EP1261377B1 - Immunomodulatory formulations and methods for use thereof - Google Patents

Immunomodulatory formulations and methods for use thereof Download PDF

Info

Publication number
EP1261377B1
EP1261377B1 EP01918568A EP01918568A EP1261377B1 EP 1261377 B1 EP1261377 B1 EP 1261377B1 EP 01918568 A EP01918568 A EP 01918568A EP 01918568 A EP01918568 A EP 01918568A EP 1261377 B1 EP1261377 B1 EP 1261377B1
Authority
EP
European Patent Office
Prior art keywords
imp
complex
antigen
iss
microcarrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01918568A
Other languages
German (de)
French (fr)
Other versions
EP1261377A2 (en
Inventor
Gary Van Nest
Stephen Tuck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynavax Technologies Corp
Original Assignee
Dynavax Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynavax Technologies Corp filed Critical Dynavax Technologies Corp
Priority to EP09004153A priority Critical patent/EP2067487A3/en
Publication of EP1261377A2 publication Critical patent/EP1261377A2/en
Application granted granted Critical
Publication of EP1261377B1 publication Critical patent/EP1261377B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/975Kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery

Definitions

  • the present invention relates to immunomodulatory compositions comprising an immunostimulatory oligonucleotide sequence (ISS).
  • ISS immunostimulatory oligonucleotide sequence
  • the invention relates to immunomodulatory compositions comprising an ISS bound to a nonbiodegradable microparticle. It also relates to the administration of the polynucleotide/microcarrier complex to modulate at least one immune response.
  • the type of immune response generated to infection or other antigenic challenge can generally be distinguished by the subset of T helper (Th) cells involved in the response.
  • the Th1 subset is responsible for classical cell-mediated functions such as delayed-type hypersensitivity and activation of cytotoxic T lymphocytes (CTLs), whereas the Th2 subset functions more effectively as a helper for B-cell activation.
  • CTLs cytotoxic T lymphocytes
  • the type of immune response to an antigen is generally influenced by the cytokines produced by the cells responding to the antigen. Differences in the cytokines secreted by Th1 and Th2 cells are believed to reflect different biological functions of these two subsets. See, for example, Romagnani (2000) Ann. Allergy Asthma Immunol. 85:9-18 .
  • the Th1 subset may be particularly suited to respond to viral infections, intracellular pathogens, and tumor cells because it secretes IL-2 and IFN- ⁇ , which activate CTLs.
  • the Th2 subset may be more suited to respond to free-living bacteria and helminthic parasites and may mediate allergic reactions, since IL-4 and IL-5 are known to induce IgE production and eosinophil activation, respectively.
  • Th1 and Th2 cells secrete distinct patterns of cytokines and so one type of response can moderate the activity of the other type of response. A shift in the Th1/Th2 balance can result in an allergic response, for example, or, alternatively, in an increased CTL response.
  • Th2-type responses are of little protective value against infection.
  • Proposed vaccines using small peptides derived from the target antigen and other currently used antigenic agents that avoid use of potentially infective intact viral particles do not always elicit the immune response necessary to achieve a therapeutic effect.
  • the lack of a therapeutically effective human immunodeficiency virus (HIV) vaccine is an unfortunate example of this failure.
  • Protein-based vaccines typically induce Th2-type immune responses, characterized by high titers of neutralizing antibodies but without significant cell-mediated immunity.
  • allergic responses also involve Th2-type immune responses.
  • Allergic responses including those of allergic asthma, are characterized by an early phase response, which occurs within seconds to minutes of allergen exposure and is characterized by cellular degranulation, and a late phase response, which occurs 4 to 24 hours later and is characterized by infiltration of eosinophils into the site of allergen exposure.
  • allergen cross-links IgE antibodies on basophils and mast cells, which in turn triggers degranulation and the subsequent release of histamine and other mediators of inflammation from mast cells and basophils.
  • eosinophils infiltrate into the site of allergen exposure (where tissue damage and dysfunction result).
  • Antigen immunotherapy for allergic disorders involves the subcutaneous injection of small, but gradually increasing amounts, of antigen.
  • Such immunization treatments present the risk of inducing IgE-mediated anaphylaxis and do not efficiently address the cytokine-mediated events of the allergic late phase response. Thus far, this approach has yielded only limited success.
  • immunostimulatory sequences generally known as immunostimulatory sequences or "ISS," induces an immune response with a Th1-type bias as indicated by secretion of Th1-associated cytokines.
  • Administration of an immunostimulatory polynucleotide with an antigen results in a Th1-type immune response to the administered antigen.
  • coli ⁇ -galactosidase ( ⁇ -Gal) in saline or in the adjuvant alum responded by producing specific IgG1 and IgE antibodies, and CD4 + cells that secreted IL-4 and IL-5, but not IFN- ⁇ , demonstrating that the T cells were predominantly of the Th2 subset.
  • mice injected intradermally (or with a tyne skin scratch applicator) with plasmid DNA (in saline) encoding ⁇ -Gal and containing an ISS responded by producing IgG2a antibodies and CD4 + cells that secreted IFN- ⁇ , but not IL-4 and IL-5, demonstrating that the T cells were predominantly of the Th1 subset Moreover, specific IgE production by the plasmid DNA-injected mice was reduced 66-75%. Raz et al. (1996) Proc. Natl. Acad Sci. USA 93:5141-5145 .
  • the response to naked DNA immunization is characterized by production of IL-2, TNF ⁇ and IFN- ⁇ by antigen-stimulated CD4 + T cells, which is indicative of a Th1-type response.
  • This is particularly important in treatment of allergy and asthma as shown by the decreased IgE production.
  • the ability of immunostimulatory polynucleotides to stimulate a Th1-type immune response has been demonstrated with bacterial antigens, viral antigens and with allergens (see, for example, WO 98/55495 ).
  • ISS-containing oligonucleotides bound to microparticles have previously been shown to have immunostimulatory activity in vitro ( Liang et al., (1996), J. Clin. Invest. 98:1119-1129 ). However, recent results show that ISS-containing oligonucleotides bound to gold, latex and magnetic particles are not active in stimulating proliferation of 7TD1 cells, which proliferate in response to ISS-containing oligonucleotides ( Manzel et al. (1999) Antisense Nucl. Acid Drug Dev. 9:459-464 ).
  • the invention relates to new compositions, and such compositions for use in modulating immune responses in individuals, particularly human individuals.
  • the invention provides an immunomodulatory polynucleotide/ microcarrier (IMP/MC) complex, comprising: a polynucleotide comprising an immunostimulatory sequence (ISS) linked to the surface of a nonbiodegradable microcarrier (MC), wherein the ISS is greater than 6 bases in length, up to 50 bases in length and comprises the sequence 5'-C, G-3', and wherein the microcarrier is polystyrene.
  • ISS immunostimulatory sequence linked to the surface of a nonbiodegradable microcarrier
  • ISS immunostimulatory sequence linked to the surface of a nonbiodegradable microcarrier
  • the ISS is greater than 6 bases in length, up to 50 bases in length and comprises the sequence 5'-C, G-3', and wherein the microcarrier is polystyrene.
  • the IMP may be covalently or non-covalently linked to the microcarrier in the complex, and the IMP may be modified to facilitate complex formation.
  • Microcarriers used in IMP/MC complexes are solid phase microcarriers. Microcarriers are generally less than 100 ⁇ m in size, and may be 10 nm to 10 ⁇ m or 25 nm to 5 ⁇ m in size.
  • the compositions of the invention comprise an IMP/MC complex and a pharmaceutically acceptable excipient.
  • the compositions of the invention comprise an antigen-free IMP/MC complex, i.e., an IMP/MC complex not linked to an antigen (either directly or indirectly).
  • the invention relates to an IMP/MC complex for use in modulating an immune response in an individual.
  • Immunomodulation may be practiced on individuals including those suffering from a disorder associated with a Th2-type immune response (e.g., allergies or allergy-induced asthma), individuals receiving vaccines such as therapeutic vaccines (e . g ., vaccines comprising an allergy epitope, a mycobacterial epitope, or a tumor associated epitope) or prophylactic vaccines, individuals with cancer, individuals having an infectious disease and individuals at risk of exposure to an infectious agent.
  • the invention relates to an IMP/MC complex for increasing interferon-gamma (IFN- ⁇ ) in an individual.
  • Administration of an IMP/MC complex in accordance with the invention increases IFN- ⁇ in the individual.
  • Suitable subjects for these methods include those individuals having idiopathic pulmonary fibrosis (IPF), scleroderma, cutaneous radiation-induced fibrosis, hepatic fibrosis including schistosomiasis-induced hepatic fibrosis, renal fibrosis as well as other conditions which may be improved by administration of IFN- ⁇ .
  • IPF idiopathic pulmonary fibrosis
  • scleroderma scleroderma
  • cutaneous radiation-induced fibrosis hepatic fibrosis including schistosomiasis-induced hepatic fibrosis
  • renal fibrosis as well as other conditions which may be improved by administration of IFN- ⁇ .
  • the invention in another aspect, relates to an IMP/MC complex for increasing IFN- ⁇ in an individual.
  • Administration of an IMP/MC complex in accordance with the invention increases IFN- ⁇ levels in the individual.
  • Suitable subjects for these methods include those individuals having disorders which respond to the administration of IFN- ⁇ , including viral infections and cancer.
  • the invention in another aspect, relates to an IMP/MC complex ameliorating one or more symptoms of an infectious disease.
  • Administration of an IMP/MC complex in accordance with the invention ameliorates one or more symptoms of the infectious disease.
  • infectious diseases which may be treated in accordance with the invention include infectious diseases caused by a cellular pathogen (e.g ., a mycobacterial disease, malaria, leishmaniasis, toxoplasmosis, schistosomiasis or clonorchiasis), and may include or exclude viral diseases.
  • kits for carrying out the invention comprise a container comprising an IMP/MC complex instructions for use of IMP/MC complex in immunodulation of an individual, for example when the individual suffers from a disorder associated with a Th2-type immune response (e.g ., allergies or allergy-induced asthma), is receiving vaccines such as therapeutic vaccines (e.g ., vaccines comprising an allergy epitope, a mycobacterial epitope, or a tumor associated epitope) or prophylactic vaccines, suffers from cancer, suffers from an infectious disease or is at risk of exposure to an infectious agent.
  • a Th2-type immune response e.g ., allergies or allergy-induced asthma
  • vaccines e.g ., vaccines comprising an allergy epitope, a mycobacterial epitope, or a tumor associated epitope
  • prophylactic vaccines suffers from cancer, suffers from an infectious disease or is at risk of exposure to an infectious agent.
  • compositions of the invention comprise an immunomodulatory polynucleotide (IMP) complexed with a nonbiodegradable microcarrier (MC).
  • IMP immunomodulatory polynucleotide
  • MC nonbiodegradable microcarrier
  • immunomodulatory polynucleotides combined with nanometer-scale microcarriers 50 and 200 nm diameter beads
  • IMPs combined with small microcarriers (approximately 1 to 4.5 ⁇ m, less than 2.0 ⁇ m or 1.5 ⁇ m diameter) also immunomodulated human cells.
  • Our discovery is of particular interest because human cells, as is known in the art, can be more resistant to immunomodulation by IMPs than cells from commonly used laboratory animals, such as mice.
  • the IMP/MC complexes may include or exclude an antigen.
  • the invention provides compositions comprising antigen-free IMP/MC complexes, i . e ., IMP/MC complexes not linked to an antigen (directly or indirectly).
  • the invention provides compositions comprising IMP/MC complexes mixed with one or more antigens.
  • the invention provides compositions comprising IMP/MC complexes linked to antigen.
  • the immunomodulatory polynucleotide/microcarrier (IMP/MC) complexes of the invention may be covalently or non-covalently linked, and comprise a microcarrier (e.g ., a carrier of less than 10 ⁇ m size) that is insoluble in water.
  • Microcarriers are solid phase (polystyrene beads).
  • microcarriers which are liquid phase (e.g ., liposomes, micelles, or oil droplets in an oil and water emulsion).
  • the IMP may be modified to allow or augment binding to the MC (e.g ., by incorporation of a free sulfhydryl for covalent crosslinking or addition of a hydrophobic moiety such as cholesterol for hydrophobic bonding).
  • the invention provides new compositions comprising an IMP covalently linked to a nonbiodegradable microcarrier to form a covalent IMP/MC complex as defined in claim 1.
  • Linkage between the IMP and MC may be direct ( e.g ., via disulfide bond between sulfhydryls on the IMP and MC) or the constituents may be linked by a crosslinking moiety of one or more atoms separating the bonds to the IMP and MC.
  • compositions comprising an IMP non-covalently linked to a microcarrier to provide a non-covalent IMP/MC complex
  • Non-covalent IMP/MC complexes generally comprise an IMP that has been modifies to allow binding to the microcarrier (e . g ., by addition of a cholesterol moiety to the IMP to allow hydrophobic binding to oil or lipid based microcarrier).
  • the invention also provides the IMP/MC complex for use a methods for modulating an immune response in an individual by administering an IMP/MC complex to the individual.
  • kits for practicing the methods of the invention comprise instructions for administering an IMP/MC complex for immunomodulation in a subject and a package or containers comprising IMP/MC complex.
  • an ISS includes one or more ISS.
  • polynucleotide and “oligonucleotide” include single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA), modified oligonucleotides and oligonucleosides or combinations thereof.
  • the oligonucleotide can be linearly or circularly configured, or the oligonucleotide can contain both linear and circular segments.
  • Oligonucleotides are polymers of nucleosides joined, generally, through phosphoester linkages, although alternate linkages, such as phosphorothioate esters may also be used in oligonucleotides.
  • a nucleoside consists of a purine (adenine or guanine or derivative thereof) or pyrimidine (thymine, cytosine or uracil, or derivative thereof) base bonded to a sugar.
  • the four nucleoside units (or bases) in DNA are called deoxyadenosine, deoxyguanosine, deoxythymidine, and deoxycytidine.
  • a nucleotide is a phosphate ester of a nucleoside.
  • ISS refers to polynucleotide sequences that effect a measurable immune response as measured in vitro, in vivo and/or ex vivo.
  • measurable immune responses include antigen-specific antibody production, secretion of cytokines, activation or expansion of lymphocyte populations such as NK cells, CD4+ T lymphocytes, CD8+ T lymphocytes, B lymphocytes.
  • the ISS sequences preferentially activate a Th1-type response.
  • a polynucleotide for use in the invention contains at least one ISS.
  • ISS is also a shorthand term for an ISS-containing polynucleotide.
  • immunomodulatory polynucleotide refers to a polynucleotide comprising at least one ISS.
  • the IMP is an ISS.
  • nonbiodegradable refers to a microcarrier which is not degraded or eroded under normal mammalian physiological conditions. Generally, a microcarrier is considered nonbiodegradable if it not degraded ( i . e ., loses less than 5% of its mass and/or average polymer length) after a 72 hour incubation at 37°C in normal human serum.
  • microcarrier refers to a particulate composition which is insoluble in water and which has a size of less than 100 ⁇ m, preferably less than 50-60 ⁇ m, preferably less than 10 ⁇ m, preferably less than 5, 2.5, 2 or 1.5 ⁇ m.
  • Microcarriers include "nanocarriers", which are microcarriers have a size of less than 1 ⁇ m, preferably less than 500 nm.
  • Microcarriers include solid phase particles formed from polystrene. Solid phase microcarriers are formed frown polystrene which is non-erodible and/or non-degradable under mammalian physiological conditions.
  • Microcarriers are typically spherical in shape, but microcarriers which deviate from spherical shape are also acceptable ( e.g . ellipsoidal, rod-shaped, etc.). Due to their insoluble nature (with respect to water), microcarriers are filterable from water and water-based (aqueous) solutions.
  • the "size" of a microcarrier is generally the "design size” or intended size of the particles stated by the manufacturer. Size may be a directly measured dimension, such as average or maximum diameter, or may be determined by an indirect assay such as a filtration screening assay. Direct measurement of microcarrier size is typically carried out by microscopy, generally light microscopy or scanning electron microscopy (SEM), in comparison with particles of known size or by reference to a micrometer. As minor variations in size arise during the manufacturing process, microcarriers are considered to be of a stated size if measurements show the microcarriers are ⁇ 5-10% of the stated measurement. Size characteristics may also be determined by dynamic light scattering. Alternatively, microcarrier size may be determined by filtration screening assays.
  • a microcarrier is less than a stated size if a least 97% of the particles pass through a "screen-type” filter (i.e. a filter in which retained particles are on the surface of the filter, such as polycarbonate or polyethersulfone filters, as opposed to a "depth filter” in which retained particles lodge within the filter) of the stated size.
  • a microcarrier is larger than a stated size if at least 97% of the microcarrier particles are retained by a screen-type filter of the stated size.
  • at least 97% microcarriers of 10 ⁇ m to 10 nm in size pass through a 10 ⁇ m pore screen filter and are retained by a 10 nm screen filter.
  • IMP/MC complex refers to a complex of an ISS-containing polynucleotide and a microcarrier of the invention.
  • the components of the complex may be covalently or non-covalently linked.
  • Non-covalent linkages may be mediated by any non-covalent bonding force, including by hydrophobic interaction, ionic (electrostatic) bonding, hydrogen bonds and/or van der Waals attractions.
  • hydrophobic linkages the linkage is generally via a hydrophobic moiety (e.g ., cholesterol) covalently linked to the IMP.
  • immunomodulatory or “modulating an immune response” as used herein includes immunostimulatory as well as immunosuppressive effects. Immunomodulation is primarily a qualitative alteration in an overall immune response, although quantitative changes may also occur in conjunction with immunomodulation.
  • An immune response that is immunomodulated according to the present invention is one that is shifted towards a "TH1-type” immune response, as opposed to a "Th2-type” immune response.
  • Th1-type responses are typically considered cellular immune system (e.g ., cytotoxic lymphocytes) responses, while Th2-type responses are generally "humoral", or antibody-based.
  • Th1-type immune responses are normally characterized by "delayed-type hypersensitivity" reactions to an antigen, and can be detected at the biochemical level by increased levels of Th1-associated cytokines such as IFN- ⁇ , IL-2, IL-12, and TNF- ⁇ , as well as IFN- ⁇ and IL-6, although IL-6 may also be associated with Th2-type responses as well.
  • Th1-type immune responses are generally associated with the production of cytotoxic lymphocytes (CTLs) and low levels or transient production of antibody.
  • CTLs cytotoxic lymphocytes
  • Th2-type immune responses are generally associated with higher levels of antibody production, including IgE production, an absence of or minimal CTL production, as well as expression of Th2-associated cytokines such as IL-4. Accordingly, immunomodulation in accordance with the invention may be recognized by, for example, an increase in IFN- ⁇ and/or a decrease in IgE production in an individual treated with the IMP/MC complex of the invention as compared to the absence of treatment.
  • conjugate refers to a complex in which an ISS-containing polynucleotide and an antigen are linked.
  • conjugate linkages include covalent and/or non-covalent linkages.
  • antigen means a substance that is recognized and bound specifically by an antibody or by a T cell antigen receptor.
  • Antigens can include peptides, proteins, glycoproteins, polysaccharides, complex carbohydrates, sugars, gangliosides, lipids and phospholipids; portions thereof and combinations thereof.
  • the antigens can be those found in nature or can be synthetic.
  • Antigens suitable for administration with ISS include any molecule capable of eliciting a B cell or T cell antigen-specific response. Preferably, antigens elicit an antibody response specific for the antigen.
  • Haptens are included within the scope of "antigen.”
  • a hapten is a low molecular weight compound that is not immunogenic by itself but is rendered immunogenic when conjugated with an immunogenic molecule containing antigenic determinants. Small molecules may need to be haptenized in order to be rendered antigenic.
  • antigens of the present invention include peptides, lipids (e.g . sterols, fatty acids, and phospholipids), polysaccharides such as those used in Hemophilus influenza vaccines, gangliosides and glycoproteins.
  • Adjuvant refers to a substance which, when added to an immunogenic agent such as antigen, nonspecifically enhances or potentiates an immune response to the agent in the recipient host upon exposure to the mixture.
  • peptide are polypeptides that are of sufficient length and composition to effect a biological response, e.g . antibody production or cytokine activity whether or not the peptide is a hapten. Typically, the peptides are at least six amino acid residues in length.
  • peptide further includes modified amino acids (whether or not naturally or non-naturally occurring), such modifications including phosphorylation, glycosylation, pegylation, lipidization and methylation.
  • Antigenic peptides can include purified native peptides, synthetic peptides, recombinant proteins, crude protein extracts, attenuated or inactivated viruses, cells, microorganisms, or fragments of such peptides.
  • An "antigenic peptide” or “antigen polypeptide” accordingly means all or a portion of a polypeptide which exhibits one or more antigenic properties.
  • an "Amb a 1 antigenic polypeptide” or “Amb a 1 polypeptide antigen” is an amino acid sequence from Amb a1, whether the entire sequence, a portion of the sequence, and/or a modification of the sequence, which exhibits an antigenic property (i.e., binds specifically to an antibody or a T cell receptor).
  • a “delivery molecule” or “delivery vehicle” is a chemical moiety which facilitates, permits, and/or enhances delivery of an IMP/MC complex to a particular site and/or with respect to particular timing.
  • a delivery vehicle may or may not additionally stimulate an immune response.
  • An "allergic response to antigen” means an immune response generally characterized by the generation of eosinophils and/or antigen-specific IgE and their resultant effects.
  • IgE binds to IgE receptors on mast cells and basophils. Upon later exposure to the antigen recognized by the IgE, the antigen cross-links the IgE on the mast cells and basophils causing degranulation of these cells, including to histamine release.
  • the terms "allergic response to antigen”, “allergy”, and “allergic condition” are equally appropriate for application of some of the methods of the invention.
  • the medicaments of the invention include those that are equally appropriate for prevention of an allergic response as well as treating a pre-existing allergic condition.
  • allergen means an antigen or antigenic portion of a molecule, usually a protein, which elicits an allergic response upon exposure to a subject.
  • the subject is allergic to the allergen as indicated, for instance, by the wheal and flare test or any method known in the art.
  • a molecule is said to be an allergen even if only a small subset of subjects exhibit an allergic (e.g., IgE) immune response upon exposure to the molecule.
  • IgE allergic (e.g., IgE) immune response upon exposure to the molecule.
  • isolated allergens are known in the art. These include those provided in Table 1 herein.
  • desensitization refers to the process of the administration of increasing doses of an allergen to which the subject has demonstrated sensitivity.
  • allergen doses used for desensitization are known in the art, see, for example, Fornadley (1998) Otolaryngol. Clin. North Am. 31:111-127 .
  • Antigen-specific immunotherapy refers to any form of immunotherapy which involves antigen and generates an antigen-specific modulation of the immune response.
  • antigen-specific immunotherapy includes desensitization therapy.
  • mammals include humans, primates, farm animals, sport animals, rodents and pets. Vertebrates also include birds ( i.e ., avian individuals) and reptiles ( i.e ., reptilian individuals).
  • an “effective amount” or a “sufficient amount” of a substance is that amount sufficient to effect beneficial or desired results, including clinical results, and, as such, an "effective amount” depends upon the context in which it is being applied.
  • an effective amount of an IMP/MC complex is an amount sufficient to achieve such a modulation as compared to the immune response obtained when the antigen is administered alone.
  • An effective amount can be administered in one or more administrations.
  • co-administration refers to the administration of at least two different substances sufficiently close in time to modulate an immune response.
  • co-administration refers to simultaneous administration of at least two different substances.
  • Stimulation of an immune response means an increase in the response, which can arise from eliciting and/or enhancement of a response.
  • IgE associated disorder is a physiological condition which is characterized, in part, by elevated IgE levels, which may or may not be persistent.
  • IgE associated disorders include allergy and allergic reactions, allergy-related disorders (described below), asthma, rhinitis, conjunctivitis, urticaria, shock, Hymenoptera sting allergies, and drug allergies, and parasite infections. The term also includes related manifestations of these disorders. Generally, IgE in such disorders is antigen-specific.
  • an "allergy-related disorder” means a disorder resulting from the effects of an antigen-specific IgE immune response. Such effects can include hypotension and shock.
  • Anaphylaxis is an example of an allergy-related disorder during which histamine released into the circulation causes vasodilation as well as increased permeability of the capillaries with resultant marked loss of plasma from the circulation. Anaphylaxis can occur systemically, with the associated effects experienced over the entire body, and it can occur locally, with the reaction limited to a specific target tissue or organ.
  • viral disease refers to a disease which has a virus as its etiologic agent.
  • examples of viral diseases include hepatitis B, hepatitis C, influenza, acquired immunodeficiency syndrome (AIDS), and herpes zoster.
  • treatment is an approach for obtaining beneficial or desired results, including clinical results.
  • beneficial or desired clinical results include alleviation or amelioration of one or more symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • “Palliating" a disease or disorder means that the extent and/or undesirable clinical manifestations of a disorder or a disease state are lessened and/or time course of the progression is slowed or lengthened, as compared to not treating the disorder.
  • palliation may occur upon modulation of the immune response against an allergen(s). Further, palliation does not necessarily occur by administration of one dose, but often occurs upon administration of a series of doses. Thus, an amount sufficient to palliate a response or disorder may be administered in one or more administrations.
  • an “antibody titer”, or “amount of antibody”, which is “elicited” by an IMP/MC complex refers to the amount of a given antibody measured at a time point after administration of IMP/MC complex.
  • Th1-associated antibody is an antibody whose production and/or increase is associated with a Th1 immune response.
  • IgG2a is a Th1-associated antibody in mouse.
  • measurement of a Th1-associated antibody can be measurement of one or more such antibodies.
  • measurement of a Th1-associated antibody could entail measurement of IgG1 and/or IgG3.
  • Th2-associated antibody is an antibody whose production and/or increase is associated with a Th2 immune response.
  • IgG1 is a Th2-associated antibody in mouse.
  • measurement of a Th2-associated antibody can be measurement of one or more such antibodies.
  • measurement of a Th2-associated antibody could entail measurement of IgG2 and/or IgG4.
  • a function or activity such as cytokine production, antibody production, or histamine release
  • cytokine production is to reduce the function or activity when compared to otherwise same conditions except for a condition or parameter of interest, or alternatively, as compared to another condition.
  • an IMP/MC complex administered with an antigen or including an antigen which suppresses histamine release reduced histamine release as compared to, for example, histamine release induced by antigen alone.
  • compositions of the invention are provided.
  • the invention provides new compositions for modulating immune response in individuals.
  • the new compositions are immunomodulatory polynucleotide/microcarrier (IMP/MC) complexes which comprise an ISS-containing polynucleotide complexed to a nonbiodegradable microcarrier.
  • IMP/MC complexes may be covalent complexes, in which the IMP portion of the complex is covalently bonded to the MC, either directly or via a linker ( i.e ., indirectly), or they may be non-covalent complexes.
  • the immunomodulatory polynucleotide contains at least one ISS, and can contain multiple ISSs.
  • the ISSs can be adjacent within the polynucleotide, or they can be separated by additional nucleotide bases within the polynucleotide.
  • an IMP may contain combinations of any one or more ISS described herein, including those with modifications.
  • the IMP consists of an ISS.
  • ISS have been described in the art and may be readily identified using standard assays which indicate various aspects of the immune response, such as cytokine secretion, antibody production, NK cell activation and T cell proliferation. See, e.g., WO 97/28259 ; WO 98/16247 ; WO 99/11275 ; Krieg et al. (1995) Nature 374:546-549 ; Yamamoto et al. (1992a); Ballas et al. (1996); Klinman et al. (1997); Sato et al. (1996);Pisetsky (1996a); Shimada et al. (1986) Jpn.J. Cancer Res. 77:808-816 ; Cowdery et al. (1996) J. Immunol. 156:4570-4575 ; Roman et al. (1997); and Lipford et al. (1997a).
  • the ISS can be of any length greater than 6 bases or base pairs and up to 50 bases, and comprises the sequence 5'-cytosine, guanine-3', preferably greater than 15 bases or base pairs, more preferably greater than 20 bases or base pairs in length.
  • the cytosine of the 5'-cytosine, guanine-3' sequence is unmethylated.
  • An ISS may also comprise the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine, C, G-3'.
  • An ISS may also comprise the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine, C, C-3'.
  • an ISS may comprise ( i.e., contain one or more of) the sequence 5'-T, C, G-3'.
