EP1252717A2 - Anordnung zur übertragung elektrischer signale zwischen bewegten teilen mit verringerter wegezahl - Google Patents

Anordnung zur übertragung elektrischer signale zwischen bewegten teilen mit verringerter wegezahl

Info

Publication number
EP1252717A2
EP1252717A2 EP00989815A EP00989815A EP1252717A2 EP 1252717 A2 EP1252717 A2 EP 1252717A2 EP 00989815 A EP00989815 A EP 00989815A EP 00989815 A EP00989815 A EP 00989815A EP 1252717 A2 EP1252717 A2 EP 1252717A2
Authority
EP
European Patent Office
Prior art keywords
protective conductor
transmission
conductor
signal
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00989815A
Other languages
English (en)
French (fr)
Inventor
Georg Lohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schleifring und Apparatebau GmbH
Original Assignee
Schleifring und Apparatebau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schleifring und Apparatebau GmbH filed Critical Schleifring und Apparatebau GmbH
Publication of EP1252717A2 publication Critical patent/EP1252717A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/22
    • H04B5/266
    • H04B5/28

Definitions

  • the invention relates to an arrangement for transmitting electrical signals and / or energy between moving parts, which can be arranged along any trajectory and are in galvanic or at least capacitive or inductive contact with one another.
  • channel refers to a complete signal channel that is able to transmit information simultaneously and thus consists of at least one outgoing conductor and one return conductor. Several channels can have a common return conductor. It is essential that a current flow occurs between the signal source and the load or signal sink.
  • protective conductor also refers here to ground conductors.
  • Transmission systems used in practice generally have several ways of supplying power to the movable device and several ways of transmitting control signals.
  • the energy is supplied by mains voltage lines, which are connected to the local energy supply network (230V, 400V).
  • DC intermediate circuits galvanically connected to the mains are being used more and more.
  • the AC network is transferred to a DC network using a boost converter, which is used for power factor correction.
  • boost converter which is used for power factor correction.
  • both the AC voltage network and the DC voltage intermediate circuit require a protective conductor connection between the movable and the fixed system part.
  • the current carrying capacity of the protective conductor connection and thus its conductor or conductor track cross section must correspond to the cross sections of the energy supply tracks.
  • the power supply lines themselves are often designed for high currents and therefore have large cross sections and a large number of contact springs or coals.
  • the material expenditure for the protective conductor track alone like their contact media causes a not inconsiderable expense. Additional space is also required for this track.
  • this protective conductor route causes 50% additional costs with a 50% higher space requirement. In the sense of a space-saving and inexpensive transmission technology, it would therefore be desirable to implement the protective conductor function without, however, requiring a separate transmission path for this.
  • the invention has for its object to provide an arrangement for transmitting electrical signals and / or energy between moving parts, which can be arranged along any trajectory or movement path and are in galvanic or at least capacitive or inductive contact with one another, that the electrical safety of the arrangement can be guaranteed without using a discrete way for the exclusive function of the protective conductor.
  • a device designed such that at least one way of transmitting control and / or data signals can perform the safety function of the protective conductor.
  • the protective conductor connection connected to the transmission paths by a filter.
  • the task of the filter is the low-frequency coupling of the protective conductor to the transmission paths and the decoupling of the control signals from the protective conductor.
  • the filter in the current path between the transmission paths and the protective conductor itself has a low-pass characteristic, which allows DC components and in particular the low-frequency components corresponding to the mains frequency to pass. In this frequency range, the filter must have such a low impedance and a current carrying capacity that it complies with the relevant safety regulations.
  • the filter In the other path between the signal paths and the signal sources or sinks, the filter has a characteristic that allows the mostly high-frequency control signals to pass unhindered.
  • the filters between the signal paths and the protective conductor have the task of decoupling the individual signal paths for the control signals from one another and for low-frequency leakage currents which flow through the protective conductor. Therefore, they must be dimensioned so that they have a sufficiently high attenuation for the frequencies corresponding to the control signals.
  • these filters are intended to prevent high-frequency components from the control signals from reaching the protective conductor of the mains supply system and being emitted in an undesired manner.
  • Another advantage of the arrangement according to the invention is the further saving of space compared to protective-insulated systems.
  • the insulation effort on the sliding contacts is between see the power transmission paths and the signal paths equal to twice the nominal isolation distance. If, according to the invention, the signal paths are now connected directly to the protective conductor, this distance can again be reduced to its nominal value, ie to half the value in the case of protective insulation. This results in a further saving of space and a reduction in wear due to the lower material consumption.
  • Another advantage of the arrangement according to the invention is the increased redundancy.
  • a sliding contact system of conventional design With a sliding contact system of conventional design, a low-resistance transition through the sliding contact is never guaranteed with 100% certainty. Even in the event of a fault, it cannot be ruled out that the protective conductor function will be poor or non-existent due to a contact malfunction, which can be caused by corrosion, contact bouncing or a mechanical defect.
  • the protective conductor function is distributed over several sliding contact arrangements, so that it is very likely that at least one or more of these sliding contact arrangements can take over the leakage current.
  • the arrangement according to the invention thus has a significantly higher level of security.
  • a sliding contact arrangement according to the invention generally has a significantly higher current carrying capacity than a conventional protective conductor contact and thus offers a lower contact voltage on the defective system part in the event of a fault.
  • the higher current carrying capacity arises from the usual dimensioning of sliding contact arrangements.
  • a typical sliding contact arrangement in the case of a simple slip ring for a computer tomograph has two paths for energy transmission with a maximum current carrying capacity of 80 A and four further signal paths for the pairwise transmission of control signals.
  • Conventional silver graphite carbons with a cross section of 5 x 4 mm 2 are used on brass tracks for power transmission.
  • the current carrying capacity of such a silver graphite carbon is 20 A.
