EP1285153B1 - Partikelfalle - Google Patents

Partikelfalle Download PDF

Info

Publication number
EP1285153B1
EP1285153B1 EP01981922A EP01981922A EP1285153B1 EP 1285153 B1 EP1285153 B1 EP 1285153B1 EP 01981922 A EP01981922 A EP 01981922A EP 01981922 A EP01981922 A EP 01981922A EP 1285153 B1 EP1285153 B1 EP 1285153B1
Authority
EP
European Patent Office
Prior art keywords
particle trap
trap
particle
combination
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP01981922A
Other languages
English (en)
French (fr)
Other versions
EP1285153A1 (de
Inventor
Rolf BRÜCK
Meike Reizig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7644037&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1285153(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority to DE20122703U priority Critical patent/DE20122703U1/de
Publication of EP1285153A1 publication Critical patent/EP1285153A1/de
Application granted granted Critical
Publication of EP1285153B1 publication Critical patent/EP1285153B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)

Definitions

  • the invention relates to a particulate trap for a particle-laden fluid, in particular for the exhaust gas of a diesel engine, wherein the particulate trap is regenerable by oxidation of the particles and into a tube, such as. in the exhaust system of a motor vehicle, can be installed.
  • a fluid e.g. the exhaust gas of a motor vehicle
  • a filter which comprises a net-like perforated metal plate.
  • the filter is made up of several smooth and wavy layers.
  • the US 4,597,262 discloses a catalyst for a diesel engine formed from a stack of smooth sheets having indicia that space adjacent sheets apart and redirect flow.
  • DE 33 41 177 A1 discloses a filter formed of concentric cylindrical hole sieves.
  • EP 0 244 798 A1 discloses the structure of a filter made of folded metal layers, similar DE 298 21 009 U1 ,
  • WO 97/49905 discloses a catalyst having a corrugated honeycomb body with a plurality of structures protruding from the corrugations.
  • WO 90/12950 discloses a particulate trap having a honeycomb body constructed of spirally unfurled, alternating smooth and corrugated sheet metal layers and having turbulence-promoting noses.
  • sieves sometimes referred to as filters
  • the use of the sieves has two significant disadvantages, on the one hand they can clog and on the other hand they cause an undesirably high pressure drop.
  • legal values for motor vehicle emissions must be complied with, which would be exceeded without particle reduction. There is therefore a need to provide catch elements for exhaust particles which overcome the disadvantages of screens, filters or other systems.
  • the object of the invention is to provide a particle trap for a fluid flow that is regenerable and open.
  • the invention relates to a particle trap with flow channels and structures in order to Fluid flow passing through the particulate trap to create turbulence, settling and / or dead zones, wherein the particulate trap is at least partially open and at least a portion of the flow channels at least a portion having an increased heat capacity due to a thicker channel wall, so that in dynamic Load changes with rapidly increasing fluid temperature for particles entrained in the fluid, the effect of thermophoresis in these areas increasingly occurs.
  • various uses of the particulate trap in various combinations with other modules are the subject of the invention.
  • the particles according to the invention have channel walls which are at least partially constructed from at least one corrugated layer. The channel walls widen structures which generate Nerwirbelungs-, sedation and / or Torzonen in the fluid flow.
  • the particles are probably thrown by turbulences to the inner walls of the channels and adhere there.
  • the turbulences are created by structures of the channel insides, which structures not only create turbulence, but also calming or dead zones in the flow shadow. In the calming and / or dead zones, the particles are presumably washed up (comparable to gravitational separation) and then adhere firmly.
  • a possible interaction metal soot and / or the temperature gradient fluid / channel wall plays a role. It is also observed a strong agglomeration of the particles in the gas stream or on the walls.
  • the calming zone is a zone in the low flow channel and the dead zone is a zone without fluid movement.
  • the particulate trap In contrast to closed systems, the particulate trap is referred to as "open" because no flow-back alleys are provided.
  • This property can also be used in the case for characterizing the particle trap, such as an openness of 20% means that in a cross-sectional view about 20% of the surface can be freely flowed through.
  • a carrier having 0.93 cells per mm 2 (600 cpsi (cells per square inch)) with a hydraulic diameter of the channels of about 0.8 mm would correspond to an area of about 0.01 mm 2.
  • the particulate trap does not clog like a conventional filtration system where pores can become clogged because previously the flow would entrain the portion of the agglomerated particles which can rupture due to its increased air resistance.
  • At least partially structured layers are layered or wound by known methods and joined by joining, in particular soldered.
  • the cell density of the particle trap depends on the corrugation of the layers.
  • the corrugation of the layers is not necessarily uniform over an entire layer, but different flows and / or pressure conditions within the traversed particle trap can be produced by suitable production of the layer structure.
  • the particulate trap can be monolithic or multiple slices, that is to say composed of one or more individual elements connected in series.
  • a system with conical channels or a cone-shaped element is preferred.
  • Such systems such as in the WO93 / 20339 described, have expanding or narrowing channels, so that at any mass flow at any point of the channels, if they are with appropriate Deflection or turbulence structures are provided, particularly favorable conditions for the collection of particles arise.
  • a smooth layer lying between two corrugations has holes, so that a fluid exchange between the channels formed by the winding is possible.
  • holes these are preferably located at the outlet of flow guide vanes, so that the flow is passed directly into the holes.
  • another penetrable material such as e.g. a fiber material can be used.
  • the material of the layers is preferably metal (sheet), but it can also be a substance of inorganic (ceramic, fiber material), organic or organometallic nature and / or a sintered material, as long as it has a surface on which without coating, the adhesion of the particles succeed.
  • the particle trap in use is subject to large temperature fluctuations in a partially oxidative atmosphere (air), and arise at the surface of the layers, if they are made of metal, various oxides, possibly even in the form of acicular crystals, so-called whiskers, which cause a certain surface roughness.
  • the particles of the flow which basically behave in a similar way to molecules, become through different mechanisms, in particular impaction or interception in turbulent flow or laminar flow thermophores are rinsed and held at this rough surface, the adhesion being caused essentially by Van der Waals forces.
  • the deposition of the particles takes place on the uncoated metal foil is not excluded that there are also coated areas of the particulate trap, because the particulate trap is formed for example in one part as a catalyst support.
  • the film thickness of the layers is preferably in the range between 0.02 and 0.2 mm, particularly preferably between 0.05 and 0.08 mm, in areas with increased heat capacity preferably between 0.65 and 0.11 mm.
  • the particles in the exhaust gas of a diesel engine which consist essentially of soot, can be charged and / or polarized by passing through an electric field, so that they are deflected by their preferred flow direction (eg axial direction of the particle trap parallel to the flow channels).
  • their preferred flow direction eg axial direction of the particle trap parallel to the flow channels.
  • the particle trap forms at least one pole of the polarization path, in particular if the particle trap has at least partially a positive charge, and thus electrically negatively polarized particles are actively attracted.
  • the mechanisms by the particles are flushed out of the flow inside the wall (eg interception and impaction), accelerated and amplified.
  • the particulate trap In the event that the particulate trap is charged, it is advantageous that tips are arranged on the layers and / or in the structure of the film forming the layers, which reinforce the charging effect.
  • the particles of the fluid can be passed, for example, through a polarization path for charging, while the particles are then polarized.
  • the particulate trap can also be grounded and remain charge-neutral, in particular if suitable insulation with respect to the tips and / or the polarization path is provided.
  • the polarization and / or charging takes place according to an embodiment also via a photoionization.
