other. Tubular structure 28 aids in providing axial rigidity to the prosthesis when it is inserted into the defect.
  • prosthesis 10 is inserted into fascia defect 43. Once hernia sac 40 is free from walls 44 of defect 43 in fascia 42, hernia sac 40 is pressed back into the abdominal cavity. Apex 18 of the lower one of the conical members 14 is inserted into defect 43, causing peritoneum 46 to invert inwards into the abdominal cavity. Prosthesis 10 is inserted until mesh sheet 26 is flush with anterior side 48 of fascia 42. Free end 23 of suture 22 is pulled while prosthesis 10 is held in a forward position, i.e. flush with anterior side 48 of fascia 42. The tightening of suture 22 causes the opposing conical members 14 to be drawn together.
  • Free end 23 of suture 22 may be provided with a needle to enable attachment of the prosthesis 10 to the surrounding healthy tissue by sewing overlay sheet 26 into place.
  • free end 23 of suture 22 can be trimmed off after final deployment and the overlay patch can be attached in place through the use of additional sutures, or may remain in a flattened condition in the anterior space.
  • the prosthesis 10 is able to accommodate the spermatic cord structures since it is pleated. When it is expanded, it relies only on the radial expansion force generated from the compression of the opposing textile conical members 14 to enlarge their diameters, as opposed to the use of additional semi-rigid rings or other rigid or semi-rigid members.
  • prostheses of the present invention do not comprise such rigid or semi-rigid devices. This ensures that the device is fully compliant to the natural anatomical structures.
  • the prosthesis is fabricated by cutting a biocompatible, medical textile, preferably polypropylene mesh, into a flat sheet.
  • the sheet is provided with multiple slits, or continuous openings, extending across the width of the flat sheet for a distance effective to provide radial expansion of the radially-expandable member upon deployment of the prosthesis in a fascia defect and, thus, occlusion of the fascia defect.
  • the slits do not extend to the edges of the sheet.
  • the sheet also comprises as an integral part for fixedly attaching the prosthesis to tissue.
  • sheet 50 of mesh is provided with a plurality of slits 52 extending substantially, but not completely, across the width of sheet 50.
  • the number, dimension and location of such slits will be effective to provide radial expansion of the radially-expandable member upon deployment within a defect.
  • the distance between slit 52a and edge 56 of sheet 50 is greater than the distance between slit 52b and edge 58 of sheet 50.
  • the distance between slit 52a and edge 56 is such that when the sheet is rolled onto itself to form a cylindrical roll, the inner-most layer of sheet material in the rolled cylinder is void of slits. In other words, the distance between slit 52a and edge 56 is equal to or greater than the inner circumference of the rolled cylinder.
  • Sheet 50 also includes tabs 54, for use in subsequent fixed attachment of the prosthesis to tissue.
  • sheet 50 is rolled such that edge 56 is rolled into the inner diameter of the cylindrical configuration.
  • the roll is maintained in the cylindrical configuration through the use of tacking welds, sutures or other bonding means at each end of the roll, thus forming the radially-expanding member 60 for occluding a fascia defect, illustrated in Figures 7a and 7b.
  • End 62 of radially-expandable member 60 may be sealed closed by stitching, welding or bonding, for example.
  • suture 64 is attached to end 62 of radially-expandable member 60 in purse-string arrangement 68, and then tightened and permanently knotted. Free end 63 of suture 64 is passed through the inner part of the rolled cylinder and is stitched around the circumference of open end 66 to form another purse-string arrangement 68. A non-reverse slipknot (not shown) is tied into the suture.
  • prosthesis 70 is placed into fascia defect 43 by pressing dissected/ligated hernia sac 40 into the abdominal cavity. Free end 63 of suture 64 is pulled while holding prosthesis 70 forward. As suture 64 is drawn, vertical slits 65 allow radially-expandable member 60 to collapse. Slits 65 buckle outwards, i.e. expand radially, forming overlapping leaves 72 that occlude defect 43. Tabs 67, located at the top of collapsed prosthesis 70, are used to fixedly attach the deployed prosthesis to surrounding healthy tissue.
  • prosthesis 80 comprises overlay patch 86 slidably attached to radially-expandable member 88.
  • filament 84 is passed through looped suture 82 and affixed at its terminal ends to overlay patch 86.
  • overlay patch 86 may be maneuvered to one side, as shown in Figure 13, to effect attachment to fascia 89.
  • FIG 14 shows a further embodiment of the present invention a prosthesis 90 having an overlay patch 96 slidably attached to a radially expandable member 98 (like the thermoformed expandable member 20 described above in reference to Figure 1) by an elongated filament 94.
  • the filament 94 is joined to the overlay patch 96 at two spaced points 92, e.g., by tying, plastic welding or by being restrained from pulling through the overlay patch 96 material by knots or enlarged ends that exceed the size of the pores of the material of the patch 96.
  • the filament 94 extends substantially parallel to the overlay patch 94 and is spaced therefrom to accommodate the portion of the radially expandable member 98 positioned between the filament 94 and the overlay patch 96.
  • the radially expandable member 98 is preferably formed from surgical mesh material or other biocompatible filamentous material that has numerous openings therethrough, i.e., the spaces between adjacent filaments that are woven or compressed together to yield a mesh and/or felt-like textile.
  • the filament 94 simply threads through the spaces between adjacent filaments that define the textile structure of the expandable member 98.
  • the filaments can be passed through the film by providing holes in the film with a needle and then threading the filament(s) 94 through the holes. In either case, the radially expandable member 98 is moveable along the filament(s) 94 defining a motion "track" relative to the overlay patch 96.
  • the filament 94 passes through a cone-shaped, radially-expandable member 98 proximate the base 93 of the cone. Because the expandable member 98 is slidable on the filament 94, the expandable member 98 may be positioned relative to the overlay patch 96 to maximally conform to the anatomy of the patient and the surgical repair encountered. More particularly, the expandable member 98 may be inserted into the facia void and then the position of the overlay patch 96 may be adjusted to coincide with the position of maximally effective surgical attachment, viz., to be amenable to attaching the overlay patch 96 to healthy tissue, to bridge over weak, unhealthy tissue, and also to conform to the patients' local anatomical shape.
  • the relative slidability of the overlay patch 96 and the expandable member 98 does not impede the expandable member 98 from collapsing and expanding to fill the breach in the facia (i.e., the filament 94 retains the overlay patch 96 in association with the expandable member 98, but does not restrict the expansion of the expandable member 98).
  • the overlay patch 96 may have any desired shape, such as a keyhole, oval, circular or rectangular shape.
  • Figure 15 shows a prosthesis 100 having a similar overall configuration and features as that shown and described above in reference to Figure 14, viz., with an overlay patch 106 and attachment filament 104.
  • the element used to fill the facia defect is a generally cylindrical roll 108 of surgical mesh material that is slidable relative to the patch 106 via filament 104.
  • Figure 16 shows as further embodiment of the present invention a prosthesis 110 having an overlay patch 116, an attachment filament 114 and an underlay patch 120 having a generally cylindrical upstanding prominence 118 that is thermoformed therein for insertion into the facia defect.
  • the filament 114 passes through the prominence 118 to secure the underlay patch 120 to the overlay patch 116 in slidably adjustable relationship thereto, such that the underlay patch may be positioned on the posterior side of the hernia with the prominence 118 extending anteriorly into the facia void.
  • the overlay patch 116 can then be positioned on the anterior side of the herniated facia for optimal surgical attachment.
  • the prominence 118 can be eliminated such that the underlay patch 120 is simply flat.
  • the filament 114 would simply enter the proximal surface of the underlay patch, extend a selected distance along the distal surface, pass through the distal surface to reemerge through the proximal surface forming a loop to hold the underlay patch in association with the overlay patch 116.

