EP1285153A1 - Partikelfalle - Google Patents

Partikelfalle

Info

Publication number
EP1285153A1
EP1285153A1 EP01981922A EP01981922A EP1285153A1 EP 1285153 A1 EP1285153 A1 EP 1285153A1 EP 01981922 A EP01981922 A EP 01981922A EP 01981922 A EP01981922 A EP 01981922A EP 1285153 A1 EP1285153 A1 EP 1285153A1
Authority
EP
European Patent Office
Prior art keywords
particle trap
particle
trap
upstream
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01981922A
Other languages
English (en)
French (fr)
Other versions
EP1285153B1 (de
Inventor
Rolf BRÜCK
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7644037&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1285153(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority to DE20122703U priority Critical patent/DE20122703U1/de
Publication of EP1285153A1 publication Critical patent/EP1285153A1/de
Application granted granted Critical
Publication of EP1285153B1 publication Critical patent/EP1285153B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)

Definitions

  • the invention relates to a particle trap for a fluid loaded with particles, in particular for the exhaust gas of a diesel engine, the particle trap being regenerable by oxidation of the particles and placed in a pipe, e.g. can be installed in the exhaust line of a motor vehicle,
  • a fluid such as The exhaust gas from a motor vehicle contains gaseous components as well as particles. These are expelled with the exhaust gas or possibly accumulate in the exhaust line and / or in a catalytic converter of a motor vehicle. When the load changes, they are then in the form of a particle cloud, e.g. a cloud of soot.
  • Sieves also sometimes called filters
  • the use of the sieves has two significant disadvantages: on the one hand they can clog and on the other hand they cause an undesirably high pressure drop.
  • legal values for motor vehicle emissions that would be exceeded without particle reduction must be observed. There is therefore a need to create collection elements for exhaust gas particles that overcome the disadvantages of the screens, filters or other systems.
  • the invention relates to a particle trap with flow channels and structures in order to produce swirling, calming and / or dead zones in a fluid flow that flows through the particle trap, the particle trap being at least partially open.
  • the invention also relates to a particle trap with flow channels and structures in order to To generate fluid flow that flows through the particle trap, swirling, calming and / or dead zones, wherein the particle trap is at least partially open and at least part of the flow channels at least a portion with an increased heat capacity, for. B. by higher wall thickness, larger number of cells or the like, so that the effect of thermophoresis occurs increasingly in these areas during dynamic load changes with rapidly increasing fluid temperature for entrained particles in the fluid.
  • various uses of the particle trap in various combinations with other modules are the subject of the invention.
  • the particles are presumably thrown by swirling against the inner walls of the channels and adhere there.
  • the swirls are generated by structures on the inside of the channels, these structures not only creating swirls but also calming or dead zones in the flow shadow. In the calming and / or dead zones, the particles are presumably washed up (comparable to gravity separation) and then adhere firmly.
  • a possible interaction of metal-soot and / or also the temperature gradient fluid / channel wall plays a role in the adhesion of the particles. A strong agglomeration of the particles in the gas stream or on the walls is also observed.
  • a calming zone is a zone in the channel with low flow velocity and a dead zone is a zone without fluid movement.
  • the particle trap is referred to as "open" because no flow dead ends are provided.
  • this property can also be used to characterize the particle trap, for example an openness of 20% means that in a cross-sectional view, approx. With a carrier with 600 cpsi (cells per square inch) with a hydraulic diameter of the channels of approximately 0.8 mm, this would correspond to an area of approximately 0.01 mm 2 .
  • the particle trap does not become clogged, like a conventional filter system, where pores can become clogged, because the flow would entrain the part of the agglomerated particles that could be torn off due to its increased air resistance.
  • At least partially structured layers are layered or wound according to known methods and connected by joining technology, in particular soldered.
  • the cell density of the particle trap depends on the corrugation of the layers.
  • the corrugation of the layers is not necessarily uniform over an entire layer, but different flows and / or pressure conditions can be produced within the particle trap through which the layer structure is suitably produced.
  • the particle trap can be monolithic or made up of several disks, that is to say it can be made up of one element or several individual elements connected in series.
  • a system with conical channels or an element in the form of a cone is preferred.
  • Such systems as described for example in WO93 / 20339, have widening or narrowing channels, so that at any mass throughput at any point on the channels, if they correspond with them Deflection or turbulence structures are provided, particularly favorable conditions for collecting particles arise.
  • conical designations denote both the designs that show a diameter expansion in the direction of flow and the designs that have a diameter reduction.
  • Cylindrical honeycomb bodies with channels, some of which narrow and some widen, have suitable properties.
  • a smooth layer lying between two corrugations has holes, so that a fluid exchange between the channels created by the winding is possible. This enables a radial flow through the particle trap, which is not tied to a 90 ° deflection.
  • these preferably come to rest at the outlet of flow guide vanes, so that the flow is conducted directly into the holes.
  • another penetrable material such as a fiber material can be used.
  • the material of the layers is preferably metal (sheet metal), but it can also be a substance of inorganic (ceramic, fiber material), organic or organometallic nature and / or a sintered material, as long as it has a surface to which the particles adhere without coating succeed.
  • the particle trap is subject to large temperature fluctuations in a partially oxidative atmosphere (air), and various oxides are formed on the surface of the layers, if these are made of metal, possibly even in the form of needle-shaped crystals, so-called whiskers, which cause a certain surface roughness.
  • the particles of the flow which basically behave similar to molecules, are generated by different mechanisms, in particular impaction or interception in turbulent flow or thermophoresis in a laminar flow on this rough surface and washed there, the adhesion being caused essentially by Van der Waals forces.
  • the deposition of the particles takes place on the uncoated metal foil, it cannot be ruled out that there are also coated areas of the particle trap, for example because the particle trap is also designed in part as a catalyst carrier.
  • the film thickness of the layers is preferably in the range between 0.02 and 0.2 mm, particularly preferably between 0.05 and 0.08 mm, in regions with increased heat capacity preferably between 0.65 and 0.11 mm.
  • the particle trap with several layers wound they are made of the same or different material or have the same or different film thickness.
  • the particles in the exhaust gas of a diesel engine which essentially consist of soot, can be charged and / or polarized by passing them through an electric field, so that they are deflected from their preferred direction of flow (for example the axial direction of the particle trap parallel to the flow channels).
  • This increases the probability of the particles hitting the walls of the flow channels of the particle trap, since they now also have a velocity component in another direction, in particular perpendicular to the preferred direction of flow, when flowing through the particle trap.
  • This can also be achieved, for example, with a plasma reactor upstream of the particle trap, which ensures polarization of the particles.
  • the particle trap forms at least one pole of the polarization path, in particular if the particle trap at least partially has a positive charge, and electrically negatively polarized particles are thus actively attracted.
  • the mechanisms by the particles are flushed against the wall from the interior of the flow (eg interception and impaction), accelerated and amplified.
  • the particle trap In the event that the particle trap is charged, it is advantageous that peaks are arranged on the layers and / or in the structure of the film forming the layers, which intensify the charging effect.
  • the particles of the fluid can, for example, be passed through a polarization path for charging, the particles then being polarized.
  • the particle trap can also be grounded and remain charge-neutral, especially if suitable insulation is provided with regard to the tips and / or the polarization path.