  • an ISS may comprise the sequence 5'-C, G, pyrimidine, pyrimidine, C, G-3' (such as 5'-CGTTCG-3').
  • an ISS may comprise the sequence 5'-C, G, pyrimidine, pyrimidine, C, G, purine, purine-3'.
  • an ISS comprises the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine-3' (such as 5'-AACGTT-3').
  • an ISS may comprise the sequence 5'-purine, T, C, G, pyrimidine, pyrimidine-3'.
  • the ISS comprises any of the following sequences: GACGCTCC; GACGTCCC; GACGTTCC; GACGCCCC; AGCGTTCC; AGCGTCCC; AGCGCCCC; AACGTCCC; AACGCCCC; AACGTTCC; AACGCTCC; GGCGTTCC; GGCGTCCC; GGCGCCCC; GACGCTCG; GACGTCCG; GACGCCCG; GACGTTCG; AGCGCTCG; AGCGTTCG; AGCGTCCG; AGCGCCCG; AGCGTCCG; AGCGCCCG; AACGTCCG; AACGCCCG; AACGTTCG; AACGCTCG; GGCGTTCG; GGCGCTCG; GGCGTCCG; GGCGCCCG.
  • the ISS comprises any of the following sequences: GACGCT; GACGTC; GACGTT; GACGCC; GACGCU; GACGUC; GACGUU; GACGUT; GACGTU; AGCGTT; AGCGCT; AGCGTC; AGCGCC; AGCGUU; AGCGCU; AGCGUC; AGCGUT; AGCGTU; AACGTC; AACGCC; AACGTT; AACGCT; AACGUC; AACGUU; AACGCU; AACGUT; AACGTU; GGCGTT; GGCGCT; GGCGTC; GGCGCC; GGCGUU; GGCGCU; GGCGUC; GGCGUT; GGCGTU.
  • the ISS comprises any of the following sequences: GABGCTCC; GABGTCCC; GABGTTCC; GABGCCCC; AGBGTTCC; AGBGTCCC; AGBGCCCC; AABGTCCC; AABGCCCC; AABGTTCC; AABGCTCC; GGBGTTCC; GGBGTCCC; GGBGCCCC; GABGCTCG; GABGTCCG; GABGCCCG; GABGTTCG; AGBGCTCG; AGBGTTCG; AGBGTCCG; AGBGCCCG; AABGTCCG; AABGCCCG; AABGTTCG; AABGCTCG; GGBGTTCG; GGBGCTCG; GGBGTCCG; GGBGCCCG; GABGCTBG; GABGTCBG; GABGCCBG; GABGTTBG; AGBGCTBG; AGBGTTBG; AGBGTCBG; AGBGCTBG; AGBGTCBG; AGBGCCCG; GABGTCCG; GABGCCCG; GABGTTCG; GGBGCTCG; GGBGTCCG;
  • the ISS comprises any of the following sequences: GABGCUCC; GABGUCCC; GABGUTCC; GABGTUCC; GABGUUCC; AGBGUUCC; AGBGTUCC; AGBGUTCC; AGBGCUCC; AGBGUCCC; AABGUCCC; AABGUUCC; AABGUTCC; AABGTUCC; AABGCUCC; GGBGUUCC; GGBGUTCC; GGBGTUCC; GGBGCUCC; GGBGUCCC; GABGCUCG; GABGUCCG; GABGUCG; GABGUTCG;GABGTUCG; AGBGCUCG; AGBGUUCG; AGBGUTCG; AGBGTUCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG; AGBGUCCG;
  • the immunomodulatory polynucleotide comprises the sequence 5'-TGACTGTGAACGTTCGAGATGA-3' (SEQ ID NO:1).
  • the ISS comprises any of the sequences:
  • An ISS and/or IMP may contain modifications.
  • Modifications of ISS include any known in the art modifications of the 3'OH or 5'OH group, modifications of the nucleotide base, modifications of the sugar component, and modifications of the phosphate group. Various such modifications are described below.
  • An ISS and/or IMP may be single stranded or double stranded DNA, as well as single or double-stranded RNA or other modified polynucleotides.
  • An ISS may or may not include one or more palindromic regions, which may be present in the motifs described above or may extend beyond the motif.
  • An ISS may comprise additional flanking sequences, some of which are described herein.
  • An ISS may contain naturally-occurring or modified, non-naturally occurring bases, and may contain modified sugar, phosphate, and/or termini.
  • phosphate modifications include methyl phosphonate, phosphorothioate, phosphoramidate (bridging or non-bridging), phosphotriester and phosphorodithioate and may be used in any combination.
  • oligonucleotides of the present invention comprise phosphorothioate backbones.
  • Sugar modifications known in the field such as 2'-alkoxy-RNA analogs, 2'-amino-RNA analogs and 2'-alkoxy- or amino-RNA/DNA chimeras and others described herein, may also be made and combined with any phosphate modification.
  • base modifications include, addition of an electron-withdrawing moiety to C-5 and/or C-6 of a cytosine of the ISS (e.g., 5-bromocytosine, 5-chlorocytosine, 5-fluorocytosine, 5-iodocytosine). See, for example, International Patent Application No. WO 99/62923 .
  • the ISS and/or IMP can be synthesized using techniques and nucleic acid synthesis equipment which are well known in the art including enzymatic methods, chemical methods, and the degradation of larger oligonucleotide sequences. See, for example, Ausubel et al. (1987); and Sambrook et al. (1989). When assembled enzymatically, the individual units can be ligated, for example, with a ligase such as T4 DNA or RNA ligase. U.S. Patent No. 5,124,246 . Oligonucleotide degradation can be accomplished through the exposure of an oligonucleotide to a nuclease, as exemplified in U.S. Patent No. 4,650,675 .
  • the ISS and/or IMP can also be isolated using conventional polynucleotide isolation procedures. Such procedures include hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences, antibody screening of expression libraries to detect shared structural features and synthesis of particular native sequences by the polymerase chain reaction.
  • Circular IMP can be isolated, synthesized through recombinant methods, or chemically synthesized. Where the circular IMP is obtained through isolation or through recombinant methods, the IMP will preferably be a plasmid.
  • the chemical synthesis of smaller circular oligonucleotides can be performed using any method described in the literature. See, for instance, Gao et al. (1995) Nucleic Acids Res. 23:2025-2029 ; and Wang et al. (1994) Nucleic Acids Res. 22:2326-2333 .
  • Naturally occurring DNA or RNA, containing phosphodiester linkages is generally synthesized by sequentially coupling the appropriate nucleoside phosphoramidite to the 5'-hydroxy group of the growing oligonucleotide attached to a solid support at the 3'-end, followed by oxidation of the intermediate phosphite triester to a phosphate triester.
  • the oligonucleotide is removed from the support, the phosphate triester groups are deprotected to phosphate diesters and the nucleoside bases are deprotected using aqueous ammonia or other bases.
  • the ISS and/or IMP can also contain phosphate-modified oligonucleotides. Synthesis of polynucleotides containing modified phosphate linkages or non-phosphate linkages is also know in the art. For a review, see Matteucci (1997) "Oligonucleotide Analogs: an Overview" in Oligonucleotides as Therapeutic Agents, (D.J. Chadwick and G. Cardew, ed.) John Wiley and Sons, New York, NY .
  • the phosphorous derivative (or modified phosphate group) which can be attached to the sugar or sugar analog moiety in the oligonucleotides of the present invention can be a monophosphate, diphosphate, triphosphate, alkylphosphonate, phosphorothioate, phosphorodithioate or the like.
  • the preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described here in detail. Peyrottes et al. (1996) Nucleic Acids Res. 24:1841-1848 ; Chaturvedi et al. (1996) Nucleic Acids Res.
  • Oligonucleotides with phosphorothioate backbones can be more immunogenic than those with phosphodiester backbones and appear to be more resistant to degradation after injection into the host.
  • ISS-containing polynucleotides and/or IMPs used in the invention can comprise ribonucleotides (containing ribose as the only or principal sugar component), deoxyribonucleotides (containing deoxyribose as the principal sugar component), or, as is known in the art, modified sugars or sugar analogs can be incorporated in the ISS.
  • the sugar moiety can be pentose, deoxypentose, hexose, deoxyhexose, glucose, arabinose, xylose, lyxose, and a sugar "analog" cyclopentyl group.
  • the sugar can be in pyranosyl or in a furanosyl form.
  • the sugar moiety is preferably the furanoside of ribose, deoxyribose, arabinose or 2'-0-alkylribose, and the sugar can be attached to the respective heterocyclic bases either in a or ⁇ anomeric configuration.
  • Sugar modifications include 2'-alkoxy-RNA analogs, 2'-amino-RNA analogs and 2'-alkoxy- or amino-RNA/DNA chimeras.
  • heterocyclic bases, or nucleic acid bases, which are incorporated in the ISS and/or IMP can be the naturally-occurring principal purine and pyrimidine bases, (namely uracil or thymine, cytosine, adenine and guanine, as mentioned above), as well as naturally-occurring and synthetic modifications of said principal bases.
  • the ISS can include one or several heterocyclic bases other than the principal five base components of naturally-occurring nucleic acids.
  • the heterocyclic base in the ISS includes uracil-5-yl, cytosin-5-yl, adenin-7-yl, adenin-8-yl, guanin-7-yl, guanin-8-yl, 4-aminopyrrolo [2.3-d] pyrimidin-5-yl, 2-amino-4-oxopyrolo [2,3-d] pyrimidin-5-yl, 2-amino-4-oxopyrrolo [2.3-d] pyrimidin-3-yl groups, where the purines are attached to the sugar moiety of the ISS via the 9-position, the pyrimidines via the 1-position, the pyrrolopyrimidines via the 7-position and the pyrazolopyrimidines via the 1-position.
  • the ISS and/or IMP may comprise at least one modified base as described, for example, in the commonly owned international application WO 99/62923 .
  • modified base is synonymous with “base analog”, for example, "modified cytosine” is synonymous with “cytosine analog.”
  • modified nucleosides or nucleotides are herein defined as being synonymous with nucleoside or nucleotide “analogs.”
  • base modifications include addition of an electron-withdrawing moiety to C-5 and/or C-6 of a cytosine of the ISS.
  • the electron-withdrawing moiety is a halogen.
  • modified cytosines can include azacytosine, 5-bromocytosine, bromouracil, 5-chlorocytosine, chlorinated cytosine,cyclocytosine,cytosine arabinoside, 5-fluorocytosine, fluoropyrimidine, fluorouracil, 5,6-dihydrocytosine, 5-iodocytosine, hydroxyurea, iodouracil, 5-nitrocytosine, uracil, and any other pyrimidine analog or modified pyrimidine.
  • base-modified nucleosides and the synthesis of modified oligonucleotides using said base-modified nucleosides as precursors, has been described, for example, in U.S. Patents 4,910,300 , 4,948,882 , and 5,093,232 .
  • These base-modified nucleosides have been designed so that they can be incorporated by chemical synthesis into either terminal or internal positions of an oligonucleotide.
  • Such base-modified nucleosides present at either terminal or internal positions of an oligonucleotide, can serve as sites for attachment of a peptide or other antigen.
  • Nucleosides modified in their sugar moiety have also been described (including e.g. U.S. Patents 4,849,513 ., 5,015,733 , 5,118,800 , 5,118,802 ) and can be used similarly.
  • the ISS has an upper limit of 50.
  • Microcarriers useful in the invention are less than 100 ⁇ m in size, preferably less than 50-60 ⁇ m in size, preferably less than 10 ⁇ m in size, and are insoluble in pure water.
  • Microcarriers are solid phase (e.g. beads). Solid phase microcarriers are typically "beads" or other approximately spherical particles, although non-spherical particles are included within the invention.
  • the microcarriers used in the invention are nonbiodegradable, and are polystyrene.
  • Microcarriers for use in the compositions or methods of the invention are generally less than 10 ⁇ m in size (e.g. have an average diameter of less than 10 ⁇ m, or at least 97% of the particles pass through a 10 ⁇ m screen filter), and include nanocarriers (i.e. carriers of less than 1 ⁇ m size).
  • microcarriers are selected having sizes within an upper limit of 9, 7, 5, 2 or 1 ⁇ m or 900, 800, 700, 600, 500, 400, 300, 250, 200, or 100 nm and an independently selected lower limit of 4,2, or 1 ⁇ m or 800, 600, 500, 400, 300, 250, 200, 150, 100, 50, 25, or 10 nm, where the lower limit is less than the upper limit.
  • the microcarriers have a size of 1.0-1.5 ⁇ m, 1.0-2.0 ⁇ m or 0.9-1.6 ⁇ m. In certain preferred embodiments, the microcarriers have a size of 10 nm to 5 ⁇ m or 25 nm to 4.5 ⁇ m, 1 ⁇ m, 1.2 ⁇ m, 1.4 ⁇ m, 1.5 ⁇ m, 1.6 ⁇ m, 1. 8 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m or 4.5 ⁇ m. When the microcarriers are nanocarriers, preferred embodiments include nanocarriers of 25 to 300 ⁇ m, 50 to 200 nm, 50 nm or 200 nm.
  • the nonbiodegradable material for manufacturing microcarriers is polystyrene.
  • IMP/MC complexes may be prepared which comprise antigen or which are antigen-free, i.e. IMP/MC complexes not linked to an antigen. Any antigen may be used in the preparation of IMP/MC complexes comprising antigen.
  • the antigen is an allergen.
  • examples of recombinant allergens are provided in Table 1. Preparation of many allergens is well-known in the art, including preparation of ragweed pollen allergen Antigen E (Amb aI) ( Rafnar et al (1991) J. Biol. Chem. 266:1229-1236 ), major dust mite allergens Der pI and Der PII ( Chua et al (1988) J. Exp. Med. 167:175-182 ; Chua et al (1990) Int. Arch. Allergy Appl. Immunol.
  • the allergen is a food allergen such as peanut allergen, for example Ara h I, and in some embodiments, the allergen is a grass allergen such as a rye allergen, for example Lol p 1.
  • Table 1 shows a list of allergens that may be used. TABLE 1 RECOMBINANT ALLERGENS Group Allergen Reference ANIMALS: CRUSTACEAshrimp/lobster tropomyosin Pan s 1 Leung et al. (1996) J. Allergy Clin. Immunol. 98:954-961 Leung et al. (1998) Mol. Mar. Biol. Biotechnol.
  • the antigen is from an infectious agent, including protozoan, bacterial, fungal (including unicellular and multicellular), and viral infectious agents.
  • infectious agent including protozoan, bacterial, fungal (including unicellular and multicellular), and viral infectious agents.
  • suitable viral antigens are described herein and are known in the art.
  • Bacteria include Hemophilus influenza, Mycobacterium tuberculosis and Bordetella pertussis.
  • Protozoan infectious agents include malarial plasmodia, Leishmania species, Trypanosoma species and Schistosoma species.
  • Fungi include Candida albicans.
  • the antigen is a viral antigen.
  • Viral polypeptide antigens include HIV proteins such as HIV gag proteins (including membrane anchoring (MA) protein, core capsid (CA) protein and nucleocapsid (NC) protein), HIV polymerase, influenza virus matrix (M) protein and influenza virus nucleocapsid (NP) protein, hepatitis B surface antigen (HBsAg), hepatitis B core protein (HBcAg), hepatitis e protein (HBeAg), hepatitis B DNA polymerase, hepatitis C antigens.
  • HIV gag proteins including membrane anchoring (MA) protein, core capsid (CA) protein and nucleocapsid (NC) protein
  • HIV polymerase HIV polymerase
  • HBsAg hepatitis B surface antigen
  • HBcAg hepatitis B core protein
  • HBeAg
  • antigen polypeptides are group- or subgroup specific antigens, which are known for a number of infectious agents, including adenovirus, herpes simplex virus, papilloma virus, respiratory syncytial virus and poxviruses.
  • immunomodulatory peptides can include tumor cells (live or irradiated), tumor cell extracts, or protein subunits of tumor antigens such as Her-2/neu, Mart1, carcinoembryonic antigen (CEA), gangliosides, human milk fat globule (HMFG), mucin (MUC1), MAGE antigens, BAGE antigens, GAGE antigens, gp100, prostate specific antigen (PSA), and tyrosinase.
  • Vaccines for immuno-based contraception can be formed by including sperm proteins administered with ISS. Lea et al. (1996) Biochim. Biophys. Acta 1307:263 .
  • Attenuated and inactivated viruses are suitable for use herein as the antigen. Preparation of these viruses is well-known in the art and many are commercially available (see, e.g., Physicians' Desk Reference (1998) 52nd edition, Medical Economics Company, Inc. ).
  • polio virus is available as IPOL® (Pasteur Merieux Connaught) and ORIMUNE® (Lederle Laboratories), hepatitis A virus as VAQTA® (Merck), measles virus as ATTENUVAX® (Merck), mumps virus as MUMPSVAX® (Merck) and rubella virus as MERUVAX®II (Merck).
  • Attenuated and inactivated viruses such as HIV-1, HIV-2, herpes simplex virus, hepatitis B virus, rotavirus, human and non-human papillomavirus and slow brain viruses can provide peptide antigens.
  • the antigen comprises a viral vector, such as vaccinia, adenovirus, and canary pox.
  • Antigens may be isolated from their source using purification techniques known in the art or, more conveniently, may be produced using recombinant methods.
  • Antigenic peptides can include purified native peptides, synthetic peptides, recombinant proteins, crude protein extracts, attenuated or inactivated viruses, cells, microorganisms, or fragments of such peptides.
  • Immunomodulatory peptides can be native or synthesized chemically or enzymatically. Any method of chemical synthesis known in the art is suitable. Solution phase peptide synthesis can be used to construct peptides of moderate size or, for the chemical construction of peptides, solid phase synthesis can be employed. Atherton et al. (1981) Hoppe Seylers Z. Physiol. Chem. 362:833-839 .
  • Proteolytic enzymes can also be utilized to couple amino acids to produce peptides.
  • the peptide can be obtained by using the biochemical machinery of a cell, or by isolation from a biological source. Recombinant DNA techniques can be employed for the production of peptides. Hames et al. (1987) Transcription and Translation: A Practical Approach, IRL Press.
  • Peptides can also be isolated using standard techniques such as affinity chromatography.
  • the antigens are peptides, lipids (e.g., sterols excluding cholesterol, fatty acids, and phospholipids), polysaccharides such as those used in H. influenza vaccines, gangliosides and glycoproteins. These can be obtained through several methods known in the art, including isolation and synthesis using chemical and enzymatic methods. In certain cases, such as for many sterols, fatty acids and phospholipids, the antigenic portions of the molecules are commercially available.
  • HIV antigens useful in the subject compositions and methods using the compositions include HIV antigens.
  • antigens include those antigens derived from HIV envelope glycoproteins including gp160, gp120 and gp41. Numerous sequences for HIV genes and antigens are known. For example, the Los Alamos National Laboratory HIV Sequence Database collects, curates and annotates HIV nucleotide and amino acid sequences. This database is accessible via the internet, at http://hiv-web.lani.gov/, and in a yearly publication, see Human Retroviruses and AIDS Compendium (for example, 1998 edition).
  • Antigens derived from infectious agents may be obtained using methods known in the art, for example, from native viral or bacterial extracts, from cells infected with the infectious agent, from purified polypeptides, from recombinantly produced polypeptides and/or as synthetic peptides.
  • IMP/MC complex formulations may be prepared with other immunotherapeutic agents including cytokine, adjuvants and antibodies. These IMP/MC complex formulations may be prepared with or without antigen.
  • IMP/MC complexes comprise an IMP bound to the surface of a microcarrier (i . e ., the IMP is not encapsulated in the MC), and preferably comprise multiple molecules of IMP bound to each microcarrier.
  • a mixture of different IMPs may be complexed with a microcarrier, such that the microcarrier is bound to more than one IMP species.
  • the bond between the IMP and MC may be covalent or non-covalent.
  • the IMP may be modified or derivatized and the composition of the microcarrier may be selected and/or modified to accommodate the desired type of binding desired for IMP/MC complex formation.
  • Covalently bonded IMP/MC complexes may be linked using any covalent crosslinking technology known in the art.
  • the IMP portion will be modified, either to incorporate an additional moiety (e . g ., a free amine, carboxyl or sulfhydryl group) or incorporate modified (e . g ., phosphorothioate) nucleotide bases to provide a site at which the IMP portion may be linked to the microcarrier.
  • the link between the IMP and MC portions of the complex can be made at the 3' or 5' end of the IMP, or at a suitably modified base at an internal position in the IMP.
  • the microcarrier is generally also modified to incorporate moieties through which a covalent link may be formed, although functional groups normally present on the microcarrier may also be utilized.
  • the IMP/MC is formed by incubating the IMP with a microcarrier under conditions which permit the formation of a covalent complex (e.g ., in the presence of a crosslinking agent or by use of an activated microcarrier comprising an activated moiety which will form a covalent bond with the IMP).
  • crosslinking technologies include crosslinkers reactive with amino, carboxyl and sulfhydryl groups.
  • the crosslinker may be either homobifunctional or heterobifunctional. When a homobifunctional crosslinker is used, the crosslinker exploits the same moiety on the IMP and MC ( e . g ., an aldehyde crosslinker may be used to covalently link an IMP and MC where both the IMP and MC comprise one or more free amines).
  • Heterobifunctional crosslinkers utilize different moieties on the the IMP and MC, (e.g ., a maleimido-N-hydroxysuccinimide ester may be used to covalently link a free sulfhydryl on the IMP and a free amine on the MC), and are preferred to minimize formation of inter-microcarrier bonds. In most cases, it is preferable to crosslink through a first crosslinking moiety on the microcarrier and a second crosslinking moiety on the IMP, where the second crosslinking moiety is not present on the microcarrier.
  • One preferred method of producing the IMP/MC complex is by 'activating' the microcarrier by incubating with a heterobifunctional crosslinking agent, then forming the IMP/MC complex by incubating the IMP and activated MC under conditions appropriate for reaction.
  • the crosslinker may incorporate a "spacer" arm between the reactive moieties, or the two reactive moieties in the crosslinker may be directly linked.
  • the IMP portion comprises at least one free sulfhydryl (e.g ., provided by a 5'-thiol modified base or linker) for crosslinking to the microcarrier, while the microcarrier comprises free amine groups.
  • a heterobifunctional crosslinker reactive with these two groups e . g ., a crosslinker comprising a maleimide group and a NHS-ester), such as succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate is used to activate the MC, then covalently crosslink the IMP to form the IMP/MC complex.
  • Non-covalent IMP/MC complexes may be linked by any non-covalent binding or interaction, including ionic (electrostatic) bonds, hydrophobic interactions, hydrogen bonds, van der Waals attractions, or a combination of two or more different interactions, as is normally the case when a binding pair is to link the IMP and MC.
  • Preferred non-covalent IMP/MC complexes are typically complexed by hydrophobic or electrostatic (ionic) interactions, or a combination thereof, ( e . g ., through base pairing between an IMP and a polynucleotide bound to an MC use of a binding pair). Due to the hydrophilic nature of the backbone of polynucleotides, IMP/MC complexes which rely on hydrophobic interactions to form the complex generally require modification of the IMP portion of the complex to incorporate a highly hydrophobic moiety.
  • the hydrophobic moiety is biocompatible, nonimmunogenic, and is naturally occurring in the individual for whom the composition is intended ( e . g ., is found in mammals, particularly humans).
  • hydrophobic moieties examples include lipids, steroids, sterols such as cholesterol, and terpenes.
  • the method of linking the hydrophobic moiety to the IMP will, of course, depend on the configuration of the IMP and the identity of the hydrophobic moiety.
  • the hydrophobic moiety may be added at any convenient site in the IMP, preferably at either the 5' or 3' end; in the case of addition of a cholesterol moiety to an IMP, the cholesterol moiety is preferably added to the 5' end of the IMP, using conventional chemical reactions (see, for example, Godard et al. (1995) Eur. J. Biochem 232:404-410 ).
  • Non-covalent IMP/MC complexes linked by nucleotide base pairing may be produced using conventional methodologies.
  • base-paired IMP/MC complexes are produced using a microcarrier comprising a bound, preferably a covalently bound, polynucleotide (the "capture polynucleotide") that is at least partially complementary to the IMP.
  • the segment of complementarity between the IMP and the capture nucleotide is preferably at least 6,8,10 or 15 contiguous base pairs, more preferably at least 20 contiguous base pairs.
  • the capture nucleotide may be be bound to the MC by any method known in the art, and is preferably covalently bound to the IMP at the 5' or 3' end.
  • a binding pair may be used to link the IMP and MC in an IMP/MC complex.
  • the binding pair may be a receptor and ligand, an antibody and antigen (or epitope), or any other binding pair which binds at high affinity (e . g ., K d less than 10 -8 ).
  • One type of preferred binding pair is biotin and streptavidin or biotin and avidin, which form very tight complexes, although in certain embodiments this form of linkage may be excluded.
  • IMP/MC complex embodiments do not include an antigen, and certain embodiments exlude antigen(s) associated with the disease or disorder which is the object of the IMP/MC complex therapy.
  • the IMP is also bound to one or more antigen molecules.
  • Antigen may be coupled with the IMP portion of an IMP/MC complex in a variety of ways, including covalent and/or non-covalent interactions, as described, for example, in WO 98/16247 . Alternately, the antigen may be linked to the microcarrier (either directly or indirectly).
  • the link between the antigen and the IMP in IMP/MC complexes comprising an antigen bound to the IMP can be made at the 3' or 5' end of the IMP, or at a suitably modified base at an internal position in the IMP.
  • the antigen is a peptide and contains a suitable reactive group (e.g ., an N-hydroxysuccinimide ester) it can be reacted directly with the N 4 amino group of cytosine residues. Depending on the number and location of cytosine residues in the IMP, specific coupling at one or more residues can be achieved.
  • modified nucleosides or nucleotides can be incorporated at either terminus, or at internal positions in the IMP. These can contain blocked functional groups which, when deblocked, are reactive with a variety of functional groups which can be present on, or attached to, the antigen of interest.
  • this portion of the conjugate can be attached to the 3'-end of the IMP through solid support chemistry.
  • the IMP portion can be added to a polypeptide portion that has been pre-synthesized on a support. Haralambidis et al. (1990a) Nucleic Acids Res. 18:493-499 ; and Haralambidis et al. (1990b) Nucleic Acids Res. 18:501-505 .
  • the IMP can be synthesized such that it is connected to a solid support through a cleavable linker extending from the 3'-end.
  • a terminal thiol group is left at the 3'-end of the oligonucleotide ( Zuckermann et al. (1987) Nucleic Acids Res. 15:5305-5321 ; and Corey et al. (1987) Science 238:1401-1403 ) or a terminal amino group is left at the 3'-end of the oligonucleotide ( Nelson et al. (1989) Nucleic Acids Res. 17:1781-1794 ). Conjugation of the amino-modified IMP to amino groups of the peptide can be performed as described in Benoit et al. (1987) Neuromethods 6:43-72 .
  • Conjugation of the thiol-modified IMP to carboxyl groups of the peptide can be performed as described in Sinha et al. (1991), pp. 185-210, Oligonucleotide Analogues: A Practical Approach, IRL Press . Coupling of an oligonucleotide carrying an appended maleimide to the thiol side chain of a cysteine residue of a peptide has also been described. Tung et al. (1991) Bioconjug. Chem. 2:464-465 .
  • the peptide portion of the conjugate can be attached to the 5'-end of the IMP through an amine, thiol, or carboxyl group that has been incorporated into the oligonucleotide during its synthesis.
  • a linking group comprising a protected amine, thiol, or carboxyl at one end, and a phosphoramidite at the other, is covalently attached to the 5'-hydroxyl.
  • An IMP-antigen conjugate can also be formed through non-covalent interactions, such as ionic bonds, hydrophobic interactions, hydrogen bonds and/or van der Waals attractions.
  • Non-covalently linked conjugates can include a non-covalent interaction such as a biotin-streptavidin complex.
  • a biotinyl group can be attached, for example, to a modified base of an ISS. Roget et al. (1989) Nucleic Acids Res. 17:7643-7651 . Incorporation of a streptavidin moiety into the peptide portion allows formation of a non-covalently bound complex of the streptavidin conjugated peptide and the biotinylated oligonucleotide.
  • Non-covalent associations can also occur through ionic interactions involving an IMP and residues within the antigen, such as charged amino acids, or through the use of a linker portion comprising charged residues that can interact with both the oligonucleotide and the antigen.
  • non-covalent conjugation can occur between a generally negatively-charged ISS and positively-charged amino acid residues of a peptide, e.g., polylysine, polyarginine and polyhistidine residues.
  • Non-covalent conjugation between IMP and antigens can occur through DNA binding motifs of molecules that interact with DNA as their natural ligands.
  • DNA binding motifs can be found in transcription factors and anti-DNA antibodies.
  • the linkage of the IMP to a lipid can be formed using standard methods. These methods include the synthesis of oligonucleotide-phospholipid conjugates ( Yanagawa et al. (1988) Nucleic Acids Symp. Ser. 19:189-192 ), oligonucleotide-fatty acid conjugates ( Grabarek et al. (1990) Anal. Biochem. 185:131-135 ; and Staros et al. (1986) Anal. Biochem. 156:220-222 ), and oligonucleotide-sterol conjugates. Boujrad et al. (1993) Proc. Natl. Acad Sci. USA 90:5728-5731 .
  • the linkage of the IMP to an oligosaccharide can be formed using standard known methods. These methods include the synthesis of oligonucleotide-oligosaccharide conjugates, wherein the oligosaccharide is a moiety of an immunoglobulin. O'Shannessy et al. (1985) J. Applied Biochem. 7:347-355 .
  • the linkage of a circular IMP to a peptide or antigen can be formed in several ways. Where the circular IMP is synthesized using recombinant or chemical methods, a modified nucleoside is suitable. Ruth (1991), pp. 255-282, in Oligonucleotides and Analogues: A Practical Approach, IRL Press . Standard linking technology can then be used to connect the circular IMP to the antigen or other peptide. Goodchild (1990) Bioconjug. Chem. 1:165 . Where the circular IMP is isolated, or synthesized using recombinant or chemical methods, the linkage can be formed by chemically activating, or photoactivating, a reactive group (e.g. carbene, radical) that has been incorporated into the antigen or other peptide.
  • a reactive group e.g. carbene, radical
  • the invention provides medicaments for modulating an immune response in an individual, preferably a mammal, more preferably a human.
  • Immunomodulation may include stimulating a Th1-type immune response and/or inhibiting or reducing a Th2-type immune response.
  • the immune modulation comprises stimulating a ( i . e., one or more) Th1-associated cytokine, such as IFN- ⁇ , IL-12 and/or IFN- ⁇ .
  • the immune modulation comprise suppressing production of a ( i.e ., one or more) Th2-associated cytokine, such as IL-4 and/or IL-5. Measuring these parameters uses methods standard in the art and has been discussed herein.
  • administration of IMP/MC may further comprise administration of one or more additional immunotherapeutic agents (i.e ., an agent which acts via the immune system and/or is derived from the immune system) including cytokine, adjuvants and antibodies.
  • additional immunotherapeutic agents i.e ., an agent which acts via the immune system and/or is derived from the immune system
  • cytokine a cytokine
  • adjuvants a cytokine
  • therapeutic antibodies include those used in the cancer context (e.g., anti-tumor antibodies).
  • the individual suffers from a disorder associated with a Th2-type immune response, such as allergies or allergy-induced asthma.
  • a disorder associated with a Th2-type immune response such as allergies or allergy-induced asthma.
  • Administration or an IMP/MC complex results in immunomodulation, increasing levels of one or more Th1-type response associated cytokines, which may result in a reduction of the Th2-type response features associated with the individual's response to the allergen.
  • Immunomodulation of individuals with Th2-type response associated disorders results in a reduction or improvement in one or more of the symptoms of the disorder.