  • the particles are charged and / or polarized via a corona discharge.
  • the particulate trap it is made use of the knowledge that a temperature difference between the channel wall and the flow serves to increase the migration of the particles to the channel wall (thermophoresis). Accordingly, a thick and thus high heat capacity equipped channel wall (caused by a corresponding film thickness of the layer in place) with opposing structures (conductive structures), which direct the particles to this wall (such as by generation of turbulence in the flow) combined ,
  • the thick duct wall has a high heat capacity and therefore maintains a temperature difference between the flow and the duct wall longer than a thin duct wall during dynamic load changes and increasing exhaust gas temperature, thus preserving the deposition-promoting effect longer than a thin duct wall.
  • the lead structures are structures for generating turbulence, settling and dead zones and cause a forced mixing of the flow, so that particle-rich zones are brought inside the flow to the outside and vice versa. Thus, more particles contacting the walls by interception and impaction is possible, which then remain liable.
  • thermophoresis is exploited by connecting several particle traps in series, each with differently thick channel walls.
  • the cell densities of the particulate trap are preferably in the range between 0.038 to 1.55 cells per mm 2 (25 to 1000 cpsi), preferably between 0.31 and 0.62 cells per mm 2 (200 and 400 cpsi).
  • a typical particulate trap of 0.31 cells per mm 2 (200 cpsi) has a volume, based on a diesel engine of about 0.2 to 1 liter per 100 kW, preferably 0.4-0.851 / 100 kW.
  • For the geometric surface results, for example, 1.78m 2 / 100kW. Compared with the volumes of conventional filters and screening systems, this is a very small volume or a very small geometric surface compared to a conventional design with about 4 m 2 surface per 100 kW.
  • the particulate trap is regenerable, wherein in the case of soot deposition in the diesel engine exhaust system regeneration by the oxidation of the carbon black either by nitrogen dioxide (NO 2 ) at a temperature above about 200 ° C or with air or oxygen (O 2 ) thermally at eg Temperatures above 500 ° C or by injection of an additive (eg Cer) takes place.
  • NO 2 nitrogen dioxide
  • O 2 oxygen
  • soot oxidation by means of NO 2 for example via the mechanism of the "continuous regeneration trap" (CRT) C + 2NO 2 -> CO 2 + 2NO requires that before the particulate trap in the exhaust line an oxidation catalyst is set, which oxidizes NO to NO 2 in sufficient quantity.
  • CTR continuous regeneration trap
  • the ratio of the reactants also depends significantly on the Mixing of the fluids, so that depending on the configuration of the channels of the particle trap and different proportions should be used.
  • the embodiment has been found in which a means for thermal regeneration of the particulate trap is provided, so that e.g. the element is at least partially electrically heated, or the element is an electrically heatable auxiliary, such as a heating catalyst, connected upstream.
  • an aid depending on the occupancy / the degree of filling of the particle trap is switched on or switched to regeneration, which is measured in the simplest case on the pressure loss generated by the particulate trap in the exhaust system.
  • an oxidation catalyst upstream of the particulate trap has a lower specific heat capacity per unit volume and number of cells than the particulate trap itself.
  • the oxidation catalyst preferably has a volume of 0.5 liter, a cell number of 0.62 cells per mm 2 (400 cpsi) and a film thickness of 0.05 mm, while the particle trap with the same volume and the same number of cells has a film thickness of 0.08 mm and a downstream SCR catalyst again a film thickness of 0.05 mm.
  • the combination of the particulate trap with at least one catalyst and a turbocharger or the combination of a particulate trap with a turbocharger is also advantageous.
  • the particle trap arranged downstream of the turbocharger can be arranged close to the engine or in underfloor position.
  • the particulate trap is also used in combination with an upstream or downstream soot filter, wherein the soot filter downstream can be substantially smaller than the conventional soot filter, because it is merely intended to provide additional protection that particle emission is excluded.
  • a filter is preferred The size 0.5m 2 per 100kW diesel engine used up to a maximum of 1m 2 , (in downstream filter surface, the cross-sectional area of the filter is adapted to the particle trap, both in the case of a cross-sectional constriction as well as in the case of a cross-sectional widening) whereas without particle trap filter sizes of about 4m 2 per 100kW are required.
  • the soot filter can also be in the form of filter material installed directly before or after the storage / oxidation element, the filter material thereby being directly, e.g. via a solder joint, which can be connected to the storage / oxidation element.
  • the particulate trap is used in combination with at least one catalyst.
  • Suitable catalysts, electrocatalysts and / or precatalysts are in particular: oxidation catalyst, Heating catalyst with upstream or downstream heating disk, hydrolysis and / or reduction catalyst.
  • oxidation catalyst those which oxidize NO x (nitrous gases) to nitrogen dioxide (NO 2 ) will be used besides those which oxidize hydrocarbons and carbon monoxide to carbon dioxide.
  • the catalysts are, for example, tubular or conical.
  • a nitrogen dioxide (NO 2 ) storage is used in front of the particulate trap, which provides NO 2 in sufficient quantity for the oxidation of the carbon black in the particulate trap, if necessary.
  • This memory can be eg an activated carbon storage eg with sufficient oxygen supply.
  • the particle trap may have different coatings in partial areas, each of which causes a functionality.
  • the particulate trap may have a storage, mixing, oxidation, flow distribution function and also e.g. have a function as a hydrolysis catalyst.
  • the particulate trap is not used in the form of an element, but in the form of a plurality of successively connected narrow elements, as a multi-disk element.
  • particle traps the corrugations without structures for generating Verwirbelungs- and calming zones and with coating (ie, for example, conventional catalysts) can be used. It will be used preferably up to 10 elements.
  • This design referred to as a "disk array” or “disk catalyst,” can be used, for example, when particle separation is desired in the range of 10 to 20% (using conventional catalysts).
  • FIG. 1 shows a particle trap 11 according to the invention, which is constructed from metallic layers 4, 6, which has flow channels 2 through which a fluid can flow.
  • the layers 4, 6 are formed either as a corrugated layer 4 or as a smooth layer 6.
  • the film thickness of the layers 4, 6 is preferably in the range between 0.02 and 0.2 mm, in particular less than 0.05 mm.
  • FIG. 2 schematically shows a detailed view of the corrugated layer 4, which has structures 3 for generating swirling, settling and / or dead zones 5.
  • the fluid flows along the preferred flow direction indicated by the arrow 16.
  • FIG. 3 shows a further embodiment of the particle trap 11 according to the invention with an upstream plasma reactor 17.
  • the fluid or the particles contained therein are at least polarized with the plasma reactor 17, possibly even ionized, if the fluid is in the preferred flow direction (arrow 16). flows through the plasma reactor 17.
  • the plasma reactor 17 is connected to the negative pole of a voltage source 20.
  • the positive pole of the voltage source 20 is connected to tips 18 of the particle trap 11, which are arranged as close as possible to the axis 19, so that a deflection of the particles occurs due to van der Waalsscher forces to the central region of the particle trap 11.
  • the formed electrostatic field can be operated with a voltage of 3 to 9 kV.
  • the tips 18 may be electrically conductively connected to the metallic layers of the particle trap 11.
  • FIG. 4 shows an alternative embodiment of the corrugated sheets 4.
  • FIG. 5 shows a particle trap which can be flowed through radially (radius 21) (arrow 16).
  • the flow channels 2 extend from a central channel 22, which is made porous in the region of the honeycomb body 1, radially outwardly to a honeycomb body 1 surrounding, porous shell 23.
  • the honeycomb body 1 is made of segmented or annular smooth layers 6 and 4 corrugations educated.
  • FIG. 6 shows a possible segmented embodiment of the corrugated sheet 4 with structures 3 for generating turbulence, settling and / or dead zones.
  • FIG. 7 shows a particle trap which has conical channels and which comprises a plurality of, optionally narrow, elements which are particle traps and / or catalysts.
  • a plurality of honeycomb body 1 each widening conically widen or taper arranged one behind the other.
  • a turbocharger 9 and a soot filter 10 are connected downstream.
  • the particulate trap 11 is used in combination with an aid for soot oxidation 15.