  • the polarization and / or charging also takes place via photoionization.
  • the particles are charged and / or polarized via a corona discharge.
  • thermooresis use is made of the knowledge that a temperature difference between the channel wall and the flow serves to cause the particles to migrate more strongly to the channel wall (thermophoresis).
  • the thick duct wall has a high heat capacity and therefore maintains a temperature difference between the flow and the duct wall longer than a thin duct wall with dynamic load changes and increasing exhaust gas temperature and thus maintains the separation-promoting effect longer than a thin duct wall.
  • the lead structures are
  • thermophoresis is used by cascading several particle traps, each with channel walls of different thicknesses.
  • the cell densities of the particle trap are preferably in the range between 25 to 1000 cpsi, preferably between 200 and 400 cpsi.
  • a typical particle trap with 200 cpsi has a volume, based on a diesel engine, of about 0.2 to 11 per 100 kW, preferably 0.4-0.851 / 100 kW. To 78m 2 / 100kW for the geometric surface area results in example l. Compared to the volumes of conventional filters and screening systems, this is a very small volume or a very small geometric surface compared to a conventional design with a surface area of approximately 4 m 2 per 100 kW.
  • the particle trap can be regenerated, and in the case of soot separation in the diesel engine exhaust line, regeneration by oxidation of the soot either by nitrogen dioxide (NO 2 ) at a temperature above about 200 ° C. or with air or oxygen (O 2 ), for example at Temperatures above 500 ° C or by injection of an additive (eg cerium).
  • NO 2 nitrogen dioxide
  • O 2 air or oxygen
  • C + 2NO 2 -> CO 2 + 2NO requires that an oxidation catalytic converter is placed in front of the particle trap in the exhaust line, which oxidizes NO to NO 2 in sufficient quantity.
  • the quantitative ratio of the reactants also depends significantly on the Mixing of the fluids from, so that depending on the design of the channels of the particle trap, different proportions should also be used.
  • an aid is provided for the thermal regeneration of the particle trap.
  • the element is at least partially electrically heated, or an electrically heatable auxiliary, such as a heating catalytic converter, is connected upstream of the element.
  • an auxiliary device is switched on or on for regeneration as a function of the occupancy / degree of filling of the particle trap, which in the simplest case is measured via the pressure loss that the particle trap generates in the exhaust line.
  • an oxidation catalyst upstream of the particle trap has a lower specific heat capacity per unit volume and number of cells than the particle trap itself.
  • the oxidation catalyst preferably has a volume of 0.5 liters, a cell number of 400 cpsi and a film thickness of 0.05 mm , while the particle trap with the same volume and the same number of cells has a film thickness of 0.08 mm and a downstream SCR catalyst again has a film thickness of 0.05 mm.
  • the combination of the particle trap with at least one catalytic converter and a turbocharger or the combination of a particle trap with a turbocharger is also advantageous.
  • the particle trap downstream of the turbocharger can be arranged close to the engine or in the underbody position.
  • the particle trap is also used in combination with an upstream or downstream one
  • Soot filter used the soot filter downstream can be much smaller than the conventional soot filter, because it should only provide additional protection that particle emission is excluded.
  • a filter is preferred the size 0.5m 2 per 100kW diesel engine used up to a maximum of Im 2 , (with a downstream filter area, the cross-sectional area of the filter is adapted to that of the particle trap, both in the case of a narrowing cross-section as well as in the case of a cross-section expansion), whereas filter sizes of approx. 4m 2 per 100kW are required.
  • the soot filter can also be in the form of filter material installed directly before or after the storage / oxidation element, the filter material being directly, e.g. via a solder connection, can be connected to the storage / oxidation element.
  • Soot filter (possibly cone to increase the pipe cross section) reduction catalyst
  • the particle trap is used in combination with at least one catalyst.
  • catalysts electrocatalysts and / or
  • Pre-catalysts are particularly suitable for this: oxidation catalyst, Heating catalytic converter with upstream or downstream heating disc, hydrolysis catalytic converter and / or reduction catalytic converter.
  • Oxidation catalysts which also oxidize NO x (nitrous gases) to nitrogen dioxide (NO 2 ) are used, in addition to those which oxidize hydrocarbons and carbon monoxide to carbon dioxide.
  • the catalysts are, for example, tubular or conical.
  • a nitrogen dioxide (NO 2 ) store is preferably used in front of the particle trap, which, if required, provides NO 2 in sufficient quantity for the oxidation of the soot in the particle trap.
  • This store can be, for example, an activated carbon store, for example, with an adequate supply of oxygen.
  • the particle trap can have different coatings in some areas, each of which requires functionality.
  • the particle trap in addition to the function as a trap for particles, can have a storage, mixing, oxidation, flow-imparting function and also e.g. have a function as a hydrolysis catalyst.
  • the particle trap is not used in the form of an element, but rather in the form of several narrow elements connected in series, as a multi-disc element.
  • Particle traps, the corrugations without structures to create swirling and calming zones and with a coating can also be used. Up to 10 elements are preferably used.
  • This construction referred to as a “disk arrangement” or “disk catalytic converter”, can be used, for example, if particle separation is desired in the range from 10 to 20% (when using conventional catalysts).
  • the present invention proposes a particle trap that can replace conventional filter and sieve systems and has serious advantages over these systems:
  • FIG. 1 is a perspective view of a particle trap according to the invention in the form of a layered honeycomb body
  • Fig. 2 shows a single layer with structures for generating
  • FIG. 3 shows a further embodiment of the particle trap according to the invention with a plasma reactor
  • Fig. 4 shows a further embodiment of the structures for generating
  • 5 a particle trap according to the invention which can be flowed through radially
  • 6 shows a layer with structures for generating turbulence
  • Fig. 7 is a particle trap in a disk arrangement with others
  • FIG. 1 shows a particle trap 11 according to the invention, which is constructed from metallic layers 4, 6, which has flow channels 2 through which a fluid can flow.
  • the layers 4, 6 are designed either as a corrugated layer 4 or as a smooth layer 6.
  • the film thickness of the layers 4, 6 is preferably in the range between 0.02 and 0.2 mm, in particular less than 0.05 mm.
  • FIG. 2 schematically shows a detailed view of the corrugated layer 4, which has structures 3 for generating swirling, calming and / or dead zones 5.
  • the fluid flows along the preferred direction of flow indicated by arrow 16.
  • FIG. 3 shows a further embodiment of the particle trap 11 according to the invention with an upstream plasma reactor 17.
  • the fluid or the particles contained therein are / are at least polarized, possibly even ionized, with the plasma reactor 17 if the fluid in the preferred one
  • Plasma reactor 17 is connected to the negative pole of a voltage source 20.
  • the positive pole of the voltage source 20 is connected to tips 18 of the particle trap 11, which are arranged as close as possible to the axis 19, so that a
  • FIG. 4 shows an alternative embodiment of the corrugated layers 4.
  • FIG. 5 shows a particle trap which can be flowed through radially (radius 21) (arrow 16).
  • the flow channels 2 extend from a central channel 22, which is porous in the area of the honeycomb body 1, radially outward to a porous jacket 23 surrounding the honeycomb body 1.
  • the honeycomb body 1 is made of segmented or annular smooth layers 6 and corrugations 4 educated.
  • FIG. 6 shows a possible, segmented, embodiment of the corrugated layer 4 with structures 3 for generating swirling, calming and / or dead zones.
  • FIG. 7 shows a particle trap which has conical channels and which comprises a plurality of, possibly narrow, elements which are particle traps and / or catalysts.
  • honeycomb bodies 1 are arranged one behind the other, each widening or tapering in a conical shape.
  • an additive addition 7 a nitrogen reservoir 14 and an oxidation catalyst 8, with which nitrous gases (No s ) are oxidized to nitrogen dioxide (NO 2 ), are connected upstream in the exhaust line 12.
  • a turbocharger 9 and a soot filter 10 are connected downstream.
  • the particle trap 11 is advantageously used in combination with an aid for soot oxidation 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