Description

    Field of the Invention
  • The present invention relates to an implantable hernia repair prosthesis and a method for reinforcing and repairing damaged tissue or muscle walls.
  • Background of the Invention
  • Various prosthetic mesh materials have been proposed to reinforce the abdominal wall and to close abdominal wall defects utilizing different repair prostheses and methods of installation. The methods of executing a surgical repair can be segregated into two main approaches. The repair can be made exclusively from the anterior side (closest to the surgeon) of the defect by dissecting the sac free of the fascia and pressing it back into the pre-peritoneal space and providing permanent closure of the defect. The closure can be provided through the application of space filling prostheses and overlay patches (tension-free techniques) or can be accomplished through the use of sutures (tension techniques).
  • An example of a tension free anterior repair is to fold a sheet of surgical mesh fabric into a multi-layer cone configuration and then to insert the mesh plug into a hernia defect to occlude the void. Such a multi-layer prosthesis is inherently stiff and may not fully conform to variations in the contour of the defect, leaving gaps between the implant and the abdominal wall that potentially could lead to recurrent herniation. The stiff, multi-layered mesh plug also may be susceptible to kinking and buckling during placement.
  • U.S. Patent number 5,356,432, discloses an implantable prosthesis that is a conical plug formed of a knitted polypropylene monofilament mesh fabric. Longitudinal pleats are hot molded into the mesh body to enhance the flexibility of the conical implant, ideally allowing the implant to closely match the contour of the herniated opening when compressed within the defect. When the device is installed into a fascial defect, the tip of the conical shaped plug presses into and against the visceral sac, potentially enabling long-term erosion of the peritoneum and underlying viscera. The device, in one embodiment, has filler material incorporated into the interior of the formed mesh cone in an attempt to minimize contraction of the device during healing. As collagen scar tissue grows into the prosthetic material, the cross linking of the maturing collagen fibers causes the scar tissue (and encapsulated plug device) to contract. This contraction of scar tissue within the defect and plug causes the surrounding diseased tissue to be subjected to tension, thus enabling re-occurrence of the hernia along the edge of the conical plug. The use of the device requires the passage of a pre-expanded plug through the hernia defect and relies upon the radial expansion force of the single layer mesh cone and filler leaves to occlude the defect. Additionally, since the plug is secured in position by anchoring to the surrounding diseased tissue, the device may dislodge and migrate within the pre-peritoneal space.
  • Alternatively, a defect may be repaired through the use of posterior approaches that provide various prosthetic devices in the pre-peritoneal space to prevent the peritoneum from entering the fascial defect. These devices, in some cases, require the use of laparoscopic techniques and, in other cases, require the application of the prosthesis from a remote location under the defect to be repaired. Examples of posterior approaches are disclosed in United States Patent Nos. 5,116,357, 5,254,133 and 5,916,225. However, in many cases, procedures utilizing such devices are complicated, in addition to requiring the use of general anaesthesia and costly disposable instrumentation to support the laparoscopic surgery.
  • French patent application FR 2 778 554 A discloses a hernia repair prothesis comprising a generally circular sheet with a band gathered up into pleats and fixed to the circular sheet. A filament passes through the pleats and the pleats are slidably attached to the filament so that the pleats can be gathered together to allow the prosthesis to be implanted into the hernia.
  • International patent application WO 95/13762 discloses a hernia repair implant comprising at least two expandable balloons made of a non-absorbable biocompatible material. The balloons are connected to one another by means of a tube or pipe, and include a valve that permits inflow and prevents outflow of an expansion agent. The valve communicates with a separate supply of the expansion agent.
  • European patent application EP 0 898 945 discloses a prosthetic obturating device consisting of two cone-shaped parts having a common vertex and axis. Each cone has a different sized aperture. The larger aperture cone is inserted into the hernial canal to expand against the inner wall of the abdomen, whilst the smaller aperture cone covers the access of the canal.
  • Accordingly, the prior art lacks an implantable hernia repair prosthesis for occluding and repairing damaged muscle and tissue wall ruptures, that is adaptable to irregularities in the shape of the defect, is simple to install, does not require the use of general anaesthesia during installation and resists radial collapse due to tissue incorporation.
  • Summary of the Invention
  • The limitations of the prior art are overcome by the present invention which provides a hernia repair prosthesis, comprising: an occlusive member for aiding in the occlusion of a defect in facia tissue; an overlay sheet surgically attachable to a first side of the facia tissue; and characterised by: a filament joined to the overlay sheet at two spaced points, said filament extending substantially parallel to said overlay sheet between said spaced points, said occlusive member being slideably attached to said filament to permit said occlusive member to assume a selected position relative to said overlay sheet between said spaced points.
  • Description of the Figures
  • For a better understanding of the present invention, reference is made to the following detailed description of various exemplary embodiments considered in conjunction with the accompanying drawings, in which:
    • Figure 1 is a perspective view of an example of a prosthesis prior to assembly of all of its component parts;
    • Figure 2 is a perspective view of the assembled prosthesis depicted in Figure 1;
    • Figure 3 is a perspective view of the prosthesis depicted in Figure 2 when positioned within a defect in the fascia;
    • Figure 4 is a perspective view of the prosthesis depicted in Figure 3 after deployment, i.e. radial expansion, within the defect;
    • Figure 5 is a top plan view of a sheet of mesh material used to construct another example of a prosthesis;
    • Figure 6a is an end view of the mesh sheet depicted in Figure 5 being rolled to form a radially-expandable member;
    • Figure 6b is an end view of the mesh sheet depicted in Figure 5 after being rolled to form a radially-expandable member;
    • Figure 7a is a perspective view of a radially-expandable member prepared from the mesh sheet depicted in Figure 5;
    • Figure 7b is a perspective view of a radially-expandable member prepared from the mesh sheet depicted in Figure 5;
    • Figure 8 is a perspective view of a prosthesis made from the radially-expandable member depicted in Figure 7b;
    • Figure 9 is a perspective view of the prosthesis depicted in Figure 8 after deployment, i.e. radial expansion, within a defect in the fascia;
    • Figure 10 is a perspective view of a prosthesis according to the present invention;
    • Figure 11 is a perspective view of the assembled prosthesis depicted in Figure 10;
    • Figure 12 is a perspective view of the prosthesis depicted in Figure 11 when positioned within a defect in the fascia;
    • Figure 13 is a perspective view of the prosthesis depicted in Figure 12 after deployment, i.e. radial expansion, within the defect;
    • Figure 14 is a perspective view of a prosthesis according to a further embodiment of the present invention;
    • Figure 15 is a perspective view of a prosthesis according to yet another embodiment of the present invention; and
    • Figure 16 is a perspective view of a prosthesis according to still another embodiment of the present invention.
    Detailed Description of the Invention
  • The present invention provides implantable prostheses and methods for reinforcing and repairing weakened abdominal walls. The prostheses are formed of a biologically compatible, flexible and porous medical textile suitable for reinforcing tissue and occluding tissue defects. The implantable prostheses are indicated particularly for the repair of hernias in the abdominal cavity, including inguinal (direct and indirect), femoral, incisional and recurrent, and provide at least a partial posterior repair. The prostheses are able to be inserted easily in a stress-free condition into a fascia defect from an anterior approach and are capable of expanding radially, at least partially into the pre-peritoneal space, to substantially occlude and conform to the fascia wall of a fascia defect. Alternatively, a posterior approach may be used, if the surgeon prefers. The prostheses are suitable for the repair of varying sizes and shapes of hernias and can be anchored to the surrounding healthy tissue to prevent migration, thus extending beyond the edge of the defect on the anterior side of the defect. Other features of the present invention will become apparent from the following detailed description when taken in connection with the accompanying drawings that disclose multiple embodiments of the invention. The drawings are for the purpose of illustration only and are not intended as a definition of the limits of the invention.
  • The prostheses of the present invention comprise a hollow, radially-expandable member for placement within and occlusion of a fascia defect. By radially-expandable, it is meant that the cross sectional area of the member expands from an initial, non-expanded configuration having an initial cross sectional area, sized such that the member may be placed within a fascia defect in a stress-free condition, to a final, expanded configuration having a final cross sectional area greater than the initial cross sectional area and effective to occlude all of, or at least a substantial portion of, the fascia defect. This member can be manufactured out of biocompatible absorbable or non-absorbable material.
  • The prosthesis also comprises means for securing the prosthesis to the tissue wall. In certain embodiments, the means for securing comprises an overlay sheet of medical textile fixedly or maneuverably attached to the radially-expandable member, as depicted in the figures. When maneuverably, e.g. slidably, attached to the expandable member, the overlay sheet may be so-attached to the radially-expandable member by the use of a filament, or multiple filaments, passed through the looped suture or the proximal end of the expandable member and attached to the overlay patch at the terminal ends of the filament. Prostheses comprising such a slidably, or maneuverably, attached means for securing the prostheses to the tissue wall and a member for occluding the defect also are included within the scope of inventions disclosed herein. In such embodiments, the occluding member need not be radially-expandable, but need only be effective to occlude the defect. One of the advantages of such a prosthesis is that, once placed into the defect area, the securing means may be maneuvered such that attachment to stable or healthy tissue may be accomplished, thereby providing a more secure attachment to the tissue wall.
  • In an example of a hernia repair prosthesis, the means for securing the prosthesis may be an integral part of the radially-expandable member. The prosthesis is passed into/through a defect in the fascial layer. The radially-expandable member then is collapsed axially, thus causing radial expansion of the radially-expandable member. The radial expansion of the radially-expandable member causes substantially complete occlusion of the fascial defect.