Description

  • Die Erfindung betrifft eine Partikelfalle für ein mit Partikeln belastetes Fluid, insbesondere für das Abgas eines Dieselmotors, wobei die Partikelfalle durch Oxidation der Partikel regenerierbar ist und in ein Rohr, wie z.B. in den Abgasstrang eines Kraftfahrzeugs, einbaubar ist.
  • Ein Fluid, wie z.B. das Abgas eines Kraftfahrzeugs, enthält neben gasförmigen Bestandteilen auch Partikel. Diese werden mit dem Abgas ausgestoßen oder lagern sich unter Umständen im Abgasstrang und/oder in einem Katalysator eines Kraftfahrzeugs, an. Bei Laständerungen werden sie dann in Form einer Partikelwolke, wie z.B. einer Rußwolke, ausgestoßen. Zur Filterung dieser Partikel sind unterschiedliche Systeme bekannt.
  • Aus der DE 4206812 A1 ist ein Filter bekannt, der eine netzartige mit Löchern versehene Metallplatte umfasst. Der Filter ist aus mehreren glatten und gewellten Lagen aufgebaut. Die US 4,597,262 offenbart einen Katalysator für eine Dieselmaschine, der aus einem Stapel von glatten Lagen ausgebildet ist, die Ausprägungen aufweisen, die benachbarte Lagen voneinander beabstanden und die Strömung umlenken. DE 33 41 177 A1 offenbart einen Filter, der aus konzentrischen zylindrischen Lochsieben gebildet ist. EP 0 244 798 A1 offenbart den Aufbau eines Filters aus gefalteten Metalllagen, ähnlich DE 298 21 009 U1 .
  • WO 97/49905 offenbart einen Katalysator mit einem gewellten Wabenkörper mit einer Vielzahl von aus den Wellen vorstehenden Strukturen. WO 90/12950 offenbart eine Partikelfalle mit einem Wabenkörper, der aus spiralig uneinandergewickelten, abwechselnd glatten und gewellten Blechlagen aufgebaut ist und die Verwirbelung fördernde Nasen aufweist.
  • Herkömmlich werden Siebe (auch teilweise als Filter bezeichnet) eingesetzt, die die Partikel auffangen. Der Einsatz der Siebe birgt jedoch zwei erhebliche Nachteile, zum einen können sie verstopfen und zum anderen bewirken sie einen unerwünscht hohen Druckabfall. Zudem müssen gesetzlichen Werte für Kraftfahrzeugemissionen eingehalten werden, die ohne Partikelreduktion überschritten würden. Es besteht daher der Bedarf Auffangelemente für Abgaspartikel zu schaffen, die die Nachteile der Siebe, Filter oder anderer Systeme überwinden.
  • Aufgabe der Erfindung ist es, eine Partikelfalle für einen Fluidstrom zu schaffen, die regenerierbar und offen ist.
  • Gegenstand der Erfindung ist eine Partikelfalle mit Strömungskanälen und Strukturen, um in einer Fluidströmung, die durch die Partikelfalle strömt, Verwirbelungs-, Beruhigungs-und/oder Totzonen zu erzeugen, wobei die Partikelfalle zumindest teilweise offen ist und zumindest ein Teil der Strömungskanäle mindestens einen Teilbereich mit einer erhöhten Wärmekapazität aufgrund einer dickeren Kanalwand aufweist, so daß bei dynamischen Lastwechseln mit schnell steigender Fluidtemperatur für in dem Fluid mitgeführte Partikel der Effekt der Thermophorese in diesen Bereichen verstärkt auftritt. Außerdem sind verschiedene Verwendungen der Partikelfalle in verschiedenen Kombinationen mit weiteren Modulen Gegenstand der Erfindung. Die erfindungs-gemäßen Partikel fallen haben kanalwände, die zumindest teilweise aus mindestens einer Welllage aufgebaut sind. Die kanalwände weiben Strukturen auf, die in der fluid strömung Nerwirbelungs-, Beruhigungs- und/oder Torzonen erzeugen.
  • Bei Versuchen mit Mischelementen aus Metallfolien, wie sie beispielsweise in der WO91/01807 oder der WO91/01178 beschrieben sind und die zur besseren Verteilung von, in Abgassystemen eingespritzten Additiven, getestet wurden, ist es überraschend gelungen, auf dem blankem das heißt unbeschichtetem Metall der Folien Partikel, wie den Ruß aus einem Dieselmotor, abzulagern und zur Oxidation zu bringen.
  • Die Partikel werden vermutlich durch Verwirbelungen an die Innenwände der Kanäle geschleudert und haften dort. Die Verwirbelungen werden durch Strukturen der Kanalinnenseiten erzeugt, wobei diese Strukturen nicht nur Verwirbelungen, sondern auch Beruhigungs- oder Totzonen im Strömungsschatten erzeugen. In den Beruhigungs- und/oder Totzonen werden die Partikel vermutlich quasi angespült (vergleichbar einer Schwerkraftabscheidung) und haften dann fest. Bei der Haftung der Partikel spielt eine mögliche Wechselwirkung Metall-Ruß und/oder auch der Temperaturgradient Fluid/Kanalwand eine Rolle. Es wird auch eine starke Agglomeration der Partikel im Gasstrom oder an den Wänden beobachtet.
  • Als Beruhigungszone wird eine Zone im Kanal mit geringer Strömungsgeschwindigkeit und als Totzone eine Zone ohne Fluidbewegung bezeichnet.
  • Als "offen" wird die Partikelfalle im Gegensatz zu geschlossenen Systemen bezeichnet, weil keine Strömungssackgassen vorgesehen sind. Diese Eigenschaft kann in dem Fall auch zur Charakterisierung der Partikelfalle dienen, wie z.B. eine Offenheit von 20% besagt, daß in einer Querschnittsbetrachtung ca. 20% der Fläche frei durchströmbar sind. Bei einem Träger mit 0,93 Zellen pro mm2 (600, cpsi (cells per square inch)) mit einem hydraulischen Durchmesser der Kanäle von etwa 0,8mm entspräche das einer Fläche von etwa 0,01 mm2.
  • Die Partikelfalle verstopft nicht, wie ein herkömmliches Filtersystem, wo sich Poren zusetzen können, weil zuvor die Strömung den Teil der agglomerierten Partikel mitreißen würde, der sich aufgrund seines erhöhten Luftwiderstandes abreißen läßt.
  • Zur Herstellung einer Partikelfalle werden zumindest teilweise strukturierte Lagen nach bekannten Methoden geschichtet oder gewickelt und fügetechnisch verbunden, insbesondere verlötet. Die Zelldichte der Partikelfalle hängt von der Wellung der Lagen ab. Die Wellung der Lagen ist nicht zwangsläufig über eine gesamte Lage hinweg einheitlich, sondern es können verschiedene Strömungen und/oder Druckverhältnisse innerhalb der durchströmten Partikelfalle durch geeignete Herstellung der Lagenstruktur hergestellt werden.
  • Die Partikelfalle kann monolithisch oder aus mehreren Scheiben sein, das heißt aus einem Element oder mehreren hintereinander geschalteten Einzelelementen aufgebaut sein.
  • Zur Abdeckung verschiedener (dynamischer) Lastfälle des Antriebssystems eines Kraftfahrzeugs wird ein System mit konischen Kanälen oder ein Element in Konusform bevorzugt. Solche Systeme, wie z.B. in der WO93/20339 beschrieben, haben sich erweiternde oder verengende Kanäle, so dass bei jedem Massendurchsatz an irgendeiner Stelle der Kanäle, wenn sie mit entsprechenden Umlenkungs- oder Verwirbelungsstrukturen versehen werden, besonders günstige Verhältnisse für das Auffangen von Partikeln entstehen.
  • Konusförmig bezeichnet dabei sowohl die Ausführungen, die in Strömungsrichtung eine Durchmessererweiterung zeigen sowie auch die Ausführungen, die eine Durchmesserreduzierung haben. Auch zylindrische Wabenkörper mit Kanälen, von denen ein Teil sich verengt und ein Teil sich verbreitert haben geeignete Eigenschaften.