  • improvement in one or more of the symptoms includes a reduction one or more of the following: rhinitis, allergic conjunctivitis, circulating levels of IgE, circulating levels of histamine and/or requirement for 'rescue' inhaler therapy (e.g., inhaled albuterol administered by metered dose inhaler or nebulizer).
  • the individual subject to the immunomodulatory therapy of the invention is an individual receiving a vaccine.
  • the vaccine may be a prophylactic vaccine or a therapeutic vaccine.
  • a prophylactic vaccine comprises one or more epitopes associated with a disorder for which the individual may be at risk (e.g., M. tuberculosis antigens as a vaccine for prevention of tuberculosis).
  • Therapeutic vaccines comprise one or more epitopes associated with a particular disorder affecting the individual, such as M.
  • tuberculosis or M bovis surface antigens in tuberculosis patients antigens to which the individual is allergic (i.e., allergy desensitization therapy) in individuals subject to allergies, tumor cells from an individual with cancer ( e.g., as described in U.S. Patent No. 5,484,596 ), or tumor associated antigens in cancer patients.
  • the IMP/MC complex may be given in conjunction with the vaccine ( e.g:, in the same injection or a contemporaneous, but separate, injection) or the IMP/MC complex may be administered separately ( e.g., at least 12 hours before or after administration of the vaccine).
  • the antigen(s) of the vaccine is part of the IMP/MC complex, by either covalent or non-covalent linkage to the IMP/MC complex.
  • Administration of IMP/MC complex therapy to an individual receiving a vaccine results in an immune response to the vaccine that is shifted towards a Th1-type response as compared to individuals which receive vaccine without IMP/MC complex.
  • Shifting towards a Th1-type response may be recognized by a delayed-type hypersensitivity (DTH) response to the antigen(s) in the vaccine, increased IFN- ⁇ and other Th1-type response associated cytokines, increased IFN- ⁇ , production of CTLs specific for the antigen(s) of the vaccine, low or reduced levels of IgE specific for the antigen(s) of the vaccine, a reduction in Th2-associated antibodies specific for the antigen(s) of the vaccine, and/or an increase in Th1-associated antibodies specific for the antigen(s) of the vaccine.
  • DTH delayed-type hypersensitivity
  • administration of IMP/MC complex and vaccine also results in amelioration of the symptoms of the disorder which the vaccine is intended to treat.
  • the exact symptoms and manner of their improvement will depend on the disorder sought to be treated.
  • the therapeutic vaccine is for tuberculosis
  • IMP/MC complex treatment with vaccine results in reduced coughing, pleural or chest wall pain, fever, and/or other symptoms known in the art
  • the vaccine is an allergen used in allergy desensitization therapy
  • the treatment results in a reduction in one or more symptoms of allergy (e.g., reduction in rhinitis, allergic conjunctivitis, circulating levels of IgE, and/or circulating levels of histamine).
  • compositions for use in immunomodulatory therapy of * individuals having a pre-existing disease or disorder such as cancer or an infectious disease.
  • Cancer is an attractive target for immunomodulation because most cancers express tumor-associated and/or tumor specific antigens which are not found on other cells in the body. Stimulation of a Th1-type response against tumor cells results in direct and/or bystander killing of tumor cells by the immune system, leading to a reduction in cancer cells and a reduction in symptoms.
  • Administration of an IMP/MC complex to an individual having cancer results in stimulation of a Th1-type immune response against the tumor cells.
  • Such an immune response can kill tumor cells, either by direct action of cellular immune system cells (e.g., CTLs) or components of the humoral immune system, or by bystander effects on cells proximal to cells targeted by the immune system.
  • Medicaments in accordance with the invention is also useful for individuals with infectious diseases, particularly infectious diseases which are resistant to humoral immune responses (e.g., diseases caused by mycobacterial infections and intracellular pathogens). Medicaments may be used for the treatment of infectious diseases caused by cellular pathogens (e.g., bacteria or protozoans) or by subcellular pathogens ( e.g., viruses).
  • IMP/MC complex is useful for individuals suffering from mycobacterial diseases such as tuberculosis (e.g., M. tuberculosis and/or M. bovis infections), leprosy ( i.e., M. leprae infections), or M . marinum or M. ulcerans infections.
  • IMP/MC complex is also useful for the treatment of viral infections, including infections by influenza virus, respiratory syncytial virus (RSV), hepatitis virus B, hepatitis virus C, herpes viruses, particularly herpes simplex viruses, and papilloma viruses.
  • Diseases caused by intracellular parasites such as malaria (e.g ., infection by Plasmodium vivax, P. ovale, P. fa / ciparum and/or P.
  • leishmaniasis e.g., infection by Leishmania donovani, L tropica, L nrexicana, L braziliensis, L peruviana, L infantum; L chagasi, and/or L aethiopica
  • toxoplasmosis i.e., infection by Toxoplasmosis gondi
  • IMP/MC is also useful for treatment of parasitic diseases such as schistosomiasis ( i.e., infection by blood flukes of the genus Schistosoma such as S. haematobitum S. mansoni, S. japonicum and S.
  • IMP/MC complexis useful for an individual suffering from an infectious disease resulting in an amelioration of one or more symptoms of the infectious disease.
  • the infectious disease is not a viral disease.
  • the invention further provides medicaments for increasing at least one Th1-associated cytokine in an individual, including IL-2, IL-12, TNF- ⁇ , and IFN- ⁇ .
  • the invention provides medicaments for increasing IFN- ⁇ in an individual, particularly in an individual in need of increased IFN- ⁇ levels.
  • Individuals in need of increased IFN- ⁇ are those having disorders which respond to the administration of IFN- ⁇ . Such disorders include a number of inflammatory disorders including ulcerative colitis.
  • Such disorders also include a number of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), scleroderma, cutaneous radiation-induced fibrosis, hepatic fibrosis including schistosomiasis-induced hepatic fibrosis, renal fibrosis as well as other conditions which may be improved by administration of IFN- ⁇ .
  • IMP/MC complex in accordance with the invention increases IFN- ⁇ levels, and results in amelioration of one or more symptoms, stabilization of one or more symptoms, or prevention of progression ( e.g., reduction or elimination of additional lesions or symptoms) of the disorder which responds to IFN- ⁇ .
  • the medicaments the invention may be used in combination with other agents which make up the standard of care for the disorder, such as anti-inflammatory agents such as systemic corticosteroid (e.g., cortisone) in IPF.
  • the invention provides medicaments for increasing IFN- ⁇ in an individual, particularly in an individual in need of increased IFN- ⁇ levels.
  • IFN- ⁇ Individuals in need of increased IFN- ⁇ are those having disorders which respond to the administration of IFN- ⁇ , including recombinant IFN- ⁇ , including viral infections and cancer.
  • medicaments for reducing levels, particularly serum levels, of IgE in an individual having an IgE-related disorder are also provided.
  • Reduction in IgE results in an amelioration of symptoms of the IgE-related disorder.
  • symptoms include allergy symptoms such as rhinitis, conjunctivitis, in decreased sensitivity to allergens, a reduction in the symptoms of allergy in an individual with allergies, or a reduction in severity of a allergic response.
  • the medicaments of the invention may be used in combination with other agents for the particular indication for which the IMP/MC complex is administered.
  • IMP/MC complex may be used in conjunction with anti-malarial drugs such as chloroquine for malaria patients, in conjunction with leishmanicidal drugs such as pentamidine and/or allopurinol for leishmaniasis patients, in conjunction with anti-mycobacterial drugs such as isoniazid, rifampin and/or ethambutol in tuberculosis patients, or in conjunction with allergen desensitization for atopic (allergy) patients.
  • anti-malarial drugs such as chloroquine for malaria patients
  • leishmanicidal drugs such as pentamidine and/or allopurinol for leishmaniasis patients
  • anti-mycobacterial drugs such as isoniazid, rifampin and/or ethambutol in tuberculosis patients
  • the IMP/MC complex can be administered in combination with other pharmaceutical and/or immunogenic and/or immunostimulatory agents and can be combined with a physiologically acceptable carrier thereof.
  • the IMP/MC complex can be administered in conjunction with other immunotherapeutic agents including cytokine, adjuvants and antibodies.
  • the ISS-containing polynucleotide may be any of those described above. As indicated in SEQ ID NO:1, preferably, the ISS-containing polynucleotide administered comprises the sequence 5'-T, C, G-3'. Preferably, the ISS-containing polynucleotide administered comprises the formula 5' purine, purine, C, G, pyrimidine, pyrimidine, C, G-3'; more preferably, 5'-A, A, C, G, T, T, C, G-3'. Another preferred embodiment uses SEQ ID NO:1.
  • the immunologically effective amounts and method of administration of the particular IMP/MC complex formulation can vary based on the individual, what condition is to be treated and other factors evident to one skilled in the art. Factors to be considered include the antigenicity, whether or not the IMP/MC complex will be administered with or covalently attached to an adjuvant or delivery molecule, route of administration and the number of immunizing doses to be administered. Such factors are known in the art and it is well within the skill of those in the art to make such determinations without undue experimentation.
  • a suitable dosage range is one that provides the desired modulation of immune response to the antigen. Generally, dosage is determined by the amount of IMP administered to the patient, rather than the overall quantity of IMP/MC complex.
  • Useful dosage ranges of the IMP/MC complex may be, for example, from any of the following: 0.1 to 100 ⁇ g/kg, 0.1 to 50 ⁇ g/kg, 0.1 to 25 ⁇ g/kg, 0.1 to 10 ⁇ g/kg, 1 to 500 ⁇ g/kg, 100 to 400 ⁇ g/kg, 200 to 300 ⁇ g/kg, to 100 ⁇ g/kg, 100 to 200 ⁇ g/kg, 300 to 400 ⁇ g/kg, 400 to 500 ⁇ g/kg.
  • the doses can be any of the following: 0.1 ⁇ g, 0.25 ⁇ g, 0.5 ⁇ g, 1.0 ⁇ g, 2.0 ⁇ g, 5.0 ⁇ g, 10 ⁇ g, 25 ⁇ g, 50 ⁇ g, 75 ⁇ g, 100 ⁇ g. Accordingly, dose ranges can be those with a lower limit any of the following: 0.1 ⁇ g, 0.25 ⁇ g, 0.5 ⁇ g and 1.0 ⁇ g; and with an upper limit of any of the following: 25 ⁇ g, 50 ⁇ g and 100 ⁇ g.
  • the absolute amount given to each patient depends on pharmacological properties such as bioavailability, clearance rate and route of administration.
  • the effective amount and method of administration of the particular IMP/MC complex formulation can vary based on the individual patient and the stage of the disease and other factors evident to one skilled in the art.
  • the route(s) of administration useful in a particular application are apparent to one of skill in the art. Routes of administration include topical, dermal, transdermal, transmucosal, epidermal, parenteral, gastrointestinal, and naso-pharyngeal and pulmonary, including transbronchial and transalveolar.
  • a suitable dosage range is one that provides sufficient ISS-containing composition to attain a tissue concentration of 1 -10 ⁇ M as measured by blood levels.
  • the absolute amount given to each patient depends on pharmacological properties such as bioavailability, clearance rate and route of administration.
  • APCs and tissues with high concentration of APCs are preferred targets for the IMP/MC complexes.
  • administration of IMP/MC complex to mammalian skin and/or mucosa, where APCs are present in relatively high concentration is preferred.
  • the present invention provides IMP/MC complex formulations suitable for topical application including physiologically acceptable implants, ointments, creams, rinses and gels.
  • Topical administration is, for instance, by a dressing or bandage having dispersed therein a delivery system, by direct administration of a delivery system into incisions or open wounds, or by transdermal administration device directed at a site of interest
  • Creams, rinses, gels or ointments having dispersed therein an IMP/MC complex are suitable for use as topical ointments or wound filling agents.
  • Preferred routes of dermal administration are those which are least invasive. Preferred among these means are transdermal transmission, epidermal administration and subcutaneous injection. Of these means, epidermal administration is preferred for the greater concentrations of APCs expected to be in intradermal tissue.
  • Transdermal administration is accomplished by application of a cream, rinse, gel, etc. capable of allowing the IMP/MC complex to penetrate the skin and enter the blood stream.
  • compositions suitable for transdermal administration include pharmaceutically acceptable suspensions, oils, creams and ointments applied directly to the skin or incorporated into a protective carrier such as a transdermal device (so-called "patch"). Examples of suitable creams, ointments etc. can be found, for instance, in the Physician's Desk Reference.
  • iontophoresis is a suitable method. Iontophoretic transmission can be accomplished using commercially available patches which deliver their product continuously through unbroken skin for periods of several days or more. Use of this method allows for controlled transmission of pharmaceutical compositions in relatively great concentrations, permits infusion of combination drugs and allows for contemporaneous use of an absorption promoter.
  • An exemplary patch product for use in this method is the LECTRO PATCH trademarked product of General Medical Company of Los Angeles, CA. This product electronically maintains reservoir electrodes at neutral pH and can be adapted to provide dosages of differing concentrations, to dose continuously and/or periodically. Preparation and use of the patch should be performed according to the manufacturer's printed instructions which accompany the LECTRO PATCH product. Other occlusive patch systems are also suitable.
  • low-frequency ultrasonic delivery is also a suitable method.
  • Application of low-frequency ultrasonic frequencies (about 1 MHz) allows the general controlled delivery of therapeutic compositions, including those of high molecular weight.
  • Epidermal administration essentially involves mechanically or chemically irritating the outermost layer of the epidermis sufficiently to provoke an immune response to the irritant. Specifically, the irritation should be sufficient to attract APCs to the site of irritation.
  • An exemplary mechanical irritant means employs a multiplicity of very narrow diameter, short tines which can be used to irritate the skin and attract APCs to the site of irritation, to take up IMP/MC complex transferred from the end of the tines.
  • MONO-VACC old tuberculin test manufactured by Pasteur Merieux of Lyon, France contains a device suitable for introduction of IMP/MC complex-containing compositions.
  • the device (which is distributed in the U.S. by Connaught Laboratories, Inc. of Swiftwater, PA) consists of a plastic container having a syringe plunger at one end and a tine disk at the other.
  • the tine disk supports a multiplicity of narrow diameter tines of a length which will just scratch the outermost layer of epidermal cells.
  • Each of the tines in the MONO-VACC kit is coated with old tuberculin; in the present invention, each needle is coated with a pharmaceutical composition of IMP/MC complex formulation.
  • Use of the device is preferably according to the manufacturer's written instructions included with the device product. Similar devices which can also be used in this embodiment are those which are currently used to perform allergy tests.
  • Another suitable approach to epidermal administration of IMP/MC complex is by use of a chemical which irritates the outermost cells of the epidermis, thus provoking a sufficient immune response to attract APCs to the area.
  • a chemical which irritates the outermost cells of the epidermis thus provoking a sufficient immune response to attract APCs to the area.
  • An example is a keratinolytic agent, such as the salicylic acid used in the commercially available topical depilatory creme sold by Noxema Corporation under the trademark NAIR
  • the chemical irritant can also be applied in conjunction with the mechanical irritant (as, for example, would occur if the MONO-VACC type tine were also coated with the chemical irritant).
  • the IMP/MC complex can be suspended in a carrier which also contains the chemical irritant or coadministered therewith.
  • Parenteral routes of administration include electrical (iontophoresis) or direct injection such as direct injection into a central venous line, intravenous, intramuscular, intraperitoneal, intradermal, or subcutaneous injection.
  • IMP/MC formulations suitable for parenteral administration are generally formulated in USP water or water for injection and may further comprise pH buffers, salts bulking agents, preservatives, and other pharmaceutically acceptable excipients.
  • IMP/MC complexes for parenteral injection may be formulated in pharmaceutically acceptable sterile isotonic solutions such as saline and phosphate buffered saline for injection.
  • Gastrointestinal routes of administration include ingestion and rectal.
  • the invention includes IMP/MC complex formulations suitable for gastrointestinal administration including pharmaceutically acceptable powders, pills or liquids for ingestion and suppositories for rectal administration.
  • pills or suppositories will further comprise pharmaceutically acceptable solids, such as starch, to provide bulk for the composition.
  • Naso-pharyngeal and pulmonary administration include are accomplished by inhalation, and include delivery routes such as intranasal, transbronchial and transalveolar routes.
  • the invention includes IMP/MC complex formulations suitable for administration by inhalation including liquid suspensions for forming aerosols as well as powder forms for dry powder inhalation delivery systems.
  • Devices suitable for administration by inhalation of IMP/MC complex formulations include , vaporizers, nebulizers, and dry powder inhalation delivery devices.
  • the choice of delivery routes can be used to modulate the immune response elicited.
  • IgG titers and CTL activities were identical when an influenza virus vector was administered via intramuscular or epidermal (gene gun) routes; however, the muscular inoculation yielded primarily IgG2a, while the epidermal route yielded mostly IgG1.
  • Pertmer et al. (1996) J. Virol. 70:6119-6125 .
  • one skilled in the art can take advantage of slight differences in immunogenicity elicited by different routes of administering the immunomodulatory oligonucleotides of the present invention.
  • Analysis (both qualitative and quantitative) of the immune response to IMP/MC complex formulations can be by any method known in the art, including measuring antigen-specific antibody production (including measuring specific antibody subclasses), activation of specific populations of lymphocytes such as CD4+ T cells or NK cells, production of cytokines such as IFN- ⁇ , IFN- ⁇ , IL-2, IL-4, IL-5, IL-10 or IL-12 and/or release of histamine.
  • Methods for measuring specific antibody responses include enzyme-linked immunosorbent assay (ELISA) and are well known in the art.
  • Measurement of numbers of specific types of lymphocytes such as CD4+ T cells can be achieved, for example, with fluorescence-activated cell sorting (FACS).
  • Cytotoxicity assays can be performed for instance as described in Raz et al. (1994) Proc. Natl. Acad Sci. USA 91:9519-9523 . Cytokine concentrations can be measured, for example, by ELISA. These and other assays to evaluate the immune response to an immunogen are well known in the art. See, for example, Selected Methods in Cellular Immunology (1980) Mishell and Shiigi, eds., W.H. Freeman and Co.
  • a Th1-type response is stimulated, i.e., elicited and/or enhanced.
  • stimulating a Th1-type immune response can be determined in vitro or ex vivo by measuring cytokine production from cells treated with ISS as compared to those treated without ISS. Methods to determine the cytosine production of cells include those methods described herein and any known in the art.
  • the type of cytokines produced in response to ISS treatment indicate a Th1-type or a Th2-type biased immune response by the cells.
  • Th1-type biased cytokine production refers to the measurable increased production of cytokines associated with a Th1-type immune response in the presence of a stimulator as compared to production of such cytokines in the absence of stimulation.
  • Th1-type biased cytokines include IL-2, IL-12, and IFN- ⁇ .
  • Th2-type biased cytokines refers to those associated with a Th2-type immune response, and include IL-4, IL-5, and IL-13.
  • Cells useful for the determination of ISS activity include Cells of the immune system, primary cells isolated from a host and/or cell lines, preferably APCs and lymphocytes, even more preferably macrophages and T cells.
  • Stimulating a Th1-type immune responses can also be measured in a host treated with an IMP/MC complex formulation can be determined by any method known in the art including: (1) a reduction in levels of IL-4 or IL-5 measured before and after antigen-challenge; or detection of lower (or even absent) levels of IL-4 or IL-5 in an IMP/MC complex treated host as compared to an antigen-primed, or primed and challenged, control treated without ISS; (2) an increase in levels of IL-12, IL-18 and/or IFN ( ⁇ , ⁇ or y) before and after antigen challenge; or detection of higher levels of IL-12, IL-18 and/or IFN ( ⁇ , ⁇ or ⁇ ) in an IMP/MC complex treated host as compared to an antigen-primed or, primed and challenged, control treated without ISS; (3) "Th1-type biased" antibody production in an IMP/MC complex treated host as compared to a control treated without ISS; and/or (4) a reduction in levels of antigen
  • a variety of these determinations can be made by measuring cytokines made by APCs and/or lymphocytes, preferably macrophages and/or T cells, in vitro or ex vivo using methods described herein or any known in the art. Some of these determinations can be made by measuring the class and/or subclass of antigen-specific antibodies using methods described herein or any known in the art.
  • Th1-type biased antibody production refers to the measurable increased production of antibodies associated with a Th1-type immune response (i.e., Th1-associated antibodies).
  • Th1-associated antibodies One or more Th1 associated antibodies may be measured.
  • Th1-type biased antibodies include human IgG1 and/or IgG3 (see, e.g., Widhe et al. (1998) Scand. J. Immunol. 47:575-581 and de Martino et al. (1999) Ann. Allergy Asthma Immunol.
  • Th2-type biased antibodies refers to those associated with a Th2-type immune response, and include human IgG2, IgG4 and/or IgE (see, e.g., Widhe et al. (1998) and de Martino et al. (1999)) and murine IgG1 and/or IgE.
  • Th1-type biased cytokine induction which occurs as a result of IMP/MC complex administration produces enhanced cellular immune responses, such as those performed by NK cells, cytotoxic killer cells, Th1 helper and memory cells. These responses are particularly beneficial for use in protective or therapeutic vaccination against viruses, fungi, protozoan parasites, bacteria, allergic diseases and asthma, as well as tumors.
  • a Th2 response is suppressed.
  • Suppression of a Th2 response may be determined by, for example, reduction in levels of Th2-associated cytokines, such as IL-4 and IL-5, as well as IgE reduction and reduction in histamine release in response to allergen.
  • kits for use in the methods of the invention comprise one or more containers comprising an IMP/MC complex as defined in claim 1 and a set of instructions, generally written instructions, relating to the use of the I1VIP/MC complex for the intended treatment (e.g ., immunomodulation, ameliorating one or more symptoms of an infectious disease, increasing IFN- ⁇ levels, increasing IFN- ⁇ levels, or ameliorating an IgE-related disorder).
  • the kits of the invention comprise containers of materials for producing IMP/MC, instructions for producing IMP/MC complex, and instructions relating to the use of the IMP/MC complex for the intended treatment.
  • Kits which comprise preformed IMP/MC complex comprise IMP/MC complex packaged in any convenient, appropriate packaging.
  • the IMP/MC complex is a dry formulation (e.g ., freeze dried or a dry powder)
  • a vial with a resilient stopper is normally used, so that the IMP/MC complex may be easily resuspended by injecting fluid through the resilient stopper.
  • Ampoules with non resilient, removable closures (e.g ., sealed glass) or resilient stoppers are most conveniently used for liquid formulations of IMP/MC complex.
  • packages for use in combination with a specific device such as an inhaler, nasal administration device (e.g., an atomizer) or an infusion device such as a minipump.
  • Kits which comprise materials for production of IMP/MC complex generally include separate containers of IMP and and MC, although in certain embodiments materials for producing the MC are supplied rather than preformed MC.
  • the IMP and MC are preferably supplied in a form which allows formation of IMP/MC complex upon mixing of the supplied IMP and MC. This configuration is preferred when the IMP/MC complex is linked by non-covalent bonding. This configuration is also preferred when the IMP and MC are to be crosslinked via a heterobifunctional crosslinker, either IMP or the MC is supplied in an "activated" form (e.g., linked to the heterobifunctional crosslinker such that a moiety reactive with the IMP is available).
  • Kits for IMP/MC complexes comprising a liquid phase MC preferably comprise one or more containers including materials for producing liquid phase MC.
  • an IMP/MC kit for oil-in-water emulsion MC may comprise one or more containers containing an oil phase and an aqueous phase. The contents of the container are emulsified to produce the MC, which may be then mixed with the IMP, preferably an IMP which has been modified to incorporate a hydrophobic moiety.
  • the instructions relating to the use of IMP/MC complex for the intended treatment generally include information as to dosage, dosing schedule, and route of administration for the intended treatment.
  • the containers of ISS may be unit doses, bulk packages ( e.g., multi-dose packages) or sub-unit doses.
  • Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.
  • IMP/MC complex comprising a modified IMP and a liquid phase MC were produced and tested for complex formation.
  • An IMP phosphorothioate oligodeoxynucleotide 5'-TGACTGTGAACGTTCGAGATGA-3'
  • SEQ ID NO:1 was modified by addition of a cholesterol molecule to the 5' end of the IMP using phosphoramidite chemistry.
  • An oil-in-water emulsion was produced by homogenization of a mixture of 4.5% (w/v) squalene, 0.5% (w/v) sorbitan trioleate, 0.5% (w/v) TWEEN® 80 and 10 mM sodium citrate, pH 6.5, using a microfluidizer. Examination of the emulsion found that the oil droplets in the emulsion had an average diameter of approximately 160 nm.
  • the emulsion was mixed with the cholesterol-modified IMP or an unmodified version of the same IMP, then centrifuged to separate the oil and water phases RP-HPLC was performed on samples from each phase to determine nucleotide content. Approximately 75% of the cholesterol-modified IMP was found in the oil phase, while 100% of the unmodified IMP was found in the aqueous phase.
  • Example 2 Immunomodulation with IMP/MC mixtures (not in accordance with the invention)
  • Fragments of BALB/c mouse spleen were digested with collagenase/dispase (0.1.. U/mL/0.8U/mL) dissolved in phosphate buffered saline (PBS) for 45 minutes at 37° C, then mechanically dispersed by forcing the digested fragments through metal screens.
  • the dispersed splenocytes were pelleted by centrifugation, then resuspended in fresh medium (RPMI 1640 with 10% fetal calf serum, plus 50 units/mL penicillin, 50 ⁇ g/mL streptomycin, 2 mM glutamine, and 0.05 mM ⁇ -mercaptoethanol).
  • mice splenocytes 4 x 10 5 mouse splenocytes were dispensed into wells of 96 well plates and incubated for one hour at 37° C. 100 ⁇ L of 2x concentration test sample or control was added and the cells were incubated a further 24 hours. Medium was harvested from each well and tested for cytokine concentrations by ELISA.
  • IFN- ⁇ was assayed using a sandwich-format ELISA.
  • Medium from the mouse splenocyte assay was incubated in microtiter plates coated with anti-IFN- ⁇ monoclonal antibody (Nunc).
  • Bound IFN- ⁇ was detected using a biotinylated anti-IFN- ⁇ antibody and streptavidin-horseradish peroxidase conjugated secondary antibody, developed with the chromogenic peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of peroxidase, and quantitated by measuring absorbance at 450 nm using a Emax precision microplate reader (Molecular Devices).
  • TMB chromogenic peroxidase substrate 3,3',5,5'-tetramethylbenzidine
  • 200 nm beads mixed with IMP substantially increased IL-12, IL-6 and IFN- ⁇ secretion by mouse splenocytes, and 50 nm beads mixed with IMP increased IL-12 and IL-6 production.
  • Some nonspecific activity was associated with 200 nm beads mixed with the control oligonucleotide, although this was insufficient to account for the increase in stimulation as compared to IMP alone.
  • microcarriers of 1 ⁇ m and 4.5 ⁇ m also increased cytokine secretion. Tables 2-4 summarize assay results for IL-12, IL-6 and IFN- ⁇ , respectively.
  • IMPs covalently linked to polystyrene beads (200 nm design size) were tested for immunomodulatory activity on mouse splenocytes.
  • Amine-derivatized polystyrene beads were obtained from Molecular Probes, Inc., and Polysciences, Inc. Three types of beads were utilized: amine-derivatized beads (Polysciences, Inc., Catalog No. 15699), amine-derivatized beads linked to a fluorophore with excitation/emission maxima of 580 and 605 nm ("Red Beads", Molecular Probes, Inc., Catalog No. F8763), and amine-derivatized beads linked to a fluorophore with excitation/emission maxima of 505 and 515 nm ("Yellow Beads", Molecular Probes, Inc., Catalog No.
  • sulfo-SMCC sulfosuccinimidyl 4-(N-maleimidomethyl)cyclopentane-1-carboxyLate, Pierce Chemical Co.
  • the beads were then linked to IMP, a control phosphorothioate oligonucleotide (5'-TGACTGTGAAGGTTAGAGATGA-3' (control A) (SEQ ID NO: 9), 5'- TGACTGTGAACCTTAGAGATGA-3' (control B) (SEQ ID NO:10), or 5'-TCACTCTCTTCCTTACTCTTCT-3' (control C) (SEQ ID NO:11), or treated to quench the free maleimide group for use as a NC only control.
  • control A control phosphorothioate oligonucleotide
  • control B control B
  • 5'-TCACTCTCTTCCTTACTCTTCT-3' control C
  • IMPs covalently linked to polystyrene beads (200 nm design size) were tested for immunomodulatory activity on human peripheral blood mononuclear cells (PBMCs).
  • Peripheral blood was collected from volunteers by venipuncture using heparinized syringes. Blood was layered onto FICOLL® (Amersham Pharmacia Biotech) cushion and centrifuged. PBMCs, located at the FICOLL® interface, were collected, then washed twice with cold phosphate buffered saline (PBS).
  • PBS cold phosphate buffered saline
  • the cells were resuspended and cultured in 24 or 48 well plates at 2 x 10 6 cells/mL in RPMI 1640 with 10% heat-inactivated human AB serum plus 50 units/mL penicillin, 50 ⁇ g/mL streptomycin, 300 ⁇ g/mL glutamine, 1 mM sodium pyruvate, and 1 x MEM non-essential amino acids (NEAA).
  • RPMI 1640 10% heat-inactivated human AB serum plus 50 units/mL penicillin, 50 ⁇ g/mL streptomycin, 300 ⁇ g/mL glutamine, 1 mM sodium pyruvate, and 1 x MEM non-essential amino acids (NEAA).
  • test samples IMP/NC formulations or controls
  • cell-free medium was collected from each well and assayed for IFN- ⁇ concentration.
  • IFN- ⁇ was assayed using a CYTOSCREEN TM ELISA kit from BioSource International, Inc., according to the manufacturer's instructions.