  • Slidable, or otherwise maneuverable, attachment of the radially-expandable member to the means for securing permits the overlay member to be maneuvered relative to the deployed expandable member and adjusted once placed within the fascia defect. This provides added benefit of being positionable, relative to the cord and other anatomical structures once in place, over conventional prostheses for repairing fascia defects which are fixedly attached to the means for securing to surrounding tissue, and are not capable of being adjusted once the prostheses are placed and fixed within the fascia defect.
  • While radial expansion of the member may be effected by means for radially-expanding the member as discussed and depicted herein, prostheses that are self-expanding, i.e. self-collapsing, when placed in position within the fascia defect are included within the scope of the present invention. Such devices may be constructed such that they will deploy, i.e. collapse axially and radially-expand to occlude the defect, when positioned within a defect in response to conditions of the body surrounding the defect. Preferably, a looped suture, passed longitudinally through the hollow cavity of the radially-expandable member along the axis thereof, may serve as a means for radially-expanding the member.
  • In certain embodiments of the invention, the radially-expandable member comprises opposing conical members fixedly attached one to the other at their respective bases, thus forming a cavity defined by the attached conical members. Each cone comprises pleated surfaces that increase the axial rigidity of the prosthesis, thus allowing the prosthesis to exert a radial expansion force, while ultimately maintaining the ability to conform to irregularities in the tissue or muscle wall surrounding the opening. One or more tubular structure of textile material may be contained within the cavity of the radially-expandable member to impart additional axial rigidity to the prosthesis, thus improving the handling characteristics during insertion into the defect. Tubular structure, as used herein, is meant to include those structures where the cross sectional configuration is tubular in nature. Tubular structure specifically includes cylindrical rolls of materials, e.g. meshes, where the cross section configuration is circular, as well as structures where the cross sectional configuration may be elliptical, triangular, rectangular, etc. The tubular structure also improves the radial expandability of the prosthesis when it is compressed axially and the cylinder collapses, ensuring a solid expansion of the prosthesis against and below the tissue or wall structure defining the defect.
  • The prostheses and radially-expandable member may be constructed from any suitable biologically compatible, flexible and porous medical textile known for reinforcing tissue and occluding tissue defects. Preferred mesh materials include knitted polypropylene monofilament mesh fabrics such as those available from Ethicon, Inc. under the Prolene trademark, as well as meshes available from Ethicon, Inc. under the Vicryl trademark. Other mesh materials useful in the invention include those available under the Marlex, Dacron, Teflon and Merselene trademarks. Alternatively, the desired effect of forcing tissue re-generation under the overlay patch can be accomplished through the selection of biocompatible absorbable materials for use in the fabrication of the expandable member. Examples of suitable materials are Vicryl and Panacryl sutures, available from Ethicon, Inc, and Polysorb suture, available from United States Surgical Corporation.
  • An exploded view of an example of a hernia repair prosthesis is illustrated in Figure 1. Prosthesis 10 comprises radially-expandable member 12, comprising first and second conical members 14. Each conical member 14 comprises longitudinal pleats 16 terminating at apex 18 and base 20 of each cone, respectively. The number and spacial relationship of longitudinal pleats 16 are effective to enhance the axial rigidity of the prosthesis and to allow the prosthesis to more closely match the contour of the fascia defect when compressed and placed within the defect. Preferably, the pleats are thermoformed into the mesh body. Looped suture 22, with a non-reversing knot 24, is passed through the inner diameter of opposing conical members 14. Sheet 26 of polypropylene mesh is fixedly attached to apex 18 of one of opposing conical members 14 through the use of looped suture 22. Sheet 26 is utilized to attach and secure the prosthesis to the surrounding healthy tissue. Optionally, prosthesis 10 may comprise one or more tubular structures 28 of polypropylene mesh contained within cavity 30 formed when opposing conical members 14 are attached at their respective bases 20. Tubular structure 28 provides additional axial rigidity to the prosthesis during handling and insertion of the device into the defect.
  • Suture 22 is passed through the inner diameter of the opposing conical members 14, passing from the apex of one through the apex of the other. Suture 22 then is looped and returned back through the inner diameter of the prosthesis in the opposite direction. Looped suture 22 is passed through the ends of the tubular structure 28 causing it to buckle, or collapse, when looped suture 22 is constricted during use. In the particular embodiment illustrated, both ends of looped suture 22 are passed through flat overlay sheet 26. Non-reversing knot 24 is tied in looped suture 22 and flat overlay sheet 26 is held in proximity to apex 18 of the upper one of the conical members 14. The dead tail of the knot 24 is trimmed to length. The finished prosthesis is subjected to sterilization prior to use.
  • The assembled prosthesis of Figure 1 is illustrated in Figure 2. Prosthesis 10 may be fabricated from any biocompatible medical woven, knitted or non-woven textile. The prosthesis is fabricated from medical grade polypropylene mesh. Radially-expandable member 12 comprises conical members 14 fixedly attached one to the other at respective bases 20. Conical members 14 are configured to have an initial, non-expanded, maximum diameter that is substantially the same size or less than the diameter of the defect to be repaired. While the conical members 14 are shown in the figure to be identical in structure, embodiments in which one is taller than the other are contemplated by the invention. The conical members 14 are positioned in opposition one to the other and bases 20 are aligned. Once bases 20 are aligned, conical members 14 are fixedly attached to each other at respective bases 20. Bonding of the conical members 14 may be accomplished by stitching, welding or any other known form of fixable attachment, thus forming bond 32 about base 20. Preferably, prosthesis 10 comprises at least one flat sheet of mesh rolled into tubular structure 28 (Figure 1) and permanently located within cavity 30 (Figure 1) formed by fixedly attached conical members 14.