  • 6 of these silver graphite carbons are used for safety reasons. 4 such coals are used for the control signal path, connected in parallel per path, in order to achieve a reduction in the contact noise and thus an improvement in the signal transmission quality due to the parallel connection. As a positive side effect this increases the current carrying capacity of the train to approx. 80 A per train.
  • this new overall protective conductor arrangement has a current carrying capacity of 240 A and a correspondingly low contact resistance.
  • This system therefore offers significantly higher security than a system designed according to conventional rules, in which an additional protective conductor track with 6 silver graphite carbons is provided.
  • Very The dimensioning is similar for most other contacting systems corresponding to the state of the art, such as gold spring wire contacts or also silver ribbon contacts.
  • the signal branches between the protective conductor and the signal paths are provided with the previously described low-pass characteristic only in the filter.
  • the control signal sources or sinks are connected directly to the signal paths.
  • Such an arrangement can be implemented particularly cost-effectively and nevertheless enables interference-free signal transmission. If DC or low-frequency signals of higher current strength are transmitted via sliding tracks, the contact noise of the sliding contacts causes a not inconsiderable high-frequency voltage drop on these tracks. In extensive test series, it was possible to demonstrate the amplitudes down to the volt range at frequencies up to 200 MHz. These signals overlap with the control signals.
  • the advantage of the arrangement described here is that, as a rule, no current or only a very low current flows via the protective conductor.
  • filter components are additionally located in the signal branch of the filter between the control signal sinks and sources or the signal paths, which pass through the transmission frequency range of the control signals in a narrow band and block the interference frequency ranges of the contact noise or the low-frequency mains voltages.
  • the signal path of the filter between the protective conductor connection and the signal paths contains at least one inductor, which contains at least two windings which are wound in opposite directions, so that the magnetic fields of the windings cancel each other out for protective conductor currents.
  • This arrangement is particularly advantageous if symmetrical signals (differential signals) are transmitted on two signal paths. This results in a particularly high inductance and thus a particularly high filter effect for the differential signals, while for a common signal, such as the protective conductor leakage current, the effective inductance tends to zero and the broadband conductors are therefore suitable for deriving protective conductor currents.
  • a symmetry transmitter is located in the path of the filter between the signal paths and signal source or sink in the case of symmetrical signal transmission. This ensures a broadband high suppression of unbalanced signals such as z. B. in the case of a high leakage current through the protective conductor occur on the slideways. Likewise, voltage drops caused by the contact noise are suppressed over a broad band, since these only occur as asymmetrical signals.
  • the filter between the protective conductor and the sliding contacts contains a simple ferrite or iron core as an essential filter element, which surrounds the protective conductor leads either individually or, in the case of symmetrical signal transmission, in the opposite sense.
  • Fig. 3 shows a particularly preferred embodiment
  • FIG. 4-7 further embodiments. Representation of exemplary embodiments
  • Figure 1 shows an arrangement according to the invention using the example of a linear sliding track.
  • the slideway consists of the slideways (1 ... 6) with the corresponding sliding contacts (11 ... 16).
  • the sliding tracks (1, 2) and the associated sliding contacts (11, 12) are equipped with particularly high dielectric strength and particularly high current carrying capacity for power transmission. All other slideways and sliding contacts are designed exclusively for signal transmission for control signals.
  • the grinding tracks for the control signals and the sliding contacts are connected via the filter units (40) and (41).
  • the first filter (40) contains a filter block (50) which connects the protective conductor connection (27) to the signal paths.
  • FIG. 1 It also contains a second filter block (51) which connects the signal paths to the corresponding connections for the control signals (23 ... 26). Any signal sources or sinks (27, 28) are then connected to these.
  • a similar arrangement is on the other side of the sliding contact arrangement.
  • the filter (41) with a first filter unit (52) for connecting the protective conductor connection (37) to the signal paths and a second filter unit (53) for connecting the signal sources or sinks (37, 38) via the outputs (33. .. 36) with the slideways for signal transmission.
  • Figure 2 serves to illustrate the space and cost savings of an arrangement according to the invention. It shows in cross section a typical sliding contact module (60) which contains the sliding tracks (1, 2) for energy transmission and (3 ...
  • FIG. 3 shows a particularly favorable arrangement in which the first filter block between the protective conductor connection and the signal path contains only inductors (73 ... 76) for decoupling the signal path from one another and the signal paths from the protective conductor.
  • the connections between the signal paths and the control signal sources or sinks are made galvanically here.
  • FIG. 4 shows a further advantageous arrangement in which, in addition to the previous example, the signal paths between the signal sources and sinks and the signal paths are decoupled by capacitors (83 ... 85). Decoupling by a transformer is of course also possible.
  • FIG. 5 shows a further embodiment which can be used particularly advantageously when transmitting symmetrical signals via the signal paths.
  • a first symmetrical signal is transmitted via paths 3 and 4 and a further symmetrical signal via paths 5 and 6.
  • a transformer (83, 84) is now used at least for each of these symmetrical signal transmission paths, in which both windings are wound in opposite directions. This transformer offers a particularly high suppression of symmetrical signals.
  • this example shows how a particularly high interference suppression of the control signals can be achieved.
  • a symmetry transmitter (85) or (86) must be used for each of the control signal paths.
  • these symmetry transformers suppress all asymmetrical signal components which arise from low-frequency leakage currents of the protective conductor or voltage drops caused by contact noise.
  • Figure 6 illustrates the space saving of the arrangement according to the invention compared to a system with protective insulation.
  • the first figure shows an increased safety distance (91) between the two power paths (1, 2) and the signal path (3), which generally corresponds to twice the insulation distance.
  • the second arrangement which corresponds to the subject of the invention, shows that between the two power paths (1, 2) and the signal path (3) only the regular insulation distance (92) must be observed.
  • FIG. 7 shows a particularly advantageous embodiment of the transmitter (83) for coupling the protective conductor to the signal paths.
  • an iron or ferrite core which in the simplest case consists of a ring core (90), is enclosed by a few turns of the protective conductor cable.