  • Nach einer Ausführungsform der Erfindung aus mehreren zu einem Wabenkörper aufgewickelten Lagen hat eine zwischen zwei Wellagen liegende Glattlage Löcher, so daß ein Fluidaustausch zwischen den durch die Wicklung entstandenen Kanälen möglich ist. Dadurch ist eine radiale Durchströmung der Partikelfalle, die nicht an eine 90° Umlenkung gebunden ist, möglich. Bei der Ausführungsform der Glattlage mit Löchern kommen diese bevorzugt am Austritt von Strömungsleitschaufeln zu liegen, so daß die Strömung direkt in die Löcher geleitet wird. Anstelle der Glattlage mit Löchern kann auch ein anderes durchdringbares Material, wie z.B. ein Fasermaterial eingesetzt werden.
  • Das Material der Lagen ist bevorzugt Metall (Blech), es kann aber auch ein Stoff anorganischer (Keramik, Fasermaterial), organischer oder metallorganischer Natur und/oder ein gesintertes Material sein, solange es eine Oberfläche hat, an der ohne Beschichtung die Haftung der Partikel gelingt.
  • Die Partikelfalle unterliegt im Einsatz großen Temperaturschwankungen in teilweise oxidativer Atmosphäre (Luft), und es entstehen an der Oberfläche der Lagen, wenn diese aus Metall sind, verschiedene Oxide, möglicherweise sogar in Form nadelförmiger Kristalle, sogenannten Whiskern, die eine gewisse Oberflächenrauhigkeit bewirken. Die Partikel der Strömung, die sich grundsätzlich ähnlich wie Moleküle verhalten, werden durch unterschiedliche Mechanismen, insbesondere Impaktion oder Interception in turbulenter Strömung oder Thermophorese in laminarer Strömung an dieser rauhen Oberfläche angespült und dort gehalten, wobei die Haftung im wesentlichen durch Van der Waals-Kräfte verursacht wird.
  • Obwohl die Abscheidung der Partikel an der unbeschichteten Metallfolie stattfindet ist nicht ausgeschlossen, daß es auch beschichtete Bereiche der Partikelfalle gibt, weil die Partikelfalle beispielsweise auch in einem Teil als Katalysatorträger ausgebildet ist.
  • Die Folienstärke der Lagen liegt bevorzugt im Bereich zwischen 0,02 und 0,2 mm, insbesondere bevorzugt zwischen 0,05 und 0,08 mm, bei Bereichen mit erhöhter Wärmekapazität bevorzugt zwischen 0,65 und 0,11 mm.
  • Bei der Partikelfalle mit mehreren gewickelten Lagen sind diese aus gleichem oder ungleichem Material bzw, haben diese gleiche oder ungleiche Folienstärke.
  • Die Partikel im Abgas eines Dieselmotors, die im wesentlichen aus Ruß bestehen, lassen sich durch Durchleiten durch ein elektrisches Feld aufladen und/oder polarisieren, so daß sie von ihrer bevorzugten Strömungsrichtung (z.B. axiale Richtung der Partikelfalle parallel zu den Strömungskanälen) abgelenkt werden. Somit wird die Wahrscheinlichkeit bezüglich des Aufreffens der Partikel auf die Wände der Strömungskanäle der Partikelfalle erhöht, da diese beim Durchströmen der Partikelfalle nun auch eine Geschwindigkeitskomponente in einer anderen Richtung, insbesondere senkrecht zur bevorzugten Strömungsrichtung, aufweisen. Dies lässt sich beispielsweise auch mit einem der Partikelfalle vorgeschalteten Plasmareaktor verwirklichen, der eine Polarisierung der Partikel gewährleistet. Es ist auch besonders vorteilhaft, das die Partikelfalle mindestens einen Pol der Polarisationsstrecke bildet, insbesondere wenn die Partikelfalle zumindest teilweise eine positive Ladung aufweist, und elektrisch negativ polarisierte Partikel somit aktiv angezogen werden. Derart werden die Mechanismen, durch die Partikel aus dem Strömungsinneren an die Wand gespült werden (z.B. Interception und der Impaktion), beschleunigt und verstärkt.
  • Für den Fall, daß die Partikelfalle aufgeladen wird, ist es vorteilhaft, daß auf den Lagen und/oder in der Struktur der die Lagen bildenden Folie Spitzen angeordnet sind, die den Aufladeeffekt verstärken. Die Partikel des Fluids können beispielsweise durch eine Polarisationsstrecke zum Aufladen durchgeleitet werden, dabei werden die Partikel dann polarisiert. Die Partikelfalle kann aber auch geerdet sein und ladungsneutral bleiben, insbesondere wenn geeignete Isolierungen hinsichtlich der Spitzen und/oder der Polarisationsstrecke vorgesehen sind.
  • Die Polarisation und/oder Aufladung erfolgt nach einer Ausführungsform auch über eine Photoionisation.
  • Nach einer Ausführungsform werden die Partikel über eine Coronaentladung geladen und/oder polarisiert.
  • Nach einer Ausführungsform der Partikelfalle macht man sich die Erkenntnis zu Nutze, daß eine Temperaturdifferenz zwischen der Kanalwand und der Strömung zur stärkeren Wanderung der Partikel an die Kanalwand dient (Thermophorese). Entsprechend wird eine dicke und damit mit hoher Wärmekapazität ausgestattete Kanalwand (etwa durch eine entsprechende Folienstärke der Lage an der Stelle bewirkt) mit gegenüberliegenden Strukturen (Leitstrukturen), die die Partikel an diese Wand (etwa durch Erzeugung von Verwirbelungen in der Strömung) hinlenken, kombiniert. Die dicke Kanalwand hat eine hohe Wärmekapazität und hält deshalb bei dynamischen Lastwechseln und ansteigender Abgastemperatur eine Temperaturdifferenz zwischen der Strömung und der Kanalwand länger aufrecht als eine dünne Kanalwand und erhält damit den die Abscheidung begünstigenden Effekt länger als eine dünne Kanalwand. Die Leitstrukturen sind Strukturen zur Erzeugung von Verwirbelungs-, Beruhigungs- und Totzonen und bewirken eine erzwungene Durchmischung der Strömung, so daß partikelreiche Zonen im Inneren der Strömung nach außen gebracht werden und umgekehrt. Damit ist mehr Partikeln die Kontaktierung der Wände durch Interception und Impaktion möglich, die dann auch haften bleiben.
  • Nach einer Ausführungsform nutzt man den Effekt der Thermophorese durch Hintereinanderschalten mehrerer Partikelfallen mit jeweils unterschiedlich dicken Kanalwänden.
  • Die Zelldichten der Partikelfalle liegen bevorzugt im Bereich zwischen 0,038 Bis 1,55 Zellen pro mm2 (25 bis 1000 cpsi), bevorzugt zwischen 0,31 und 0,62 Zellen pro mm2 (200 und 400 cpsi).
  • Eine typische Partikelfalle mit 0,31 Zellen pro mm2 (200 cpsi) hat ein Volumen, bezogen auf einen Dieselmotor von etwa 0,2 bis 1 1 pro 100kW, bevorzugt 0,4-0,851/100kW. Für die geometrische Oberfläche ergibt sich beispielsweise 1,78m2/100kW. Verglichen mit den Volumina herkömmlicher Filter und Siebsysteme ist das ein sehr geringes Volumen bzw. eine sehr geringe geometrische Oberfläche gegenüber einer herkömmlichen Bauart mit etwa 4 m2 Oberfläche pro 100 kW.
  • Die Partikelfalle ist regenerierbar, wobei im Fall der Rußabscheidung im Dieselmotor-Abgasstrang die Regeneration durch die Oxidation des Rußes entweder durch Stickstoffdioxid (NO2) bei einer Temperatur oberhalb von etwa 200°C oder mit Luft bzw. Sauerstoff (O2) thermisch bei z.B. Temperaturen oberhalb 500° C oder durch Einspritzung eines Additivs (z.B. Cer) erfolgt.
  • Die Rußoxidation mittels NO2, beispielsweise über den Mechanismus der "continuous regeneration trap" (CRT) nach