  • Tubular structure 28 is fabricated from a flat sheet of polypropylene mesh that, once rolled into cylindrical shape, can been secured about its circumference with suture. Alternatively, tubular structure 28 may be formed by rolling a flat sheet of mesh into the cylindrical configuration and welding, stitching or otherwise bonding the rolled sheet at the ends. Tubular structure 28 (Figure 1) is disposed inside cavity 30 (Figure 1) formed by fixedly attached opposing conical members 14 and extends axially from the internal apex 18 of one to the internal apex 18 of the other. Tubular structure 28 aids in providing axial rigidity to the prosthesis when it is inserted into the defect.
  • As shown in Figures 3 and 4, after hernia sac 40 has been dissected and/or ligated, prosthesis 10 is inserted into fascia defect 43. Once hernia sac 40 is free from walls 44 of defect 43 in fascia 42, hernia sac 40 is pressed back into the abdominal cavity. Apex 18 of the lower one of the conical members 14 is inserted into defect 43, causing peritoneum 46 to invert inwards into the abdominal cavity. Prosthesis 10 is inserted until mesh sheet 26 is flush with anterior side 48 of fascia 42. Free end 23 of suture 22 is pulled while prosthesis 10 is held in a forward position, i.e. flush with anterior side 48 of fascia 42. The tightening of suture 22 causes the opposing conical members 14 to be drawn together. The compression of the conical members 14 causes them to collapse axially onto themselves, thus causing the diameter of conical members 14 to expand radially and pleats 16 to open up or expand into a relatively flattened position. This same action causes tubular structure 28, located within cavity 30, to buckle, collapse and expand outward radially. Knot 24 is pulled until it is fully tightened.
  • Free end 23 of suture 22 may be provided with a needle to enable attachment of the prosthesis 10 to the surrounding healthy tissue by sewing overlay sheet 26 into place. Alternatively, free end 23 of suture 22 can be trimmed off after final deployment and the overlay patch can be attached in place through the use of additional sutures, or may remain in a flattened condition in the anterior space.
  • The prosthesis 10 is able to accommodate the spermatic cord structures since it is pleated. When it is expanded, it relies only on the radial expansion force generated from the compression of the opposing textile conical members 14 to enlarge their diameters, as opposed to the use of additional semi-rigid rings or other rigid or semi-rigid members. Preferably, prostheses of the present invention do not comprise such rigid or semi-rigid devices. This ensures that the device is fully compliant to the natural anatomical structures.
  • The final configuration of expanded prosthesis 10, as seen in Figure 4, both occludes fascia defect 43 on posterior side 47 and is expanded to fill the inner diameter of defect 43 in wall 44. The expansion of radially expandable member 12 on posterior side 47 of defect 43 prevents peritoneum 46 from entering defect 43. Additionally, this posterior expansion ensures that the repair is secure from re-herniation through the defect, since the conical mesh is forced into a relatively flat condition. As the scar tissue grows into the flattened conical layers, it is compressed further in the axial direction by scar tissue contraction. With the inclusion of overlay patch 26, located on anterior side 48 of defect 43, it is virtually impossible for the device to migrate either anteriorly or posteriorly.
  • In another example of a hernia repair prothesis, as illustrated in Figures 5-9, the prosthesis is fabricated by cutting a biocompatible, medical textile, preferably polypropylene mesh, into a flat sheet. The sheet is provided with multiple slits, or continuous openings, extending across the width of the flat sheet for a distance effective to provide radial expansion of the radially-expandable member upon deployment of the prosthesis in a fascia defect and, thus, occlusion of the fascia defect. The slits do not extend to the edges of the sheet. The sheet also comprises as an integral part for fixedly attaching the prosthesis to tissue.
  • As seen in Figure 5, sheet 50 of mesh is provided with a plurality of slits 52 extending substantially, but not completely, across the width of sheet 50. The number, dimension and location of such slits will be effective to provide radial expansion of the radially-expandable member upon deployment within a defect. It is noted that the distance between slit 52a and edge 56 of sheet 50 is greater than the distance between slit 52b and edge 58 of sheet 50. While not required or essential to the invention, in certain examples, the distance between slit 52a and edge 56 is such that when the sheet is rolled onto itself to form a cylindrical roll, the inner-most layer of sheet material in the rolled cylinder is void of slits. In other words, the distance between slit 52a and edge 56 is equal to or greater than the inner circumference of the rolled cylinder. Sheet 50 also includes tabs 54, for use in subsequent fixed attachment of the prosthesis to tissue.
  • As depicted in Figure 6a and 6b, sheet 50 is rolled such that edge 56 is rolled into the inner diameter of the cylindrical configuration. The roll is maintained in the cylindrical configuration through the use of tacking welds, sutures or other bonding means at each end of the roll, thus forming the radially-expanding member 60 for occluding a fascia defect, illustrated in Figures 7a and 7b. End 62 of radially-expandable member 60 may be sealed closed by stitching, welding or bonding, for example.