Abstract

Beschrieben wird eine Anordnung zur Übertragung von elektrischen Signalen und/oder Energie zwischen relativ zueinander beweglichen Teilen bestehend aus mindestens zwei der Trajektorie der Bewegung angepassten elektrischen Leitern auf dem ersten Teil und mit diesen Leitern in galvanischem oder zumindest kapazitivem bzw. induktivem Kontakt befindlichen weiteren Teilen. Die Erfindung zeichnet sich dadurch aus, dass zumindest einer der elektrischen Leiter, der gleichzeitig zur Übertragung von Steuer- und/oder Datensignalen dient, durch ein Filter galvanisch mit dem Schutzleiter verbunden ist, so dass er auch die Ableitfunktion des Schutzleiters wahrnimmt.

Description

Anordnung zur Übertragung elektrischer Signale zwischen bewegten Teilen mit verringerter
Wegezahl
B E S CHRE I BUNG
Technisches Gebiet
Die Erfindung bezieht sich auf eine Anordnung zur Übertragung elektrischer Signale und/oder Energie zwischen bewegten Teilen, die entlang einer beliebigen Trajekto- rie angeordnet sein können und miteinander in galvanischen oder zumindest kapazitiven bzw. induktiven Kontakt stehen.
Stand der Technik
Elektrische Signale bzw. elektrische Energie muss häufig zwischen relativ zueinander beweglichen Teilen übertragen werden. Ein gängiges Verfahren dazu stellen Schleifbahnen und Schleifringe dar. Hier wird das Signal bzw. die Energie, welche auf einem linearen oder auch kreisförmig angeordneten Leiter zugeführt wird, mittels eines beweglichen Abgriffes abgeleitet. Derartige Abgriffe können aus Kontaktfedern oder auch Kohlen bestehen, die einen guten galvanischen Kontakt ermöglichen. Ebenso ist es möglich, wie in der deutschen Patentanmeldung P 28 45 438 beschrieben, Signale bzw. Energie kapazitiv bzw. induktiv zu übertragen. In den nachstehenden Ausführungen wird der Klarheit halber anstelle der Begriffe „Signale" bzw. „Energie" nur noch auf den Begriff Signal bzw. Signalübertragung Bezug genommen. Weiterhin bezieht sich der Begriff Kanal auf einen kompletten Signalkanal, der in der Lage ist, eine Information gleichzeitig zu übertragen und damit zumindest aus einem Hinleiter und einem Rückleiter besteht . Mehrere Kanäle können durchaus einen gemeinsamen Rückleiter besitzen. Wesentlich ist, dass ein Stromfluss zwischen der Signalquelle und der Last bzw. Signalsenke zustande kommt . Der Begriff Schutzleiter bezieht sich hier auch auf Masseleiter.
In der Praxis eingesetzte Übertragungssysteme besitzen in der Regel einige Wege zur Leistungsversorgung der beweglichen Einrichtung, sowie mehrere Wege zur Übertragung von Steuersignalen. In der Regel erfolgt die Energiezuführung durch Netzspannungsleitungen, welche mit dem örtlichen Energieversorgungsnetz (230V, 400V) verbunden sind. Immer häufiger werden galvanisch mit dem Netz verbundene Gleichspannungszwischenkreise verwendet. Hierbei wird das Wechselstromnetz mit Hilfe eines Boost-konverters, welcher der Leistungsfaktorkorrektur dient, in ein Gleichspannungsnetz übertragen. Sowohl das Wechselspannungsnetz als auch der Gleichspannungszwischenstromkreis benötigen aus Sicherheitsgründen eine Schutzleiterverbindung zwischen dem beweglichen und dem feststehenden Anlagenteil. Die Stromtragfähigkeit der Schutzleiterverbindung und damit deren Leiter- bzw. Schleifbahnquerschnitt muss den Querschnitten der Energieversorgungsbahnen entsprechen. Die Energieversorgungsbahnen selbst sind häufig für hohe Ströme ausgelegt und besitzen daher hohe Querschnitte und eine hohe Anzahl von Kontaktfedern bzw. Kohlen. Allein der Materialaufwand für die Schutzleiterbahn so- wie deren Kontaktmedien verursacht einen nicht unerheblichen Kostenaufwand. Zudem wird zusätzlicher Platz für diese Bahn benötigt. Im einfachsten Falle eines Zweileitersystems mit Schutzleiter verursacht dieser Schutzleiterweg 50 % Mehrkosten bei einem um 50 % höheren Platzbedarf. Im Sinne einer platzsparenden und kostengünstigen Übertragungstechnik wäre es daher wünschenswert, die Schutzleiterfunktion zu realisieren, ohne jedoch hierfür einen gesonderten Übertragungsweg zu benötigen.
Stand der Technik
Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung zur Übertragung elektrischer Signale und/oder Energie zwischen bewegten Teilen zu schaffen, die entlang einer beliebigen Trajektorie bzw. Bewegungsbahn angeordnet sein können und miteinander in galvanischem oder zumindest kapazitiven bzw. induktivem Kontakt stehen, derart weiterzubilden, dass die elektrische Sicherheit der Anordnung gewährleistet werden kann, ohne einen diskreten Weg für die ausschließliche Funktion des Schutzleiters zu verwenden.
Die Lösung der Aufgabe ist im Anspruch 1 angegeben. Vorteilhafte Weiterbildungen sind Gegenstand der Un- teransprüche .