            C + 2NO2 -> CO2 + 2NO

    erfordert, daß vor die Partikelfalle im Abgasstrang ein Oxidationskatalysator gesetzt wird, der NO zu NO2 in ausreichender Menge oxidiert. Das Mengenverhältnis der Reaktionspartner hängt jedoch auch wesentlich von der Durchmischung der Fluide ab, so daß je nach Ausgestaltung der Kanäle der Partikelfalle auch unterschiedliche Mengenverhältnisse eingesetzt werden sollten.
  • Besonders vorteilhaft hat sich die Ausführungsform erwiesen, bei der ein Hilfsmittel zur thermischen Regeneration der Partikelfalle vorgesehen ist, so daß z.B. das Element zumindest zum Teil elektrisch beheizbar ist, oder dem Element ein elektrisch beheizbares Hilfsmittel, wie ein Heizkatalysator, vorgeschaltet ist.
  • Bei einer Ausgestaltung ist vorgesehen, daß ein Hilfsmittel in Abhängigkeit von der Belegung/dem Füllgrad der Partikelfalle zur Regeneration ein- oder zugeschaltet wird, was im einfachsten Fall über den Druckverlust, den die Partikelfalle im Abgasstrang erzeugt, gemessen wird.
  • Nach einer bevorzugten Ausführungsform hat ein der Partikelfalle vorgeschalteter Oxidationskatalysator eine geringere spezifische Wärmekapazität pro Volumeneinheit und Zellenzahl als die Partikelfalle selbst. So hat der Oxidationskatalysator beispielsweise bevorzugt ein Volumen von 0,5 Liter, eine Zellenzahl von 0,62 Zellen pro.mm2 (400 cpsi) und eine Foliendicken von 0,05 mm, während die Partikelfalle bei gleichem Volumen und gleicher Zellenzahl eine Foliendicke von 0,08 mm aufweist und ein nachgeschalteter SCR-Katalysator wieder eine Foliendicke von 0,05 mm.
  • Auch die Kombination der Partikelfalle mit zumindest einem Katalysator und einem Turbolader oder die Kombination einer Partikelfalle mit einem Turbolader ist vorteilhaft. Dabei kann die dem Turbolader nachgeschaltete Partikelfalle motornah oder in Unterbodenposition angeordnet sein.
  • Die Partikelfalle wird auch in Kombination mit einem vor- oder nachgeschalteten Rußfilter verwendet, wobei der Rußfilter nachgeschaltet wesentlich kleiner als der herkömmliche Rußfilter sein kann, weil er lediglich einen zusätzlichen Schutz bieten soll, daß Partikelemission ausgeschlossen wird. Bevorzugt wird ein Filter der Größe 0,5m2 pro 100kW Dieselmotor eingesetzt bis maximal zur Größe von 1m2, (bei nachgeschalteter Filterfläche ist die Querschnittsfläche des Filters an die der Partikelfalle angepaßt, sowohl im Falle einer Querschnittsverengung als auch im Fall einer Querschnittserweiterung) wohingegen ohne Partikelfalle Filtergrößen von ca. 4m2 pro 100kW erforderlich sind.
  • Der Rußfilter kann auch in Form von direkt vor oder nach dem Speicher/Oxidationselement installiertem Filtermaterial vorliegen, wobei das Filtermaterial dabei direkt, z.B. über eine Lötverbindung, mit dem Speicher/Oxidationselement verbunden sein kann.
  • Folgende Beispiele geben Anordnungen wieder, die die Vielzahl der möglichen Kombinationen der Partikelfalle mit Katalysatoren, Turboladern, Rußfilter und Additivzugabe entlang eines Abgasstranges eines Kraftfahrzeugs belegen:
    1. A) Oxidationskatalysator - Turbolader - Partikelfalle, wobei die Partikelfalle motornah oder in Unterbodenposition angeordnet sein kann.
    2. B) Vorkatalysator - Partikelfalle - Turbolader
    3. C) Oxidationskatalysator - Turbolader - Oxidationskatalysator- Partikelfalle
    4. D) Heizkatalysator - Partikelfalle 1 - Partikelfalle 2 (wobei Partikelfalle 1 und 2 gleich oder ungleich sein kann)
    5. E) Partikelfalle 1- Konusöffnung des Abgasstranges - Partikelfalle 2
    6. F) Additivzugabe - Partikelfalle - Hydrolysekatalysator - Reduktionskatalysator
    7. G) Vorkatalysator - Oxidationskatalysator - Additivzugabe- (eventuell Rußfilter) - Partikelfalle z.B. in Konusform, ggf. mit Hydrolysebeschichtung - (eventuell Rußfilter) - (eventuell Konus zur Erhöhung des Rohrquerschnitts) Reduktionskatalysator
  • Nach einer Ausführungsform wird die Partikelfalle in Kombination mit zumindest einem Katalysator verwendet. Als Katalysatoren, Elektrokatalysatoren und/oder Vorkatalysatoren eignen sich dazu insbesondere: Oxidationskatalysator, Heizkatalysator mit vor- oder nachgeschalteter Heizscheibe, Hydrolysekatalysator und/oder Reduktionskatalysator. Als Oxidationskatalysator werden auch solche die NOx (nitrose Gase) zu Stickstoffdioxid (NO2) oxidieren, neben denjenigen, die Kohlenwasserstoffe und Kohlenmonoxid zu Kohlendioxid oxidieren, eingesetzt. Die Katalysatoren sind beispielsweise rohr- oder konusförmig.
  • Bevorzugt wird vor der Partikelfalle ein Stickstoffdioxid (NO2)-Speicher eingesetzt, der bei Bedarf NO2 in ausreichender Menge für die Oxidation des Rußes in der Partikelfalle zur Verfügung stellt. Dieser Speicher kann z.B. ein Aktivkohlespeicher z.B. mit ausreichender Sauerstoffzufuhr sein.
  • Je nach Ausführungsform kann die Partikelfalle in Teilbereichen verschiedene Beschichtungen haben, die jeweils eine Funktionalität bedingen. Beispielsweise kann die Partikelfalle neben der Funktion als Falle für Partikel eine Speicher-, Vermischungs-, Oxidations-, Strömungsverteilungsfunktion und auch z.B. eine Funktion als Hydrolysekatalysator haben.
  • Durch die Verwendung einer Partikelfalle können Abscheidungsraten von bis zu 90% erzielt werden.
  • Es wurde festgestellt, daß die Ablagerung von Partikeln insbesondere an den Ein-und Austrittsflächen der Katalysatoren stattfindet. Deshalb wird nach einer Ausführungsform die Partikelfalle nicht in Form eines Elements, sondern in Form mehrerer hintereinandergeschalteter schmaler Elemente, als Mehrscheibenelement eingesetzt. Dabei können auch Partikelfallen, die Wellagen ohne Strukturen zur Erzeugung von Verwirbelungs- und Beruhigungszonen und mit Beschichtung (also z.B. herkömmliche Katalysatoren), zum Einsatz kommen. Es werden dabei bevorzugt bis zu 10 Elemente eingesetzt. Diese als "Scheibenanordnung" oder "Scheibenkatalysator" bezeichnete Konstruktion kann beispielsweise eingesetzt werden, wenn im Bereich von 10 bis 20% (beim Einsatz herkömmlicher Katalysatoren) Partikelabscheidung gewünscht wird.
  • Mit der vorliegenden Erfindung wird eine Partikelfalle vorgeschlagen, die herkömmliche Filter- und Siebsysteme ersetzen kann und gravierende Vorteile gegenüber diesen Systemen bringt:
  • Zum einen kann sie nicht verstopfen, und der durch das System erzeugte Druckabfall nimmt mit der Betriebsdauer nicht so schnell zu wie bei Sieben, weil die Partikel außerhalb des Fluidstromes haften und zum anderen bewirkt sie vergleichsweise geringe Druckverluste, weil sie ein offenes System ist.
  • Weitere spezielle Ausgestaltungen und Vorteile der Erfindung werden anhand der folgenden Zeichnung erläutert. Die in den Zeichnungen dargestellten Ausführungsformen sind als spezielle, exemplarische und besonders bevorzugte Ausgestaltungen der Erfindung zu verstehen, die die Erfindung in ihrer Bedeutung und ihrem Geist nicht einschränken sollen.
  • Es zeigen schematisch:
  • Fig. 1
    eine erfindungsgemäße Partikelfalle in Form eines lagenweise aufgebauten Wabenkörpers in perspektivischer Ansicht,
    Fig. 2
    eine einzelne Lage mit Strukturen zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen,
    Fig. 3
    eine weitere Ausführungsform der erfindungsgemäßen Partikelfalle mit einem Plasmareaktor,
    Fig. 4
    eine weitere Ausgestaltung der Strukturen zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen,
    Fig. 5
    eine erfindungsgemäße Partikelfalle, die radial durchströmbar ist,
    Fig. 6
    eine Lage mit Strukturen zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen nach Fig. 4, und
    Fig. 7
    eine Partikelfalle in Scheibenanordnung mit weiteren Abgasreinigungsmitteln.
  • Figur 1 zeigt eine erfindungsgemäße Partikelfalle 11, welche aus metallischen Lagen 4, 6 aufgebaut ist, die für ein Fluid durchströmbare Strömungskanäle 2 aufweist. Die Lagen 4, 6 sind entweder als Welllage 4 oder als Glattlage 6 ausgebildet. Die Folienstärke der Lagen 4, 6 liegt bevorzugt im Bereich zwischen 0,02 und 0,2 mm, insbesondere kleiner 0,05 mm.
  • Figur 2 zeigt schematisch eine Detailansicht der Welllage 4, welche Strukturen 3 zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen 5 aufweist. Das Fluid strömt entlang der vom Pfeil 16 angezeigten bevorzugten Strömungsrichtung.
  • Figur 3 zeigt eine weiter Ausführungsform der erfindungsgemäßen Partikelfalle 11 mit einem vorgeschalteten Plasmareaktor 17. Das Fluid bzw. die darin enthaltenen Partikel wird/werden dabei mit dem Plasmareaktor 17 zumindest polarisiert, eventuell sogar ionisiert, wenn das Fluid in der bevorzugten Strömungsrichtung (Pfeil 16) durch den Plasmareaktor 17 strömt. Der Plasmareaktor 17 ist mit dem negativen Pol einer Spannungsquelle 20 verbunden. Der positive Pol der Spannungsquelle 20 ist mit Spitzen 18 der Partikelfalle 11 verbunden, die möglichst nahe der Achse 19 angeordnet sind, sodass eine Ablenkung der Partikel aufgrund Van der Waalsscher Kräfte zum zentralen Bereich der Partikelfalle 11 erfolgt. Das gebildete elektrostatische Feld kann mit einer Spannung von 3 bis 9 kV betrieben werden. Die Spitzen 18 können dabei elektrisch leitend mit den metallischen Lagen der Partikelfalle 11 verbunden sein. Figur 4 zeigt eine alternative Ausführungsform der Welllagen 4.
  • Figur 5 zeigt eine Partikelfalle, die radial (Radius 21) durchströmbar (Pfeil 16) ist. Die Strömungskanäle 2 erstrecken sich dabei von einem Zentralkanal 22, der im Bereich des Wabenkörpers 1 porös ausgeführt ist, radial nach außen hin zu einem den Wabenkörper 1 umgebenden, porösen Mantel 23. Der Wabenkörper 1 ist dabei aus segmentierten oder ringförmigen Glattlagen 6 und Wellagen 4 gebildet.
  • Figur 6 zeigt eine mögliche, segmentierte, Ausführungsform der Welllage 4 mit Strukturen 3 zur Erzeugung von Verwirbelungs-, Beruhigungs- und/oder Totzonen.
  • Figur 7 zeigt eine Partikelfalle, die konusförmige Kanäle aufweist und die mehrere, gegebenenfalls schmale, Elemente, die Partikelfallen und/oder Katalysatoren sind, umfasst. Hierzu werden mehrere Wabenkörper 1, die jeweils konusförmig sich verbreitern bzw. verjüngen hintereinander angeordnet. Vor den Wabenkörpern 1 ist eine Additivzugabe 7, ein Stickstoffspeicher 14 und ein Oxidationskatalysator 8, womit Nitrosegase (Nox) zu Stickstoffdioxid (NO2) oxidiert werden, im Abgasstrang 12 vorgeschaltet. Ein Turbolader 9 sowie ein Rußfilter 10 sind nachgeschaltet. Vorteilhafterweise wird die Partikelfalle 11 in Kombination mit einem Hilfsmittel zur Rußoxidation 15 verwendet.
  • Bezugszeichenliste
  • 1
    Wabenkörper
    2
    Strömungskanal
    3
    Strukturen
    4
    Welllage
    5
    Totzonen
    6
    Glattlage
    7
    Additivzugabe
    8
    Oxidationskatalysator
    9
    Turbolader
    10
    Rußfilter
    11
    Partikelfalle
    12
    Abgasstrang
    13
    Kanalwand
    14
    Stickstoffspeicher
    15
    Hilfsmittel zur Rußoxidation
    16
    Pfeil
    17
    Plasmareaktor
    18
    Spitze
    19
    Achse
    20
    Spannungsquelle
    21
    Radius
    22
    Zentralkanal
    23
    Mantel