  • As seen in Figure 8, suture 64 is attached to end 62 of radially-expandable member 60 in purse-string arrangement 68, and then tightened and permanently knotted. Free end 63 of suture 64 is passed through the inner part of the rolled cylinder and is stitched around the circumference of open end 66 to form another purse-string arrangement 68. A non-reverse slipknot (not shown) is tied into the suture.
  • As depicted in Figure 9, prosthesis 70 is placed into fascia defect 43 by pressing dissected/ligated hernia sac 40 into the abdominal cavity. Free end 63 of suture 64 is pulled while holding prosthesis 70 forward. As suture 64 is drawn, vertical slits 65 allow radially-expandable member 60 to collapse. Slits 65 buckle outwards, i.e. expand radially, forming overlapping leaves 72 that occlude defect 43. Tabs 67, located at the top of collapsed prosthesis 70, are used to fixedly attach the deployed prosthesis to surrounding healthy tissue.
  • An embodiment of the present invention is shown in Figures 10-13, prosthesis 80 comprises overlay patch 86 slidably attached to radially-expandable member 88. As shown, filament 84 is passed through looped suture 82 and affixed at its terminal ends to overlay patch 86. When radial-expandable member 88 is placed in the defect, overlay patch 86 may be maneuvered to one side, as shown in Figure 13, to effect attachment to fascia 89.
  • Figure 14 shows a further embodiment of the present invention a prosthesis 90 having an overlay patch 96 slidably attached to a radially expandable member 98 (like the thermoformed expandable member 20 described above in reference to Figure 1) by an elongated filament 94. The filament 94 is joined to the overlay patch 96 at two spaced points 92, e.g., by tying, plastic welding or by being restrained from pulling through the overlay patch 96 material by knots or enlarged ends that exceed the size of the pores of the material of the patch 96. Intermediate the points of connection 92, the filament 94 extends substantially parallel to the overlay patch 94 and is spaced therefrom to accommodate the portion of the radially expandable member 98 positioned between the filament 94 and the overlay patch 96. While a single filament 94 is shown, a plurality of parallel filaments 94 may be utilized. The radially expandable member 98 is preferably formed from surgical mesh material or other biocompatible filamentous material that has numerous openings therethrough, i.e., the spaces between adjacent filaments that are woven or compressed together to yield a mesh and/or felt-like textile. The filament 94 simply threads through the spaces between adjacent filaments that define the textile structure of the expandable member 98. In the alternative, in the case of a non-filamentous radial expandable member 98, e.g., one made from a continuous plastic film, the filaments can be passed through the film by providing holes in the film with a needle and then threading the filament(s) 94 through the holes. In either case, the radially expandable member 98 is moveable along the filament(s) 94 defining a motion "track" relative to the overlay patch 96.
  • In Figure 14, the filament 94 passes through a cone-shaped, radially-expandable member 98 proximate the base 93 of the cone. Because the expandable member 98 is slidable on the filament 94, the expandable member 98 may be positioned relative to the overlay patch 96 to maximally conform to the anatomy of the patient and the surgical repair encountered. More particularly, the expandable member 98 may be inserted into the facia void and then the position of the overlay patch 96 may be adjusted to coincide with the position of maximally effective surgical attachment, viz., to be amenable to attaching the overlay patch 96 to healthy tissue, to bridge over weak, unhealthy tissue, and also to conform to the patients' local anatomical shape. The relative slidability of the overlay patch 96 and the expandable member 98 does not impede the expandable member 98 from collapsing and expanding to fill the breach in the facia (i.e., the filament 94 retains the overlay patch 96 in association with the expandable member 98, but does not restrict the expansion of the expandable member 98). The overlay patch 96 may have any desired shape, such as a keyhole, oval, circular or rectangular shape.
  • Figure 15 shows a prosthesis 100 having a similar overall configuration and features as that shown and described above in reference to Figure 14, viz., with an overlay patch 106 and attachment filament 104. In the embodiment shown in Figure 15, the element used to fill the facia defect is a generally cylindrical roll 108 of surgical mesh material that is slidable relative to the patch 106 via filament 104.
  • Figure 16 shows as further embodiment of the present invention a prosthesis 110 having an overlay patch 116, an attachment filament 114 and an underlay patch 120 having a generally cylindrical upstanding prominence 118 that is thermoformed therein for insertion into the facia defect. The filament 114 passes through the prominence 118 to secure the underlay patch 120 to the overlay patch 116 in slidably adjustable relationship thereto, such that the underlay patch may be positioned on the posterior side of the hernia with the prominence 118 extending anteriorly into the facia void. The overlay patch 116 can then be positioned on the anterior side of the herniated facia for optimal surgical attachment. As yet a further alternative, the prominence 118 can be eliminated such that the underlay patch 120 is simply flat. In that case, the filament 114 would simply enter the proximal surface of the underlay patch, extend a selected distance along the distal surface, pass through the distal surface to reemerge through the proximal surface forming a loop to hold the underlay patch in association with the overlay patch 116.
  • It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the scope of the invention. All such variations and modifications are intended to be included within the scope of the invention as defined in the appended claims.