Die Erfindung betrifft eine Partikelfalle, (11) insbesondere eine, die regenerierbar ist und in ein Rohr, wie z.B. in den Abgasstrang (12) eines Kraftfahrzeugs, einbaubar ist. Die Partikelfalle (11) ist ein offenes System, in dem Partikel aus einem Fluid durch Verwirbelungen in der Strömung festgehalten oder abgeschieden und bis zu ihrer Oxidation gehalten werden können.

Description

Partikelfalle
Die Erfindung betrifft eine Partikelfalle für ein mit Partikeln belastetes Fluid, insbesondere für das Abgas eines Dieselmotors, wobei die Partikelfalle durch Oxidation der Partikel regenerierbar ist und in ein Rohr, wie z.B. in den Abgasstrang eines Kraftfahrzeugs, einbaubar ist,
Ein Fluid, wie z.B. das Abgas eines Kraftfahrzeugs, enthält neben gasförmigen Bestandteilen auch Partikel. Diese werden mit dem Abgas ausgestoßen oder lagern sich unter Umständen im Abgasstrang und/oder in einem Katalysator eines Kraftfahrzeugs, an. Bei Laständerungen werden sie dann in Form einer Partikelwolke, wie z.B. einer Rußwolke, ausgestoßen.
Herkömmlich werden Siebe (auch teilweise als Filter bezeichnet) eingesetzt, die die Partikel auffangen. Der Einsatz der Siebe birgt jedoch zwei erhebliche Nachteile, zum einen können sie verstopfen und zum anderen bewirken sie einen unerwünscht hohen Druckabfall. Zudem müssen gesetzlichen Werte für Kraftfahrzeugemissionen eingehalten werden, die ohne Partikelreduktion überschritten würden. Es besteht daher der Bedarf, Auffangelemente für Abgaspartikel zu schaffen, die die Nachteile der Siebe, Filter oder anderer Systeme überwinden.
Aufgäbe der Erfindung ist es, eine Partikelfalle für einen Fluidstrom zu schaffen, die regenerierbar und offen ist.
Gegenstand der Erfindung ist eine Partikelfalle mit Strömungskanälen und Strukturen hat, um in einer Fluidströmung, die durch die Partikelfalle strömt, Verwirbelungs-, Beruhigungs- und/oder Totzonen zu erzeugen, wobei die Partikelfalle zumindest teilweise offen ist. Zudem ist Gegenstand der Erfindung eine Partikelfalle mit Strömungskanälen und Strukturen, um in einer Fluidströmung, die durch die Partikelfalle strömt, Verwirbelungs-, Beruhigungsund/oder Totzonen zu erzeugen, wobei die Partikelfalle zumindest teilweise offen ist und zumindest ein Teil der Strömungskanäle mindestens einen Teilbereich mit einer erhöhten Wärmekapazität, z. B. durch höhere Wandstärke, größere Zellenzahl oder dergleichen aufweist, so daß bei dynamischen Lastwechseln mit schnell steigender Fluidtemperatur für in dem Fluid mitgeführte Partikel der Effekt der Thermophorese in diesen Bereichen verstärkt auftritt. Außerdem sind verschiedene Verwendungen der Partikelfalle in verschiedenen Kombinationen mit weiteren Modulen Gegenstand der Erfindung.
Bei Versuchen mit Mischelementen aus Metallfolien, wie sie beispielsweise in der WO91/01807 oder der WO91/01178 beschrieben sind und die zur besseren Verteilung von, in Abgassystemen eingespritzten Additiven, getestet wurden, ist es überraschend gelungen, auf dem blankem das heißt unbeschichtetem Metall der Folien Partikel, wie den Ruß aus einem Dieselmotor, abzulagern und zur Oxidation zu bringen.
Die Partikel werden vermutlich durch Verwirbelungen an die Innenwände der Kanäle geschleudert und haften dort. Die Verwirbelungen werden durch Strukturen der Kanalinnenseiten erzeugt, wobei diese Strukturen nicht nur Verwirbelungen, sondern auch Beruhigungs- oder Totzonen im Strömungsschatten erzeugen. In den Beruhigungs- und/oder Totzonen werden die Partikel vermutlich quasi angespült (vergleichbar einer Schwerkraftabscheidung) und haften dann fest. Bei der Haftung der Partikel spielt eine mögliche Wechselwirkung Metall-Ruß und/oder auch der Temperaturgradient Fluid/Kanalwand eine Rolle. Es wird auch eine starke Agglomeration der Partikel im Gasstrom oder an den Wänden beobachtet.
Als Beruhigungszone wird eine Zone im Kanal mit geringer Strömungsgeschwindigkeit und als Totzone eine Zone ohne Fluidbewegung bezeichnet. Als „offen" wird die Partikelfalle im Gegensatz zu geschlossenen Systemen bezeichnet, weil keine Strömungssackgassen vorgesehen sind. Diese Eigenschaft kann in dem Fall auch zur Charakterisierung der Partikelfalle dienen, wie z.B. eine Offenheit von 20% besagt, daß in einer Querschnittsbetrachtung ca. 20% der Fläche frei durchströmbar sind. Bei einem Träger mit 600 cpsi (cells per square inch) mit einem hydraulischen Durchmesser der Kanäle von etwa 0,8mm entspräche das einer Fläche von etwa 0,01 mm2.
Die Partikelfalle verstopft nicht, wie ein herkömmliches Filtersystem, wo sich Poren zusetzen können, weil zuvor die Strömung den Teil der agglomerierten Partikel mitreißen würde, der sich aufgrund seines erhöhten Luftwiderstandes abreißen läßt.
Zur Herstellung einer Partikelfalle werden zumindest teilweise strukturierte Lagen nach bekannten Methoden geschichtet oder gewickelt und fügetechnisch verbunden, insbesondere verlötet. Die Zelldichte der Partikelfalle hängt von der Wellung der Lagen ab. Die Wellung der Lagen ist nicht zwangsläufig über eine gesamte Lage hinweg einheitlich, sondern es können verschiedene Strömungen und/oder Druckverhältnisse innerhalb der durchströmten Partikelfalle durch geeignete Herstellung der Lagenstruktur hergestellt werden.
Die Partikelfalle kann monolithisch oder aus mehreren Scheiben sein, das heißt aus einem Element oder mehreren hintereinander geschalteten Einzelelementen aufgebaut sein.
Zur Abdeckung verschiedener (dynamischer) Lastfälle des Antriebssystems eines Kraftfahrzeugs wird ein System mit konischen Kanälen oder ein Element in Konusform bevorzugt. Solche Systeme, wie z.B. in der WO93/20339 beschrieben, haben sich erweiternde oder verengende Kanäle, so dass bei jedem Massendurchsatz an irgendeiner Stelle der Kanäle, wenn sie mit entsprechenden Umlenkungs- oder Verwirbelungsstrukturen versehen werden, besonders günstige Verhältnisse für das Auffangen von Partikeln entstehen.
Konusförmig bezeichnet dabei sowohl die Ausfuhrungen, die in Strömungsrichtung eine Durchmessererweiterung zeigen sowie auch die Ausführungen, die eine Durchmesserreduzierung haben. Auch zylindrische Wabenkörper mit Kanälen, von denen ein Teil sich verengt und ein Teil sich verbreitert haben geeignete Eigenschaften.
Nach einer Ausführungsform der Erfindung aus mehreren zu einem Wabenkörper aufgewickelten Lagen hat eine zwischen zwei Wellagen liegende Glattlage Löcher, so daß ein Fluidaustausch zwischen den durch die Wicklung entstandenen Kanälen möglich ist. Dadurch ist eine radiale Durchströmung der Partikelfalle, die nicht an eine 90° Umlenkung gebunden ist, möglich. Bei der Ausführungsform der Glattlage mit Löchern kommen diese bevorzugt am Austritt von Strömungsleitschaufeln zu liegen, so daß die Strömung direkt in die Löcher geleitet wird. Anstelle der Glattlage mit Löchern kann auch ein anderes durchdringbares Material, wie z.B. ein Fasermaterial eingesetzt werden.
Das Material der Lagen ist bevorzugt Metall (Blech), es kann aber auch ein Stoff anorganischer (Keramik, Fasermaterial), organischer oder metallorganischer Natur und/oder ein gesintertes Material sein, solange es eine Oberfläche hat, an der ohne Beschichtung die Haftung der Partikel gelingt.
Die Partikelfalle unterliegt im Einsatz großen Temperaturschwankungen in teilweise oxidativer Atmosphäre (Luft), und es entstehen an der Oberfläche der Lagen, wenn diese aus Metali sind, verschiedene Oxide, möglicherweise sogar in Form nadelförmiger Kristalle, sogenannten Whiskern, die eine gewisse Oberflächenrauhigkeit bewirken. Die Partikel der Strömung, die sich grundsätzlich ähnlich wie Moleküle verhalten, werden durch unterschiedliche Mechanismen, insbesondere Impaktion oder Interception in turbulenter Strömung oder Thermophorese in laminarer Strömung an dieser rauhen Oberfläche angespült und dort gehalten, wobei die Haftung im wesentlichen durch Van der Waals-Kräfte verursacht wird.