Abstract

The invention provides new compositions and methods for immunomodulation of individuals. Immunomodulation is accomplished by administration of immunomodulatory polynucleotide/microcarrier (IMP/MC) complexes. The IMP/MC complexes may be covalently or non-covalently bound, and feature a polynucleotide comprising at least one immunostimulatory sequence bound to a nonbiodegradable microcarrier or nanocarrier.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the priority benefit of U.S. Provisional application 60/188,557, filed March 10,2000 .
  • TECHNICAL FIELD
  • The present invention relates to immunomodulatory compositions comprising an immunostimulatory oligonucleotide sequence (ISS). In particular, the invention relates to immunomodulatory compositions comprising an ISS bound to a nonbiodegradable microparticle. It also relates to the administration of the polynucleotide/microcarrier complex to modulate at least one immune response.
  • BACKGROUND ART
  • The type of immune response generated to infection or other antigenic challenge can generally be distinguished by the subset of T helper (Th) cells involved in the response.
    The Th1 subset is responsible for classical cell-mediated functions such as delayed-type hypersensitivity and activation of cytotoxic T lymphocytes (CTLs), whereas the Th2 subset functions more effectively as a helper for B-cell activation. The type of immune response to an antigen is generally influenced by the cytokines produced by the cells responding to the antigen. Differences in the cytokines secreted by Th1 and Th2 cells are believed to reflect different biological functions of these two subsets. See, for example, Romagnani (2000) Ann. Allergy Asthma Immunol. 85:9-18.
  • The Th1 subset may be particularly suited to respond to viral infections, intracellular pathogens, and tumor cells because it secretes IL-2 and IFN-γ, which activate CTLs. The Th2 subset may be more suited to respond to free-living bacteria and helminthic parasites and may mediate allergic reactions, since IL-4 and IL-5 are known to induce IgE production and eosinophil activation, respectively. In general, Th1 and Th2 cells secrete distinct patterns of cytokines and so one type of response can moderate the activity of the other type of response. A shift in the Th1/Th2 balance can result in an allergic response, for example, or, alternatively, in an increased CTL response.
  • For many infectious diseases, such as tuberculosis and malaria, Th2-type responses are of little protective value against infection. Proposed vaccines using small peptides derived from the target antigen and other currently used antigenic agents that avoid use of potentially infective intact viral particles, do not always elicit the immune response necessary to achieve a therapeutic effect. The lack of a therapeutically effective human immunodeficiency virus (HIV) vaccine is an unfortunate example of this failure. Protein-based vaccines typically induce Th2-type immune responses, characterized by high titers of neutralizing antibodies but without significant cell-mediated immunity.
  • Moreover, some types of antibody responses are inappropriate in certain indications, most notably in allergy where an IgE antibody response can result in anaphylactic shock. Generally, allergic responses also involve Th2-type immune responses. Allergic responses, including those of allergic asthma, are characterized by an early phase response, which occurs within seconds to minutes of allergen exposure and is characterized by cellular degranulation, and a late phase response, which occurs 4 to 24 hours later and is characterized by infiltration of eosinophils into the site of allergen exposure. Specifically, during the early phase of the allergic response, allergen cross-links IgE antibodies on basophils and mast cells, which in turn triggers degranulation and the subsequent release of histamine and other mediators of inflammation from mast cells and basophils. During the late phase response, eosinophils infiltrate into the site of allergen exposure (where tissue damage and dysfunction result).
  • Antigen immunotherapy for allergic disorders involves the subcutaneous injection of small, but gradually increasing amounts, of antigen. Such immunization treatments present the risk of inducing IgE-mediated anaphylaxis and do not efficiently address the cytokine-mediated events of the allergic late phase response. Thus far, this approach has yielded only limited success.
  • Administration of certain DNA sequences, generally known as immunostimulatory sequences or "ISS," induces an immune response with a Th1-type bias as indicated by secretion of Th1-associated cytokines. Administration of an immunostimulatory polynucleotide with an antigen results in a Th1-type immune response to the administered antigen. Roman et al. (1997) Nature Med. 3:849-854. For example, mice injected intradermally with Escherichia coli (E. coli) β-galactosidase (β-Gal) in saline or in the adjuvant alum responded by producing specific IgG1 and IgE antibodies, and CD4+ cells that secreted IL-4 and IL-5, but not IFN-γ, demonstrating that the T cells were predominantly of the Th2 subset. However, mice injected intradermally (or with a tyne skin scratch applicator) with plasmid DNA (in saline) encoding β-Gal and containing an ISS responded by producing IgG2a antibodies and CD4+ cells that secreted IFN-γ, but not IL-4 and IL-5, demonstrating that the T cells were predominantly of the Th1 subset Moreover, specific IgE production by the plasmid DNA-injected mice was reduced 66-75%. Raz et al. (1996) Proc. Natl. Acad Sci. USA 93:5141-5145. In general, the response to naked DNA immunization is characterized by production of IL-2, TNFα and IFN-γ by antigen-stimulated CD4+ T cells, which is indicative of a Th1-type response. This is particularly important in treatment of allergy and asthma as shown by the decreased IgE production. The ability of immunostimulatory polynucleotides to stimulate a Th1-type immune response has been demonstrated with bacterial antigens, viral antigens and with allergens (see, for example, WO 98/55495 ).
  • ISS-containing oligonucleotides bound to microparticles (SEPHAROSE® beads) have previously been shown to have immunostimulatory activity in vitro (Liang et al., (1996), J. Clin. Invest. 98:1119-1129). However, recent results show that ISS-containing oligonucleotides bound to gold, latex and magnetic particles are not active in stimulating proliferation of 7TD1 cells, which proliferate in response to ISS-containing oligonucleotides (Manzel et al. (1999) Antisense Nucl. Acid Drug Dev. 9:459-464).
  • Other references describing ISS include: Krieg et al. (1989) J. Immunol. 143:2448-2451; Tokunaga et al. (1992) Microbiol. Immunol. 36:55-66; Kataoka et al. (1992) Jpn. J. Cancer Res. 83:244-247; Yamamoto et al. (1992) J. Immunol. 148:4072-4076; Mojcik et al. (1993) Clin. Immuno. and Immunopathol. 67:130-136; Branda et al. (1993) Biochem. Pharmacol. 45:2037-2043; Pisetsky et al. (1994) Life Sci. 54(2):101-107; Yamamoto et al. (1994a) Antisense Research and Development. 4:119-122; Yamamoto et al. (1994b) Jpn. J. Cancer Res. 85:775-779; Raz et al. (1994) Proc. Natl. Acad Sci. USA 91:9519-9523; Kimura et al. (1994) J. Biochem. (Tokyo) 116:991-994; Krieg et al. (1995) Nature 374:546-549; Pisetsky et al. (1995) Ann. N. Y. Acad. Sci. 772:152-163; Pisetsky (1996a) J. Immunol. 156:421-423; Pisetsky (1996b) Immunity 5:303-310; Zhao et al. (1996) Biochem. Pharmacol. 51:173-182; Yi et al. (1996) J. Immunol. 156:558-564; Krieg (1996) Trends Microbiol. 4(2):73-76; Krieg et al. (1996) Antisense Nucleic Acid Drug Dev. 6:133-139; Klinman et al. (1996) Proc. Natl. Acad Sci. USA. 93:2879-2883; Raz et al. (1996); Sato et al. (1996) Science 273:352-354; Stacey et al. (1996) J. Immunol: 157:2116-2122; Ballas et al. (1996) J. Immunol. 157:1840-1845; Branda et al. (1996) J. Lab. Clin. Med 128:329-338; Sonehara et al. (1996) J. Interferon and Cytokine Res. 16:799-803; Klinman et al. (1997) J. Immunol. 158:3635-3639; Sparwasser et al. (1997) Eur. J. Immunol. 27:1671-1679; Roman et al. (1997); Carson et al. (1997) J. Exp. Med. 186:1621-1622; Chace et al. (1997) Clin. Immunol. and Immunopathol. 84:185-193; Chu et al. (1997) J. Exp. Med 186:1623-1631; Lipford et al. (1997a) Eur. J. Immunol. 27:2340-2344; Lipford et al. (1997b) Eur. J. Immunol. 27:3420-3426; Weiner et al. (1997) Proc. Natl. Acad Sci. USA 94:10833-10837; Macfarlane et al. (1997) Immunology 91:586-593; Schwartz et al. (1997) J. Clin. Invest. 100:68-73; Stein et al. (1997) Antisense Technology, Ch. 11 pp. 241-264, C. Lichtenstein and W. Nellen, Eds., IRL Press; Wooldridge et al. (1997) Blood 89:2994-2998; Leclerc et al. (1997) Cell. Immunol. 179:97-106; Kline et al. (1997) J. Invest. Med. 45(3):282A; Yi et al. (1998a) J. Immunol. 160:1240-1245; Yi et al. (1998b) J. Immunol. 160:4755-4761; Yi et al. (1998c) J. Immunol. 160:5898-5906; Yi et al. (1998d) J. Immunol. 161:4493-4497; Krieg (1998) Applied Antisense Oligonucleotide Technology Ch. 24, pp. 431-448, C.A. Stein and A.M. Krieg, Eds., Wiley-Liss, Inc.; Krieg et al. (1998a) Trends Microbiol. 6:23-27; Krieg et al. (1998b) J. Immunol. 161:2428-2434; Krieg et al. (1998c) Proc. Natl. Acad Sci. USA 95:12631-12636; Spiegelberg et al. (1998) Allergy 53(45S):93-97; Horner et al. (1998) Cell Immunol.190:77-82; Jakob et al. (1998) J. Immunol. 161:1042-3049; Redford et al. (1998) J. Immunol. 161:3930-3935; Weeratna et al. (1998) Antisense & Nucleic Acid Drug Development 8:351-356; McCluskie et al. (1998) J. Immunol. 161(9):4463-4466; Gramzinski et al. (1998) Mol.Med. 4:109-118; Liu et al. (1998) Blood 92:3730-3736; Moldoveanu et al. (1998) Vaccine 16:1216-1224; Brazolot Milan et al. (1998) Proc. Natl. Acad Sci. USA 95:15553-15558; Briode et al. (1998) J. Immunol. 161:7054-7062; Briode et al. (1999) Int. Arch. Allergy Immunol. 118:453-456; Kovarik et al. (1999) J. Immunol. 162:1611-1617; Spiegelberg et al. (1999) Pediatr. Pulmonol. Suppl. 18:118-121; Martin-Orozco et al. (1999) Int. Immunol. 11:1111-1118; EP 468,520 ; WO 96/02555 ; WO 97/28259 ; WO 98/16247 ; WO 98/18810 ; WO 98/37919 ; WO 98/40100 ; WO 98/52581 ; WO 98/55495 ; WO 98/55609 and WO 99/11275 . See also Elkins et al. (1999) J. Immunol. 162:2291-2298, WO 98/52962 , WO 99l33488 , WO 99/33868 , WO 99/51259 and WO 99/62923 . See also Zimmermann et al. (1998) J. Immunol. 160:3627-3630; Krieg (1999) Trends Microbiol. 7:64-65; U.S. Patent Nos. 5,663,153 , 5,723,335 , 5,849,719 and 6,174,872 . See also WO 99/56755 , WO 00/06588 , WO 00/16804 ; WO 00/21556 ; WO 00/67023 and WO 01/12223 .
  • Additionally, Godard et al. (1995) Eur. J. Biochem. 232:404-410, discloses cholesterol-modified antisense oligonucleotides bound to poly(isohexylcyanoacrylate) nanoparticles.
  • DISCLOSURE OF THE INVENTION
  • The invention relates to new compositions, and such compositions for use in modulating immune responses in individuals, particularly human individuals.
  • In one aspect, the invention provides an immunomodulatory polynucleotide/ microcarrier (IMP/MC) complex, comprising: a polynucleotide comprising an immunostimulatory sequence (ISS) linked to the surface of a nonbiodegradable microcarrier (MC), wherein the ISS is greater than 6 bases in length, up to 50 bases in length and comprises the sequence 5'-C, G-3', and wherein the microcarrier is polystyrene.
  • The IMP may be covalently or non-covalently linked to the microcarrier in the complex, and the IMP may be modified to facilitate complex formation. Microcarriers used in IMP/MC complexes are solid phase microcarriers. Microcarriers are generally less than 100 µm in size, and may be 10 nm to 10 µm or 25 nm to 5 µm in size. In certain embodiments, the compositions of the invention comprise an IMP/MC complex and a pharmaceutically acceptable excipient. In certain embodiments, the compositions of the invention comprise an antigen-free IMP/MC complex, i.e., an IMP/MC complex not linked to an antigen (either directly or indirectly).
  • In another aspect, the invention relates to an IMP/MC complex for use in modulating an immune response in an individual.
    Immunomodulation may be practiced on individuals including those suffering from a disorder associated with a Th2-type immune response (e.g., allergies or allergy-induced asthma), individuals receiving vaccines such as therapeutic vaccines (e.g., vaccines comprising an allergy epitope, a mycobacterial epitope, or a tumor associated epitope) or prophylactic vaccines, individuals with cancer, individuals having an infectious disease and individuals at risk of exposure to an infectious agent.
  • In a further aspect, the invention relates to an IMP/MC complex for increasing interferon-gamma (IFN-γ) in an individual.
    Administration of an IMP/MC complex in accordance with the invention increases IFN-γ in the individual. Suitable subjects for these methods include those individuals having idiopathic pulmonary fibrosis (IPF), scleroderma, cutaneous radiation-induced fibrosis, hepatic fibrosis including schistosomiasis-induced hepatic fibrosis, renal fibrosis as well as other conditions which may be improved by administration of IFN-γ.
  • In another aspect, the invention relates to an IMP/MC complex for increasing IFN-α in an individual. Administration of an IMP/MC complex in accordance with the invention increases IFN-α levels in the individual. Suitable subjects for these methods include those individuals having disorders which respond to the administration of IFN-α, including viral infections and cancer.
  • In another aspect, the invention relates to an IMP/MC complex ameliorating one or more symptoms of an infectious disease.
    Administration of an IMP/MC complex in accordance with the invention ameliorates one or more symptoms of the infectious disease. The infectious diseases which may be treated in accordance with the invention include infectious diseases caused by a cellular pathogen (e.g., a mycobacterial disease, malaria, leishmaniasis, toxoplasmosis, schistosomiasis or clonorchiasis), and may include or exclude viral diseases.
  • The invention further relates to kits for carrying out the invention.
    The kits of the invention comprise a container comprising an IMP/MC complex instructions for use of IMP/MC complex in immunodulation of an individual, for example when the individual suffers from a disorder associated with a Th2-type immune response (e.g., allergies or allergy-induced asthma), is receiving vaccines such as therapeutic vaccines (e.g., vaccines comprising an allergy epitope, a mycobacterial epitope, or a tumor associated epitope) or prophylactic vaccines, suffers from cancer, suffers from an infectious disease or is at risk of exposure to an infectious agent.
  • MODES OF PRACTICING THE INVENTION
  • We have discovered new compositions for modulating immune responses in individuals, particularly humans. The compositions of the invention comprise an immunomodulatory polynucleotide (IMP) complexed with a nonbiodegradable microcarrier (MC). We have found that immunomodulatory polynucleotides combined with nanometer-scale microcarriers (50 and 200 nm diameter beads) efficiently modulate immune cells, including human cells. IMPs combined with small microcarriers (approximately 1 to 4.5µm, less than 2.0 µm or 1.5 µm diameter) also immunomodulated human cells. Our discovery is of particular interest because human cells, as is known in the art, can be more resistant to immunomodulation by IMPs than cells from commonly used laboratory animals, such as mice.
  • The IMP/MC complexes may include or exclude an antigen. In some embodiments, the invention provides compositions comprising antigen-free IMP/MC complexes, i.e., IMP/MC complexes not linked to an antigen (directly or indirectly). In other embodiments, the invention provides compositions comprising IMP/MC complexes mixed with one or more antigens. In other embodiments, the invention provides compositions comprising IMP/MC complexes linked to antigen.
  • We have further found that covalently linked IMP/MC complexes comprising nonbiodegradable nanocarrier particles are highly active immunomodulators. Prior teaching in the art indicates that immunostimulatory oligonucleotides tightly bound to nonbiodegradable microparticles and nanoparticles are not effective (Manzel et al., supra).
    In view of this understanding in the art, we believe that our results would be surprising and unexpected to one of skill in the art.
  • The immunomodulatory polynucleotide/microcarrier (IMP/MC) complexes of the invention may be covalently or non-covalently linked, and comprise a microcarrier (e.g., a carrier of less than 10 µm size) that is insoluble in water. Microcarriersare solid phase (polystyrene beads). We also describe below microcarriers which are liquid phase (e.g., liposomes, micelles, or oil droplets in an oil and water emulsion). The IMP may be modified to allow or augment binding to the MC (e.g., by incorporation of a free sulfhydryl for covalent crosslinking or addition of a hydrophobic moiety such as cholesterol for hydrophobic bonding).
  • The invention provides new compositions comprising an IMP covalently linked to a nonbiodegradable microcarrier to form a covalent IMP/MC complex as defined in claim 1. Linkage between the IMP and MC may be direct (e.g., via disulfide bond between sulfhydryls on the IMP and MC) or the constituents may be linked by a crosslinking moiety of one or more atoms separating the bonds to the IMP and MC.
  • Also provided are compositions comprising an IMP non-covalently linked to a microcarrier to provide a non-covalent IMP/MC complex Non-covalent IMP/MC complexes generally comprise an IMP that has been modifies to allow binding to the microcarrier (e.g., by addition of a cholesterol moiety to the IMP to allow hydrophobic binding to oil or lipid based microcarrier).
  • The invention also provides the IMP/MC complex for use a methods for modulating an immune response in an individual by administering an IMP/MC complex to the individual.
  • Further provided are kits for practicing the methods of the invention. The kits comprise instructions for administering an IMP/MC complex for immunomodulation in a subject and a package or containers comprising IMP/MC complex.
  • General Techniques
  • The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology which are within the skill of the art. Such techniques are explained fully in the literature, such as, Molecular Cloning. A Laboratory Manual, second edition (Sambrook et al., 1989); Oligonucleotide Synthesis (M.J. Gait, ed., 1984); Animal Cell Culture (R.I. Freshney, ed., 1987); Handbook of Experimental Immunology (D.M. Weir & C.C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J.M. Miller & M.P. Calos, eds., 1987); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.E. Coligan et al., eds.,1991); The Immunoassay Handbook (D. Wild, ed., Stockton Press NY, 1994); Bioconjugate Techniques (Greg T. Hermanson, ed., Academic Press, 1996); and Methods of Immunological Analysis (R. Masseyeff, W.H. Albert, and N.A. Staines, eds., Weinheim: VCH Verlags gesellschaft mbH, 1993).
  • Definitions
  • As used herein, the singular form "a", "an", and "the" includes plural references unless indicated otherwise. For example, "an" ISS includes one or more ISS.
  • As used interchangeably herein, the terms "polynucleotide" and "oligonucleotide" include single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA), modified oligonucleotides and oligonucleosides or combinations thereof. The oligonucleotide can be linearly or circularly configured, or the oligonucleotide can contain both linear and circular segments.
    Oligonucleotides are polymers of nucleosides joined, generally, through phosphoester linkages, although alternate linkages, such as phosphorothioate esters may also be used in oligonucleotides. A nucleoside consists of a purine (adenine or guanine or derivative thereof) or pyrimidine (thymine, cytosine or uracil, or derivative thereof) base bonded to a sugar. The four nucleoside units (or bases) in DNA are called deoxyadenosine, deoxyguanosine, deoxythymidine, and deoxycytidine. A nucleotide is a phosphate ester of a nucleoside.
  • The term "ISS" as used herein refers to polynucleotide sequences that effect a measurable immune response as measured in vitro, in vivo and/or ex vivo. Examples of measurable immune responses include antigen-specific antibody production, secretion of cytokines, activation or expansion of lymphocyte populations such as NK cells, CD4+ T lymphocytes, CD8+ T lymphocytes, B lymphocytes.
    Preferably, the ISS sequences preferentially activate a Th1-type response. A polynucleotide for use in the invention contains at least one ISS. As used herein, "ISS" is also a shorthand term for an ISS-containing polynucleotide.
  • The term "immunomodulatory polynucleotide" or "IMP", as used herein, refers to a polynucleotide comprising at least one ISS. In certain embodiments, the IMP is an ISS.
  • The term "nonbiodegradable", as used herein, refers to a microcarrier which is not degraded or eroded under normal mammalian physiological conditions. Generally, a microcarrier is considered nonbiodegradable if it not degraded (i.e., loses less than 5% of its mass and/or average polymer length) after a 72 hour incubation at 37°C in normal human serum.
  • The term "microcarrier" refers to a particulate composition which is insoluble in water and which has a size of less than 100 µm, preferably less than 50-60 µm, preferably less than 10 µm, preferably less than 5, 2.5, 2 or 1.5 µm.
  • Microcarriers include "nanocarriers", which are microcarriers have a size of less than 1 µm, preferably less than 500 nm. Microcarriers include solid phase particles formed from polystrene. Solid phase microcarriers are formed frown polystrene which is non-erodible and/or non-degradable under mammalian physiological conditions. Microcarriers are typically spherical in shape, but microcarriers which deviate from spherical shape are also acceptable (e.g. ellipsoidal, rod-shaped, etc.). Due to their insoluble nature (with respect to water), microcarriers are filterable from water and water-based (aqueous) solutions.
  • The "size" of a microcarrier is generally the "design size" or intended size of the particles stated by the manufacturer. Size may be a directly measured dimension, such as average or maximum diameter, or may be determined by an indirect assay such as a filtration screening assay. Direct measurement of microcarrier size is typically carried out by microscopy, generally light microscopy or scanning electron microscopy (SEM), in comparison with particles of known size or by reference to a micrometer. As minor variations in size arise during the manufacturing process, microcarriers are considered to be of a stated size if measurements show the microcarriers are ± 5-10% of the stated measurement. Size characteristics may also be determined by dynamic light scattering. Alternatively, microcarrier size may be determined by filtration screening assays. A microcarrier is less than a stated size if a least 97% of the particles pass through a "screen-type" filter (i.e. a filter in which retained particles are on the surface of the filter, such as polycarbonate or polyethersulfone filters, as opposed to a "depth filter" in which retained particles lodge within the filter) of the stated size. A microcarrier is larger than a stated size if at least 97% of the microcarrier particles are retained by a screen-type filter of the stated size. Thus, at least 97% microcarriers of 10 µm to 10 nm in size pass through a 10 µm pore screen filter and are retained by a 10 nm screen filter.
  • As above discussion indicates, reference to a size or size range for a microcarrier implicitly includes approximate variations and approximations of the stated size and/or size range.
  • The term "immunomodulatory polynucleotide/microcarrier complex" or "IMP/MC complex" refers to a complex of an ISS-containing polynucleotide and a microcarrier of the invention. The components of the complex may be covalently or non-covalently linked. Non-covalent linkages may be mediated by any non-covalent bonding force, including by hydrophobic interaction, ionic (electrostatic) bonding, hydrogen bonds and/or van der Waals attractions. In the case of hydrophobic linkages, the linkage is generally via a hydrophobic moiety (e.g., cholesterol) covalently linked to the IMP.
  • The term "immunomodulatory" or "modulating an immune response" as used herein includes immunostimulatory as well as immunosuppressive effects. Immunomodulation is primarily a qualitative alteration in an overall immune response, although quantitative changes may also occur in conjunction with immunomodulation. An immune response that is immunomodulated according to the present invention is one that is shifted towards a "TH1-type" immune response, as opposed to a "Th2-type" immune response. Th1-type responses are typically considered cellular immune system (e.g., cytotoxic lymphocytes) responses, while Th2-type responses are generally "humoral", or antibody-based. Th1-type immune responses are normally characterized by "delayed-type hypersensitivity" reactions to an antigen, and can be detected at the biochemical level by increased levels of Th1-associated cytokines such as IFN-γ, IL-2, IL-12, and TNF-β, as well as IFN-α and IL-6, although IL-6 may also be associated with Th2-type responses as well. Th1-type immune responses are generally associated with the production of cytotoxic lymphocytes (CTLs) and low levels or transient production of antibody. Th2-type immune responses are generally associated with higher levels of antibody production, including IgE production, an absence of or minimal CTL production, as well as expression of Th2-associated cytokines such as IL-4. Accordingly, immunomodulation in accordance with the invention may be recognized by, for example, an increase in IFN-γ and/or a decrease in IgE production in an individual treated with the IMP/MC complex of the invention as compared to the absence of treatment.
  • The term "conjugate" refers to a complex in which an ISS-containing polynucleotide and an antigen are linked. Such conjugate linkages include covalent and/or non-covalent linkages.
  • The term "antigen" means a substance that is recognized and bound specifically by an antibody or by a T cell antigen receptor. Antigens can include peptides, proteins, glycoproteins, polysaccharides, complex carbohydrates, sugars, gangliosides, lipids and phospholipids; portions thereof and combinations thereof. The antigens can be those found in nature or can be synthetic. Antigens suitable for administration with ISS include any molecule capable of eliciting a B cell or T cell antigen-specific response. Preferably, antigens elicit an antibody response specific for the antigen. Haptens are included within the scope of "antigen." A hapten is a low molecular weight compound that is not immunogenic by itself but is rendered immunogenic when conjugated with an immunogenic molecule containing antigenic determinants. Small molecules may need to be haptenized in order to be rendered antigenic. Preferably, antigens of the present invention include peptides, lipids (e.g. sterols, fatty acids, and phospholipids), polysaccharides such as those used in Hemophilus influenza vaccines, gangliosides and glycoproteins.
  • "Adjuvant" refers to a substance which, when added to an immunogenic agent such as antigen, nonspecifically enhances or potentiates an immune response to the agent in the recipient host upon exposure to the mixture.
  • The term "peptide" are polypeptides that are of sufficient length and composition to effect a biological response, e.g. antibody production or cytokine activity whether or not the peptide is a hapten. Typically, the peptides are at least six amino acid residues in length. The term "peptide" further includes modified amino acids (whether or not naturally or non-naturally occurring), such modifications including phosphorylation, glycosylation, pegylation, lipidization and methylation.
  • "Antigenic peptides" can include purified native peptides, synthetic peptides, recombinant proteins, crude protein extracts, attenuated or inactivated viruses, cells, microorganisms, or fragments of such peptides. An "antigenic peptide" or "antigen polypeptide" accordingly means all or a portion of a polypeptide which exhibits one or more antigenic properties. Thus, for example, an "Amb a 1 antigenic polypeptide" or "Amb a 1 polypeptide antigen" is an amino acid sequence from Amb a1, whether the entire sequence, a portion of the sequence, and/or a modification of the sequence, which exhibits an antigenic property (i.e., binds specifically to an antibody or a T cell receptor).
  • A "delivery molecule" or "delivery vehicle" is a chemical moiety which facilitates, permits, and/or enhances delivery of an IMP/MC complex to a particular site and/or with respect to particular timing. A delivery vehicle may or may not additionally stimulate an immune response.
  • An "allergic response to antigen" means an immune response generally characterized by the generation of eosinophils and/or antigen-specific IgE and their resultant effects. As is well-known in the art, IgE binds to IgE receptors on mast cells and basophils. Upon later exposure to the antigen recognized by the IgE, the antigen cross-links the IgE on the mast cells and basophils causing degranulation of these cells, including to histamine release. It is understood and intended that the terms "allergic response to antigen", "allergy", and "allergic condition" are equally appropriate for application of some of the methods of the invention. Further, it is understood and intended that the medicaments of the invention include those that are equally appropriate for prevention of an allergic response as well as treating a pre-existing allergic condition.