Claims (13)

  1. A hernia repair prosthesis (80, 90, 100, 110), comprising:
    an occlusive member (88, 98) for aiding in the occlusion of a defect in facia tissue;
    an overlay sheet (86, 96, 106, 116) surgically attachable to a first side of the facia tissue; and characterised by:
    a filament (84, 94, 104, 114) joined to the overlay sheet (86, 96, 106, 116) at two spaced points (92), said filament (84, 94, 104, 114) extending substantially parallel to said overlay sheet (86, 96, 106, 116) spaced between said points (92), said occlusive member (88, 98, 108, 118) being slidably attached to said filament (84, 94, 104, 114) to permit said occlusive member (88, 98, 108, 118) to assume a selected position relative to said overlay sheet (86, 96, 106, 116) spaced between said points (92).
  2. The prosthesis of claim 1, wherein said occlusive member (88, 98) is expandable, having a non-expanded configuration with a first radial dimension and an expanded configuration with a second radial dimension larger than said first radial dimension.
  3. The prosthesis of claim 2, wherein said occlusive member (88, 98) includes a pleated cone-shaped member.
  4. The prosthesis of claim 3, wherein said filament (84, 94) passes through said cone-shaped member proximate to a base thereof, said base being positioned near to said overlay sheet (86, 96) when said prosthesis is used in hernia repair.
  5. The prosthesis of claim 3, wherein said occlusive member (88, 98) includes a pair of pleated, cone-shaped members joined at the bases thereof and further comprising means to draw the apexes of said cone-shaped members towards one another, said filament (84, 94) extending through one of said cone-shaped members proximate the apex thereof.
  6. The prosthesis of claim 1, wherein said occlusive member (88, 98, 120) is a substantially flat underlay sheet of surgical mesh positionable proximate a second side of the facia.
  7. The prosthesis of claim 6, wherein said underlay sheet has a prominence formed therein through which said filament (84, 94, 114) extends and which is extendable into the defect in the facia tissue.
  8. The prosthesis of claim 7, wherein said prominence is thermoformed into said underlay sheet.
  9. The prosthesis of claim 1, wherein said occlusive member (108) is a generally cylindrical roll of surgical mesh.
  10. The prosthesis of claim 9, wherein said filament (104) passes through said roll approximately perpendicularly relative to an axis of said roll, proximate one end thereof.
  11. The prosthesis of any one of claims 1 to 10, wherein said occlusive member (88, 98) and said overlay sheet are formed of surgical mesh.
  12. The prosthesis of claim 11, wherein said surgical mesh is biodegradable.
  13. The prosthesis of any one of claims 1 to 12, wherein said filament (84, 94, 104, 114) includes a plurality of filaments, said pluraltiy of filaments being substantially parallel to one another.
EP20010303072 2000-12-29 2001-03-30 Hernia repair prosthesis and method Expired - Lifetime EP1219265B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US752066 2000-12-29
US09/752,066 US6755867B2 (en) 2000-03-31 2000-12-29 Hernia repair prosthesis and method