Obwohl die Abscheidung der Partikel an der unbeschichteten Metallfolie stattfindet ist nicht ausgeschlossen, daß es auch beschichtete Bereiche der Partikelfalle gibt, weil die Partikelfalle beispielsweise auch in einem Teil als Katalysatorträger ausgebildet ist.
Die Folienstärke der Lagen liegt bevorzugt im Bereich zwischen 0,02 und 0,2 mm, insbesondere bevorzugt zwischen 0,05 und 0,08 mm, bei Bereichen mit erhöhter Wärmekapazität bevorzugt zwischen 0,65 und 0,11 mm.
Bei der Partikelfalle mit mehreren gewickelten Lagen sind diese aus gleichem oder ungleichem Material bzw. haben diese gleiche oder ungleiche Folienstärke.
Die Partikel im Abgas eines Dieselmotors, die im wesentlichen aus Ruß bestehen, lassen sich durch Durchleiten durch ein elektrisches Feld aufladen und/oder polarisieren, so daß sie von ihrer bevorzugten Strömungsrichtung (z.B. axiale Richtung der Partikelfalle parallel zu den Strömungskanälen) abgelenkt werden. Somit wird die Wahrscheinlichkeit bezüglich des Aufreffens der Partikel auf die Wände der Strömungskanäle der Partikelfalle erhöht, da diese beim Durchströmen der Partikelfalle nun auch eine Geschwindigkeitskomponente in einer anderen Richtung, insbesondere senkrecht zur bevorzugten Strömungsrichtung, aufweisen. Dies lässt sich beispielsweise auch mit einem der Partikelfalle vorgeschalteten Plasmareaktor verwirklichen, der eine Polarisierung der Partikel gewährleistet. Es ist auch besonders vorteilhaft, das die Partikelfalle mindestens einen Pol der Polarisationsstrecke bildet, insbesondere wenn die Partikelfalle zumindest teilweise eine positive Ladung aufweist, und elektrisch negativ polarisierte Partikel somit aktiv angezogen werden. Derart werden die Mechanismen, durch die Partikel aus dem Strömungsinneren an die Wand gespült werden (z.B. Interception und der Impaktion), beschleunigt und verstärkt.
Für den Fall, daß die Partikelfalle aufgeladen wird, ist es vorteilhaft, daß auf den Lagen und/oder in der Struktur der die Lagen bildenden Folie Spitzen angeordnet sind, die den Aufladeeffekt verstärken. Die Partikel des Fluids können beispielsweise durch eine Polarisationsstrecke zum Aufladen durchgeleitet werden, dabei werden die Partikel dann polarisiert. Die Partikelfalle kann aber auch geerdet sein und ladungsneutral bleiben, insbesondere wenn geeignete Isolierungen hinsichtlich der Spitzen und/oder der Polarisationsstrecke vorgesehen sind.
Die Polarisation und oder Aufladung erfolgt nach einer Ausführungsform auch über eine Photoionisation.
Nach einer Ausführungsform werden die Partikel über eine Coronaentladung geladen und/oder polarisiert.
Nach einer Ausführungsform der Partikelfalle macht man sich die Erkenntnis zu Nutze, daß eine Temperaturdifferenz zwischen der Kanalwand und der Strömung zur stärkeren Wanderung der Partikel an die Kanalwand dient (Thermophorese).
Entsprechend wird eine dicke und damit mit hoher Wärmekapazität ausgestattete
Kanalwand (etwa durch eine entsprechende Folienstärke der Lage an der Stelle bewirkt) mit gegenüberliegenden Strukturen (Leitstrukturen), die die Partikel an diese Wand (etwa durch Erzeugung von Verwirbelungen in der Strömung) hinlenken, kombiniert. Die dicke Kanalwand hat eine hohe Wärmekapazität und hält deshalb bei dynamischen Lastwechseln und ansteigender Abgastemperatur eine Temperaturdifferenz zwischen der Strömung und der Kanalwand länger aufrecht als eine dünne Kanalwand und erhält damit den die Abscheidung begünstigenden Effekt länger als eine dünne Kanalwand. Die Leitstrukturen sind
Strukturen zur Erzeugung von Verwirbelungs-, Beruhigungs- und Totzonen und bewirken eine erzwungene Durchmischung der Strömung, so daß partikelreiche Zonen im Inneren der Strömung nach außen gebracht werden und umgekehrt. Damit ist mehr Partikeln die Kontaktierung der Wände durch Interception und Impaktion möglich, die dann auch haften bleiben.
Nach einer Ausführungsform nutzt man den Effekt der Thermophorese durch Hintereinanderschalten mehrerer Partikelfallen mit jeweils unterschiedlich dicken Kanalwänden.
Die Zelldichten der Partikelfalle liegen bevorzugt im Bereich zwischen 25 bis 1000 cpsi, bevorzugt zwischen 200 und 400 cpsi.
Eine typische Partikelfalle mit 200cpsi hat ein Volumen, bezogen auf einen Dieselmotor von etwa 0,2 bis 1 1 pro 100kW, bevorzugt 0,4-0,851/100kW. Für die geometrische Oberfläche ergibt sich beispielsweise l,78m2/100kW. Verglichen mit den Volumina herkömmlicher Filter und Siebsysteme ist das ein sehr geringes Volumen bzw. eine sehr geringe geometrische Oberfläche gegenüber einer herkömmlichen Bauart mit etwa 4 m2 Oberfläche pro 100 kW.
Die Partikelfalle ist regenerierbar, wobei im Fall der Rußabscheidung im Dieselmotor-Abgasstrang die Regeneration durch die Oxidation des Rußes entweder durch Stickstoffdioxid (NO2) bei einer Temperatur oberhalb von etwa 200°C oder mit Luft bzw. Sauerstoff (O2) thermisch bei z.B. Temperaturen oberhalb 500° C oder durch Einspritzung eines Additivs (z.B. Cer) erfolgt.
Die Rußoxidation mittels NO2, beispielsweise über den Mechanismus der „continuous regeneration trap" (CRT) nach
C + 2NO2 -> CO2 + 2NO erfordert, daß vor die Partikelfalle im Abgasstrang ein Oxidationskatalysator gesetzt wird, der NO zu NO2 in ausreichender Menge oxidiert. Das Mengenverhältnis der Reaktionspartner hängt jedoch auch wesentlich von der Durchmischung der Fluide ab, so daß je nach Ausgestaltung der Kanäle der Partikelfalle auch unterschiedliche Mengenverhältnisse eingesetzt werden sollten.
Besonders vorteilhaft hat sich die Ausführungsform erwiesen, bei der ein Hilfsmittel zur thermischen Regeneration der Partikelfalle vorgesehen ist, so daß z.B. das Element zumindest zum Teil elektrisch beheizbar ist, oder dem Element ein elektrisch beheizbares Hilfsmittel, wie ein Heizkatalysator, vorgeschaltet ist.
Bei einer Ausgestaltung ist vorgesehen, daß ein Hilfsmittel in Abhängigkeit von der Belegung/dem Füllgrad der Partikelfalle zur Regeneration ein- oder zugeschaltet wird, was im einfachsten Fall über den Druckverlust, den die Partikelfalle im Abgasstrang erzeugt, gemessen wird.
Nach einer bevorzugten Ausführungsform hat ein der Partikelfalle vorgeschalteter Oxidationskatalysator eine geringere spezifische Wärmekapazität pro Volumeneinheit und Zellenzahl als die Partikelfalle selbst. So hat der Oxidationskatalysator beispielsweise bevorzugt ein Volumen von 0,5 Liter, eine Zellenzahl von 400 cpsi und eine Foliendicken von 0,05 mm, während die Partikelfalle bei gleichem Volumen und gleicher Zellenzahl eine Foliendicke von 0,08 mm aufweist und ein nachgeschalteter SCR-Katalysator wieder eine Foliendicke von 0,05 mm.
Auch die Kombination der Partikelfalle mit zumindest einem Katalysator und einem Turbolader oder die Kombination einer Partikelfalle mit einem Turbolader ist vorteilhaft. Dabei kann die dem Turbolader nachgeschaltete Partikelfalle motornah oder in Unterbodenposition angeordnet sein.
Die Partikelfalle wird auch in Kombination mit einem vor- oder nachgeschalteten
Rußfilter verwendet, wobei der Rußfϊlter nachgeschaltet wesentlich kleiner als der herkömmliche Rußfilter sein kann, weil er lediglich einen zusätzlichen Schutz bieten soll, daß Partikelemission ausgeschlossen wird. Bevorzugt wird ein Filter der Größe 0,5m2 pro 100kW Dieselmotor eingesetzt bis maximal zur Größe von Im2, (bei nachgeschalteter Filterfläche ist die Querschnittsfläche des Filters an die der Partikelfalle angepaßt, sowohl im Falle einer Querschnittsverengung als auch im Fall einer Querschnittserweiterung) wohingegen ohne Partikelfalle Filtergrößen von ca. 4m2 pro 100kW erforderlich sind.
Der Rußfilter kann auch in Form von direkt vor oder nach dem Speicher/Oxidationselement installiertem Filtermaterial vorliegen, wobei das Filtermaterial dabei direkt, z.B. über eine Lötverbindung, mit dem Speicher/Oxidationselement verbunden sein kann.