Erfindungsgemäß ist eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 derart ausgebildet, dass zumindest ein Weg zur Übertragung von Steuer- und/oder Datensignalen die Sicherheitsfunktion des Schutzleiters wahrnehmen kann. Dazu wird der Schutzleiteranschluss durch ein Filter mit den Übertragungswegen verbunden. Die Aufgabe des Filters ist die niederfrequente Verkuppelung des Schutzleiters mit den Übertragungswegen und die Entkopplung der Steuersignale von dem Schutzleiter. Dazu besitzt das Filter in dem Strompfad zwischen den Übertragungswegen und dem Schutzleiter selbst eine Tiefpasscharakteristik, welche Gleichstromanteile und insbesondere die niederfrequenten, der Netzfrequenz entsprechenden Anteile, passieren lässt. In diesem Frequenzbereich muss das Filter so niederohmig sein und eine derartige Strombelastbarkeit aufweisen, dass es den einschlägigen Sicherheitsvorschriften entspricht. In dem anderen Pfad zwischen den Signalwegen und den Signalquellen bzw. -senken besitzt das Filter eine Charakteristik, welche die meist hochfrequenten Steuersignale ungehindert passieren lässt. Die Filter zwischen den Signalwegen und dem Schutzleiter haben die Aufgabe, die einzelnen Signalwege für die Steuersignale voneinander zu entkoppeln und für niederfrequente Ableitströme, welche über den Schutzleiter fließen, zu verkoppeln. Daher müssen sie so dimensioniert werden, dass sie für die den Steuersignalen entsprechenden Frequenzen eine hinreichend hohe Dämpfung aufweisen. Zudem sollen diese Filter verhindern, dass hochfrequente Anteile aus den Steuersignalen in den Schutzleiter des Netzversorgungssystems gelangen und durch diesen unerwünschter Weise abgestrahlt werden.
Ein weiterer Vorteil der erfindungsgemäßen Anordnung ist die weitere Platzersparnis gegenüber schutzisolierten Systemen. Bei derartigen schutzisolierten Systemen ist der Isolationsaufwand auf den Schleifkontakten zwi- sehen den Leistungsübertragungswegen und den Signalwegen gleich dem doppelten Nominal-Isolationsabstand. Werden nun erfindungsgemäß die Signalwege direkt mit dem Schutzleiter verbunden, so kann dieser Abstand wieder auf seinen Nominalwert, d. h. auf die Hälfte des Wertes bei einer Schutzisolation, reduziert werden. Dadurch ergibt sich eine weitere Platzeinsparung und durch den geringeren Materialverbrauch eine Verschleißreduktion.
Ein weiterer Vorteil der erfindungsgemäßen Anordnung ist die erhöhte Redundanz. Bei einem Schleifkontaktsystem üblicher Bauweise ist niemals mit 100%iger Sicherheit ein niederohmiger Übergang durch den Schleifkontakt gewährleistet. Damit ist auch im Fehlerfalle nicht auszuschließen, dass durch eine KontaktStörung, welche durch Korrosion, Kontaktprellen oder einen mechanischen Defekt hervorgerufen werden kann, die Schutzleiterfunktion nur schlecht oder gar nicht vorhanden ist. Bei der erfindungsgemäßen Anordnung verteilt sich die Schutzleiterfunktion auf mehrere Schleifkontaktanordnungen, so dass mit großer Wahrscheinlichkeit zu-mindest eine oder mehrere dieser Schleifkontaktanordnungen den Ableitstrom übernehmen können. Damit besitzt die erfindungsgemäße Anordnung eine wesentlich höhere Sicherheit. Zudem besitzt in der Regel eine erfindungsgemäße Schleifkontaktanordnung eine wesentlich höhere Strombelastbarkeit, als ein üblicher Schutzleiterkontakt und bietet damit im Fehlerfall eine niedrigere Berührspannung an dem defekten Anlagenteil . Die höhere Strombelastbarkeit ergibt sich aus der üblichen Dimensionierung von Schleifkontaktanordnungen .
Dies soll an einem einfachen Beispiel verdeutlicht werden:
Eine typische Schleifkontaktanordnung im Falle eines einfachen Schleifringes für einen Computertomographen habe zwei Wege zur Energieübertragung mit einer maximaler Strombelastbarkeit von 80 A sowie vier weitere Signalwege zur paarweisen Übertragung von Steuersignalen. Zur Stromübertragung werden herkömmliche Silbergraphitkohlen mit einem Querschnitt von 5 x 4 mm2 auf Messingbahnen eingesetzt. Die Strombelastbarkeit einer solchen Silbergraphitkohle beträgt 20 A. Für die Leistungsbahnen werden aus Sicherheitsgründen jeweils 6 dieser Silbergraphitkohlen eingesetzt. Für die Steuersignalbahn verwendet man 4 solcher Kohlen, parallel geschaltet pro Bahn, um durch die Parallelschaltung eine Verringerung des Kontaktrauschens und damit eine Verbesserung der Signalübertragungsqualität zu erreichen. Als positiver Nebeneffekt erhöht sich dadurch die Strombelastbarkeit der Bahn auf ca. 80 A pro Bahn. Werden nun nach einer erfindungsgemäßen Anordnung diese 4 Steuersignalbahnen zur Wahrnehmung der Schutzleiterfunktion parallel geschaltet, so besitzt diese neue Gesamtschutzleiteranordnung eine Strombelastbarkeit von 240 A und einen entsprechend niedrigen Übergangswiderstand. Damit bietet dieses System eine wesentlich höhere Sicherheit, als ein nach konventionellen Regeln ausgelegtes System, bei dem eine zusätzliche Schutzleiterbahn mit 6 Silbergraphitkohlen vorgesehen ist. Sehr ähnlich ist die Dimensionierung auch bei den meisten anderen, dem Stand der Technik entsprechenden kontaktierenden Systemen, wie Goldfederdrahtkontakten oder auch Silberbandkontakten.