  • As used herein, the term "allergen" means an antigen or antigenic portion of a molecule, usually a protein, which elicits an allergic response upon exposure to a subject. Typically the subject is allergic to the allergen as indicated, for instance, by the wheal and flare test or any method known in the art. A molecule is said to be an allergen even if only a small subset of subjects exhibit an allergic (e.g., IgE) immune response upon exposure to the molecule. A number of isolated allergens are known in the art. These include those provided in Table 1 herein.
  • The term "desensitization" refers to the process of the administration of increasing doses of an allergen to which the subject has demonstrated sensitivity. Examples of allergen doses used for desensitization are known in the art, see, for example, Fornadley (1998) Otolaryngol. Clin. North Am. 31:111-127.
  • "Antigen-specific immunotherapy" refers to any form of immunotherapy which involves antigen and generates an antigen-specific modulation of the immune response. In the allergy context, antigen-specific immunotherapy includes desensitization therapy.
  • An "individual" is a vertebrate, preferably a mammal, more preferably a human. Mammals include humans, primates, farm animals, sport animals, rodents and pets. Vertebrates also include birds (i.e., avian individuals) and reptiles (i.e., reptilian individuals).
  • An "effective amount" or a "sufficient amount" of a substance is that amount sufficient to effect beneficial or desired results, including clinical results, and, as such, an "effective amount" depends upon the context in which it is being applied. In the context of administering a composition that modulates an immune response to an antigen, an effective amount of an IMP/MC complex is an amount sufficient to achieve such a modulation as compared to the immune response obtained when the antigen is administered alone. An effective amount can be administered in one or more administrations.
  • The term "co-administration" as used herein refers to the administration of at least two different substances sufficiently close in time to modulate an immune response. Preferably, co-administration refers to simultaneous administration of at least two different substances.
  • "Stimulation" of an immune response, such as Th1 response, means an increase in the response, which can arise from eliciting and/or enhancement of a response.
  • An "IgE associated disorder" is a physiological condition which is characterized, in part, by elevated IgE levels, which may or may not be persistent. IgE associated disorders include allergy and allergic reactions, allergy-related disorders (described below), asthma, rhinitis, conjunctivitis, urticaria, shock, Hymenoptera sting allergies, and drug allergies, and parasite infections. The term also includes related manifestations of these disorders. Generally, IgE in such disorders is antigen-specific.
  • An "allergy-related disorder" means a disorder resulting from the effects of an antigen-specific IgE immune response. Such effects can include hypotension and shock. Anaphylaxis is an example of an allergy-related disorder during which histamine released into the circulation causes vasodilation as well as increased permeability of the capillaries with resultant marked loss of plasma from the circulation. Anaphylaxis can occur systemically, with the associated effects experienced over the entire body, and it can occur locally, with the reaction limited to a specific target tissue or organ.
  • The term "viral disease", as used herein, refers to a disease which has a virus as its etiologic agent. Examples of viral diseases include hepatitis B, hepatitis C, influenza, acquired immunodeficiency syndrome (AIDS), and herpes zoster.
  • As used herein, and as well-understood in the art, "treatment" is an approach for obtaining beneficial or desired results, including clinical results. For purposes of this invention, beneficial or desired clinical results include alleviation or amelioration of one or more symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • "Palliating" a disease or disorder means that the extent and/or undesirable clinical manifestations of a disorder or a disease state are lessened and/or time course of the progression is slowed or lengthened, as compared to not treating the disorder. Especially in the allergy context, as is well understood by those skilled in the art, palliation may occur upon modulation of the immune response against an allergen(s). Further, palliation does not necessarily occur by administration of one dose, but often occurs upon administration of a series of doses. Thus, an amount sufficient to palliate a response or disorder may be administered in one or more administrations.
  • An "antibody titer", or "amount of antibody", which is "elicited" by an IMP/MC complex refers to the amount of a given antibody measured at a time point after administration of IMP/MC complex.
  • A "Th1-associated antibody" is an antibody whose production and/or increase is associated with a Th1 immune response. For example, IgG2a is a Th1-associated antibody in mouse. For purposes of this invention, measurement of a Th1-associated antibody can be measurement of one or more such antibodies. For example, in human, measurement of a Th1-associated antibody could entail measurement of IgG1 and/or IgG3.
  • A "Th2-associated antibody" is an antibody whose production and/or increase is associated with a Th2 immune response. For example, IgG1 is a Th2-associated antibody in mouse. For purposes of this invention, measurement of a Th2-associated antibody can be measurement of one or more such antibodies. For example, in human, measurement of a Th2-associated antibody could entail measurement of IgG2 and/or IgG4.
  • To "suppress" or "inhibit" a function or activity, such as cytokine production, antibody production, or histamine release, is to reduce the function or activity when compared to otherwise same conditions except for a condition or parameter of interest, or alternatively, as compared to another condition. For example, an IMP/MC complex administered with an antigen or including an antigen which suppresses histamine release reduced histamine release as compared to, for example, histamine release induced by antigen alone.
  • As used herein, the term "comprising" and its cognates are used in their inclusive sense; that is, equivalent to the term "including" and its corresponding cognates.
  • Compositions of the invention
  • The invention provides new compositions for modulating immune response in individuals. The new compositions are immunomodulatory polynucleotide/microcarrier (IMP/MC) complexes which comprise an ISS-containing polynucleotide complexed to a nonbiodegradable microcarrier. IMP/MC complexes may be covalent complexes, in which the IMP portion of the complex is covalently bonded to the MC, either directly or via a linker (i.e., indirectly), or they may be non-covalent complexes.
  • Immunomodulatory polynucleotides
  • In accordance with the present invention, the immunomodulatory polynucleotide contains at least one ISS, and can contain multiple ISSs. The ISSs can be adjacent within the polynucleotide, or they can be separated by additional nucleotide bases within the polynucleotide. Accordingly, an IMP may contain combinations of any one or more ISS described herein, including those with modifications. In certain embodiments, the IMP consists of an ISS.
  • ISS have been described in the art and may be readily identified using standard assays which indicate various aspects of the immune response, such as cytokine secretion, antibody production, NK cell activation and T cell proliferation. See, e.g., WO 97/28259 ; WO 98/16247 ; WO 99/11275 ; Krieg et al. (1995) Nature 374:546-549; Yamamoto et al. (1992a); Ballas et al. (1996); Klinman et al. (1997); Sato et al. (1996);Pisetsky (1996a); Shimada et al. (1986) Jpn.J. Cancer Res. 77:808-816; Cowdery et al. (1996) J. Immunol. 156:4570-4575; Roman et al. (1997); and Lipford et al. (1997a).
  • The ISS can be of any length greater than 6 bases or base pairs and up to 50 bases, and comprises the sequence 5'-cytosine, guanine-3', preferably greater than 15 bases or base pairs, more preferably greater than 20 bases or base pairs in length. As is well-known in the art, the cytosine of the 5'-cytosine, guanine-3' sequence is unmethylated. An ISS may also comprise the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine, C, G-3'. An ISS may also comprise the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine, C, C-3'. As indicated in polynucleotide sequences below, an ISS may comprise (i.e., contain one or more of) the sequence 5'-T, C, G-3'. In some embodiments, an ISS may comprise the sequence 5'-C, G, pyrimidine, pyrimidine, C, G-3' (such as 5'-CGTTCG-3'). In some embodiments, an ISS may comprise the sequence 5'-C, G, pyrimidine, pyrimidine, C, G, purine, purine-3'. In some embodiments, an ISS comprises the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine-3' (such as 5'-AACGTT-3').
  • In some embodiments, an ISS may comprise the sequence 5'-purine, T, C, G, pyrimidine, pyrimidine-3'.
  • In some embodiments, the ISS comprises any of the following sequences: GACGCTCC; GACGTCCC; GACGTTCC; GACGCCCC; AGCGTTCC; AGCGCTCC; AGCGTCCC; AGCGCCCC; AACGTCCC; AACGCCCC; AACGTTCC; AACGCTCC; GGCGTTCC; GGCGCTCC; GGCGTCCC; GGCGCCCC; GACGCTCG; GACGTCCG; GACGCCCG; GACGTTCG; AGCGCTCG; AGCGTTCG; AGCGTCCG; AGCGCCCG; AACGTCCG; AACGCCCG; AACGTTCG; AACGCTCG; GGCGTTCG; GGCGCTCG; GGCGTCCG; GGCGCCCG.
  • In some embodiments, the ISS comprises any of the following sequences: GACGCT; GACGTC; GACGTT; GACGCC; GACGCU; GACGUC; GACGUU; GACGUT; GACGTU; AGCGTT; AGCGCT; AGCGTC; AGCGCC; AGCGUU; AGCGCU; AGCGUC; AGCGUT; AGCGTU; AACGTC; AACGCC; AACGTT; AACGCT; AACGUC; AACGUU; AACGCU; AACGUT; AACGTU; GGCGTT; GGCGCT; GGCGTC; GGCGCC; GGCGUU; GGCGCU; GGCGUC; GGCGUT; GGCGTU.
  • In some embodiments, the ISS comprises any of the following sequences: GABGCTCC; GABGTCCC; GABGTTCC; GABGCCCC; AGBGTTCC; AGBGCTCC; AGBGTCCC; AGBGCCCC; AABGTCCC; AABGCCCC; AABGTTCC; AABGCTCC; GGBGTTCC; GGBGCTCC; GGBGTCCC; GGBGCCCC; GABGCTCG; GABGTCCG; GABGCCCG; GABGTTCG; AGBGCTCG; AGBGTTCG; AGBGTCCG; AGBGCCCG; AABGTCCG; AABGCCCG; AABGTTCG; AABGCTCG; GGBGTTCG; GGBGCTCG; GGBGTCCG; GGBGCCCG; GABGCTBG; GABGTCBG; GABGCCBG; GABGTTBG; AGBGCTBG; AGBGTTBG; AGBGTCBG; AGBGCCBG; AABGTCBG; AABGCCBG; AABGTTBG; AABGCTBG; GGBGTTBG; GGBGCTBG; GGBGTCBG; GGBGCCBG, where B is 5-bromocytosine.
  • In some embodiments, the ISS comprises any of the following sequences: GABGCUCC; GABGUCCC; GABGUTCC; GABGTUCC; GABGUUCC; AGBGUUCC; AGBGTUCC; AGBGUTCC; AGBGCUCC; AGBGUCCC; AABGUCCC; AABGUUCC; AABGUTCC; AABGTUCC; AABGCUCC; GGBGUUCC; GGBGUTCC; GGBGTUCC; GGBGCUCC; GGBGUCCC; GABGCUCG; GABGUCCG; GABGUCG; GABGUTCG;GABGTUCG; AGBGCUCG; AGBGUUCG; AGBGUTCG; AGBGTUCG; AGBGUCCG; AABGUCCG; AABGUUCG; AABGUTCG; AABGTUCG; AABGCUCG; GGBGUUCG; GGBGUTCG; GGBGTUCG; GGBGCUCG; GGBGUCCG; GABGCUBG; GABGUCBG; GABGUUBG; GABGUTBG; GABGTUBG; AGBGCUBG; AGBGUUBG; AGBGUCBG; AGBGUTBG; AGBGTUBG; AABGUCBG; AABGUUBG; AABGUTBG; AABGTUBG; AABGCUBG; GGBGUUBG; GGBGUTBG; GGBGTUBG; GGBGCUBG; GGBGUCBG, where B is 5-bromocytosine.
  • In some embodiments, the immunomodulatory polynucleotide comprises the sequence 5'-TGACTGTGAACGTTCGAGATGA-3' (SEQ ID NO:1). In other embodiments, the ISS comprises any of the sequences:
    • 5'-TGACCGTGAACGTTCGAGATGA-3'(SEQ ID NO:2);
    • 5'-TCATCTCGAACGTTCCACAGTCA-3' (SEQ ID NO:3);
    • 5'-TGACTGTGAACGTTCCAGATGA-3'(SEQ ID NO:4);
    • 5'-TCCATAACGTTCGCCTAACGTTCGTC-3' (SEQ ID NO:5);
    • 5'-TGACTGTGAABGTTCCAGATGA-3' (SEQ ID NO:6), where B is 5-bromocytosine;
    • 5'-TGACTGTGAABGTTCGAGATGA-3' (SEQ ID NO:7), where B is 5-bromocytosine and
    • 5'-TGACTGTGAABGTTBGAGATGA-3' (SEQ ID NO:8), where B is 5-bromocytosine.
  • An ISS and/or IMP may contain modifications. Modifications of ISS include any known in the art modifications of the 3'OH or 5'OH group, modifications of the nucleotide base, modifications of the sugar component, and modifications of the phosphate group. Various such modifications are described below.
  • An ISS and/or IMP may be single stranded or double stranded DNA, as well as single or double-stranded RNA or other modified polynucleotides. An ISS may or may not include one or more palindromic regions, which may be present in the motifs described above or may extend beyond the motif. An ISS may comprise additional flanking sequences, some of which are described herein. An ISS may contain naturally-occurring or modified, non-naturally occurring bases, and may contain modified sugar, phosphate, and/or termini. For example, phosphate modifications include methyl phosphonate, phosphorothioate, phosphoramidate (bridging or non-bridging), phosphotriester and phosphorodithioate and may be used in any combination. Other non-phosphate linkages may also be used. Preferably, oligonucleotides of the present invention comprise phosphorothioate backbones. Sugar modifications known in the field, such as 2'-alkoxy-RNA analogs, 2'-amino-RNA analogs and 2'-alkoxy- or amino-RNA/DNA chimeras and others described herein, may also be made and combined with any phosphate modification. Examples of base modifications include, addition of an electron-withdrawing moiety to C-5 and/or C-6 of a cytosine of the ISS (e.g., 5-bromocytosine, 5-chlorocytosine, 5-fluorocytosine, 5-iodocytosine). See, for example, International Patent Application No. WO 99/62923 .
  • The ISS and/or IMP can be synthesized using techniques and nucleic acid synthesis equipment which are well known in the art including enzymatic methods, chemical methods, and the degradation of larger oligonucleotide sequences. See, for example, Ausubel et al. (1987); and Sambrook et al. (1989). When assembled enzymatically, the individual units can be ligated, for example, with a ligase such as T4 DNA or RNA ligase. U.S. Patent No. 5,124,246 . Oligonucleotide degradation can be accomplished through the exposure of an oligonucleotide to a nuclease, as exemplified in U.S. Patent No. 4,650,675 .
  • The ISS and/or IMP can also be isolated using conventional polynucleotide isolation procedures. Such procedures include hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences, antibody screening of expression libraries to detect shared structural features and synthesis of particular native sequences by the polymerase chain reaction.
  • Circular IMP can be isolated, synthesized through recombinant methods, or chemically synthesized. Where the circular IMP is obtained through isolation or through recombinant methods, the IMP will preferably be a plasmid. The chemical synthesis of smaller circular oligonucleotides can be performed using any method described in the literature. See, for instance, Gao et al. (1995) Nucleic Acids Res. 23:2025-2029; and Wang et al. (1994) Nucleic Acids Res. 22:2326-2333.
  • The techniques for making oligonucleotides and modified oligonucleotides are known in the art. Naturally occurring DNA or RNA, containing phosphodiester linkages, is generally synthesized by sequentially coupling the appropriate nucleoside phosphoramidite to the 5'-hydroxy group of the growing oligonucleotide attached to a solid support at the 3'-end, followed by oxidation of the intermediate phosphite triester to a phosphate triester. Once the desired oligonucleotide sequence has been synthesized, the oligonucleotide is removed from the support, the phosphate triester groups are deprotected to phosphate diesters and the nucleoside bases are deprotected using aqueous ammonia or other bases. See, for example, Beaucage (1993) "Oligodeoxyribonucleotide Synthesis" in Protocols for Oligonucleotides and Analogs, Synthesis and Properties (Agrawal, ed.) Humana Press, Totowa, NJ; Warner et al. (1984) DNA 3:401 and U.S. Patent No. 4,458,066 .
  • The ISS and/or IMP can also contain phosphate-modified oligonucleotides. Synthesis of polynucleotides containing modified phosphate linkages or non-phosphate linkages is also know in the art. For a review, see Matteucci (1997) "Oligonucleotide Analogs: an Overview" in Oligonucleotides as Therapeutic Agents, (D.J. Chadwick and G. Cardew, ed.) John Wiley and Sons, New York, NY. The phosphorous derivative (or modified phosphate group) which can be attached to the sugar or sugar analog moiety in the oligonucleotides of the present invention can be a monophosphate, diphosphate, triphosphate, alkylphosphonate, phosphorothioate, phosphorodithioate or the like. The preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described here in detail. Peyrottes et al. (1996) Nucleic Acids Res. 24:1841-1848; Chaturvedi et al. (1996) Nucleic Acids Res. 24:2318-2323; and Schultz et al. (1996) Nucleic Acids Res. 24:2966-2973. For example, synthesis of phosphorothioate oligonucleotides is similar to that described above for naturally occurring oligonucleotides except that the oxidation step is replaced by a sulfurization step (Zon (1993) "Oligonucleoside Phosphorothioates" in Protocols for Oligonucleotides and Analogs, Synthesis and Properties (Agrawal, ed.) Humana Press, pp. 165-190). Similarly the synthesis of other phosphate analogs, such as phosphotriester (Miller et al. (1971) JACS 93:6657-6665), non-bridging phosphoramidates (Jager et al. (1988) Biochem. 27:7247-7246), N3' to P5' phosphoramidiates (Nelson et al. (1997) JOC 62:7278-7287) and phosphorodithioates ( U.S. Patent No. 5,453,496 ) has also been described. Other non-phosphorous based modified oligonucleotides can also be used (Stirchak et al. (1989) Nucleic Acids Res.17:6129-6141). Oligonucleotides with phosphorothioate backbones can be more immunogenic than those with phosphodiester backbones and appear to be more resistant to degradation after injection into the host. Braun et al. (1988) J. Immunol. 141:2084-2089; and Latimer et al. (1995) Mol. Immunol. 32:1057-1064.
  • ISS-containing polynucleotides and/or IMPs used in the invention can comprise ribonucleotides (containing ribose as the only or principal sugar component), deoxyribonucleotides (containing deoxyribose as the principal sugar component), or, as is known in the art, modified sugars or sugar analogs can be incorporated in the ISS. Thus, in addition to ribose and deoxyribose, the sugar moiety can be pentose, deoxypentose, hexose, deoxyhexose, glucose, arabinose, xylose, lyxose, and a sugar "analog" cyclopentyl group. The sugar can be in pyranosyl or in a furanosyl form. In the ISS, the sugar moiety is preferably the furanoside of ribose, deoxyribose, arabinose or 2'-0-alkylribose, and the sugar can be attached to the respective heterocyclic bases either in a or β anomeric configuration. Sugar modifications include 2'-alkoxy-RNA analogs, 2'-amino-RNA analogs and 2'-alkoxy- or amino-RNA/DNA chimeras. The preparation of these sugars or sugar analogs and the respective "nucleosides" wherein such sugars or analogs are attached to a heterocyclic base (nucleic acid base) per se is known, and need not be described here, except to the extent such preparation can pertain to any specific example. Sugar modifications may also be made and combined with any phosphate modification in the preparation of an ISS and/or IMP.
  • The heterocyclic bases, or nucleic acid bases, which are incorporated in the ISS and/or IMP can be the naturally-occurring principal purine and pyrimidine bases, (namely uracil or thymine, cytosine, adenine and guanine, as mentioned above), as well as naturally-occurring and synthetic modifications of said principal bases.
  • Those skilled in the art will recognize that a large number of "synthetic" non-natural nucleosides comprising various heterocyclic bases and various sugar moieties (and sugar analogs) are available in the art, and that as long as other criteria of the present invention are satisfied, the ISS can include one or several heterocyclic bases other than the principal five base components of naturally-occurring nucleic acids. Preferably, however, the heterocyclic base in the ISS includes uracil-5-yl, cytosin-5-yl, adenin-7-yl, adenin-8-yl, guanin-7-yl, guanin-8-yl, 4-aminopyrrolo [2.3-d] pyrimidin-5-yl, 2-amino-4-oxopyrolo [2,3-d] pyrimidin-5-yl, 2-amino-4-oxopyrrolo [2.3-d] pyrimidin-3-yl groups, where the purines are attached to the sugar moiety of the ISS via the 9-position, the pyrimidines via the 1-position, the pyrrolopyrimidines via the 7-position and the pyrazolopyrimidines via the 1-position.
  • The ISS and/or IMP may comprise at least one modified base as described, for example, in the commonly owned international application WO 99/62923 . As used herein, the term "modified base" is synonymous with "base analog", for example, "modified cytosine" is synonymous with "cytosine analog." Similarly, "modified" nucleosides or nucleotides are herein defined as being synonymous with nucleoside or nucleotide "analogs." Examples of base modifications include addition of an electron-withdrawing moiety to C-5 and/or C-6 of a cytosine of the ISS. Preferably, the electron-withdrawing moiety is a halogen. Such modified cytosines can include azacytosine, 5-bromocytosine, bromouracil, 5-chlorocytosine, chlorinated cytosine,cyclocytosine,cytosine arabinoside, 5-fluorocytosine, fluoropyrimidine, fluorouracil, 5,6-dihydrocytosine, 5-iodocytosine, hydroxyurea, iodouracil, 5-nitrocytosine, uracil, and any other pyrimidine analog or modified pyrimidine.
  • The preparation of base-modified nucleosides, and the synthesis of modified oligonucleotides using said base-modified nucleosides as precursors, has been described, for example, in U.S. Patents 4,910,300 , 4,948,882 , and 5,093,232 . These base-modified nucleosides have been designed so that they can be incorporated by chemical synthesis into either terminal or internal positions of an oligonucleotide. Such base-modified nucleosides, present at either terminal or internal positions of an oligonucleotide, can serve as sites for attachment of a peptide or other antigen. Nucleosides modified in their sugar moiety have also been described (including e.g. U.S. Patents 4,849,513 ., 5,015,733 , 5,118,800 , 5,118,802 ) and can be used similarly.
  • The ISS has an upper limit of 50.
  • Microcarriers
  • Microcarriers useful in the invention are less than 100 µm in size, preferably less than 50-60 µm in size, preferably less than 10 µm in size, and are insoluble in pure water. Microcarriers are solid phase (e.g. beads). Solid phase microcarriers are typically "beads" or other approximately spherical particles, although non-spherical particles are included within the invention. The microcarriers used in the invention are nonbiodegradable, and are polystyrene.
  • Microcarriers for use in the compositions or methods of the invention are generally less than 10 µm in size (e.g. have an average diameter of less than 10 µm, or at least 97% of the particles pass through a 10 µm screen filter), and include nanocarriers (i.e. carriers of less than 1 µm size). Preferably, microcarriers are selected having sizes within an upper limit of 9, 7, 5, 2 or 1 µm or 900, 800, 700, 600, 500, 400, 300, 250, 200, or 100 nm and an independently selected lower limit of 4,2, or 1 µm or 800, 600, 500, 400, 300, 250, 200, 150, 100, 50, 25, or 10 nm, where the lower limit is less than the upper limit. In some embodiments, the microcarriers have a size of 1.0-1.5 µm, 1.0-2.0 µm or 0.9-1.6 µm. In certain preferred embodiments, the microcarriers have a size of 10 nm to 5 µm or 25 nm to 4.5 µm, 1 µm, 1.2 µm, 1.4 µm, 1.5 µm, 1.6 µm, 1. 8 µm, 2.0 µm, 2.5 µm or 4.5 µm. When the microcarriers are nanocarriers, preferred embodiments include nanocarriers of 25 to 300 µm, 50 to 200 nm, 50 nm or 200 nm.
  • The nonbiodegradable material for manufacturing microcarriers is polystyrene.
  • Antigen
  • IMP/MC complexes may be prepared which comprise antigen or which are antigen-free, i.e. IMP/MC complexes not linked to an antigen. Any antigen may be used in the preparation of IMP/MC complexes comprising antigen.
  • In some embodiments, the antigen is an allergen. Examples of recombinant allergens are provided in Table 1. Preparation of many allergens is well-known in the art, including preparation of ragweed pollen allergen Antigen E (Amb aI) (Rafnar et al (1991) J. Biol. Chem. 266:1229-1236), major dust mite allergens Der pI and Der PII (Chua et al (1988) J. Exp. Med. 167:175-182; Chua et al (1990) Int. Arch. Allergy Appl. Immunol. 91:124-129), white birch pollen Bet v1 (Breiteneder et al (1989) EMBO J. 8:1935-1938), domestic cat allergen Fel d I (Rogers et al (1993) Mol. Immunol. 30:559-568), and protein antigens from tree pollen (Elsayed et al (1991) Scand. J. Clin. Lab. Invest. Suppl. 204:17-31). As indicated, allergens from trees are known, including allergens from birch, juniper and Japanese cedar. Preparation of protein antigens from grass pollen for in vivo administration has been reported. Malley (1989) J. Reprod. Immunol. 16:173-186. As Table 1 indicates, in some embodiments, the allergen is a food allergen such as peanut allergen, for example Ara h I, and in some embodiments, the allergen is a grass allergen such as a rye allergen, for example Lol p 1. Table 1 shows a list of allergens that may be used. TABLE 1
    RECOMBINANT ALLERGENS
    Group Allergen Reference
    ANIMALS:
    CRUSTACEA
    Shrimp/lobster tropomyosin Pan s 1 Leung et al. (1996) J. Allergy Clin. Immunol. 98:954-961 Leung et al. (1998) Mol. Mar. Biol. Biotechnol. 7:12-20
    INSECTS
    Ant Sol i 2 (venom) Schmidt et al. J Allergy Clin Immunol, 1996, 98:82-8
    Bee Phospholipase A2 (PLA) Muller et al. J Allergy Clin Immunol, 1995, 96:395-402. Forster et al. J Allergy Clin Immunol, 1995, 95:1229-35 Muller et al. Clin Exp Allergy, 1997, 27:915-20
    Hyaluronidase (Hya) Soldatova et al. J Allergy Clin Immunol, 1998, 101:691-8
    Cockroach Bla g Bd9OK Helm et al. J Allergy Clin Immunol, 1996, 98:172-180
    Bla g 4 (a calycin) Vailes et al. J Allergy Clin Immunol, 1998, 101:274-280
    Glutathione S-transferase Arruda et al. J Biol Chem, 1997, 272:20907-12
    Per a 3 Wu et al. Mol Immunol, 1997,34:1-8
    Dust mite Der p 2 (major allergen) Lynch et al. J Allergy Clin Immunol, 1998,101:562-4 Hakkaart et al. Clin Exp Allergy, 1998,28:169-74 Hakkaart et al. Clin Exp Allergy, 1998,28:45-52 Hakkaart et al. Int Arch Allergy Immunol, 1998, 115 (2):150-6 Mueller et aL J Biol Chem, 1997, 272:26893-8
    Der p2 variant Smith et aL J Allergy Clin Immunol, 1998, 101:423-5
    Der f2 Yasue et al. Clin Exp Immunol, 1998, 113:1-9 Yasue et al. Cell Immunol, 1997, 181:30-7
    Asturias et al. Biochim Biophys Acta, 1998,1397:27.30
    Der p10
    Tyr p2
    Eriksson et al. Eur J Biochem, 1998
    Hornet Antigen 5 aka Dol m V (venom) Tomalski et al. Arch Insect Biochem Physiol, 1993, 22:303-13
    Mosquito Aed a I (salivary apyrase) Xu et al. Int Arch Allergy Immunol, 1998, 1 15:245-51
    Yellow jacket antigen 5, hyaluronidase and phospholipase (venom) King et al. J Allergy Clin Immunol, 1996, 98:588-600
    MAMMALS
    Cat Fel d 1 Slunt et al. J Allergy Clin Immunol, 1995, 95:1221-8 Hoffmann et al. (1997) J Allergy Clin Immunol 99:227-32 Hedlin Curr Opin Pediatr, 1995, 7:676-82
    Cow Bos d 2 (dander, a lipocalin) Zeiler et al. Allergy Clin Immunol, 1997, 100:721:7 Rautiainen et al. Biochem Bioph. Res Comm., 1998, 247:746-50
    β-lactoglobulin (BLG, major cow milk allergen) Chatel et al. Mol Immunol, 1996, 33:1113-8 Lehrer et al. Crit Rev Food Sci Nutr, 1996, 36:553-64
    Dog Can fI and Can f2, salivary lipocalins Konieczny et al. Immunology, 1997, 92:577-86 Spitzauer et aL J Allergy Clin Immunol, 1994, 93:614-27 Vrtala et al. J Immunol, 1998, 160:6137-44
    Horse Equ c1 (major allergen, a lipocalin) Gregoire et al. J Biol Chem, 1996, 27132951-9
    Mouse mouse urinary protein (MUP) Konieczny et al. Immunology, 1997, 92:577-86
    OTHER MAMMALIAN ALLERGENS
    Insulin Ganz et aL J Allergy Clin Immunol, 1990,86:45-51 Grammer et al. J Lab Clin Med, 1987,109:141-6 Gonzalo et al. Allergy,1998, 53:106-7
    Interferons interferon alpha 2c Detmar et al. Contact Dermatis, 1989, 20:149-50
    MOLLUSCS topomyosin Leung et al. J Allergy Clin Immunol, 1996, 98:954-61
    PLANT ALLERGENS:
    Barley Hor v 9 Astwood et al. Adv Exp Med Biol, 1996, 409:269-77
    Birch pollen allergen, Bet v 4 Twardosz et al. Biochem Bioph. Res Comm,1997,23 9:197
    rBet v 1 Bet v 2: (profilin) Pauli et al. J Allergy Clin Immunol, 1996, 97:1100-9 van Neerven et al. Clin Exp Allergy, 1998, 28:423-33 Jahn-Schmid et al. Immunol technology,1996,2:103-13 Breitwieser et al. Biotechniques, 1996, 21:918-25 Fuchs et al. J Allergy Clin Immunol,1997,100:3 56-64
    Brazil nut globulin Bartolome et al. Allergol Immunopathol,1997,25:135-44
    Cherry Pru a I (major allergen) Scheurer et al. Mol Immunol, 1997, 34:619-29
    Corn Zml3 (pollen) Heiss et al. FEBS Lett, 1996, 381:217-21 Lehrer et al. Int Arch Allergy Immunol, 1997,113:122-4
    Grass Phl p1, Phl p 2, Phl p 5 (timothy grass pollen) Bufe et al. Am J Respir Crit Care Med, 1998,157:1269-76 Vrtala et al. J Immunol Jun 15, 1998, 160:6137-44 Niederberger et al. J Allergy Clin Immun., 1998, 101:258-
    Schramm et al. Eur J Biochem, 1998, 252:200-6
    Hol 1 5 velvet grass pollen Zhang et al. J Immunol, 1993,151:791-9
    Bluegrass allergen Smith et al. Int Arch Allergy Immunol, 1997, 114265-71
    Cyn d 7 Bermuda grass Cyn d 12 (a profilin) Asturias et al. Clin Exp Allergy, 1997,27:1307-13 Fuchs et al. J Allergy Clin Immunol, 1997,100:356-64
    Juniper Jun o 2 (pollen) Tinghino et al. J Allergy Clin Immunol, 1998, 101:772-7
    Latex Hev b 7 Sowka et al. Eur J Biochem, 1998, 255:213-9 Fuchs et aL J Allergy Clin Immunol, 1997,100:3 56-64
    Mercurialis Mer a I (profilin) Vallverdu et al. J Allergy Clin Immunol, 1998,101:3 63- 70
    Mustard (Yellow) Sin a I (seed) Gonzalez de la Pena et al. Biochem Bioph. Res Comm., 1993,190:648-53
    Oilseed rape Bra r I pollen allergen Smith et al. Int Arch Allergy Immunol, 1997,114:265-71
    Peanut Ara h I Stanley et al. Adv Exp Med Biol, 1996,409:213-6 Burks et al. J Clin Invest, 1995, 96:1715-21 Burks et al.Int Arch Allergy Immunol, 1995,107:243-50
    Poa pratensis Poa p9 Parronchi et al. Eur J Immunol, 1996,26:697-703 Astwood et al. Adv Exp Med Biol,1996, 409:269-77