Folgende Beispiele geben Anordnungen wieder, die die Vielzahl der möglichen Kombinationen der Partikelfalle mit Katalysatoren, Turboladern, Rußfilter und Additivzugäbe entlang eines Abgasstranges eines Kraftfahrzeugs belegen:
A) Oxidationskatalysator - Turbolader - Partikelfalle, wobei die Partikelfalle motornah oder in Unterbodenposition angeordnet sein kann.
B) Vorkatalysator - Partikelfalle - Turbolader
C) Oxidationskatalysator - Turbolader- Oxidationskatalysator- Partikelfalle D) Heizkatalysator - Partikelfalle 1 - Partikelfalle 2 (wobei Partikelfalle 1 und 2 gleich oder ungleich sein kann)
E) Partikelfalle 1- Konusöffhung des Abgasstranges - Partikelfalle 2
F) Additivzugabe - Partikelfalle - Hydrolysekatalysator - Reduktionskatalysator
G) Vorkatalysator - Oxidationskatalysator - Additivzugabe- (eventuell Rußfilter) - Partikelfalle z.B. in Konusform, ggf. mit Hydrolysebeschichtung - (eventuell
Rußfilter) - (eventuell Konus zur Erhöhung des Rohrquerschnitts) Reduktionskatalysator
Nach einer Ausfuhrungsform wird die Partikelfalle in Kombination mit zumindest einem Katalysator verwendet. Als Katalysatoren, Elektrokatalysatoren und/oder
Vorkatalysatoren eignen sich dazu insbesondere: Oxidationskatalysator, Heizkatalysator mit vor- oder nachgeschalteter Heizscheibe, Hydrolysekatalysator und/oder Reduktionskatalysator. Als Oxidationskatalysator werden auch solche die NOx (nitrose Gase) zu Stickstoffdioxid (NO2) oxidieren, neben denjenigen, die Kohlenwasserstoffe und Kohlenmonoxid zu Kohlendioxid oxidieren, eingesetzt. Die Katalysatoren sind beispielsweise röhr- oder konusförmig.
Bevorzugt wird vor der Partikelfalle ein Stickstoffdioxid (NO2)-Speicher eingesetzt, der bei Bedarf NO2 in ausreichender Menge für die Oxidation des Rußes in der Partikelfalle zur Verfügung stellt. Dieser Speicher kann z.B. ein Aktivkohlespeicher z.B. mit ausreichender Sauerstoffzufuhr sein.
Je nach Ausführungsform kann die Partikelfalle in Teilbereichen verschiedene Beschichtungen haben, die jeweils eine Funktionalität bedingen. Beispielsweise kann die Partikelfalle neben der Funktion als Falle für Partikel eine Speicher-, Vermischungs-, Oxidations-, Strömungs erteilungsfunktion und auch z.B. eine Funktion als Hydrolysekatalysator haben.
Durch die Verwendung einer Partikelfalle können Abscheidungsraten von bis zu 90% erzielt werden.
Es wurde festgestellt, daß die Ablagerung von Partikeln insbesondere an den Ein- und Austrittsflächen der Katalysatoren stattfindet. Deshalb wird nach einer Ausfuhrungsform die Partikelfalle nicht in Form eines Elements, sondern in Form mehrerer hintereinandergeschalteter schmaler Elemente, als Mehrscheibenelement eingesetzt. Dabei können auch Partikelfallen, die Wellagen ohne Strukturen zur Erzeugung von Verwirbelungs- und Beruhigungszonen und mit Beschichtung (also z.B. herkömmliche Katalysatoren), zum Einsatz kommen. Es werden dabei bevorzugt bis zu 10 Elemente eingesetzt. Diese als „Scheibenanordnung" oder „Scheibenkatalysator" bezeichnete Konstruktion kann beispielsweise eingesetzt werden, wenn im Bereich von 10 bis 20% (beim Einsatz herkömmlicher Katalysatoren) Partikelabscheidung gewünscht wird. Mit der vorliegenden Erfindung wird eine Partikelfalle vorgeschlagen, die herkömmliche Filter- und Siebsysteme ersetzen kann und gravierende Vorteile gegenüber diesen Systemen bringt:
Zum einen kann sie nicht verstopfen, und der durch das System erzeugte Druckabfall nimmt mit der Betriebsdauer nicht so schnell zu wie bei Sieben, weil die Partikel außerhalb des Fluidstromes haften und zum anderen bewirkt sie vergleichsweise geringe Druckverluste, weil sie ein offenes System ist.
Weitere spezielle Ausgestaltungen und Vorteile der Erfindung werden anhand der folgenden Zeichnung erläutert. Die in den Zeichnungen dargestellten Ausführungsformen sind als spezielle, exemplarische und besonders bevorzugte Ausgestaltungen der Erfindung zu verstehen, die die Erfindung in ihrer Bedeutung und ihrem Geist nicht einschränken sollen.
Es zeigen schematisch:
Fig. 1 eine erfindungsgemäße Partikelfalle in Form eines lagenweise aufgebauten Wabenkörpers in perspektivischer Ansicht,
Fig. 2 eine einzelne Lage mit Strukturen zur Erzeugung von
Verwirbelungs-, Beruhigungs- und/oder Totzonen,
Fig. 3 eine weitere Ausführungsform der erfindungsgemäßen Partikelfalle mit einem Plamareaktor,
Fig. 4 eine weitere Ausgestaltung der Strukturen zur Erzeugung von
Verwirbelungs-, Beruhigungs- und/oder Totzonen,
Fig. 5 eine erfindungsgemäße Partikelfalle, die radial durchströmbar ist, Fig. 6 eine Lage mit Strukturen zur Erzeugung von Verwirbelungs-,
Beruhigungs- und/oder Totzonen nach Fig. 4, und
Fig. 7 eine Partikelfalle in Scheibenanordnung mit weiteren
Abgasreinigungsmitteln.
Figur 1 zeigt eine erfindungsgemäße Partikelfalle 11, welche aus metallischen Lagen 4, 6 aufgebaut ist, die für ein Fluid durchströmbare Strömungskanäle 2 aufweist. Die Lagen 4, 6 sind entweder als Welllage 4 oder als Glattlage 6 ausgebildet. Die Folienstärke der Lagen 4, 6 liegt bevorzugt im Bereich zwischen 0,02 und 0,2 mm, insbesondere kleiner 0,05 mm.
Figur 2 zeigt schematisch eine Detailansicht der Welllage 4, welche Strukturen 3 zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen 5 aufweist. Das Fluid strömt entlang der vom Pfeil 16 angezeigten bevorzugten Strömungsrichtung.
Figur 3 zeigt eine weiter Ausführungsform der erfindungsgemäßen Partikelfalle 11 mit einem vorgeschalteten Plasmareaktor 17. Das Fluid bzw. die darin enthaltenen Partikel wird/werden dabei mit dem Plasmareaktor 17 zumindest polarisiert, eventuell sogar ionisiert, wenn das Fluid in der bevorzugten
Strömungsrichtung (Pfeil 16) durch den Plasmareaktor 17 strömt. Der
Plasmareaktor 17 ist mit dem negativen Pol einer Spannungsquelle 20 verbunden. Der positive Pol der Spannungsquelle 20 ist mit Spitzen 18 der Partikelfalle 11 verbunden, die möglichst nahe der Achse 19 angeordnet sind, sodass eine
Ablenkung der Partikel aufgrund Van der Waalsscher Kräfte zum zentralen
Bereich der Partikelfalle 11 erfolgt. Das gebildete elektrostatische Feld kann mit einer Spannung von 3 bis 9 kV betrieben werden. Die Spitzen 18 können dabei elektrisch leitend mit den metallischen Lagen der Partikelfalle 11 verbunden sein. Figur 4 zeigt eine alternative Ausfuhrungsform der Welllagen 4.
Figur 5 zeigt eine Partikelfalle, die radial (Radius 21) durchströmbar (Pfeil 16) ist. Die Strömungskanäle 2 erstrecken sich dabei von einem Zentralkanal 22, der im Bereich des Wabenkörpers 1 porös ausgeführt ist, radial nach außen hin zu einem den Wabenkörper 1 umgebenden, porösen Mantel 23. Der Wabenkörper 1 ist dabei aus segmentierten oder ringförmigen Glattlagen 6 und Wellagen 4 gebildet.
Figur 6 zeigt eine mögliche, segmentierte, Ausführungsform der Welllage 4 mit Strukturen 3 zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen.
Figur 7 zeigt eine Partikelfalle, die konusförmige Kanäle aufweist und die mehrere, gegebenenfalls schmale, Elemente, die Partikelfallen und/oder Katalysatoren sind, umfasst. Hierzu werden mehrere Wabenkörper 1, die jeweils konusförmig sich verbreitern bzw. verjüngen hintereinander angeordnet. Vor den Wabenkörpern 1 ist eine Additivzugabe 7, ein Stickstoffspeicher 14 und ein Oxidationskatalysator 8, womit Nitrosegase (Nos) zu Stickstoffdioxid (NO2) oxidiert werden, im Abgasstrang 12 vorgeschaltet. Ein Turbolader 9 sowie ein Rußfilter 10 sind nachgeschaltet. Vorteilhafterweise wird die Partikelfalle 11 in Kombination mit einem Hilfsmittel zur Rußoxidation 15 verwendet.
Bezugszeichenliste
1 Wabenkörper
2 Strömungskanal
3 Strukturen
4 Welllage
5 Totzonen
6 Glattlage
7 Additivzugabe
8 Oxidationskatalysator
9 Turbolader
10 Rußfilter
11 Partikelfalle
12 Abgasstrang
13 Kanalwand
14 Stickstoffspeicher
15 Hilfsmittel zur Rußoxidation
16 Pfeil
17 Plasmareaktor
18 Spitze
19 Achse
20 Spannungsquelle
21 Radius
22 Zentralkanal
23 Mantel