In einer besonders vorteilhaften Ausgestaltung der Erfindung werden lediglich im Filter die Signalzweige zwischen dem Schutzleiter und den Signalwegen mit der zuvor beschriebenen Tiefpasscharakteristik ausgestattet. Die Steuersignalquellen bzw. -senken werden direkt mit den Signalwegen verbunden. Eine solche Anordnung ist besonders kostengünstig realisierbar und ermöglicht dennoch eine störsichere Signalübertragung. Werden über Schleifbahnen gleichstrom- oder niederfrequente Signale höherer Stromstärke übertragen, so verursacht das Kontaktrauschen der Schleifkontakte einen nicht zu vernachlässigenden hochfrequenten Spannungsabfall auf diesen Bahnen. In umfangreichen Versuchsreihen konnten hier am Amplituden bis in den Voltbereich bei Frequenzen bis zu 200 MHz nachgewiesen werden. Diese Signale überlagern sich mit den Steuersignalen. Der Vorteil der hier beschriebenen Anordnung ist aber, dass in der Regel über den Schutzleiter kein oder nur ein sehr geringer Strom fließt. Dadurch verursachen auch die Spannungsabfälle, welche durch das Kontaktrauschen hervorgerufen werden, keine nennenswerten Signal - Störungen der Steuersignale. Lediglich im Störfall der Anlage, in dem ein Ableitstrom über den Schutzleiter fließt, können nennenswerte Stromstärken und damit nicht zu vernachlässigende Spannungsabfälle an den Signalwegen auftreten. In einer weiteren vorteilhaften Ausgestaltung der Erfindung befinden sich zusätzlich in dem Signalzweig des Filters zwischen den Steuersignalsenken und -quellen bzw. den Signalwegen Filterkomponenten, welche schmal- bandig den Übertragungsfrequenzbereich der Steuersignale durchlassen und die Störfrequenzbereiche des Kontaktrauschens bzw. der niederfrequenten Netzspannungen sperren.
In einer weiteren vorteilhaften ausgestatteten Erfindung enthält der Signalpfad des Filters zwischen dem Schutzleiteranschluss und den Signalwegen mindestens eine Induktivität, welche mindestens zwei Wicklungen enthält, die gegensinnig gewickelt sind, so dass sich für Schutzleiterströme die Magnetfelder der Wicklungen gegenseitig aufheben. Diese Anordnung ist besonders vorteilhaft, wenn symmetrische Signale (Differenzsignale) auf zwei Signalwegen übertragen werden. Dadurch ergibt sich für die Differenzsignale eine besonders hohe Induktivität und damit eine besonders hohe Filterwirkung, während für ein gemeinsames Signal, wie dem Schutzleiterableitstrom, die wirksame Induktivität gegen Null geht und damit die Leiter breitbandig zur Ableitung von Schutzleiterströmen geeignet sind.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung befindet sich im Pfad des Filters zwischen den Signalwegen und Signalquelle bzw. -senke im Falle der symmetrischen Signalübertragung ein Symmetrieübertrager. Dieser sorgt für eine breitbandige hohe Unterdrückung von unsymmetrischen Signalen, wie sie z. B. im Falle eines hohen Ableitstromes durch den Schutzleiter auf den Schleifbahnen auftreten. Ebenso werden durch das Kontaktrauschen hervorgerufene Spannungsabfälle breitbandig unterdrückt, da diese auch nur als unsymmetrische Signale auftreten.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung enthält das Filter zwischen dem Schutzleiter und den Schleifkontakten als wesentliches Filterelement einen einfachen Ferrit- bzw. Eisenkern, welcher die Schutzleiterzuleitungen entweder einzeln oder, im Falle einer symmetrischen Signalübertragung, im gegenläufigen Sinne umschließt.
Beschreibung der Abbildungen
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher beschrieben, in der zeigen:
Fig. 1 ein Ausführungsbeispielmit einer linearen Schleifbahnstrecke ,
Fig. 2 die Platz- und Kosteneinsparung durch eine erfindungsgemäße Anordnung,
Fig. 3 ein besonders bevorzugtes Ausführungsbeispiel, und
Fig. 4-7 weitere Ausführungsformen. Darstellung von Ausführungsbeispielen