    Ragweed Amb a I Sun et al. Biotechnology Aug, 1995,13:779-86 Hirschwehr et aL J Allergy Clin Immunol, 1998, 101:196-206 Casale et al. J Allergy Clin Immunol, 1991, 100:110-21
    Rye Lot p I Tamborini et al. Eur J Biochem, 1997, 249:886-94
    Walnut Jug r I Teuber et al. J Allergy Clin Immun., 1998, 101:807-14
    Wheat allergen Fuchs et al. J Allergy Clin Immunol, 1997, 100:356-64 Donovan et al. Electrophoresis, 1993,14:917-22
    FUNGI:
    Aspergillus Asp f1, Asp f2, Asp f3, Asp f 4, rAsp f 6 Crameri et al. Mycoses, 1998, 41 Suppl 1:56-60 Hemmann et al. Eur J Immunol, 1998,28:1155-60 Banerjee et al. J Allergy Clin Immunol, 1997, 99:821-7 Crameri Int Arch Allergy Immunol, 1998, 115:99-114 Crameri et al. Adv Exp Med Biol, 1996, 409:111-6 Moser et al. J Allergy Clin Immunol, 1994, 93: 1-11
    Manganese superoxide dismutase (MNSOD) Mayer et al. Int Arch Allergy Immunol, 1997, 113:213-5
    Blomia allergen Caraballo et al. Adv Exp Med Biol, 1996, 409:81-3
    Penicillinium allergen Shen et al. Clin Exp Allergy, 1997, 27:682-90
    Psilocybe Psi c 2 Horner et al. Int Arch Allergy Immunol, 1995, 107:298-300
  • In some embodiments, the antigen is from an infectious agent, including protozoan, bacterial, fungal (including unicellular and multicellular), and viral infectious agents. Examples of suitable viral antigens are described herein and are known in the art. Bacteria include Hemophilus influenza, Mycobacterium tuberculosis and Bordetella pertussis. Protozoan infectious agents include malarial plasmodia, Leishmania species, Trypanosoma species and Schistosoma species. Fungi include Candida albicans.
  • In some embodiments, the antigen is a viral antigen. Viral polypeptide antigens include HIV proteins such as HIV gag proteins (including membrane anchoring (MA) protein, core capsid (CA) protein and nucleocapsid (NC) protein), HIV polymerase, influenza virus matrix (M) protein and influenza virus nucleocapsid (NP) protein, hepatitis B surface antigen (HBsAg), hepatitis B core protein (HBcAg), hepatitis e protein (HBeAg), hepatitis B DNA polymerase, hepatitis C antigens.
  • References discussing influenza vaccination include Scherle and Gerhard (1988) Proc. Natl. Acad. Sci. USA 85:4446-4450; Scherle and Gerhard (1986) J. Exp. Med. 164:1114-1128; Granoffet al. (1993) Vaccine 11:S46-51; Kodihalli et al. (1997) J. Virol. 71:3391-3396; Ahmeida et al. (1993) Vaccine 11:1302-1309; Chen et al. (1999) Vaccine 17:653-659; Govorkova and Smirnov (1997) Acta Virol. 41:251-257; Koide et al. (1995) Vaccine 13:3-5; Mbawuike et al. (1994) Vaccine 12:1340-1348; Tamura et al. (1994) Vaccine 12:310-316; Tamura et al. (1992) Eur. J. Immunol. 22:477-481; Hirabayashi et al. (1990) Vaccine 8:595-599. Other examples of antigen polypeptides are group- or subgroup specific antigens, which are known for a number of infectious agents, including adenovirus, herpes simplex virus, papilloma virus, respiratory syncytial virus and poxviruses.
  • Many antigenic peptides and proteins are known, and available in the art; others can be identified using conventional techniques. For immunization against tumor formation or treatment of existing tumors, immunomodulatory peptides can include tumor cells (live or irradiated), tumor cell extracts, or protein subunits of tumor antigens such as Her-2/neu, Mart1, carcinoembryonic antigen (CEA), gangliosides, human milk fat globule (HMFG), mucin (MUC1), MAGE antigens, BAGE antigens, GAGE antigens, gp100, prostate specific antigen (PSA), and tyrosinase. Vaccines for immuno-based contraception can be formed by including sperm proteins administered with ISS. Lea et al. (1996) Biochim. Biophys. Acta 1307:263 .
  • Attenuated and inactivated viruses are suitable for use herein as the antigen. Preparation of these viruses is well-known in the art and many are commercially available (see, e.g., Physicians' Desk Reference (1998) 52nd edition, Medical Economics Company, Inc.). For example, polio virus is available as IPOL® (Pasteur Merieux Connaught) and ORIMUNE® (Lederle Laboratories), hepatitis A virus as VAQTA® (Merck), measles virus as ATTENUVAX® (Merck), mumps virus as MUMPSVAX® (Merck) and rubella virus as MERUVAX®II (Merck). Additionally, attenuated and inactivated viruses such as HIV-1, HIV-2, herpes simplex virus, hepatitis B virus, rotavirus, human and non-human papillomavirus and slow brain viruses can provide peptide antigens.
  • In some embodiments, the antigen comprises a viral vector, such as vaccinia, adenovirus, and canary pox.
  • Antigens may be isolated from their source using purification techniques known in the art or, more conveniently, may be produced using recombinant methods.
  • Antigenic peptides can include purified native peptides, synthetic peptides, recombinant proteins, crude protein extracts, attenuated or inactivated viruses, cells, microorganisms, or fragments of such peptides. Immunomodulatory peptides can be native or synthesized chemically or enzymatically. Any method of chemical synthesis known in the art is suitable. Solution phase peptide synthesis can be used to construct peptides of moderate size or, for the chemical construction of peptides, solid phase synthesis can be employed. Atherton et al. (1981) Hoppe Seylers Z. Physiol. Chem. 362:833-839. Proteolytic enzymes can also be utilized to couple amino acids to produce peptides. Kullmann (1987) Enzymatic Peptide Synthesis, CRC Press, Inc. Alternatively, the peptide can be obtained by using the biochemical machinery of a cell, or by isolation from a biological source. Recombinant DNA techniques can be employed for the production of peptides. Hames et al. (1987) Transcription and Translation: A Practical Approach, IRL Press. Peptides can also be isolated using standard techniques such as affinity chromatography.
  • Preferably the antigens are peptides, lipids (e.g., sterols excluding cholesterol, fatty acids, and phospholipids), polysaccharides such as those used in H. influenza vaccines, gangliosides and glycoproteins. These can be obtained through several methods known in the art, including isolation and synthesis using chemical and enzymatic methods. In certain cases, such as for many sterols, fatty acids and phospholipids, the antigenic portions of the molecules are commercially available.
  • Examples of viral antigens useful in the subject compositions and methods using the compositions include HIV antigens. Such antigens include those antigens derived from HIV envelope glycoproteins including gp160, gp120 and gp41. Numerous sequences for HIV genes and antigens are known. For example, the Los Alamos National Laboratory HIV Sequence Database collects, curates and annotates HIV nucleotide and amino acid sequences. This database is accessible via the internet, at http://hiv-web.lani.gov/, and in a yearly publication, see Human Retroviruses and AIDS Compendium (for example, 1998 edition).
  • Antigens derived from infectious agents may be obtained using methods known in the art, for example, from native viral or bacterial extracts, from cells infected with the infectious agent, from purified polypeptides, from recombinantly produced polypeptides and/or as synthetic peptides.
  • IMP/MC complex formulations may be prepared with other immunotherapeutic agents including cytokine, adjuvants and antibodies. These IMP/MC complex formulations may be prepared with or without antigen.
  • IMP/MC complexes
  • IMP/MC complexes comprise an IMP bound to the surface of a microcarrier (i.e., the IMP is not encapsulated in the MC), and preferably comprise multiple molecules of IMP bound to each microcarrier. In certain embodiments, a mixture of different IMPs may be complexed with a microcarrier, such that the microcarrier is bound to more than one IMP species. The bond between the IMP and MC may be covalent or non-covalent. As will be understood by one of skill in the art, the IMP may be modified or derivatized and the composition of the microcarrier may be selected and/or modified to accommodate the desired type of binding desired for IMP/MC complex formation.
  • Covalently bonded IMP/MC complexes may be linked using any covalent crosslinking technology known in the art. Typically, the IMP portion will be modified, either to incorporate an additional moiety (e.g., a free amine, carboxyl or sulfhydryl group) or incorporate modified (e.g., phosphorothioate) nucleotide bases to provide a site at which the IMP portion may be linked to the microcarrier. The link between the IMP and MC portions of the complex can be made at the 3' or 5' end of the IMP, or at a suitably modified base at an internal position in the IMP. The microcarrier is generally also modified to incorporate moieties through which a covalent link may be formed, although functional groups normally present on the microcarrier may also be utilized. The IMP/MC is formed by incubating the IMP with a microcarrier under conditions which permit the formation of a covalent complex (e.g., in the presence of a crosslinking agent or by use of an activated microcarrier comprising an activated moiety which will form a covalent bond with the IMP).
  • A wide variety of crosslinking technologies are known in the art, and include crosslinkers reactive with amino, carboxyl and sulfhydryl groups. As will be apparent to one of skill in the art, the selection of a crosslinking agent and crosslinking protocol will depend on the configuration of the IMP and the microcarrier as well as the desired final configuration of the IMP/MC complex. The crosslinker may be either homobifunctional or heterobifunctional. When a homobifunctional crosslinker is used, the crosslinker exploits the same moiety on the IMP and MC (e.g., an aldehyde crosslinker may be used to covalently link an IMP and MC where both the IMP and MC comprise one or more free amines). Heterobifunctional crosslinkers utilize different moieties on the the IMP and MC, (e.g., a maleimido-N-hydroxysuccinimide ester may be used to covalently link a free sulfhydryl on the IMP and a free amine on the MC), and are preferred to minimize formation of inter-microcarrier bonds. In most cases, it is preferable to crosslink through a first crosslinking moiety on the microcarrier and a second crosslinking moiety on the IMP, where the second crosslinking moiety is not present on the microcarrier. One preferred method of producing the IMP/MC complex is by 'activating' the microcarrier by incubating with a heterobifunctional crosslinking agent, then forming the IMP/MC complex by incubating the IMP and activated MC under conditions appropriate for reaction. The crosslinker may incorporate a "spacer" arm between the reactive moieties, or the two reactive moieties in the crosslinker may be directly linked.
  • In one preferred embodiment, the IMP portion comprises at least one free sulfhydryl (e.g., provided by a 5'-thiol modified base or linker) for crosslinking to the microcarrier, while the microcarrier comprises free amine groups. A heterobifunctional crosslinker reactive with these two groups (e.g., a crosslinker comprising a maleimide group and a NHS-ester), such as succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate is used to activate the MC, then covalently crosslink the IMP to form the IMP/MC complex.
  • Non-covalent IMP/MC complexes may be linked by any non-covalent binding or interaction, including ionic (electrostatic) bonds, hydrophobic interactions, hydrogen bonds, van der Waals attractions, or a combination of two or more different interactions, as is normally the case when a binding pair is to link the IMP and MC.
  • Preferred non-covalent IMP/MC complexes are typically complexed by hydrophobic or electrostatic (ionic) interactions, or a combination thereof, (e.g., through base pairing between an IMP and a polynucleotide bound to an MC use of a binding pair). Due to the hydrophilic nature of the backbone of polynucleotides, IMP/MC complexes which rely on hydrophobic interactions to form the complex generally require modification of the IMP portion of the complex to incorporate a highly hydrophobic moiety. Preferably, the hydrophobic moiety is biocompatible, nonimmunogenic, and is naturally occurring in the individual for whom the composition is intended (e.g., is found in mammals, particularly humans). Examples of preferred hydrophobic moieties include lipids, steroids, sterols such as cholesterol, and terpenes. The method of linking the hydrophobic moiety to the IMP will, of course, depend on the configuration of the IMP and the identity of the hydrophobic moiety. The hydrophobic moiety may be added at any convenient site in the IMP, preferably at either the 5' or 3' end; in the case of addition of a cholesterol moiety to an IMP, the cholesterol moiety is preferably added to the 5' end of the IMP, using conventional chemical reactions (see, for example, Godard et al. (1995) Eur. J. Biochem 232:404-410).
  • Non-covalent IMP/MC complexes linked by nucleotide base pairing may be produced using conventional methodologies. Generally, base-paired IMP/MC complexes are produced using a microcarrier comprising a bound, preferably a covalently bound, polynucleotide (the "capture polynucleotide") that is at least partially complementary to the IMP. The segment of complementarity between the IMP and the capture nucleotide is preferably at least 6,8,10 or 15 contiguous base pairs, more preferably at least 20 contiguous base pairs. The capture nucleotide may be be bound to the MC by any method known in the art, and is preferably covalently bound to the IMP at the 5' or 3' end.
  • In other embodiments, a binding pair may be used to link the IMP and MC in an IMP/MC complex. The binding pair may be a receptor and ligand, an antibody and antigen (or epitope), or any other binding pair which binds at high affinity (e.g., Kd less than 10-8). One type of preferred binding pair is biotin and streptavidin or biotin and avidin, which form very tight complexes, although in certain embodiments this form of linkage may be excluded. When using a binding pair to mediate IMP/MC complex binding, the IMP is derivatized, typically by a covalent linkage, with one member of the binding pair, and the MC is derivatized with the other member of the binding pair. Mixture of the two derivatized compounds results in IMP/MC complex formation.
  • Many IMP/MC complex embodiments do not include an antigen, and certain embodiments exlude antigen(s) associated with the disease or disorder which is the object of the IMP/MC complex therapy. In further embodiments, the IMP is also bound to one or more antigen molecules. Antigen may be coupled with the IMP portion of an IMP/MC complex in a variety of ways, including covalent and/or non-covalent interactions, as described, for example, in WO 98/16247 . Alternately, the antigen may be linked to the microcarrier (either directly or indirectly).
  • The link between the antigen and the IMP in IMP/MC complexes comprising an antigen bound to the IMP can be made at the 3' or 5' end of the IMP, or at a suitably modified base at an internal position in the IMP. If the antigen is a peptide and contains a suitable reactive group (e.g., an N-hydroxysuccinimide ester) it can be reacted directly with the N4 amino group of cytosine residues. Depending on the number and location of cytosine residues in the IMP, specific coupling at one or more residues can be achieved.
  • Alternatively, modified nucleosides or nucleotides, such as are known in the art, can be incorporated at either terminus, or at internal positions in the IMP. These can contain blocked functional groups which, when deblocked, are reactive with a variety of functional groups which can be present on, or attached to, the antigen of interest.
  • Where the antigen is a peptide, this portion of the conjugate can be attached to the 3'-end of the IMP through solid support chemistry. For example, the IMP portion can be added to a polypeptide portion that has been pre-synthesized on a support. Haralambidis et al. (1990a) Nucleic Acids Res. 18:493-499; and Haralambidis et al. (1990b) Nucleic Acids Res. 18:501-505. Alternatively, the IMP can be synthesized such that it is connected to a solid support through a cleavable linker extending from the 3'-end. Upon chemical cleavage of the IMP from the support, a terminal thiol group is left at the 3'-end of the oligonucleotide (Zuckermann et al. (1987) Nucleic Acids Res. 15:5305-5321; and Corey et al. (1987) Science 238:1401-1403) or a terminal amino group is left at the 3'-end of the oligonucleotide (Nelson et al. (1989) Nucleic Acids Res. 17:1781-1794). Conjugation of the amino-modified IMP to amino groups of the peptide can be performed as described in Benoit et al. (1987) Neuromethods 6:43-72. Conjugation of the thiol-modified IMP to carboxyl groups of the peptide can be performed as described in Sinha et al. (1991), pp. 185-210, Oligonucleotide Analogues: A Practical Approach, IRL Press. Coupling of an oligonucleotide carrying an appended maleimide to the thiol side chain of a cysteine residue of a peptide has also been described. Tung et al. (1991) Bioconjug. Chem. 2:464-465.
  • The peptide portion of the conjugate can be attached to the 5'-end of the IMP through an amine, thiol, or carboxyl group that has been incorporated into the oligonucleotide during its synthesis. Preferably, while the oligonucleotide is fixed to the solid support, a linking group comprising a protected amine, thiol, or carboxyl at one end, and a phosphoramidite at the other, is covalently attached to the 5'-hydroxyl. Agrawal et al. (1986) Nucleic Acids Res. 14:6227-6245; Connolly (1985) Nucleic Acids Res. 13:4485-4502; Kremsky et al. (1987) Nucleic Acids Res. 15:2891-2909; Connolly (1987) Nucleic Acids Res. 15:3131-3139; Bischoffet al. (1987) Anal. Biochem. 164:336-344; Blanks et al. (1988) Nucleic Acids Res. 16:10283-10299; and U.S. Patent Nos. 4,849,513 , 5,015,733 , 5,118,800 , and 5,118,802 . Subsequent to deprotection, the amine, thiol, and carboxyl functionalities can be used to covalently attach the oligonucleotide to a peptide. Benoit et al. (1987); and Sinha et al. (1991).
  • An IMP-antigen conjugate can also be formed through non-covalent interactions, such as ionic bonds, hydrophobic interactions, hydrogen bonds and/or van der Waals attractions.
  • Non-covalently linked conjugates can include a non-covalent interaction such as a biotin-streptavidin complex. A biotinyl group can be attached, for example, to a modified base of an ISS. Roget et al. (1989) Nucleic Acids Res. 17:7643-7651. Incorporation of a streptavidin moiety into the peptide portion allows formation of a non-covalently bound complex of the streptavidin conjugated peptide and the biotinylated oligonucleotide.
  • Non-covalent associations can also occur through ionic interactions involving an IMP and residues within the antigen, such as charged amino acids, or through the use of a linker portion comprising charged residues that can interact with both the oligonucleotide and the antigen. For example, non-covalent conjugation can occur between a generally negatively-charged ISS and positively-charged amino acid residues of a peptide, e.g., polylysine, polyarginine and polyhistidine residues.
  • Non-covalent conjugation between IMP and antigens can occur through DNA binding motifs of molecules that interact with DNA as their natural ligands. For example, such DNA binding motifs can be found in transcription factors and anti-DNA antibodies.
  • The linkage of the IMP to a lipid can be formed using standard methods. These methods include the synthesis of oligonucleotide-phospholipid conjugates (Yanagawa et al. (1988) Nucleic Acids Symp. Ser. 19:189-192), oligonucleotide-fatty acid conjugates (Grabarek et al. (1990) Anal. Biochem. 185:131-135; and Staros et al. (1986) Anal. Biochem. 156:220-222), and oligonucleotide-sterol conjugates. Boujrad et al. (1993) Proc. Natl. Acad Sci. USA 90:5728-5731.
  • The linkage of the IMP to an oligosaccharide can be formed using standard known methods. These methods include the synthesis of oligonucleotide-oligosaccharide conjugates, wherein the oligosaccharide is a moiety of an immunoglobulin. O'Shannessy et al. (1985) J. Applied Biochem. 7:347-355.
  • The linkage of a circular IMP to a peptide or antigen can be formed in several ways. Where the circular IMP is synthesized using recombinant or chemical methods, a modified nucleoside is suitable. Ruth (1991), pp. 255-282, in Oligonucleotides and Analogues: A Practical Approach, IRL Press. Standard linking technology can then be used to connect the circular IMP to the antigen or other peptide. Goodchild (1990) Bioconjug. Chem. 1:165. Where the circular IMP is isolated, or synthesized using recombinant or chemical methods, the linkage can be formed by chemically activating, or photoactivating, a reactive group (e.g. carbene, radical) that has been incorporated into the antigen or other peptide.
  • Additional methods for the attachment of peptides and other molecules to oligonucleotides can be found in U.S. Patent No. 5,391,723 ; Kessler (1992) "Nonradioactive labeling methods for nucleic acids" in Kricka (ed.) Nonisotopic DNA Probe Techniques, Academic Press; and Geoghegan et al. (1992) Bioconjug. Chem. 3:138-146.
  • Methods of the invention
  • The invention provides medicaments for modulating an immune response in an individual, preferably a mammal, more preferably a human.
    Immunomodulation may include stimulating a Th1-type immune response and/or inhibiting or reducing a Th2-type immune response.
  • In some embodiments, the immune modulation comprises stimulating a (i.e., one or more) Th1-associated cytokine, such as IFN-γ, IL-12 and/or IFN-α. In some embodiments, the immune modulation comprise suppressing production of a (i.e ., one or more) Th2-associated cytokine, such as IL-4 and/or IL-5. Measuring these parameters uses methods standard in the art and has been discussed herein.
  • As described herein, administration of IMP/MC may further comprise administration of one or more additional immunotherapeutic agents (i.e., an agent which acts via the immune system and/or is derived from the immune system) including cytokine, adjuvants and antibodies. Examples of therapeutic antibodies include those used in the cancer context (e.g., anti-tumor antibodies).
  • In certain embodiments, the individual suffers from a disorder associated with a Th2-type immune response, such as allergies or allergy-induced asthma. Administration or an IMP/MC complex results in immunomodulation, increasing levels of one or more Th1-type response associated cytokines, which may result in a reduction of the Th2-type response features associated with the individual's response to the allergen. Immunomodulation of individuals with Th2-type response associated disorders results in a reduction or improvement in one or more of the symptoms of the disorder. Where the disorder is allergy or allergy-induced asthma, improvement in one or more of the symptoms includes a reduction one or more of the following: rhinitis, allergic conjunctivitis, circulating levels of IgE, circulating levels of histamine and/or requirement for 'rescue' inhaler therapy (e.g., inhaled albuterol administered by metered dose inhaler or nebulizer).
  • In further embodiments, the individual subject to the immunomodulatory therapy of the invention is an individual receiving a vaccine. The vaccine may be a prophylactic vaccine or a therapeutic vaccine. A prophylactic vaccine comprises one or more epitopes associated with a disorder for which the individual may be at risk (e.g., M. tuberculosis antigens as a vaccine for prevention of tuberculosis). Therapeutic vaccines comprise one or more epitopes associated with a particular disorder affecting the individual, such as M. tuberculosis or M bovis surface antigens in tuberculosis patients, antigens to which the individual is allergic (i.e., allergy desensitization therapy) in individuals subject to allergies, tumor cells from an individual with cancer (e.g., as described in U.S. Patent No. 5,484,596 ), or tumor associated antigens in cancer patients. The IMP/MC complex may be given in conjunction with the vaccine (e.g:, in the same injection or a contemporaneous, but separate, injection) or the IMP/MC complex may be administered separately (e.g., at least 12 hours before or after administration of the vaccine). In certain embodiments, the antigen(s) of the vaccine is part of the IMP/MC complex, by either covalent or non-covalent linkage to the IMP/MC complex. Administration of IMP/MC complex therapy to an individual receiving a vaccine results in an immune response to the vaccine that is shifted towards a Th1-type response as compared to individuals which receive vaccine without IMP/MC complex. Shifting towards a Th1-type response may be recognized by a delayed-type hypersensitivity (DTH) response to the antigen(s) in the vaccine, increased IFN-γ and other Th1-type response associated cytokines, increased IFN-α, production of CTLs specific for the antigen(s) of the vaccine, low or reduced levels of IgE specific for the antigen(s) of the vaccine, a reduction in Th2-associated antibodies specific for the antigen(s) of the vaccine, and/or an increase in Th1-associated antibodies specific for the antigen(s) of the vaccine. In the case of therapeutic vaccines, administration of IMP/MC complex and vaccine also results in amelioration of the symptoms of the disorder which the vaccine is intended to treat. As will be apparent to one of skill in the art, the exact symptoms and manner of their improvement will depend on the disorder sought to be treated. For example, where the therapeutic vaccine is for tuberculosis, IMP/MC complex treatment with vaccine results in reduced coughing, pleural or chest wall pain, fever, and/or other symptoms known in the art Where the vaccine is an allergen used in allergy desensitization therapy, the treatment results in a reduction in one or more symptoms of allergy (e.g., reduction in rhinitis, allergic conjunctivitis, circulating levels of IgE, and/or circulating levels of histamine).
  • Other embodiments of the invention relate to the compositions for use in immunomodulatory therapy of * individuals having a pre-existing disease or disorder, such as cancer or an infectious disease. Cancer is an attractive target for immunomodulation because most cancers express tumor-associated and/or tumor specific antigens which are not found on other cells in the body. Stimulation of a Th1-type response against tumor cells results in direct and/or bystander killing of tumor cells by the immune system, leading to a reduction in cancer cells and a reduction in symptoms. Administration of an IMP/MC complex to an individual having cancer results in stimulation of a Th1-type immune response against the tumor cells. Such an immune response can kill tumor cells, either by direct action of cellular immune system cells (e.g., CTLs) or components of the humoral immune system, or by bystander effects on cells proximal to cells targeted by the immune system.
  • Medicaments in accordance with the invention is also useful for individuals with infectious diseases, particularly infectious diseases which are resistant to humoral immune responses (e.g., diseases caused by mycobacterial infections and intracellular pathogens). Medicaments may be used for the treatment of infectious diseases caused by cellular pathogens (e.g., bacteria or protozoans) or by subcellular pathogens (e.g., viruses). IMP/MC complex is useful for individuals suffering from mycobacterial diseases such as tuberculosis (e.g., M. tuberculosis and/or M. bovis infections), leprosy ( i.e., M. leprae infections), or M. marinum or M. ulcerans infections. IMP/MC complex is also useful for the treatment of viral infections, including infections by influenza virus, respiratory syncytial virus (RSV), hepatitis virus B, hepatitis virus C, herpes viruses, particularly herpes simplex viruses, and papilloma viruses. Diseases caused by intracellular parasites such as malaria (e.g., infection by Plasmodium vivax, P. ovale, P. fa/ciparum and/or P. malariae), leishmaniasis (e.g., infection by Leishmania donovani, L tropica, L nrexicana, L braziliensis, L peruviana, L infantum; L chagasi, and/or L aethiopica), and toxoplasmosis (i.e., infection by Toxoplasmosis gondi,) also benefit from IMP/MC complex. IMP/MC is also useful for treatment of parasitic diseases such as schistosomiasis (i.e., infection by blood flukes of the genus Schistosoma such as S. haematobitum S. mansoni, S. japonicum and S. mekongi) and clonorchiasis (i.e., infection by Clonorchis sinensis). IMP/MC complexis useful for an individual suffering from an infectious disease resulting in an amelioration of one or more symptoms of the infectious disease. In some embodiments, the infectious disease is not a viral disease.
  • The invention further provides medicaments for increasing at least one Th1-associated cytokine in an individual, including IL-2, IL-12, TNF-β, and IFN-γ. In certain embodiments, the invention provides medicaments for increasing IFN-γ in an individual, particularly in an individual in need of increased IFN-γ levels.
    Individuals in need of increased IFN-γ are those having disorders which respond to the administration of IFN-γ. Such disorders include a number of inflammatory disorders including ulcerative colitis. Such disorders also include a number of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), scleroderma, cutaneous radiation-induced fibrosis, hepatic fibrosis including schistosomiasis-induced hepatic fibrosis, renal fibrosis as well as other conditions which may be improved by administration of IFN-γ. IMP/MC complex in accordance with the invention increases IFN-γ levels, and results in amelioration of one or more symptoms, stabilization of one or more symptoms, or prevention of progression (e.g., reduction or elimination of additional lesions or symptoms) of the disorder which responds to IFN-γ. The medicaments the invention may be used in combination with other agents which make up the standard of care for the disorder, such as anti-inflammatory agents such as systemic corticosteroid (e.g., cortisone) in IPF.