Claims (27)

  1. Partikelfalle (11) zur Agglomeration und Oxidation von Partikeln einer Fluidströmung, insbesondere einer Abgasströmung eines Kraftfahrzeuges, wobei die Partikelfalle (11) eine Vielzahl von im wesentlichen geradlinigen Strömungskanälen (2) mit Kanalwänden (13) hat und die Kanalwände (13) Strukturen (3) aufweisen, so dass die Strukturen (3) in der Fluidströmung Verwirbelungs-, Beruhigungs-und/oder Totzonen (5) erzeugen und dennoch eine Offenheit der Partikelfal le (11) gewährleisten,
    dadurch gekennzeichnet, dass
    zumindest ein Teil der Strömungskanäle (2) zumindest in einem Teilbereich der Kanalwände (13) eine hohe Wärmekapazität aufgrund einer dickeren Kanalwand (13) aufweist, so daß bei steigender Fluidtemperatur der Effekt der Thermophorese für in der Fluidströmung enthaltene Partikel in diesem Teilbereich verstärkt auftritt.
  2. Partikelfalle (11) nach Anspruch 1, dadurch gekennzeichnet, dass diese (11) in Form eines lagenweise aufgebauten Wabenkörpers (1) ausgebildet ist, wobei die Partikelfalle (11) bevorzugt aus nur einer Lage hergestellt ist.
  3. Partikelfalle (11) nach Anspruch 2, dadurch gekennzeichnet, dass die Partikelfalle (11) zumindest teilweise aus metallischen Lagen (4, 6) aufgebaut ist, wobei diese bevorzugt eine Folienstärke von 0,02 bis 0,2 mm aufweisen, insbesondere zwischen 0,05 und 0,08 mm.
  4. Partikelfalle (11) nach Anspruch 3, dadurch gekennzeichnet, dass die Lagen (4, 6) zumindest teilweise blank, dass heißt unbeschichtet, sind.
  5. Partikelfalle (11) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Partikelfalle (11) eine Zelldichte von 0,038 bis 1,55 Zellen pro Quadratmillimeter (25 bis 1000 cpsi-cells per square inch) hat, bevorzugt zwischen 0,31 und 0,62 Zellen pro Quadratmillimeter (200 und 400 cpsi).
  6. Partikelfalle (11) einem der vorstehenden Ansprüche, wobei die Kanalwände (13) mittels Metallfolien mit einer Folienstärke gebildet werden, dadurch gekennzeichnet, dass die Folienstärke in dem Teilbereich der Kanalwände (13) mit hoher Wärmekapazität eine Folienstärke zwischen 0,65 und 0,11 mm beträgt.
  7. Partikelfalle (11) nach einem der vorstehenden Ansprüche, die aus einer ersten Lage (6) und zumindest einer weiteren Folie, die eine Wellage (4) oder eine Glattlage (6) sein kann, hergestellt ist.
  8. Partikelfalle (11) nach einem der vorstehenden Ansprüche, die radial durchströmbar ist.
  9. Partikelfalle (11) nach einem der vorstehenden Ansprüche, die konusförmige Strömungskanäle (2) aufweist.
  10. Partikelfalle (11), nach einem der vorstehenden Ansprüche, die mehrere, gegebenenfalls schmale, Elemente, die Partikelfallen (11) und/oder Katalysatoren (8) sind, umfaßt.
  11. Partikelfalle (11) nach Anspruch 10, die zumindest zwei Elemente mit unterschiedlichen Wärmekapazitäten hat.
  12. Partikelfalle (11) nach einem der vorhergehenden Ansprüche, die eine Hydrolysebeschichtung umfasst.
  13. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in einem Abgasstrang (12) eines Kraftfahrzeugs.
  14. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit zumindest einer vor- oder nachgeschalteten Additivzugabe (7).
  15. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit zumindest einem Katalysator (8).
  16. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit zumindest einem vor- und/oder nachgeschalteten Oxidationskatalysator (8), wovon zumindest einer nitrose Gase NOx zu Stickstoffdioxid NO2 oxidiert.
  17. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit zumindest einem vor- und/oder nachgeschalteten Turbolader (9), wobei die Partikelfalle (11) motornah und/oder in Unterbodenposition angebracht ist.
  18. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in einem Dieselmotor-Abgasstrang kombiniert mit einem vor- oder nachgeschalteten Turbolader (9), dem wiederum mindestens ein Oxidationskatalysator (8) vorgeschaltet ist.
  19. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 zur Rußoxidation.
  20. Verwendung nach Anspruch 19 unter Einsatz von Stickstoffdioxid als O-xidans.
  21. Verwendung nach Anspruch 19 oder 20, wobei die Partikelfalle (11) in Kombination mit einem Hilfsmittel zur Rußoxidation (15) verwendet wird.
  22. Verwendung nach einem der Ansprüche 19 bis 21, in Kombination mit einem vorgeschalteten Stickstoffdioxidspeicher (14).
  23. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit einem vor- oder nachgeschalteten Rußfilter (10).
  24. Verwendung zumindest eines Teils einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 als Träger für eine katalytisch aktive Beschichtung.
  25. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 und/oder eines Katalysators in Scheibenanordnung.
  26. Verwendung zumindest einer Partikelfalle (11) nach einem der Ansprüche 1 bis 12 in Kombination mit zumindest einer Vorrichtung zur Aufladung/Polarisation entweder der aufzufangenden und zu oxidierenden Partikel und/oder der Partikelfalle (11).
  27. Verwendung nach Anspruch 26, wobei der mindestens einen Partikelfalle (11) ein Plasmareaktor (17) zur Polarisierung der Partikel vorgeschaltet ist, und die Partikelfalle (11) vorzugsweise einen elektrischen Pol darstellt.
EP01981922A 2000-05-30 2001-05-29 Partikelfalle Revoked EP1285153B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20122703U DE20122703U1 (de) 2000-05-30 2001-05-29 Partikelfalle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10026696 2000-05-30
DE10026696A DE10026696A1 (de) 2000-05-30 2000-05-30 Partikelfalle
PCT/EP2001/006071 WO2001092692A1 (de) 2000-05-30 2001-05-29 Partikelfalle