Figur 1 zeigt eine erfindungsgemäße Anordnung am Beispiel einer linearen Schleifbahnstrecke. Selbstverständlich kann das Prinzip der Erfindung auch auf einen rotationssymmetrischen Schleifring oder auch eine Übertragungsstrecke mit beliebiger Trajektorie angewendet werden. Die Schleifbahnstrecke besteht aus den Schleifbahnen (1 ... 6) mit den entsprechenden Schleifkontakten (11 ... 16) . Dabei sind in der hier beispielhaft dargestellten Anordnung die Schleifbahnen (1, 2) , sowie die zugehörigen Schleifkontakte (11, 12) mit besonders hoher Spannungsfestigkeit und besonders hoher Stromtragfähigkeit zur Leistungsübertragung ausgestattet. Alle anderen Schleifbahnen und Schleifkontakte sind ausschließlich zur Signalübertragung für Steuersignale ausgelegt. Die Schleifbahnen für die Steuersignale sowie die Schleifkontakte werden über die Filtereinheiten (40) bzw. (41) angeschlossen. Das erste Filter (40) enthält einen Filterblock (50), welches den Schutzleiteranschluß (27) mit den Signalwegen verbindet. Weiterhin enthält es einen zweiten Filterblock (51), welcher die Signalwege mit den entsprechenden Anschlüssen für die Steuersignale (23 ... 26) verbindet. An diesen sind dann beliebige Signalquellen bzw. - senken (27, 28) angeschlossen. Eine ähnliche Anordnung befindet sich auf der anderen Seite der Schleifkontaktanordnung. Hier ist das Filter (41) mit einer ersten Filtereinheit (52) zur Verbindung des Schutzleiteranschlusses (37) mit den Signalwegen und einer zweiten Filtereinheit (53) zur Verbindung der Signalquellen bzw. -senken (37, 38) über die Ausgänge (33 ... 36) mit den Schleifbahnen zur Signalübertragung vorgesehen. Figur 2 dient zur Verdeutlichung der Platz- und Kosteneinsparung einer erfindungsgemäßen Anordnung. Sie zeigt im Querschnitt ein typisches Schleifkontaktmodul (60) welches die Schleifbahnen (1, 2) zur Energieübertragung und (3 ... 6) zur Signalübertragung enthält, sowie ein entsprechendes Schleifbahnmodul (61) bei dem ein zusätzlicher Schutzleiter (7) zu den Leistungsbahnen (1, 2) bzw. Signalbahnen (3 ... 6) vorgesehen ist. Um bei dem durch die zusätzliche Schutzleiterbahn verbreiterten Modul (61) auch eine hinreichende mechanische Stabilität zu erreichen, muss auch die Dicke des Moduls größer sein. Aus dem Größenvergleich der beiden Abbildungen wird sofort der geringere Materialeinsatz durch Wegfall der Schutzleiterbahn sowie ein wesentlich geringerer Trägermaterialverbrauch deutlich.
Figur 3 zeigt eine besonders günstige Anordnung, bei der der erste Filterblock zwischen dem Schutzleiteran- schluss und der Signalbahn lediglich Induktivitäten (73 ... 76) zur Entkoppelung der Signalbahn voneinander und der Signalbahnen vom Schutzleiter enthält . Die Verbindungen zwischen den Signalpfaden und den Steuersignal- quellen bzw. -senken werden hier galvanisch ausgeführt.
Figur 4 zeigt eine weitere vorteilhafte Anordnung, in der zusätzlich zum vorhergehenden Beispiel die Signal- pfade zwischen den Signalquellen und -senken sowie den Signalwegen durch Kapazitäten (83 ... 85) entkoppelt sind. Ebenso ist selbstverständlich eine Entkoppelung durch Übertrager möglich. Figur 5 zeigt eine weitere Ausgestaltung, die besonders vorteilhaft bei einer Übertragung symmetrischer Signale über die Signalwege eingesetzt werden kann. Hier werden beispielhaft über die Wege 3 und 4 ein erstes, sowie über die Wege 5 und 6 ein weiteres symmetrisches Signal übertragen. In der Filtereinheit (50) zwischen dem Schutzleiteranschluss und den Steuersignalwegen wird nun zumindest für jeden dieser symmetrischen Signalübertragungswege ein Übertrager (83, 84) verwendet, bei dem beide Wicklungen gegensinnig gewickelt werden. Dieser Übertrager bietet eine besonders hohe Unterdrük- kung symmetrischer Signale. Gleichzeitig wird in diesem Beispiel dargestellt, wie eine besonders hohe Störunterdrückung der Steuersignale erreicht werden kann. Dazu ist für jeden der Steuersignalwege ein Symmetrieübertrager (85) bzw. (86) einzusetzen. Diese Symmetrieübertrager unterdrücken, wie zuvor beschrieben, alle unsymmetrischen Signalanteile, welche durch niederfrequente Ableitströme des Schutzleiters oder auch durch Kontaktrauschen verursachte Spannungsabfälle entstehen.
Figur 6 veranschaulicht noch die Platzeinsparung der erfindungsgemäßen Anordnung gegenüber einem System mit Schutzisolation. In der ersten Abbildung ist zwischen den beiden Leistungswegen (1, 2) sowie dem Signalweg (3) ein erhöhter Sicherheitsabstand (91), welcher in der Regel dem doppelten Isolationsabstand entspricht, vorzusehen. Die zweite Anordnung, welche dem Erfin- dungsgegenstand entspricht, zeigt, dass zwischen den beiden Leistungswegen (1, 2) sowie dem Signalweg (3) nur der reguläre Isolationsabstand (92) einzuhalten ist .
Figur 7 zeigt noch eine besonders vorteilhafte Ausgestaltung des Übertragers (83) zur Koppelung des Schutzleiters an die Signalwege. In diesem Falle wird ein Eisen- bzw. Ferritkern, welcher im einfachsten Falle aus einem Ringkern (90) besteht, von wenigen Windungen des Schutzleiterkabels umschlossen.