Claims

Patentansprüche
Partikelfalle (11), insbesondere in Form eines lagenweise aufgebauten Wabenkörpers (1), die Strömungskanäle (2) bildet und Strukturen (3) hat, um in einer Fluidströmung, die durch die Partikelfalle strömt,
Verwirbelungs-, Beruhigungs- und/oder Totzonen (5) zu erzeugen, wobei die Partikelfalle (11) zumindest teilweise offen ist.
Partikelfalle (11) nach Anspruch 1, wobei die Partikelfalle (11) zumindest teilweise aus metallischen Lagen (4, 6) aufgebaut ist.
Partikelfalle (11) mit Strömungskanälen (2) und Strukturen (3), um in einer Fluidströmung, die durch die Partikelfalle (11) strömt, Verwirbelungs-, Beruhigungs- und/oder Totzonen (5) zu erzeugen, wobei die Partikelfalle (11) zumindest teilweise offen ist und zumindest ein Teil der Strömungskanäle (2) zumindest in einem Teilbereich seiner Kanalwände (13) eine hohen Wärmekapazität aufweist, so daß bei steigender Fluidtemperarur der Effekt der Thermophorese für in der Fluidströmung enthaltene Partikel in diesen Bereichen verstärkt auftritt.
Partikelfalle (11) nach einem der vorstehenden Ansprüche, die aus einer ersten Lage (6) und zumindest einer weiteren Folie, die eine Wellage (4) oder eine Glattlage (6) sein kann, hergestellt ist.
Partikelfalle (11) nach einem der vorstehenden Ansprüche, die radial durchströmbar ist.
Partikelfalle (11) nach einem der vorstehenden Ansprüche, die konusförmige Kanäle (2) aufweist. Partikelfalle (11), nach einem der vorstehenden Ansprüche, die mehrere, gegebenenfalls schmale, Elemente, die Partikelfallen (11) und/oder Katalysatoren (8) sind, umfaßt.
Partikelfalle (11) nach Ansprach 7, die zumindest zwei Elemente mit unterschiedlichen Wärmekapazitäten hat.
Partikelfalle (11) nach einem der vorstehenden Ansprüche, die aus nur einer Lage hergestellt ist.
Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in einem Abgasstrang (12) eines Kraftfahrzeugs.
Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit zumindest einer vor- oder nachgeschalteten
Additivzugabe (7).
Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit zumindest einem Katalysator (8).
Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit zumindest einem vor- und/oder nachgeschalteten Oxidationskatalysator (8), wovon zumindest einer nitrose Gase (NOx) zu Stickstoffdioxid (NO2) oxidiert.
Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit zumindest einem vor- und oder nachgeschalteten Turbolader (9), wobei die Partikelfalle (11) motornah und/oder in Unterbodenposition angebracht ist.
15. Verwendung zumindest einer Partikelfalle (11) oder eines Teils einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in einem Dieselmotor- Abgasstrang kombiniert mit einem vor- oder nachgeschalteten Turbolader (9), dem wiederum mindestens ein Oxidationskatalysator (8) vorgeschaltet ist.
16. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 zur Rußoxidation.
17. Verwendung nach Anspruch 16 unter Einsatz von Stickstoffdioxid als Oxidans.
18. Verwendung nach einem der Ansprüche 16 und/oder 17, wobei die Partikelfalle (11) in Kombination mit einem Hilfsmittel zur Rußoxidation (15) verwendet wird.
19. Verwendung nach einem der Ansprüche 16 bis 18, in Kombination mit einem vorgeschalteten Stickstoffdioxidspeicher (14).
20. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit einem vor- oder nachgeschalteten Rußfilter (10).
21. Verwendung zumindest eines Teils einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 als Träger für eine katalytisch aktive Beschichtung.
22. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 und/oder eines Katalysators in Scheibenanordnung.
23. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 9 in Kombination mit zumindest einer Vorrichtung zur . Aufladung Polarisation entweder der aufzufangenden und zu oxidierenden Partikel und/oder der Partikelfalle (11).
Verwendung nach Anspruch 23, wobei der mindestens einen Partikelfalle (11 ) ein Plasmareaktor (17) zur Polarisierung der Partikel vorgeschaltet ist, und die Partikelfalle (11) vorzugsweise einen elektrischen Pol darstellt.
EP01981922A 2000-05-30 2001-05-29 Partikelfalle Revoked EP1285153B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20122703U DE20122703U1 (de) 2000-05-30 2001-05-29 Partikelfalle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10026696 2000-05-30
DE10026696A DE10026696A1 (de) 2000-05-30 2000-05-30 Partikelfalle
PCT/EP2001/006071 WO2001092692A1 (de) 2000-05-30 2001-05-29 Partikelfalle

Publications (2)

Publication Number Publication Date
EP1285153A1 true EP1285153A1 (de) 2003-02-26
EP1285153B1 EP1285153B1 (de) 2008-01-16

Family

ID=7644037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01981922A Revoked EP1285153B1 (de) 2000-05-30 2001-05-29 Partikelfalle

Country Status (9)

Country Link
US (1) US7267805B2 (de)
EP (1) EP1285153B1 (de)
JP (2) JP4913309B2 (de)
KR (1) KR100759146B1 (de)
CN (1) CN1288330C (de)
AU (1) AU2002211949A1 (de)
DE (2) DE10026696A1 (de)
ES (1) ES2299522T3 (de)
WO (1) WO2001092692A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112049715A (zh) * 2020-09-04 2020-12-08 拓信(台州)精密工业有限公司 具有扰流作用的金属蜂窝载体