Publications (2)

Publication Number Publication Date
EP1285153A1 EP1285153A1 (de) 2003-02-26
EP1285153B1 true EP1285153B1 (de) 2008-01-16

Family

ID=7644037

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01981922A Revoked EP1285153B1 (de) 2000-05-30 2001-05-29 Partikelfalle

Country Status (9)

Country Link
US (1) US7267805B2 (de)
EP (1) EP1285153B1 (de)
JP (2) JP4913309B2 (de)
KR (1) KR100759146B1 (de)
CN (1) CN1288330C (de)
AU (1) AU2002211949A1 (de)
DE (2) DE10026696A1 (de)
ES (1) ES2299522T3 (de)
WO (1) WO2001092692A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022990A1 (de) * 2008-05-09 2009-11-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfilter mit Hydrolysebeschichtung

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301713A (ja) * 2002-04-09 2003-10-24 Nissan Motor Co Ltd エンジンの排気浄化装置
DE10226975A1 (de) * 2002-06-17 2004-01-15 Siemens Ag Vorrichtung und Verfahren zur Reinigung von Abgas eines Dieselmotors
DE10247987A1 (de) * 2002-10-15 2004-04-29 Robert Bosch Gmbh Anordnung und Verfahren zur Nachbehandlung des Abgases einer Brennkraftmaschine
DE10254764A1 (de) 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
DE10254661A1 (de) * 2002-11-22 2004-06-09 Umicore Ag & Co.Kg Verfahren zur Beschichtung eines Katalysatorträgers enthaltend zwei unterschiedliche Teilstrukturen mit einer katalytisch aktiven Beschichtung und dadurch erhaltener Katalysator
DE10257113A1 (de) 2002-12-05 2004-06-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfalle mit beschichteter Faserlage
EP1583891A1 (de) * 2003-01-14 2005-10-12 Emitec Gesellschaft für Emissionstechnologie mbH Platzsparende abgasnachbehandlungseinheit mit ineinanderliegenden hin- und rückströmbereichen bei gleichseitigem gasein- und -austritt
JP3543969B1 (ja) * 2003-06-05 2004-07-21 株式会社オーデン 金属フィルタ及び該金属フィルタを備える黒煙微粒子除去装置並びにディーゼル車
DE10345896A1 (de) * 2003-09-30 2005-04-21 Emitec Emissionstechnologie Beschichteter Wabenkörper mit Messfühler
DE10349352B3 (de) * 2003-10-19 2005-01-13 Trippe, Gustav, Dr. Reinigungsaggregat für Abgase aus Brennkraftmaschinen
DE102004001418A1 (de) * 2004-01-09 2005-07-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Fluid-Umformung von Metallblechen
BE1016015A5 (fr) * 2004-05-11 2006-01-10 Mann Naturenergie Gmbh & Co Kg Installation d'epuration des gaz d'echappement pour moteurs a combustion et procede d'epuration des gaz d'echappement.
DE102004024685A1 (de) * 2004-05-19 2005-12-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Katalysator-Trägerkörper für einen motornah einzusetzenden katalytischen Konverter
WO2006022564A1 (en) * 2004-08-23 2006-03-02 Anna Wysocka Installation for cleaning of exhaust gas and method for cleaning of exhaust gas
CN1317490C (zh) * 2004-12-24 2007-05-23 清华大学 一种汽车尾气可吸入颗粒物脱除装置
DE102005000890A1 (de) 2005-01-07 2006-08-31 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Entfernen von Partikeln aus Abgasen sowie Faserlage und Partikelfilter dazu
US7340888B2 (en) 2005-04-26 2008-03-11 Donaldson Company, Inc. Diesel particulate matter reduction system
DE102005023385A1 (de) * 2005-05-17 2006-11-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Fügen metallischer Fasern zu Vliesen zur Herstellung von Wabenkörpern
DE102005029338A1 (de) * 2005-06-24 2007-02-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Partikelfalle sowie Vorrichtung zur Durchführung des Verfahrens
DE102005031816A1 (de) * 2005-07-06 2007-01-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zur Reduzierung des Partikel- und Stickoxidanteils im Abgasstrom einer Verbrennungskraftmaschine und entsprechende Abgasaufbereitungseinheit
DE102005032348A1 (de) * 2005-07-08 2007-01-11 Emitec Gesellschaft Für Emissionstechnologie Mbh Filterlage für einen, insbesondere konischen, Wabenkörper zur Abgasbehandlung und Verfahren zur Herstellung der Filterlage
DE602006009675D1 (de) * 2005-08-05 2009-11-19 Basf Catalysts Llc N dafür
US7841170B2 (en) * 2005-10-28 2010-11-30 Corning Incorporated Regeneration of diesel particulate filters
SE0600003L (sv) * 2006-01-02 2007-07-03 Sven Melker Nilsson Kanalsystem
DE102006001831A1 (de) 2006-01-13 2007-09-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Verringerung der Partikelanzahl im Abgas einer Verbrennungskraftmaschine
US7862640B2 (en) * 2006-03-21 2011-01-04 Donaldson Company, Inc. Low temperature diesel particulate matter reduction system
JP4710825B2 (ja) * 2006-12-28 2011-06-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8057746B2 (en) 2007-05-02 2011-11-15 Acr Co., Ltd. Carrier for exhaust-gas purification and exhaust-gas purifier having the carrier
DE102007032736A1 (de) * 2007-07-13 2009-01-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasnachbehandlung vor einem Turbolader
DE102008057960A1 (de) * 2008-11-19 2010-05-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Anordnung und Verfahren zur Reinigung eines Abgasstromes einer Verbrennungskraftmaschine durch die Abscheidung von Partikeln
DE102008062417A1 (de) * 2008-12-17 2010-07-01 Volkswagen Ag Abgasreinigung eines Abgasstroms einer Brennkraftmaschine
US20110064633A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Multi-Functional Catalyst Block and Method of Using the Same
DE102009041090A1 (de) 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung und Verfahren zur Behandlung von Rußpartikel enthaltendem Abgas
CN101912712A (zh) * 2010-07-26 2010-12-15 长治市丰雨机械有限公司 板式旋涡发生器
DE102010034250A1 (de) * 2010-08-13 2012-02-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Halterung für zumindest eine Elektrode in einer Abgasleitung
DE102010045506A1 (de) * 2010-09-15 2012-03-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Erzeugung eines elektrischen Feldes in einem Abgassystem
DE102010051655A1 (de) 2010-11-17 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
CN102042058B (zh) * 2011-01-25 2012-07-18 无锡爱奇特汽车环保科技有限公司 尾气颗粒捕集器及其滤芯
US8468803B2 (en) * 2011-02-26 2013-06-25 International Engine Intellectual Property Company, Llc Soot resistant diesel fuel reformer for diesel engine emissions aftertreatment