Claims

PATENTANSPRÜCHE
1. Anordnung zur Übertragung von elektrischen Signalen und/oder Energie zwischen relativ zueinander beweglichen Teilen bestehend aus mindestens zwei der Trajektorie der Bewegung angepaßten elektrischen Leitern auf dem ersten Teil und mit diesen Leitern in galvanischem oder zumindest kapazitivem bzw. induktivem Kontakt befindlichen weiteren Teilen, dadurch gekennzeichnet, dass zumindest einer der elektrischen Leiter, der gleichzeitig zur Übertragung von Steuer- und/oder Datensignalen dient, durch ein Filter galvanisch mit dem Schutzleiter verbunden ist, so dass er auch die Ableitfunktion des Schutzleiters wahrnimmt.
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens zwei elektrische Leiter, von denen mindestens einer zur Übertragung von Steuer- und/oder Datensignalen dient, durch Filter galvanisch mit dem Schutzleiter verbunden sind, so dass sie die Ableitfunktion des Schutzleiters wahrnehmen Können.
3. Anordnung nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Filter eine Induktivität zur Kopplung des Schutzleiters an zumindest einen der elektrischen Leiter enthält.
4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Filter für jeden elektrischen Leiter, der zur Übertragung des Schutzleiterstromes verwendet werden soll, zumindest eine Induktivität enthält, welche an einem Ende mit dem elektrischen Leiter und am anderen Ende mit dem Schutzleiter verbunden ist.
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Induktivität zur Ankopplung des Schutzleiters aus einem Ferrit- bzw. Eisenkern um den Schutzleiter besteht.
6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Induktivität zur Ankopplung des Schutzleiters im Falle einer symmetrischen Differenzsignalübertragung auf den zur Übertragung des Schutzleiterstromes verwendeten Leitern aus einer Induktivität mit zwei gegensinnig gewickelten Wicklungen besteht.
EP00989815A 1999-11-30 2000-11-30 Anordnung zur übertragung elektrischer signale zwischen bewegten teilen mit verringerter wegezahl Withdrawn EP1252717A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19957621 1999-11-30
DE19957621A DE19957621C2 (de) 1999-11-30 1999-11-30 Anordnung zur Übertragung elektrischer Signale zwischen bewegten Teilen mit verringerter Wegezahl
PCT/DE2000/004263 WO2001041316A2 (de) 1999-11-30 2000-11-30 Anordnung zur übertragung elektrischer signale zwischen bewegten teilen mit verringerter wegezahl

Publications (1)

Publication Number Publication Date
EP1252717A2 true EP1252717A2 (de) 2002-10-30

Family

ID=7930871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00989815A Withdrawn EP1252717A2 (de) 1999-11-30 2000-11-30 Anordnung zur übertragung elektrischer signale zwischen bewegten teilen mit verringerter wegezahl

Country Status (4)