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301713A (ja) * 2002-04-09 2003-10-24 Nissan Motor Co Ltd エンジンの排気浄化装置
DE10226975A1 (de) * 2002-06-17 2004-01-15 Siemens Ag Vorrichtung und Verfahren zur Reinigung von Abgas eines Dieselmotors
DE10247987A1 (de) * 2002-10-15 2004-04-29 Robert Bosch Gmbh Anordnung und Verfahren zur Nachbehandlung des Abgases einer Brennkraftmaschine
DE10254764A1 (de) * 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
DE10254661A1 (de) * 2002-11-22 2004-06-09 Umicore Ag & Co.Kg Verfahren zur Beschichtung eines Katalysatorträgers enthaltend zwei unterschiedliche Teilstrukturen mit einer katalytisch aktiven Beschichtung und dadurch erhaltener Katalysator
DE10257113A1 (de) * 2002-12-05 2004-06-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfalle mit beschichteter Faserlage
JP2006515401A (ja) * 2003-01-14 2006-05-25 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング 入れ子式に位置する往流領域及び還流領域を備え同じ側で排ガスの流出入を行う省スペース形排ガス後処理装置
JP3543969B1 (ja) * 2003-06-05 2004-07-21 株式会社オーデン 金属フィルタ及び該金属フィルタを備える黒煙微粒子除去装置並びにディーゼル車
DE10345896A1 (de) * 2003-09-30 2005-04-21 Emitec Emissionstechnologie Beschichteter Wabenkörper mit Messfühler
DE10349352B3 (de) * 2003-10-19 2005-01-13 Trippe, Gustav, Dr. Reinigungsaggregat für Abgase aus Brennkraftmaschinen
DE102004001418A1 (de) * 2004-01-09 2005-07-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Fluid-Umformung von Metallblechen
BE1016015A5 (fr) * 2004-05-11 2006-01-10 Mann Naturenergie Gmbh & Co Kg Installation d'epuration des gaz d'echappement pour moteurs a combustion et procede d'epuration des gaz d'echappement.
DE102004024685A1 (de) * 2004-05-19 2005-12-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Katalysator-Trägerkörper für einen motornah einzusetzenden katalytischen Konverter
EP1787015A1 (de) * 2004-08-23 2007-05-23 Wysocka, Anna Installation zur reinigung von abgas und verfahren zur reinigung von abgas
CN1317490C (zh) * 2004-12-24 2007-05-23 清华大学 一种汽车尾气可吸入颗粒物脱除装置
DE102005000890A1 (de) 2005-01-07 2006-08-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Entfernen von Partikeln aus Abgasen sowie Faserlage und Partikelfilter dazu
US7340888B2 (en) 2005-04-26 2008-03-11 Donaldson Company, Inc. Diesel particulate matter reduction system
DE102005023385A1 (de) * 2005-05-17 2006-11-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Fügen metallischer Fasern zu Vliesen zur Herstellung von Wabenkörpern
DE102005029338A1 (de) * 2005-06-24 2007-02-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Partikelfalle sowie Vorrichtung zur Durchführung des Verfahrens
DE102005031816A1 (de) 2005-07-06 2007-01-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Reduzierung des Partikel- und Stickoxidanteils im Abgasstrom einer Verbrennungskraftmaschine und entsprechende Abgasaufbereitungseinheit
DE102005032348A1 (de) * 2005-07-08 2007-01-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Filterlage für einen, insbesondere konischen, Wabenkörper zur Abgasbehandlung und Verfahren zur Herstellung der Filterlage
US7673448B2 (en) * 2005-08-05 2010-03-09 Basf Catalysts Llc Diesel exhaust article and catalyst compositions therefor
EP1948914B1 (de) * 2005-10-28 2011-12-28 Corning Incorporated Regeneration von dieselpartikelfiltern
SE0600003L (sv) * 2006-01-02 2007-07-03 Sven Melker Nilsson Kanalsystem
DE102006001831A1 (de) 2006-01-13 2007-09-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Verringerung der Partikelanzahl im Abgas einer Verbrennungskraftmaschine
US7862640B2 (en) * 2006-03-21 2011-01-04 Donaldson Company, Inc. Low temperature diesel particulate matter reduction system
JP4710825B2 (ja) * 2006-12-28 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP1990510B1 (de) 2007-05-02 2010-04-07 ACR Co., Ltd. Trägerkörper für Abgasreinigung
DE102007032736A1 (de) * 2007-07-13 2009-01-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasnachbehandlung vor einem Turbolader
DE102008022990A1 (de) * 2008-05-09 2009-11-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfilter mit Hydrolysebeschichtung
DE102008057960A1 (de) * 2008-11-19 2010-05-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Anordnung und Verfahren zur Reinigung eines Abgasstromes einer Verbrennungskraftmaschine durch die Abscheidung von Partikeln
DE102008062417A1 (de) * 2008-12-17 2010-07-01 Volkswagen Ag Abgasreinigung eines Abgasstroms einer Brennkraftmaschine
DE102009041090A1 (de) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung von Rußpartikel enthaltendem Abgas
US20110064633A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Multi-Functional Catalyst Block and Method of Using the Same
CN101912712A (zh) * 2010-07-26 2010-12-15 长治市丰雨机械有限公司 板式旋涡发生器
DE102010034250A1 (de) * 2010-08-13 2012-02-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Halterung für zumindest eine Elektrode in einer Abgasleitung
DE102010045506A1 (de) * 2010-09-15 2012-03-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Erzeugung eines elektrischen Feldes in einem Abgassystem
DE102010051655A1 (de) 2010-11-17 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
CN102042058B (zh) * 2011-01-25 2012-07-18 无锡爱奇特汽车环保科技有限公司 尾气颗粒捕集器及其滤芯
US8468803B2 (en) * 2011-02-26 2013-06-25 International Engine Intellectual Property Company, Llc Soot resistant diesel fuel reformer for diesel engine emissions aftertreatment
DE102012022988A1 (de) * 2011-12-16 2013-06-20 Mann + Hummel Gmbh Filtereinrichtung, insbesondere Dieselpartikelfilter
JP2013189900A (ja) * 2012-03-13 2013-09-26 Isuzu Motors Ltd 排気ガス浄化装置
DE202012011813U1 (de) * 2012-12-10 2013-01-14 Liebherr-Werk Ehingen Gmbh Abgasnachbehandlungssystem
US10176901B2 (en) 2013-08-14 2019-01-08 Ge-Hitachi Nuclear Energy Americas Llc Systems, methods, and filters for radioactive material capture
DE102014005153B4 (de) * 2014-04-08 2023-12-14 Andreas Döring Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
US9302226B2 (en) 2014-05-05 2016-04-05 Ge-Hitachi Nuclear Energy Americas Llc Salt filtration system and method of removing a radioactive material from a gas using the same
CN104179551B (zh) * 2014-08-22 2017-05-24 成都代代吉前瞻科技股份有限公司 一种介电电泳汽车尾气净化系统
CN104696050A (zh) * 2015-02-10 2015-06-10 浙江天泽环境科技有限公司 一种全闭式颗粒捕集器的过滤元件及使用方法
AT518216A1 (de) * 2016-01-21 2017-08-15 Ge Jenbacher Gmbh & Co Og Brennkraftmaschine
DE112017005323T5 (de) * 2016-10-21 2019-08-01 Cummins Emission Solutions Inc. Substratform, Geometrie, Positionierung und/oder Zelldichte zur Verbesserung der Nachbehandlungsleistung
DE102016223578A1 (de) * 2016-11-28 2018-05-30 Continental Automotive Gmbh Vorrichtung zur Verdampfung eines Fluids
JP6747466B2 (ja) * 2018-03-15 2020-08-26 株式会社デンソー 電気加熱式触媒
DE102018214929B4 (de) * 2018-09-03 2022-01-27 Vitesco Technologies GmbH Katalysator mit metallischem Wabenkörper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723478A1 (de) * 1987-07-16 1989-01-26 Navsat Gmbh Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors
WO1990012950A1 (de) * 1989-04-17 1990-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Dieselrussfilter mit zusätzlicher einrichtung zur reduktion von stickoxyden und/oder oxydation von kohlenmonoxyd
EP1072765A2 (de) * 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
WO2001080978A1 (de) * 2000-04-25 2001-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954672A (en) * 1974-11-04 1976-05-04 General Motors Corporation Cordierite refractory compositions and method of forming same
DE2738257C2 (de) * 1977-08-25 1986-06-19 Regehr, Ulrich, Dr.-Ing., 5100 Aachen Vorrichtung zur Abscheidung von Tropfen aus strömenden Gasen
DE2951316A1 (de) * 1979-12-20 1981-07-02 Degussa Ag, 6000 Frankfurt Katalytisches filter fuer die dieselabgasreinigung
US4390355A (en) * 1982-02-02 1983-06-28 General Motors Corporation Wall-flow monolith filter
DE3341177A1 (de) * 1983-11-14 1984-04-05 Wilhelm Dr.-Ing. 3200 Hildesheim Wiederhold Auswechselbarer filtereinsatz, insbesondere zur reinigung von dieselmotorabgasen
DE3341868A1 (de) * 1983-11-19 1985-05-30 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Matrix fuer einen katalytischen reaktor
US4672809A (en) * 1984-09-07 1987-06-16 Cornelison Richard C Catalytic converter for a diesel engine
US4597262A (en) * 1984-09-07 1986-07-01 Retallick William B Catalytic converter for a diesel engine
DE8438260U1 (de) * 1984-12-29 1985-04-11 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Traegermatrix, insbesondere fuer einen katalytischen reaktor zur abgasreinigung
JPS61237812A (ja) * 1985-04-15 1986-10-23 Mazda Motor Corp エンジンの排気ガス浄化装置
JPS63185425A (ja) * 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
SE461018B (sv) * 1987-07-06 1989-12-18 Svenska Emmisionsteknik Ab Katalysatorbaerare
DE8908738U1 (de) 1989-07-18 1989-09-07 Emitec Emissionstechnologie
US5403559A (en) 1989-07-18 1995-04-04 Emitec Gesellschaft Fuer Emissionstechnologie Device for cleaning exhaust gases of motor vehicles
DE8909128U1 (de) * 1989-07-27 1990-11-29 Emitec Emissionstechnologie
DE4004079A1 (de) * 1990-02-08 1991-08-14 Lippold Hans Joachim Filtereinsatz
JP2722828B2 (ja) * 1991-03-06 1998-03-09 日産自動車株式会社 内燃機関の排気フィルタ
ES2079983T3 (es) 1992-04-03 1996-01-16 Emitec Emissionstechnologie Cuerpo alveolar conico.
US6045628A (en) * 1996-04-30 2000-04-04 American Scientific Materials Technologies, L.P. Thin-walled monolithic metal oxide structures made from metals, and methods for manufacturing such structures
JP3358392B2 (ja) * 1995-06-15 2002-12-16 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
JP3421958B2 (ja) * 1995-09-22 2003-06-30 日野自動車株式会社 ターボチャージャ付エンジンの排ガス浄化装置
DE29611143U1 (de) * 1996-06-25 1996-09-12 Emitec Emissionstechnologie Konischer Wabenkörper mit Longitudinalstrukturen
DE19704147A1 (de) * 1997-02-04 1998-08-06 Emitec Emissionstechnologie Hitzebeständiger und regenerierbarer Filterkörper mit Strömungswegen
DE19813722C1 (de) * 1998-03-27 2000-03-23 Siemens Ag Verfahren und Vorrichtung zur katalytischen Reduzierung von Stickoxiden im Abgas einer Verbrennungsanlage
JP3228232B2 (ja) * 1998-07-28 2001-11-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2002539348A (ja) * 1998-10-12 2002-11-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 燃焼排気ガスを処理する方法および装置
DE29821009U1 (de) * 1998-11-24 1999-01-28 Oberland Mangold Gmbh Trägermischstruktur
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
DE10118327A1 (de) * 2001-04-12 2002-10-17 Emitec Emissionstechnologie Abgassystem
DE20117659U1 (de) * 2001-10-29 2002-01-10 Emitec Emissionstechnologie Offener Partikelfilter mit Heizelement
DE20117873U1 (de) * 2001-11-06 2002-02-14 Emitec Emissionstechnologie Offener Filterkörper mit verbesserten Strömungseigenschaften
DE10254764A1 (de) * 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
DE10257113A1 (de) * 2002-12-05 2004-06-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfalle mit beschichteter Faserlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723478A1 (de) * 1987-07-16 1989-01-26 Navsat Gmbh Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors
WO1990012950A1 (de) * 1989-04-17 1990-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Dieselrussfilter mit zusätzlicher einrichtung zur reduktion von stickoxyden und/oder oxydation von kohlenmonoxyd
EP1072765A2 (de) * 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
WO2001080978A1 (de) * 2000-04-25 2001-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAUS W.; BRÜCK R.: 'Flow improved efficiency by new cell structures in metallic s ubstrates' SAE Bd. SAE, Nr. 950788, *
MOULIJN J.A.: 'Structured catalysts and reactors', 1998, MARCEL DEKKER INC., NEW YORK, ISBN 0-8247-9921-6 * Seite 68 - Seite 69 * *
See also references of WO0192692A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112049715A (zh) * 2020-09-04 2020-12-08 拓信(台州)精密工业有限公司 具有扰流作用的金属蜂窝载体