  • In certain embodiments, the invention provides medicaments for increasing IFN-α in an individual, particularly in an individual in need of increased IFN-α levels.
  • Individuals in need of increased IFN-α are those having disorders which respond to the administration of IFN-α, including recombinant IFN-α, including viral infections and cancer.
  • Also provided are medicaments for reducing levels, particularly serum levels, of IgE in an individual having an IgE-related disorder.
    Reduction in IgE results in an amelioration of symptoms of the IgE-related disorder. Such symptoms include allergy symptoms such as rhinitis, conjunctivitis, in decreased sensitivity to allergens, a reduction in the symptoms of allergy in an individual with allergies, or a reduction in severity of a allergic response.
  • As will be apparent to one of skill in the art, the medicaments of the invention may be used in combination with other agents for the particular indication for which the IMP/MC complex is administered. For example, IMP/MC complex may be used in conjunction with anti-malarial drugs such as chloroquine for malaria patients, in conjunction with leishmanicidal drugs such as pentamidine and/or allopurinol for leishmaniasis patients, in conjunction with anti-mycobacterial drugs such as isoniazid, rifampin and/or ethambutol in tuberculosis patients, or in conjunction with allergen desensitization for atopic (allergy) patients.
  • Administradon and assessment of the immune response
  • The IMP/MC complex can be administered in combination with other pharmaceutical and/or immunogenic and/or immunostimulatory agents and can be combined with a physiologically acceptable carrier thereof.
  • Accordingly, the IMP/MC complex can be administered in conjunction with other immunotherapeutic agents including cytokine, adjuvants and antibodies.
  • The ISS-containing polynucleotide may be any of those described above. As indicated in SEQ ID NO:1, preferably, the ISS-containing polynucleotide administered comprises the sequence 5'-T, C, G-3'. Preferably, the ISS-containing polynucleotide administered comprises the formula 5' purine, purine, C, G, pyrimidine, pyrimidine, C, G-3'; more preferably, 5'-A, A, C, G, T, T, C, G-3'. Another preferred embodiment uses SEQ ID NO:1.
  • As with all immunogenic compositions, the immunologically effective amounts and method of administration of the particular IMP/MC complex formulation can vary based on the individual, what condition is to be treated and other factors evident to one skilled in the art. Factors to be considered include the antigenicity, whether or not the IMP/MC complex will be administered with or covalently attached to an adjuvant or delivery molecule, route of administration and the number of immunizing doses to be administered. Such factors are known in the art and it is well within the skill of those in the art to make such determinations without undue experimentation. A suitable dosage range is one that provides the desired modulation of immune response to the antigen. Generally, dosage is determined by the amount of IMP administered to the patient, rather than the overall quantity of IMP/MC complex. Useful dosage ranges of the IMP/MC complex, given in amounts of IMP delivered, may be, for example, from any of the following: 0.1 to 100 µg/kg, 0.1 to 50 µg/kg, 0.1 to 25 µg/kg, 0.1 to 10 µg/kg, 1 to 500 µg/kg, 100 to 400 µg/kg, 200 to 300 µg/kg, to 100 µg/kg, 100 to 200 µg/kg, 300 to 400 µg/kg, 400 to 500 µg/kg. Alternatively, the doses can be any of the following: 0.1 µg, 0.25 µg, 0.5 µg, 1.0 µg, 2.0 µg, 5.0 µg, 10 µg, 25 µg, 50 µg, 75 µg, 100 µg. Accordingly, dose ranges can be those with a lower limit any of the following: 0.1 µg, 0.25 µg, 0.5 µg and 1.0 µg; and with an upper limit of any of the following: 25 µg, 50 µg and 100 µg. The absolute amount given to each patient depends on pharmacological properties such as bioavailability, clearance rate and route of administration.
  • The effective amount and method of administration of the particular IMP/MC complex formulation can vary based on the individual patient and the stage of the disease and other factors evident to one skilled in the art. The route(s) of administration useful in a particular application are apparent to one of skill in the art. Routes of administration include topical, dermal, transdermal, transmucosal, epidermal, parenteral, gastrointestinal, and naso-pharyngeal and pulmonary, including transbronchial and transalveolar. A suitable dosage range is one that provides sufficient ISS-containing composition to attain a tissue concentration of 1 -10 µM as measured by blood levels. The absolute amount given to each patient depends on pharmacological properties such as bioavailability, clearance rate and route of administration.
  • As described herein, APCs and tissues with high concentration of APCs are preferred targets for the IMP/MC complexes. Thus, administration of IMP/MC complex to mammalian skin and/or mucosa, where APCs are present in relatively high concentration, is preferred.
  • The present invention provides IMP/MC complex formulations suitable for topical application including physiologically acceptable implants, ointments, creams, rinses and gels. Topical administration is, for instance, by a dressing or bandage having dispersed therein a delivery system, by direct administration of a delivery system into incisions or open wounds, or by transdermal administration device directed at a site of interest Creams, rinses, gels or ointments having dispersed therein an IMP/MC complex are suitable for use as topical ointments or wound filling agents.
  • Preferred routes of dermal administration are those which are least invasive. Preferred among these means are transdermal transmission, epidermal administration and subcutaneous injection. Of these means, epidermal administration is preferred for the greater concentrations of APCs expected to be in intradermal tissue.
  • Transdermal administration is accomplished by application of a cream, rinse, gel, etc. capable of allowing the IMP/MC complex to penetrate the skin and enter the blood stream. Compositions suitable for transdermal administration include pharmaceutically acceptable suspensions, oils, creams and ointments applied directly to the skin or incorporated into a protective carrier such as a transdermal device (so-called "patch"). Examples of suitable creams, ointments etc. can be found, for instance, in the Physician's Desk Reference.
  • For transdermal transmission, iontophoresis is a suitable method. Iontophoretic transmission can be accomplished using commercially available patches which deliver their product continuously through unbroken skin for periods of several days or more. Use of this method allows for controlled transmission of pharmaceutical compositions in relatively great concentrations, permits infusion of combination drugs and allows for contemporaneous use of an absorption promoter.
  • An exemplary patch product for use in this method is the LECTRO PATCH trademarked product of General Medical Company of Los Angeles, CA. This product electronically maintains reservoir electrodes at neutral pH and can be adapted to provide dosages of differing concentrations, to dose continuously and/or periodically. Preparation and use of the patch should be performed according to the manufacturer's printed instructions which accompany the LECTRO PATCH product.
    Other occlusive patch systems are also suitable.
  • For transdermal transmission, low-frequency ultrasonic delivery is also a suitable method. Mitragotri et al. (1995) Science 269:850-853. Application of low-frequency ultrasonic frequencies (about 1 MHz) allows the general controlled delivery of therapeutic compositions, including those of high molecular weight.
  • Epidermal administration essentially involves mechanically or chemically irritating the outermost layer of the epidermis sufficiently to provoke an immune response to the irritant. Specifically, the irritation should be sufficient to attract APCs to the site of irritation.
  • An exemplary mechanical irritant means employs a multiplicity of very narrow diameter, short tines which can be used to irritate the skin and attract APCs to the site of irritation, to take up IMP/MC complex transferred from the end of the tines. For example, the MONO-VACC old tuberculin test manufactured by Pasteur Merieux of Lyon, France contains a device suitable for introduction of IMP/MC complex-containing compositions.
  • The device (which is distributed in the U.S. by Connaught Laboratories, Inc. of Swiftwater, PA) consists of a plastic container having a syringe plunger at one end and a tine disk at the other. The tine disk supports a multiplicity of narrow diameter tines of a length which will just scratch the outermost layer of epidermal cells. Each of the tines in the MONO-VACC kit is coated with old tuberculin; in the present invention, each needle is coated with a pharmaceutical composition of IMP/MC complex formulation. Use of the device is preferably according to the manufacturer's written instructions included with the device product. Similar devices which can also be used in this embodiment are those which are currently used to perform allergy tests.
  • Another suitable approach to epidermal administration of IMP/MC complex is by use of a chemical which irritates the outermost cells of the epidermis, thus provoking a sufficient immune response to attract APCs to the area. An example is a keratinolytic agent, such as the salicylic acid used in the commercially available topical depilatory creme sold by Noxema Corporation under the trademark NAIR This approach can also be used to achieve epithelial administration in the mucosa. The chemical irritant can also be applied in conjunction with the mechanical irritant (as, for example, would occur if the MONO-VACC type tine were also coated with the chemical irritant). The IMP/MC complex can be suspended in a carrier which also contains the chemical irritant or coadministered therewith.
  • Parenteral routes of administration include electrical (iontophoresis) or direct injection such as direct injection into a central venous line, intravenous, intramuscular, intraperitoneal, intradermal, or subcutaneous injection. IMP/MC formulations suitable for parenteral administration are generally formulated in USP water or water for injection and may further comprise pH buffers, salts bulking agents, preservatives, and other pharmaceutically acceptable excipients. IMP/MC complexes for parenteral injection may be formulated in pharmaceutically acceptable sterile isotonic solutions such as saline and phosphate buffered saline for injection.
  • Gastrointestinal routes of administration include ingestion and rectal. The invention includes IMP/MC complex formulations suitable for gastrointestinal administration including pharmaceutically acceptable powders, pills or liquids for ingestion and suppositories for rectal administration. As will be apparent to one of skill in the art, pills or suppositories will further comprise pharmaceutically acceptable solids, such as starch, to provide bulk for the composition.
  • Naso-pharyngeal and pulmonary administration include are accomplished by inhalation, and include delivery routes such as intranasal, transbronchial and transalveolar routes. The invention includes IMP/MC complex formulations suitable for administration by inhalation including liquid suspensions for forming aerosols as well as powder forms for dry powder inhalation delivery systems. Devices suitable for administration by inhalation of IMP/MC complex formulations include , vaporizers, nebulizers, and dry powder inhalation delivery devices.
  • The choice of delivery routes can be used to modulate the immune response elicited. For example, IgG titers and CTL activities were identical when an influenza virus vector was administered via intramuscular or epidermal (gene gun) routes; however, the muscular inoculation yielded primarily IgG2a, while the epidermal route yielded mostly IgG1. Pertmer et al. (1996) J. Virol. 70:6119-6125. Thus, one skilled in the art can take advantage of slight differences in immunogenicity elicited by different routes of administering the immunomodulatory oligonucleotides of the present invention.
  • Analysis (both qualitative and quantitative) of the immune response to IMP/MC complex formulations can be by any method known in the art, including measuring antigen-specific antibody production (including measuring specific antibody subclasses), activation of specific populations of lymphocytes such as CD4+ T cells or NK cells, production of cytokines such as IFN-γ, IFN-α, IL-2, IL-4, IL-5, IL-10 or IL-12 and/or release of histamine. Methods for measuring specific antibody responses include enzyme-linked immunosorbent assay (ELISA) and are well known in the art. Measurement of numbers of specific types of lymphocytes such as CD4+ T cells can be achieved, for example, with fluorescence-activated cell sorting (FACS). Cytotoxicity assays can be performed for instance as described in Raz et al. (1994) Proc. Natl. Acad Sci. USA 91:9519-9523. Cytokine concentrations can be measured, for example, by ELISA. These and other assays to evaluate the immune response to an immunogen are well known in the art. See, for example, Selected Methods in Cellular Immunology (1980) Mishell and Shiigi, eds., W.H. Freeman and Co.
  • Preferably, a Th1-type response is stimulated, i.e., elicited and/or enhanced. With reference to the invention, stimulating a Th1-type immune response can be determined in vitro or ex vivo by measuring cytokine production from cells treated with ISS as compared to those treated without ISS. Methods to determine the cytosine production of cells include those methods described herein and any known in the art. The type of cytokines produced in response to ISS treatment indicate a Th1-type or a Th2-type biased immune response by the cells. As used herein, the term "Th1-type biased" cytokine production refers to the measurable increased production of cytokines associated with a Th1-type immune response in the presence of a stimulator as compared to production of such cytokines in the absence of stimulation. Examples of such Th1-type biased cytokines include IL-2, IL-12, and IFN-γ. In contrast, "Th2-type biased cytokines" refers to those associated with a Th2-type immune response, and include IL-4, IL-5, and IL-13. Cells useful for the determination of ISS activity include Cells of the immune system, primary cells isolated from a host and/or cell lines, preferably APCs and lymphocytes, even more preferably macrophages and T cells.
  • Stimulating a Th1-type immune responses can also be measured in a host treated with an IMP/MC complex formulation can be determined by any method known in the art including: (1) a reduction in levels of IL-4 or IL-5 measured before and after antigen-challenge; or detection of lower (or even absent) levels of IL-4 or IL-5 in an IMP/MC complex treated host as compared to an antigen-primed, or primed and challenged, control treated without ISS; (2) an increase in levels of IL-12, IL-18 and/or IFN (α, β or y) before and after antigen challenge; or detection of higher levels of IL-12, IL-18 and/or IFN (α, β or γ) in an IMP/MC complex treated host as compared to an antigen-primed or, primed and challenged, control treated without ISS; (3) "Th1-type biased" antibody production in an IMP/MC complex treated host as compared to a control treated without ISS; and/or (4) a reduction in levels of antigen-specific IgE as measured before and after antigen challenge; or detection of lower (or even absent) levels of antigen-specific IgE in an IMP/MC complex treated host as compared to an antigen-primed, or primed and challenged, control treated without ISS. A variety of these determinations can be made by measuring cytokines made by APCs and/or lymphocytes, preferably macrophages and/or T cells, in vitro or ex vivo using methods described herein or any known in the art. Some of these determinations can be made by measuring the class and/or subclass of antigen-specific antibodies using methods described herein or any known in the art.
  • The class and/or subclass of antigen-specific antibodies produced in response to IMP/MC complex treatment indicate a Th1-type or a Th2-type biased immune response by the cells. As used herein, the term "Th1-type biased" antibody production refers to the measurable increased production of antibodies associated with a Th1-type immune response (i.e., Th1-associated antibodies). One or more Th1 associated antibodies may be measured. Examples of such Th1-type biased antibodies include human IgG1 and/or IgG3 (see, e.g., Widhe et al. (1998) Scand. J. Immunol. 47:575-581 and de Martino et al. (1999) Ann. Allergy Asthma Immunol. 83:160-164) and murine IgG2a. In contrast, "Th2-type biased antibodies" refers to those associated with a Th2-type immune response, and include human IgG2, IgG4 and/or IgE (see, e.g., Widhe et al. (1998) and de Martino et al. (1999)) and murine IgG1 and/or IgE.
  • The Th1-type biased cytokine induction which occurs as a result of IMP/MC complex administration produces enhanced cellular immune responses, such as those performed by NK cells, cytotoxic killer cells, Th1 helper and memory cells. These responses are particularly beneficial for use in protective or therapeutic vaccination against viruses, fungi, protozoan parasites, bacteria, allergic diseases and asthma, as well as tumors.
  • In some embodiments, a Th2 response is suppressed. Suppression of a Th2 response may be determined by, for example, reduction in levels of Th2-associated cytokines, such as IL-4 and IL-5, as well as IgE reduction and reduction in histamine release in response to allergen.
  • Kits of the invention
  • The invention provides kits for use in the methods of the invention. In certain embodiments, the kits of the invention comprise one or more containers comprising an IMP/MC complex as defined in claim 1 and a set of instructions, generally written instructions, relating to the use of the I1VIP/MC complex for the intended treatment (e.g., immunomodulation, ameliorating one or more symptoms of an infectious disease, increasing IFN-γ levels, increasing IFN-α levels, or ameliorating an IgE-related disorder). In further embodiments, the kits of the invention comprise containers of materials for producing IMP/MC, instructions for producing IMP/MC complex, and instructions relating to the use of the IMP/MC complex for the intended treatment.
  • Kits which comprise preformed IMP/MC complex comprise IMP/MC complex packaged in any convenient, appropriate packaging. For example, if the IMP/MC complex is a dry formulation (e.g., freeze dried or a dry powder), a vial with a resilient stopper is normally used, so that the IMP/MC complex may be easily resuspended by injecting fluid through the resilient stopper. Ampoules with non resilient, removable closures (e.g., sealed glass) or resilient stoppers are most conveniently used for liquid formulations of IMP/MC complex. Also contemplated are packages for use in combination with a specific device, such as an inhaler, nasal administration device (e.g., an atomizer) or an infusion device such as a minipump.
  • Kits which comprise materials for production of IMP/MC complex generally include separate containers of IMP and and MC, although in certain embodiments materials for producing the MC are supplied rather than preformed MC. The IMP and MC are preferably supplied in a form which allows formation of IMP/MC complex upon mixing of the supplied IMP and MC. This configuration is preferred when the IMP/MC complex is linked by non-covalent bonding. This configuration is also preferred when the IMP and MC are to be crosslinked via a heterobifunctional crosslinker, either IMP or the MC is supplied in an "activated" form (e.g., linked to the heterobifunctional crosslinker such that a moiety reactive with the IMP is available).
  • Kits for IMP/MC complexes comprising a liquid phase MC preferably comprise one or more containers including materials for producing liquid phase MC. For example, an IMP/MC kit for oil-in-water emulsion MC may comprise one or more containers containing an oil phase and an aqueous phase. The contents of the container are emulsified to produce the MC, which may be then mixed with the IMP, preferably an IMP which has been modified to incorporate a hydrophobic moiety.
  • The instructions relating to the use of IMP/MC complex for the intended treatment generally include information as to dosage, dosing schedule, and route of administration for the intended treatment. The containers of ISS may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions carried on a magnetic or optical storage disk) are also acceptable.
  • The following Examples are provided to illustrate the invention.
  • EXAMPLES Exemple 1: Production of non-covalent, liquid phase IMP/MC complexes (not in accordance with the invention)
  • IMP/MC complex comprising a modified IMP and a liquid phase MC were produced and tested for complex formation.
  • An IMP (phosphorothioate oligodeoxynucleotide
    5'-TGACTGTGAACGTTCGAGATGA-3') (SEQ ID NO:1) was modified by addition of a cholesterol molecule to the 5' end of the IMP using phosphoramidite chemistry. An oil-in-water emulsion was produced by homogenization of a mixture of 4.5% (w/v) squalene, 0.5% (w/v) sorbitan trioleate, 0.5% (w/v) TWEEN® 80 and 10 mM sodium citrate, pH 6.5, using a microfluidizer. Examination of the emulsion found that the oil droplets in the emulsion had an average diameter of approximately 160 nm.
  • The emulsion was mixed with the cholesterol-modified IMP or an unmodified version of the same IMP, then centrifuged to separate the oil and water phases RP-HPLC was performed on samples from each phase to determine nucleotide content.
    Approximately 75% of the cholesterol-modified IMP was found in the oil phase, while 100% of the unmodified IMP was found in the aqueous phase.
  • Example 2 : Immunomodulation with IMP/MC mixtures (not in accordance with the invention)
  • Mixtures of an IMP (phosphorothiate oligodeoxynucleotide 5'-TGACTGTGAACGTTCGAGATGA-3') (SEQ ID NO:1) or a control oligonucleotide (phosphorothioate oligodeoxynucleotide 5'-TGACTGTGAAGGTTAGAGATGA-3') (SEQ ID NO:9) were mixed with sulphate-derivatized polycarbonate microparticles or nanoparticles (Polysciences, Inc.) and assayed for immunomodulatory activity on mouse splenocytes.
  • Fragments of BALB/c mouse spleen were digested with collagenase/dispase (0.1.. U/mL/0.8U/mL) dissolved in phosphate buffered saline (PBS) for 45 minutes at 37° C, then mechanically dispersed by forcing the digested fragments through metal screens. The dispersed splenocytes were pelleted by centrifugation, then resuspended in fresh medium (RPMI 1640 with 10% fetal calf serum, plus 50 units/mL penicillin, 50 µg/mL streptomycin, 2 mM glutamine, and 0.05 mM β-mercaptoethanol).
  • 4 x 105 mouse splenocytes were dispensed into wells of 96 well plates and incubated for one hour at 37° C. 100µL of 2x concentration test sample or control was added and the cells were incubated a further 24 hours. Medium was harvested from each well and tested for cytokine concentrations by ELISA.
  • IFN-γ was assayed using a sandwich-format ELISA. Medium from the mouse splenocyte assay was incubated in microtiter plates coated with anti-IFN-γ monoclonal antibody (Nunc). Bound IFN-γ was detected using a biotinylated anti-IFN-γ antibody and streptavidin-horseradish peroxidase conjugated secondary antibody, developed with the chromogenic peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of peroxidase, and quantitated by measuring absorbance at 450 nm using a Emax precision microplate reader (Molecular Devices).
  • 200 nm beads mixed with IMP substantially increased IL-12, IL-6 and IFN-γ secretion by mouse splenocytes, and 50 nm beads mixed with IMP increased IL-12 and IL-6 production. Some nonspecific activity was associated with 200 nm beads mixed with the control oligonucleotide, although this was insufficient to account for the increase in stimulation as compared to IMP alone. Additionally, microcarriers of 1 µm and 4.5 µm also increased cytokine secretion. Tables 2-4 summarize assay results for IL-12, IL-6 and IFN-γ, respectively. TABLE 2
    Test Material 5 µg/ml DNA dose
    1 µg/ml
    0.1 µg/ml
    IMP IL-12 (pg/ml)
    alone 6046 4737 915
    IMP+50 nm 8582 4934 364
    IMP+200 nm 7377 8393 984
    IMP+500 nm 3680 4260 833
    IMP+1 µm 5082 4652 613
    IMP+4.5 µm 2253 2306 838
    control
    alone 79 91 65
    control+50 100 100 91
    control+200 661 108 127
    control+500 48 82 82
    control+1000 72 101 147
    control 101 104 141
    TABLE 3
    Test Material DNA dose
    5 µg/ml 0.1 µg/ml
    IMP IL-6 (pg/mL)
    alone 5290 1872
    IMP+50 nm > 18000 2127
    IMP+200 nm 6946 3574
    IMP+500 nm 345 2133
    IMP+1 µm 3812 2107
    IMP+4.5 µm 3277 1846
    control
    alone 24 24
    control+50 24 24
    control+200 1842 232
    control+500 24 24
    control+1000 24 24
    control+4500 30 24
    TABLE 4
    Test Material DNA dose
    5 µg/ml 0.1 µg/ml
    IMP IFN-γ (pg/mL)
    alone 575 244
    IMP+50 nm 411 232
    IMP+200 nm 3548 3150
    IMP+500 nm 48 426
    IMP+1 µm 252 685
    IMP+4.5 µm 1072 2739
    control
    alone 48 48
    control+50 48 48
    control+200 1907 101
    control+500 48 48
    control+1000 48 48
    control+4500 50 48
  • Example 3: Immunomodulation of mouse cells by IMP/NC conjugates
  • IMPs covalently linked to polystyrene beads (200 nm design size) were tested for immunomodulatory activity on mouse splenocytes.
  • Amine-derivatized polystyrene beads were obtained from Molecular Probes, Inc., and Polysciences, Inc. Three types of beads were utilized: amine-derivatized beads (Polysciences, Inc., Catalog No. 15699), amine-derivatized beads linked to a fluorophore with excitation/emission maxima of 580 and 605 nm ("Red Beads", Molecular Probes, Inc., Catalog No. F8763), and amine-derivatized beads linked to a fluorophore with excitation/emission maxima of 505 and 515 nm ("Yellow Beads", Molecular Probes, Inc., Catalog No. F8764) were activated with sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclopentane-1-carboxyLate, Pierce Chemical Co.) according to the manufacturer's instructions. The beads were then linked to IMP, a control phosphorothioate oligonucleotide (5'-TGACTGTGAAGGTTAGAGATGA-3' (control A) (SEQ ID NO: 9), 5'- TGACTGTGAACCTTAGAGATGA-3' (control B) (SEQ ID NO:10), or 5'-TCACTCTCTTCCTTACTCTTCT-3' (control C) (SEQ ID NO:11), or treated to quench the free maleimide group for use as a NC only control.
  • Immunomodulatory effects of the IMP/NC complexes were assayed using mouse splenocytes as described above in Example 2. IMP/NC complexes demonstrated immunomodulation on the mouse splenocytes, as shown by increased secretion of IL-12, IL-6 and/or IFN-γ, while control oligonucleotides conjugated to NC did not stimulate cytokine secretion. Data for IFN-γ secretion is summarized in Table 5. TABLE 5
    Sample IFN-γ (pg/mL)
    5 µg/ml dose 1 µg/ml dose
    White Beads
    NC alone 48 48
    IMP/NC 903 77
    Red Beads
    NC alone 48 48.
    IMP/NC 319 63
    control A/NC 48 48
    control B/NC 48 48
    sulfo-SMCC activated NC 2869 2147
    Yellow Beads
    NC alone-lot 7781-2 1224 147
    145-57A: IMP/NC-lot 145-57A 3437 2335
    145-57B: IMP/NC-lot 145-57B 4556 5497
    145-146: IMP/NC-lot 145-146C 11444 7091
    135-171A:IMP/NC-135-171A 4493 2359
    135-171B: control A/NC 147 147
    145-148: control B/NC 147 147
    sulfo-SMCC activated NC, BME-inactivated 3163 3723
    sulfo-SMCC activated NC, cysteine inactivated 3392 3090
    sulfo-SMCC activated NC 3583 4108
    IMP Controls
    IMP 558 577
    control C 48 48
  • Example 4: Immunomodulation of human cells by IMP/NC conjugates
  • IMPs covalently linked to polystyrene beads (200 nm design size) were tested for immunomodulatory activity on human peripheral blood mononuclear cells (PBMCs).
  • Peripheral blood was collected from volunteers by venipuncture using heparinized syringes. Blood was layered onto FICOLL® (Amersham Pharmacia Biotech) cushion and centrifuged. PBMCs, located at the FICOLL® interface, were collected, then washed twice with cold phosphate buffered saline (PBS). The cells were resuspended and cultured in 24 or 48 well plates at 2 x 106 cells/mL in RPMI 1640 with 10% heat-inactivated human AB serum plus 50 units/mL penicillin, 50 µg/mL streptomycin, 300 µg/mL glutamine, 1 mM sodium pyruvate, and 1 x MEM non-essential amino acids (NEAA).
  • The cells were cultured in the presence of test samples (IMP/NC formulations or controls) for 24 hours, then cell-free medium was collected from each well and assayed for IFN-γ concentration. IFN-γ was assayed using a CYTOSCREEN ELISA kit from BioSource International, Inc., according to the manufacturer's instructions.
  • IMP/NC complexes stimulated IFN-γ secretion by human PBMCs. The results are summarized in Table 6. TABLE 6
    Sample IFN-γ (pg/mL)
    Experiment 1 Experiment 2
    5 ug/ml 20 ug/ml 5 ug/ml 10 ug/ml
    White Beads
    NC alone nla n/a
    IMP/NC 5 3
    Red Beads
    NC alone 2 8
    IMP/NC 39 431
    control A/NC 2 5
    control B/NC 3 14
    sulfo-SMCC activated NC 15 n/a
    Yellow Beads - Old
    NC alone-lot 7781-2 12 56 8 19
    NC alone-lot 6991-1 7 n/a
    IMP/NC-lot 145-57A 187 n/a
    IMP/NC-lot 145-57B 777 n/a
    IMP/NC-lot 145-57C 536 7752 6356 6413
    IMP/NC-lot 145-57D 156 1861
    IMP/NC-lot 145-57E 283 1385
    IMP/NC-lot 145-57F 140 n/a
    IMP/NC-lot 145-146 934 6519
    IMP/NC-lot 135-171A 123 2400
    control A/NC 12 446
    control B/NC 24 165
    sulfo-SMCC activated NC, BME-inactivated 4 8
    sulfo-SMCC activated NC, cysteine inactivated 7 15
    sulfo-SMCC activated NC 7 14
    IMP Controls
    IMP <10 <10