Publications (3)

Publication Number Publication Date
EP1219265A2 EP1219265A2 (en) 2002-07-03
EP1219265A3 EP1219265A3 (en) 2003-01-29
EP1219265B1 true EP1219265B1 (en) 2007-03-21

Family

ID=25024711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010303072 Expired - Lifetime EP1219265B1 (en) 2000-12-29 2001-03-30 Hernia repair prosthesis and method

Country Status (4)

Country Link
EP (1) EP1219265B1 (en)
JP (1) JP4307754B2 (en)
CA (1) CA2342641C (en)
DE (1) DE60127375T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785334B2 (en) 2002-08-02 2010-08-31 C.R. Bard, Inc. Implantable prosthesis
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1545390A4 (en) * 2002-08-23 2007-05-09 Proxy Biomedical Ltd Three dimensional implant
GB0300784D0 (en) * 2003-01-14 2003-02-12 Barker Stephen G E Inguinal hernia repair prosthesis
DE102004009892A1 (en) * 2004-02-26 2005-09-15 Gfe Medizintechnik Gmbh Implantable prosthesis for the repair of hernia defects
WO2006037080A2 (en) 2004-09-28 2006-04-06 Atrium Medical Corporation Uv cured gel and method of making
US9000040B2 (en) 2004-09-28 2015-04-07 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US9012506B2 (en) 2004-09-28 2015-04-21 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
DE102004051487A1 (en) * 2004-10-21 2006-04-27 Ethicon Gmbh Surgical implant, useful for closing and covering soft tissue defects, e.g. for hernia repair, comprises a flat base having projections able to absorb body fluids
US9427423B2 (en) 2009-03-10 2016-08-30 Atrium Medical Corporation Fatty-acid based particles
US9278161B2 (en) 2005-09-28 2016-03-08 Atrium Medical Corporation Tissue-separating fatty acid adhesion barrier
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
PL2124831T3 (en) 2007-03-15 2017-03-31 Ortho-Space Ltd. Prosthetic devices
AU2008224440A1 (en) * 2007-03-15 2008-09-18 Bioprotect Ltd. Soft tissue fixation devices
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
AU2009305958B9 (en) 2008-10-20 2013-07-11 Covidien Lp A device for attaching a patch to a biological tissue
US20110038910A1 (en) 2009-08-11 2011-02-17 Atrium Medical Corporation Anti-infective antimicrobial-containing biomaterials
WO2011021083A1 (en) 2009-08-17 2011-02-24 PolyTouch Medical, Inc. Articulating patch deployment device and method of use
WO2011021082A1 (en) 2009-08-17 2011-02-24 PolyTouch Medical, Inc. Means and method for reversibly connecting an implant to a deployment device
WO2011031789A1 (en) 2009-09-08 2011-03-17 Atrium Medical Corporation Hernia patch
US10568628B2 (en) * 2017-05-23 2020-02-25 Muffin Incorporated Closing device for tissue openings
EP2593141B1 (en) 2010-07-16 2018-07-04 Atrium Medical Corporation Composition and methods for altering the rate of hydrolysis of cured oil-based materials
FR2965168A1 (en) * 2010-09-23 2012-03-30 Tornier Inc SUTURE IMPLANT COMPONENT AND SUTURE IMPLANT DEVICE COMPRISING SUCH COMPONENT
US9713519B2 (en) 2012-01-06 2017-07-25 Atrium Medical Corporation Implantable prosthesis
US9867880B2 (en) 2012-06-13 2018-01-16 Atrium Medical Corporation Cured oil-hydrogel biomaterial compositions for controlled drug delivery
JP6210506B2 (en) * 2013-09-17 2017-10-11 川澄化学工業株式会社 Living implants
RU2744023C1 (en) * 2020-10-16 2021-03-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Северо-Западный государственный медицинский университет им. И.И. Мечникова" Министерства здравоохранения Российской Федерации Method of surgical management of inguinal hernia

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116357A (en) * 1990-10-11 1992-05-26 Eberbach Mark A Hernia plug and introducer apparatus
US5254133A (en) 1991-04-24 1993-10-19 Seid Arnold S Surgical implantation device and related method of use
US5356432B1 (en) 1993-02-05 1997-02-04 Bard Inc C R Implantable mesh prosthesis and method for repairing muscle or tissue wall defects
DK129693D0 (en) * 1993-11-17 1993-11-17 Ole Gyring Nieben IMPLANTABLE SUPPORT FOR SMALL AREAS OF ANIMAL OR HUMAN WALLS
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
US6241768B1 (en) * 1997-08-27 2001-06-05 Ethicon, Inc. Prosthetic device for the repair of a hernia
FR2767671B1 (en) * 1997-08-27 1999-11-26 Ethnor PROSTHETIC SHUTTER DEVICE FOR SHUTTERING HERNARY CHANNELS
FR2769825B1 (en) * 1997-10-22 1999-12-03 Cogent Sarl PROSTHETIC IMPLANT, ANATOMIC CHANNEL SHUTTER, AND SHUTTER ASSEMBLY COMPRISING SAME
FR2778554B1 (en) * 1998-05-15 2000-07-13 Cousin Biotech IMPLANTABLE TEXTILE PROSTHESIS
FR2810536B1 (en) * 2000-06-23 2002-09-27 Cousin Biotech TEXTILE REPLACEMENT IMPLANT

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785334B2 (en) 2002-08-02 2010-08-31 C.R. Bard, Inc. Implantable prosthesis
US7806905B2 (en) 2002-08-02 2010-10-05 C.R. Bard, Inc. Implantable prosthesis
US8956373B2 (en) 2002-08-02 2015-02-17 C.R. Bard, Inc. Implantable prosthesis
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US8734473B2 (en) 2009-02-18 2014-05-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity

Also Published As

Publication number Publication date
DE60127375T2 (en) 2007-11-29
EP1219265A3 (en) 2003-01-29
EP1219265A2 (en) 2002-07-03
CA2342641C (en) 2009-03-03
CA2342641A1 (en) 2002-06-29
JP4307754B2 (en) 2009-08-05
DE60127375D1 (en) 2007-05-03
JP2002209901A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
EP1219265B1 (en) Hernia repair prosthesis and method
US6755867B2 (en) Hernia repair prosthesis and method
US6712859B2 (en) Hernia repair prosthesis and methods for making same
CA2494111C (en) Implantable prosthesis
US6755868B2 (en) Hernia repair device
EP1406557B1 (en) Deployment apparatus for supple surgical materials
JP4282793B2 (en) Prosthetic plug obturator for hernia tube embolism

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030703

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20030922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60127375

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071227

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200221

Year of fee payment: 20

Ref country code: GB

Payment date: 20200318

Year of fee payment: 20

Ref country code: DE

Payment date: 20200317

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200214

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60127375

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210329