Country Link
US (1) US20030016182A1 (de)
EP (1) EP1252717A2 (de)
DE (1) DE19957621C2 (de)
WO (1) WO2001041316A2 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170802B2 (en) 2003-12-31 2007-01-30 Sandisk Corporation Flexible and area efficient column redundancy for non-volatile memories
US6985388B2 (en) 2001-09-17 2006-01-10 Sandisk Corporation Dynamic column block selection
DE10209597A1 (de) * 2002-03-05 2003-09-18 Efen Gmbh Verfahren und Vorrichtung zur Datenübertragung über Stromversorgungsleitungen
US7469032B2 (en) 2005-04-11 2008-12-23 Gendex Corporation Structural and patient positioning features of an x-ray system
DE102005047050B4 (de) * 2005-09-30 2007-09-20 Siemens Ag Anordnung zur elektrisch leitenden Verbindung
US7379330B2 (en) * 2005-11-08 2008-05-27 Sandisk Corporation Retargetable memory cell redundancy methods
US7974124B2 (en) * 2009-06-24 2011-07-05 Sandisk Corporation Pointer based column selection techniques in non-volatile memories
US8482611B2 (en) * 2010-03-23 2013-07-09 Pelco, Inc. Surveillance camera
US8842473B2 (en) 2012-03-15 2014-09-23 Sandisk Technologies Inc. Techniques for accessing column selecting shift register with skipped entries in non-volatile memories
EP3034001B1 (de) 2014-12-18 2017-10-18 Schleifring und Apparatebau GmbH Induktiver Drehübertrager mit sekundärer Sicherheitsschaltung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011551A (en) * 1976-02-23 1977-03-08 Acurex Corporation Multiple data channel wireless data coupling system for transmitting measured data from a plurality of rotating sources
FR2406503A1 (fr) * 1977-10-19 1979-05-18 Renault Circuit de transfert d'energie et de signaux electriques sans contact au niveau des articulations d'un robot
GB2088175B (en) * 1980-05-02 1984-10-03 Bligh Electrical S W Ltd Signal transmission over power lines
GB2148643B (en) * 1983-11-07 1988-03-16 Emlux Ltd Filtering electrical signals
GB9222205D0 (en) * 1992-10-22 1992-12-02 Norweb Plc Low voltage filter
US5530422A (en) * 1994-09-16 1996-06-25 General Electric Company Differentially driven transmission line for high data rate communication in a computerized tomography system
DE19523377C1 (de) * 1995-04-07 1996-08-14 Heraeus Med Gmbh Verfahren zur Übertragung von Videosignalen und Bildübertragungssystem für Operationsleuchte
DE19705301C1 (de) * 1997-02-13 1998-10-01 V W B Gmbh Einrichtung zur berührungslosen Informations- und Energieübertragung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0141316A2 *

Also Published As

Publication number Publication date
DE19957621A1 (de) 2001-06-13
US20030016182A1 (en) 2003-01-23
WO2001041316A3 (de) 2001-12-06
WO2001041316A2 (de) 2001-06-07
DE19957621C2 (de) 2001-11-29

Similar Documents

Publication Publication Date Title
DE19649682C2 (de) Vorrichtung zur breitbandigen Signal- bzw. Energieübertragung zwischen gegeneinander beweglichen Einheiten
EP1085674B1 (de) Netzwerk zur Daten- und Energieübertragung
EP2483126B1 (de) Schienenfahrzeug
EP0073903B1 (de) Vorrichtung zur kontaktlosen Übertragung von Informationen zwischen relativ zueinander rotierenden Bauteilen
DE102017110956A1 (de) Vorrichtung zur Übertragung von Energie und Information über ein Ladekabel für ein Elektrofahrzeug
DE102007049667A1 (de) Anordnung und Verfahren zur Kompensation eines Fehlerstromes bei einem Erdschluss
DE19957621C2 (de) Anordnung zur Übertragung elektrischer Signale zwischen bewegten Teilen mit verringerter Wegezahl
WO2001041315A2 (de) Anordnung zur übertragung von elektrischen signalen und/oder energie zwischen relativ zueinander drehbaren teilen
DE102005008555B4 (de) Verfahren zur Bestimmung einer Position
EP2868548A1 (de) Verfahren zur Überwachung eines Schaltungszustandes eines Schalters eines Zugsicherungssystem, sowie Zugsicherungssystem
DE2724920C2 (de) Hochspannungsfeste Signalübertragungseinrichtung mit einem Trennübertrager
DE4319347C2 (de) Nachrichtenübertragungsanlage für eine Krananlage
EP2773001B1 (de) Einrichtung für elektrische Sicherheit und Verfahren für ein fahrerloses Schienentransportmittel
EP0043065B1 (de) In eine geschirmte Busleitung einschaltbarer Signalkoppler
DE102009037340A1 (de) Übertrager
EP0752169B1 (de) Einrichtung zur datenübertragung in energieversorgungs-kabelnetzen
WO1998013976A1 (de) Übertrager-leitungskopplung
DE19724757B4 (de) Einrichtung zum Ausspeisen von Bahnrückströmen aus einem Bahngleis
EP4042539A1 (de) Hochspannungsanlage mit hochspannungsleiter sowie einrichtung zum anschluss an einen hochspannungsleiter
DE1947088C3 (de) Einrichtung zur Signalübertragung für Schienenfahrzeuge
DE102006062926B3 (de) Anlage, umfassend Busteilnehmer mit jeweiligen Busanschlussvorrichtungen
DE1909423A1 (de) Schaltungsanordnung fuer mit Wechselstrom gespeiste Gleisstromkreise in Weichen- und Kreuzungsbereichen von Eisenbahnanlagen
DE102006002934B4 (de) Verfahren zur Bestimmung einer Position eines Fahrzeuges in einer Anlage
DE102019211454A1 (de) Anordnung für einen hochfrequenten Potenzialausgleich
DE69912318T2 (de) Remote Feeder Reactance Coil / Fernspeisedrossel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020513

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040309

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040921