Claims (17)

  1. An immunomodulatory polynucleotide/microcarrier (IMP/MC) complex, comprising:
    a polynucleotide comprising an immunostimulatory sequence (ISS) linked to the surface of a nonbiodegradable microcarrier (MC), wherein the ISS is greater than 6 bases in length, up to 50 bases in length and comprises the sequence 5'-C, G-3', and wherein the microcarrier is polystyrene.
  2. The IMP/MC complex of claim 1, wherein said polynucleotide is covalently linked to said microcarrier.
  3. The IMP/MC complex of claim 1, wherein said polynucleotide is non-covalently linked to said microcarrier.
  4. The IMP/MC complex of claim 1, wherein said microcarrier is from 10 nm to 10 µm in size.
  5. The IMP/MC complex of claim 4, wherein said microcarrier is from 25 nm to 5 µm in size.
  6. The IMP/MC complex of any one of the preceding claims, wherein said complex is antigen-free.
  7. The IMP/MC complex of any one of the preceding claims, wherein the ISS comprises the sequence 5'-T, C, µG-3'.
  8. The IMP/MC complex of any one of the preceding claims, wherein the ISS comprises the sequence 5'-purine, purine, C, G, pyrimidine, pyrimidine, C, G-3'.
  9. The IMP/MC complex of any one of the preceding claims, wherein the ISS comprises the sequence SEQ ID NO: 1.
  10. The IMP/MC complex of any one of the preceding claims, for use in modulating an immune response in an individual in the treatment or prophylaxis of cancer, infectious diseases, allergy and allergy induced asthma, and inflammatory disorders and fibrotic disorders which respond to IFN-γ.
  11. The IMP/MC complex of claim 10, wherein a Th1-type immune response is stimulated.
  12. The IMP/MC complex of claim 10, wherein a Th2-type immune response is suppressed.
  13. The IMP/MC complex of claim 10, wherein said complex is for use in increasing interferon-gamma (IFN-γ) in an individual.
  14. The IMP/MC complex of claim 13, wherein said individual has idiopathic pulmonary fibrosis.
  15. The IMP/MC complex of claim 10, wherein said complex is for use in increasing interferon-alpha (IFN-α) in an individual.
  16. The IMP/MC complex of claim 15, wherein said individual has a viral infection.
  17. The IMP/MC complex of claim 10, wherein said complex is for use in reducing levels of IgE in an individual.
EP01918568A 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof Expired - Lifetime EP1261377B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09004153A EP2067487A3 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US18855700P 2000-03-10 2000-03-10
US188557P 2000-03-10
US802376 2001-03-09
US09/802,376 US7129222B2 (en) 2000-03-10 2001-03-09 Immunomodulatory formulations and methods for use thereof
PCT/US2001/007843 WO2001068143A2 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09004153A Division EP2067487A3 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof

Publications (2)

Publication Number Publication Date
EP1261377A2 EP1261377A2 (en) 2002-12-04
EP1261377B1 true EP1261377B1 (en) 2009-09-02

Family

ID=40568742

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09004153A Withdrawn EP2067487A3 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof
EP01918568A Expired - Lifetime EP1261377B1 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP09004153A Withdrawn EP2067487A3 (en) 2000-03-10 2001-03-12 Immunomodulatory formulations and methods for use thereof

Country Status (9)

Country Link
US (3) US7129222B2 (en)
EP (2) EP2067487A3 (en)
JP (1) JP2004502645A (en)
AT (1) ATE441436T1 (en)
AU (2) AU4562801A (en)
CA (1) CA2402294A1 (en)
DE (1) DE60139764D1 (en)
DK (1) DK1261377T3 (en)
WO (1) WO2001068143A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837018B2 (en) 2013-07-25 2020-11-17 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727230B1 (en) * 1994-03-25 2004-04-27 Coley Pharmaceutical Group, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
US7935675B1 (en) * 1994-07-15 2011-05-03 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030026782A1 (en) * 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
JP4359654B2 (en) * 1996-01-30 2009-11-04 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Gene expression vector for generating antigen-specific immune response and method of use thereof
EP0855184A1 (en) * 1997-01-23 1998-07-29 Grayson B. Dr. Lipford Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20040006034A1 (en) * 1998-06-05 2004-01-08 Eyal Raz Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
DE69932717T2 (en) * 1998-05-22 2007-08-09 Ottawa Health Research Institute, Ottawa METHODS AND PRODUCTS FOR INDUCING MUCOSAL IMMUNITY
US6693086B1 (en) * 1998-06-25 2004-02-17 National Jewish Medical And Research Center Systemic immune activation method using nucleic acid-lipid complexes
US20030022854A1 (en) 1998-06-25 2003-01-30 Dow Steven W. Vaccines using nucleic acid-lipid complexes
US6977245B2 (en) 1999-04-12 2005-12-20 The United States Of America As Represented By The Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
WO2000061151A2 (en) 1999-04-12 2000-10-19 The Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
US6949520B1 (en) 1999-09-27 2005-09-27 Coley Pharmaceutical Group, Inc. Methods related to immunostimulatory nucleic acid-induced interferon
US7223398B1 (en) * 1999-11-15 2007-05-29 Dynavax Technologies Corporation Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof
WO2001051500A1 (en) * 2000-01-14 2001-07-19 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
WO2001095935A1 (en) * 2000-01-20 2001-12-20 Ottawa Health Research Institute Immunostimulatory nucleic acids for inducing a th2 immune response
US20040131628A1 (en) * 2000-03-08 2004-07-08 Bratzler Robert L. Nucleic acids for the treatment of disorders associated with microorganisms
US7157437B2 (en) 2000-03-10 2007-01-02 Dynavax Technologies Corporation Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
US7129222B2 (en) * 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
US20010046967A1 (en) 2000-03-10 2001-11-29 Gary Van Nest Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide
US20020098199A1 (en) 2000-03-10 2002-07-25 Gary Van Nest Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences
US20040132677A1 (en) * 2001-06-21 2004-07-08 Fearon Karen L. Chimeric immunomodulatory compounds and methods of using the same-IV
US7785610B2 (en) * 2001-06-21 2010-08-31 Dynavax Technologies Corporation Chimeric immunomodulatory compounds and methods of using the same—III
PT1404873E (en) * 2001-06-21 2013-07-30 Dynavax Tech Corp Chimeric immunomodulatory compounds and methods of using the same
WO2003007981A1 (en) * 2001-07-20 2003-01-30 Intermune, Inc. Methods of treating liver fibrosis
US7666674B2 (en) 2001-07-27 2010-02-23 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of sterically stabilized cationic liposomes to efficiently deliver CPG oligonucleotides in vivo
WO2003012061A2 (en) * 2001-08-01 2003-02-13 Coley Pharmaceutical Gmbh Methods and compositions relating to plasmacytoid dendritic cells
AU2002326561B2 (en) * 2001-08-07 2008-04-03 Dynavax Technologies Corporation Immunomodulatory compositions, formulations, and methods for use thereof
AU2002361468A1 (en) * 2001-08-14 2003-03-18 The Government Of The United States Of America As Represented By The Secretary Of Health And Human S Method for rapid generation of mature dendritic cells
US7615227B2 (en) * 2001-12-20 2009-11-10 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of CpG oligodeoxynucleotides to induce angiogenesis
US8466116B2 (en) 2001-12-20 2013-06-18 The Unites States Of America As Represented By The Secretary Of The Department Of Health And Human Services Use of CpG oligodeoxynucleotides to induce epithelial cell growth
EP1356826A1 (en) * 2002-04-22 2003-10-29 BIOMAY Produktions- und Handels- Aktiengesellschaft Microparticles comprising carbohydrate beads covalently linked with allergen
CA2388049A1 (en) 2002-05-30 2003-11-30 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US20040053880A1 (en) * 2002-07-03 2004-03-18 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7569553B2 (en) * 2002-07-03 2009-08-04 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
US7807803B2 (en) * 2002-07-03 2010-10-05 Coley Pharmaceutical Group, Inc. Nucleic acid compositions for stimulating immune responses
NZ538628A (en) * 2002-08-12 2008-06-30 Dynavax Tech Corp Immunomodulatory compositions, methods of making, and methods of use thereof
AR040996A1 (en) * 2002-08-19 2005-04-27 Coley Pharm Group Inc IMMUNE STIMULATING NUCLEIC ACIDS
US8263091B2 (en) * 2002-09-18 2012-09-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method of treating and preventing infections in immunocompromised subjects with immunostimulatory CpG oligonucleotides
JP4976653B2 (en) * 2002-11-01 2012-07-18 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ アズ リプレゼンティッド バイ ザ セクレタリー オブ ザ デパートメント オブ ヘルス アンド ヒューマン サービシス Method for preventing infections caused by bioterrorism pathogens using immunostimulatory CpG oligonucleotides
US7956043B2 (en) 2002-12-11 2011-06-07 Coley Pharmaceutical Group, Inc. 5′ CpG nucleic acids and methods of use
US8158768B2 (en) 2002-12-23 2012-04-17 Dynavax Technologies Corporation Immunostimulatory sequence oligonucleotides and methods of using the same
DE60329223D1 (en) 2002-12-23 2009-10-22 Dynavax Tech Corp OLIGONUCLEOTIDES WITH AN IMMUNE SYSTEM STIMULATING SEQUENCE AND METHOD FOR THEIR APPLICATION
US20040235770A1 (en) * 2003-04-02 2004-11-25 Coley Pharmaceutical Group, Ltd. Immunostimulatory nucleic acid oil-in-water formulations and related methods of use
US20050013812A1 (en) * 2003-07-14 2005-01-20 Dow Steven W. Vaccines using pattern recognition receptor-ligand:lipid complexes
TWI235440B (en) * 2004-03-31 2005-07-01 Advanced Semiconductor Eng Method for making leadless semiconductor package
US8728525B2 (en) 2004-05-12 2014-05-20 Baxter International Inc. Protein microspheres retaining pharmacokinetic and pharmacodynamic properties
CN103432079A (en) 2004-05-12 2013-12-11 巴克斯特国际公司 Oligonucleotide-containing microspheres, their use for the manufacture of a medicament for treating diabetes type 1
US7815941B2 (en) * 2004-05-12 2010-10-19 Baxter Healthcare S.A. Nucleic acid microspheres, production and delivery thereof
CA2594612A1 (en) 2005-01-19 2006-07-27 Vaxinnate Corporation Compositions comprising pathogen-associated molecular patterns and antigens and their use to stimulate an immune response
CA2598992A1 (en) * 2005-02-24 2006-08-31 Coley Pharmaceutical Group, Inc. Immunostimulatory oligonucleotides
CA2600036A1 (en) 2005-03-04 2006-09-14 Dynavax Technologies Corporation Vaccines comprising oligonucleotides having immunostimulatory sequences (iss) wherein the iss are conjugated to antigens and stabilized by buffer conditions and further excipients
EP1764369A1 (en) * 2005-09-16 2007-03-21 Rhein Biotech Gesellschaft für neue biotechnologische Prozesse und Produkte mbH Vaccines comprising truncated HBC core protein plus saponin-based adjuvant
DK1991678T4 (en) * 2006-02-15 2020-10-19 Rechtsanwalt Thomas Beck COMPOSITIONS AND PROCEDURES FOR OLIGONUCLEOTIDE FORMULATIONS
EP2476432B1 (en) 2006-03-07 2015-08-19 Vaxinnate Corporation Compositions that include hemagglutinin, methods of making and methods of use thereof
MX2009003398A (en) 2006-09-27 2009-08-12 Coley Pharm Gmbh Cpg oligonucleotide analogs containing hydrophobic t analogs with enhanced immunostimulatory activity.
US20140024818A1 (en) * 2006-11-14 2014-01-23 Yi Lu Alignment of nanomaterials and micromaterials
US8518903B2 (en) 2007-04-19 2013-08-27 University of Pittsburgh—of the Commonwealth System of Higher Education Use of toll-like receptor-9 agonists
US8188058B2 (en) 2007-04-19 2012-05-29 University of Pittsburgh—of the Commonwealth System of Higher Education Use of toll-like receptor-9 agonists, toll-like receptor-4 antagonists, and/or nuclear oligomerization domain-2 agonists for the treatment or prevention of toll-like receptor-4-associated disorders
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
GB0908129D0 (en) * 2009-05-12 2009-06-24 Innovata Ltd Composition
BRPI1012036A2 (en) 2009-05-27 2017-10-10 Selecta Biosciences Inc nanocarriers that have components with different release rates
BR112012005349A2 (en) * 2009-09-09 2016-03-29 Matrivax Res & Dev Corp immunogenic composition, its method of manufacture, method of manufacturing a protein matrix vaccine composition, and use
JP6367554B2 (en) 2010-05-26 2018-08-01 セレクタ バイオサイエンシーズ インコーポレーテッドSelecta Biosciences,Inc. Dosage selection of adjuvanted synthetic nanocarriers
JP2011251963A (en) * 2010-05-28 2011-12-15 Coley Pharmaceutical Group Inc Antigen and immune modulatory vaccine and cholesterol, and use thereof
US10668092B2 (en) 2010-09-24 2020-06-02 The John Hopkins University Compositions and methods for treatment of inflammatory disorders
US9072760B2 (en) 2010-09-24 2015-07-07 University of Pittsburgh—of the Commonwealth System of Higher Education TLR4 inhibitors for the treatment of human infectious and inflammatory disorders
WO2012088425A2 (en) 2010-12-22 2012-06-28 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Gap junction-enhancing agents for treatment of necrotizing enterocolitis and inflammatory bowel disease
DK2709656T3 (en) * 2011-05-18 2019-06-24 Matrivax Inc Protein matrix vaccine compositions comprising polycations
WO2012158866A2 (en) 2011-05-19 2012-11-22 The Johns Hopkins University Treatment of autoimmune disorders and infections using antagonists of sgk1 activity
CN103702687A (en) 2011-07-29 2014-04-02 西莱克塔生物科技公司 Synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte (CTL) immune responses
RU2480206C1 (en) * 2012-04-17 2013-04-27 Государственное бюджетное образовательное учреждение высшего профессионального образования "Курский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации" Method of immunocorrection of main course of treatment of destructive forms of pulmonary tuberculosis
WO2014052453A1 (en) 2012-09-25 2014-04-03 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Oral therapy of necrotizing enterocolitis
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
PL3164113T3 (en) 2014-06-04 2019-09-30 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
CN107106493A (en) 2014-11-21 2017-08-29 西北大学 The sequence-specific cellular uptake of spherical nucleic acid nano particle conjugate
WO2018039629A2 (en) 2016-08-25 2018-03-01 Northwestern University Micellar spherical nucleic acids from thermoresponsive, traceless templates
IL269970B (en) 2017-04-14 2022-09-01 Tallac Therapeutics Inc Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
WO2018201090A1 (en) 2017-04-28 2018-11-01 Exicure, Inc. Synthesis of spherical nucleic acids using lipophilic moieties
CN110664749B (en) * 2019-10-21 2021-07-30 上海市皮肤病医院 MF 59-based entrapped antigen nanoemulsion and preparation method and application thereof
CN111870706B (en) * 2020-08-24 2021-12-14 中国科学院长春应用化学研究所 Cell microcarrier capable of MRI (magnetic resonance imaging) tracing development and preparation method thereof
US20240027434A1 (en) * 2020-12-16 2024-01-25 Dynavax Technologies Corporation Method for quantifying cpg-containing oligonucleotides in compositions comprising alum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998016247A1 (en) * 1996-10-11 1998-04-23 The Regents Of The University Of California Immunostimulatory polynucleotide/immunomodulatory molecule conjugates

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458066A (en) 1980-02-29 1984-07-03 University Patents, Inc. Process for preparing polynucleotides
DE3223104A1 (en) 1982-06-21 1983-12-22 Hoechst Ag, 6230 Frankfurt PHOTOPOLYMERIZABLE MIXTURE AND PHOTOPOLYMERIZABLE COPY MATERIAL MADE THEREOF
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4650675A (en) 1983-08-18 1987-03-17 The Children's Medical Center Corporation Oligonucleotide conjugates
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US4849513A (en) 1983-12-20 1989-07-18 California Institute Of Technology Deoxyribonucleoside phosphoramidites in which an aliphatic amino group is attached to the sugar ring and their use for the preparation of oligonucleotides containing aliphatic amino groups
US5015733A (en) 1983-12-20 1991-05-14 California Institute Of Technology Nucleosides possessing blocked aliphatic amino groups
US4828991A (en) 1984-01-31 1989-05-09 Akzo N.V. Tumor specific monoclonal antibodies
US5093232A (en) 1985-12-11 1992-03-03 Chiron Corporation Nucleic acid probes
US4910300A (en) 1985-12-11 1990-03-20 Chiron Corporation Method for making nucleic acid probes
US5124246A (en) 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5629158A (en) * 1989-03-22 1997-05-13 Cemu Bitecknik Ab Solid phase diagnosis of medical conditions
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US6465188B1 (en) * 1990-06-11 2002-10-15 Gilead Sciences, Inc. Nucleic acid ligand complexes
EP0468520A3 (en) 1990-07-27 1992-07-01 Mitsui Toatsu Chemicals, Inc. Immunostimulatory remedies containing palindromic dna sequences
US5770434A (en) * 1990-09-28 1998-06-23 Ixsys Incorporated Soluble peptides having constrained, secondary conformation in solution and method of making same
US5849719A (en) 1993-08-26 1998-12-15 The Regents Of The University Of California Method for treating allergic lung disease
DE69409361T2 (en) * 1993-11-05 1998-11-12 Amgen Inc PRODUCTION OF LIPOSOMES AND METHOD FOR ENCODING SUBSTANCES
WO1995026204A1 (en) 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
CA2560114A1 (en) * 1994-07-15 1996-02-01 The University Of Iowa Research Foundation Immunomodulatory oligonucleotides
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US20030026782A1 (en) * 1995-02-07 2003-02-06 Arthur M. Krieg Immunomodulatory oligonucleotides
US5869715A (en) * 1995-09-27 1999-02-09 The Reagents Of The University Of California Polyfunctional cationic cytofectins
JP4359654B2 (en) 1996-01-30 2009-11-04 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア Gene expression vector for generating antigen-specific immune response and method of use thereof
AU4043497A (en) 1996-07-29 1998-02-20 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6884435B1 (en) * 1997-01-30 2005-04-26 Chiron Corporation Microparticles with adsorbent surfaces, methods of making same, and uses thereof
AU738513B2 (en) 1997-02-28 2001-09-20 University Of Iowa Research Foundation, The Use of nucleic acids containing unmethylated CpG dinucleotide in the treatment of LPS-associated disorders
WO1998040100A1 (en) 1997-03-10 1998-09-17 Ottawa Civic Loeb Research Institute USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE AS AN ADJUVANT
US6559129B1 (en) * 1997-03-21 2003-05-06 Georgetown University Cationic liposomal delivery system and therapeutic use thereof
AU7589398A (en) 1997-05-19 1998-12-11 Merck & Co., Inc. Oligonucleotide adjuvant
CA2301575C (en) 1997-05-20 2003-12-23 Ottawa Civic Hospital Loeb Research Institute Vectors and methods for immunization or therapeutic protocols
EP2085090A3 (en) 1997-06-06 2012-05-02 The Regents of the University of California Inhibitors of DNA immunostimulatory sequence activity
US6589940B1 (en) * 1997-06-06 2003-07-08 Dynavax Technologies Corporation Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US5971030A (en) * 1997-06-06 1999-10-26 Maimets; Lembit Apparatus and method for repairing pressure pipes and for securing other elements with a curable sealant
AU757175B2 (en) 1997-09-05 2003-02-06 Regents Of The University Of California, The Use of immunostimulatory oligonucleotides for preventing or reducing antigen-stimulated, granulocyte-mediated inflammation
DE69804671T2 (en) * 1997-12-16 2002-11-21 Chiron Corp USE OF MICROPARTICLES WITH SUBMICRON OIL / WATER EMULSIONS
GB9727262D0 (en) 1997-12-24 1998-02-25 Smithkline Beecham Biolog Vaccine
EP1067956B1 (en) 1998-04-03 2007-03-14 University Of Iowa Research Foundation Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
AU3884199A (en) 1998-05-06 1999-11-23 Ottawa Health Research Institute Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides
US6562798B1 (en) * 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
EP1100807A1 (en) 1998-07-27 2001-05-23 University Of Iowa Research Foundation STEREOISOMERS OF CpG OLIGONUCLEOTIDES AND RELATED METHODS
IL141686A0 (en) * 1998-09-09 2002-03-10 Scios Inc Methods of treating hypertension and compositions for use therein
ATE326239T1 (en) 1998-09-18 2006-06-15 Dynavax Tech Corp METHODS FOR TREATING IG-E ASSOCIATED DISEASES AND COMPOSITIONS FOR USE IN SUCH METHODS
WO2000021556A1 (en) 1998-10-09 2000-04-20 Dynavax Technologies Corporation Anti hiv compositions comprising immunostimulatory polynucleotides and hiv antigens
AU3760100A (en) 1999-03-16 2000-10-04 Panacea Pharmaceuticals, Llc Immunostimulatory nucleic acids and antigens
JP2002541204A (en) 1999-04-12 2002-12-03 ユニバーシティ オブ マドラス Pharmaceutical formulation useful for treating hepatitis B, hepatitis C and other liver related virus infections and method for preparing the same
US6558670B1 (en) * 1999-04-19 2003-05-06 Smithkline Beechman Biologicals S.A. Vaccine adjuvants
EP2322210A1 (en) * 1999-04-19 2011-05-18 GlaxoSmithKline Biologicals S.A. Adjuvant composition comprising saponin and an immunostimulatory oligonucleotide
EP1177439B1 (en) 1999-04-29 2004-09-08 Coley Pharmaceutical GmbH Screening for immunostimulatory dna functional modifiers
GB9915204D0 (en) 1999-06-29 1999-09-01 Smithkline Beecham Biolog Vaccine
DE60041335D1 (en) 1999-08-19 2009-02-26 Dynavax Tech Corp METHOD FOR MODULATING AN IMMUNE RESPONSE WITH IMMUNOSTIMULATING SEQUENCES AND COMPOSITIONS THEREFOR
JP2003509341A (en) 1999-08-27 2003-03-11 イネックス ファーマスーティカルズ コーポレイション Composition for stimulating secretion of cytokine and inducing immune response
JP2003510282A (en) 1999-09-25 2003-03-18 ユニバーシティ オブ アイオワ リサーチ ファウンデーション Immunostimulatory nucleic acids
ATE333284T1 (en) 1999-09-27 2006-08-15 Coley Pharm Group Inc METHOD USING IMMUNOSTIMULATIVE INTERFERON INDUCED BY NUCLEIC ACIDS
US7223398B1 (en) 1999-11-15 2007-05-29 Dynavax Technologies Corporation Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof
WO2001051500A1 (en) 2000-01-14 2001-07-19 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Oligodeoxynucleotide and its use to induce an immune response
AT409085B (en) 2000-01-28 2002-05-27 Cistem Biotechnologies Gmbh PHARMACEUTICAL COMPOSITION FOR IMMUNULATING AND PRODUCING VACCINES
US7129222B2 (en) * 2000-03-10 2006-10-31 Dynavax Technologies Corporation Immunomodulatory formulations and methods for use thereof
US20020107212A1 (en) 2000-03-10 2002-08-08 Nest Gary Van Methods of reducing papillomavirus infection using immunomodulatory polynucleotide sequences
US7157437B2 (en) 2000-03-10 2007-01-02 Dynavax Technologies Corporation Methods of ameliorating symptoms of herpes infection using immunomodulatory polynucleotide sequences
US20020028784A1 (en) 2000-03-10 2002-03-07 Nest Gary Van Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences
US20020098199A1 (en) 2000-03-10 2002-07-25 Gary Van Nest Methods of suppressing hepatitis virus infection using immunomodulatory polynucleotide sequences
US20010046967A1 (en) 2000-03-10 2001-11-29 Gary Van Nest Methods of preventing and treating respiratory viral infection using immunomodulatory polynucleotide
US20030129251A1 (en) * 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
WO2001072123A1 (en) * 2000-03-28 2001-10-04 The Regents Of The University Of California Methods for increasing a cytotoxic t lymphocyte response in vivo
US20020142978A1 (en) 2000-04-07 2002-10-03 Eyal Raz Synergistic improvements to polynucleotide vaccines
PT1404873E (en) * 2001-06-21 2013-07-30 Dynavax Tech Corp Chimeric immunomodulatory compounds and methods of using the same
AU2002326561B2 (en) * 2001-08-07 2008-04-03 Dynavax Technologies Corporation Immunomodulatory compositions, formulations, and methods for use thereof
JP2005510462A (en) 2001-08-10 2005-04-21 ダイナバックス テクノロジーズ コーポレイション Production of immunomodulating oligonucleotides and methods of use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998016247A1 (en) * 1996-10-11 1998-04-23 The Regents Of The University Of California Immunostimulatory polynucleotide/immunomodulatory molecule conjugates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU BOIS R.M.: "Interferon gamma-1b for the treatment of idiopathic pulmonary fibrosis", NEW ENGLAND JOURNAL OF MEDICINE, vol. 341, no. 17, 21 October 1999 (1999-10-21), pages 1302 - 1304, XP008065394 *
MANZEL L. ET AL: "Lack of immune stimulation by immobilized CpG-oligodeoxynucleotide", ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT, vol. 9, 1 October 1999 (1999-10-01), pages 459 - 464, XP000946491 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837018B2 (en) 2013-07-25 2020-11-17 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use

Also Published As

Publication number Publication date
ATE441436T1 (en) 2009-09-15
US7183111B2 (en) 2007-02-27
JP2004502645A (en) 2004-01-29
AU4562801A (en) 2001-09-24
US20020055477A1 (en) 2002-05-09
DK1261377T3 (en) 2009-11-02
EP1261377A2 (en) 2002-12-04
EP2067487A3 (en) 2009-07-29
US7129222B2 (en) 2006-10-31
US20070258994A1 (en) 2007-11-08
DE60139764D1 (en) 2009-10-15
WO2001068143A2 (en) 2001-09-20
US20030059773A1 (en) 2003-03-27
EP2067487A2 (en) 2009-06-10
CA2402294A1 (en) 2001-09-20
WO2001068143A3 (en) 2002-05-16
AU2001245628B2 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
EP1261377B1 (en) Immunomodulatory formulations and methods for use thereof
AU2001245631B2 (en) Biodegradable immunomodulatory formulations and methods for use thereof
US8586555B2 (en) Immunomodulatory compositions, formulations, and methods for use thereof
EP1364010B1 (en) Immunomodulatory polynucleotides and methods of using the same
EP1229933B2 (en) Immunomodulatory compositions containing an immunostimulatory sequence linked to antigen and methods of use thereof
AU2001245628A1 (en) Immunomodulatory formulations and methods for use thereof
AU2001245631A1 (en) Biodegradable immunomodulatory formulations and methods for use thereof
AU2002326561A1 (en) Immunomodulatory compositions, formulations, and methods for use thereof
AU2001281267B2 (en) Immunomodulatory oligonnucleotide formulations and methods for use thereof
AU2001281267A1 (en) Immunomodulatory oligonnucleotide formulations and methods for use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020927

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20060630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 47/48 20060101AFI20081001BHEP

Ipc: A61P 37/02 20060101ALI20081001BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

BECA Be: change of holder's address

Owner name: 2929 SEVENTH STREET, SUITE 100, BERKELEY, CA 9471

Effective date: 20090902

Owner name: DYNAVAX TECHNOLOGIES CORP.

Effective date: 20090902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60139764

Country of ref document: DE

Date of ref document: 20091015

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: DYNAVAX TECHNOLOGIES CORPORATION;2929 SEVENTH STREET, SUITE 100;BERKELEY, CA 94710 (US)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DYNAVAX TECHNOLOGIES CORPORATION

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DYNAVAX TECHNOLOGIES CORPORATION

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091213

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100312

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DYNAVAX TECHNOLOGIES CORPORATION

Free format text: DYNAVAX TECHNOLOGIES CORPORATION#2929 SEVENTH STREET, SUITE 100#BERKELEY, CA 94710 (US) -TRANSFER TO- DYNAVAX TECHNOLOGIES CORPORATION#2929 SEVENTH STREET, SUITE 100#BERKELEY, CA 94710 (US)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160329

Year of fee payment: 16

Ref country code: CH

Payment date: 20160328

Year of fee payment: 16

Ref country code: NL

Payment date: 20160326

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160325

Year of fee payment: 16

Ref country code: GB

Payment date: 20160329

Year of fee payment: 16

Ref country code: BE

Payment date: 20160328

Year of fee payment: 16

Ref country code: FR

Payment date: 20160328

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160331

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160323

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 60139764

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61K0047480000

Ipc: A61K0047500000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60139764

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170331

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170313

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331