Also Published As

Publication number Publication date
AU2002211949A1 (en) 2001-12-11
CN1432100A (zh) 2003-07-23
DE50113505D1 (de) 2008-03-06
WO2001092692A1 (de) 2001-12-06
EP1285153B1 (de) 2008-01-16
JP5199287B2 (ja) 2013-05-15
KR100759146B1 (ko) 2007-09-14
JP4913309B2 (ja) 2012-04-11
US7267805B2 (en) 2007-09-11
US20030086837A1 (en) 2003-05-08
KR20030007795A (ko) 2003-01-23
JP2003535253A (ja) 2003-11-25
JP2010169097A (ja) 2010-08-05
CN1288330C (zh) 2006-12-06
ES2299522T3 (es) 2008-06-01
DE10026696A1 (de) 2001-12-20

Similar Documents

Publication Publication Date Title
EP1285153B1 (de) Partikelfalle
EP1276549B1 (de) Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement
EP1440226B1 (de) Offener partikelfilter mit heizelement
EP2356322B1 (de) Anordnung und verfahren zur reinigung eines abgasstromes einer verbrennungskraftmaschine durch die abscheidung von partikeln
EP1567247B1 (de) Partikelfalle mit beschichteter faserlage
EP1834068B1 (de) Verfahren zum entfernen von partikeln aus abgasen sowie faserlage und partikelfilter dazu
EP1885473A1 (de) Verfahren und vorrichtung zur behandlung von abgasen von verbrennungskraftmaschinen
EP2443325B1 (de) Vorrichtung und verfahren zur behandlung eines partikel aufweisenden abgases
WO2005116411A1 (de) Katalysator-trägerkörper für einen motornah einzusetzenden katalytischen konverter
DE102017125192A1 (de) Katalytisches Wandstromfilter mit partieller Oberflächenbeschichtung
DE60313151T2 (de) Behandlung von abgasen aus einem verbrennungsmotor
EP1527262B1 (de) Abgasfilter und verfahren zum reinigen eines abgases
DE20122703U1 (de) Partikelfalle
DE20122823U1 (de) Partikelfalle mit Hydrolysefunktion
EP1344907A1 (de) Vorrichtung zum Entfernen von Kohlenstoffpartikeln aus Abgasen
EP2740913A1 (de) Abgasnachbehandlungssystem
EP1431528B1 (de) Abgasreinigungsanordnung
DE3627734C2 (de)
DE102010008273B4 (de) Partikelfilteranordnung
DE102006061693A1 (de) Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine
DE20122744U1 (de) Auffangelement zum Entfernen von Rußpartikeln aus einem Abgas
DE10323385B4 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE102007029667A1 (de) Katalysatorträgerkörper
WO2008113507A1 (de) Dieselpartikelfilter-bauteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUECK, ROLF

Inventor name: REIZIG, MEIKE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20041215

17Q First examination report despatched

Effective date: 20041215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50113505

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2299522

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50113505

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE

Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50113505

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160331 AND 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 18

Ref country code: DE

Payment date: 20180531

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180530

Year of fee payment: 18

Ref country code: FR

Payment date: 20180522

Year of fee payment: 18

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 18

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113505

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190529

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190529

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50113505

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20220708