DE102012022988A1 (de) * 2011-12-16 2013-06-20 Mann + Hummel Gmbh Filtereinrichtung, insbesondere Dieselpartikelfilter
JP2013189900A (ja) * 2012-03-13 2013-09-26 Isuzu Motors Ltd 排気ガス浄化装置
DE202012011813U1 (de) * 2012-12-10 2013-01-14 Liebherr-Werk Ehingen Gmbh Abgasnachbehandlungssystem
US10176901B2 (en) 2013-08-14 2019-01-08 Ge-Hitachi Nuclear Energy Americas Llc Systems, methods, and filters for radioactive material capture
DE102014005153B4 (de) * 2014-04-08 2023-12-14 Andreas Döring Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung
US9302226B2 (en) 2014-05-05 2016-04-05 Ge-Hitachi Nuclear Energy Americas Llc Salt filtration system and method of removing a radioactive material from a gas using the same
CN104179551B (zh) * 2014-08-22 2017-05-24 成都代代吉前瞻科技股份有限公司 一种介电电泳汽车尾气净化系统
CN104696050A (zh) * 2015-02-10 2015-06-10 浙江天泽环境科技有限公司 一种全闭式颗粒捕集器的过滤元件及使用方法
AT518216A1 (de) * 2016-01-21 2017-08-15 Ge Jenbacher Gmbh & Co Og Brennkraftmaschine
WO2018075931A1 (en) * 2016-10-21 2018-04-26 Cummins Emission Solutions Inc. Substrate shape, geometry, positioning, and/or cell density to improve aftertreatment performance
DE102016223578A1 (de) * 2016-11-28 2018-05-30 Continental Automotive Gmbh Vorrichtung zur Verdampfung eines Fluids
JP6747466B2 (ja) * 2018-03-15 2020-08-26 株式会社デンソー 電気加熱式触媒
DE102018214929B4 (de) * 2018-09-03 2022-01-27 Vitesco Technologies GmbH Katalysator mit metallischem Wabenkörper
CN112049715A (zh) * 2020-09-04 2020-12-08 拓信(台州)精密工业有限公司 具有扰流作用的金属蜂窝载体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723478A1 (de) * 1987-07-16 1989-01-26 Navsat Gmbh Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors
WO1990012950A1 (de) * 1989-04-17 1990-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Dieselrussfilter mit zusätzlicher einrichtung zur reduktion von stickoxyden und/oder oxydation von kohlenmonoxyd
EP1072765A2 (de) * 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
WO2001080978A1 (de) * 2000-04-25 2001-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954672A (en) * 1974-11-04 1976-05-04 General Motors Corporation Cordierite refractory compositions and method of forming same
DE2738257C2 (de) * 1977-08-25 1986-06-19 Regehr, Ulrich, Dr.-Ing., 5100 Aachen Vorrichtung zur Abscheidung von Tropfen aus strömenden Gasen
DE2951316A1 (de) * 1979-12-20 1981-07-02 Degussa Ag, 6000 Frankfurt Katalytisches filter fuer die dieselabgasreinigung
US4390355A (en) * 1982-02-02 1983-06-28 General Motors Corporation Wall-flow monolith filter
DE3341177A1 (de) * 1983-11-14 1984-04-05 Wilhelm Dr.-Ing. 3200 Hildesheim Wiederhold Auswechselbarer filtereinsatz, insbesondere zur reinigung von dieselmotorabgasen
DE3341868A1 (de) * 1983-11-19 1985-05-30 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Matrix fuer einen katalytischen reaktor
US4597262A (en) * 1984-09-07 1986-07-01 Retallick William B Catalytic converter for a diesel engine
US4672809A (en) * 1984-09-07 1987-06-16 Cornelison Richard C Catalytic converter for a diesel engine
DE8438260U1 (de) * 1984-12-29 1985-04-11 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Traegermatrix, insbesondere fuer einen katalytischen reaktor zur abgasreinigung
JPS61237812A (ja) * 1985-04-15 1986-10-23 Mazda Motor Corp エンジンの排気ガス浄化装置
JPS63185425A (ja) * 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
SE461018B (sv) * 1987-07-06 1989-12-18 Svenska Emmisionsteknik Ab Katalysatorbaerare
DE8908738U1 (de) 1989-07-18 1989-09-07 Emitec Emissionstechnologie
US5403559A (en) 1989-07-18 1995-04-04 Emitec Gesellschaft Fuer Emissionstechnologie Device for cleaning exhaust gases of motor vehicles
DE8909128U1 (de) 1989-07-27 1990-11-29 Emitec Emissionstechnologie
DE4004079A1 (de) * 1990-02-08 1991-08-14 Lippold Hans Joachim Filtereinsatz
JP2722828B2 (ja) * 1991-03-06 1998-03-09 日産自動車株式会社 内燃機関の排気フィルタ
DE59300601D1 (de) 1992-04-03 1995-10-19 Emitec Emissionstechnologie Konischer wabenkörper.
US6045628A (en) * 1996-04-30 2000-04-04 American Scientific Materials Technologies, L.P. Thin-walled monolithic metal oxide structures made from metals, and methods for manufacturing such structures
JP3358392B2 (ja) * 1995-06-15 2002-12-16 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
JP3421958B2 (ja) * 1995-09-22 2003-06-30 日野自動車株式会社 ターボチャージャ付エンジンの排ガス浄化装置
DE29611143U1 (de) * 1996-06-25 1996-09-12 Emitec Emissionstechnologie Konischer Wabenkörper mit Longitudinalstrukturen
DE19704147A1 (de) * 1997-02-04 1998-08-06 Emitec Emissionstechnologie Hitzebeständiger und regenerierbarer Filterkörper mit Strömungswegen
DE19813722C1 (de) * 1998-03-27 2000-03-23 Siemens Ag Verfahren und Vorrichtung zur katalytischen Reduzierung von Stickoxiden im Abgas einer Verbrennungsanlage
JP3228232B2 (ja) * 1998-07-28 2001-11-12 トヨタ自動車株式会社 内燃機関の排気浄化装置
AU6111799A (en) * 1998-10-12 2000-05-01 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
DE29821009U1 (de) * 1998-11-24 1999-01-28 Oberland Mangold Gmbh Trägermischstruktur
DE19938854C5 (de) * 1999-08-17 2006-12-28 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine
DE10118327A1 (de) * 2001-04-12 2002-10-17 Emitec Emissionstechnologie Abgassystem
DE20117659U1 (de) * 2001-10-29 2002-01-10 Emitec Emissionstechnologie Offener Partikelfilter mit Heizelement
DE20117873U1 (de) * 2001-11-06 2002-02-14 Emitec Emissionstechnologie Offener Filterkörper mit verbesserten Strömungseigenschaften
DE10254764A1 (de) * 2002-11-22 2004-06-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasanlage
DE10257113A1 (de) * 2002-12-05 2004-06-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfalle mit beschichteter Faserlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3723478A1 (de) * 1987-07-16 1989-01-26 Navsat Gmbh Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors
WO1990012950A1 (de) * 1989-04-17 1990-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Dieselrussfilter mit zusätzlicher einrichtung zur reduktion von stickoxyden und/oder oxydation von kohlenmonoxyd
EP1072765A2 (de) * 1999-07-26 2001-01-31 Man Nutzfahrzeuge Ag Verfahren und Vorrichtung zur Abscheidung von Feinstpartikeln aus dem Abgas von Brennkraftmaschinen
WO2001080978A1 (de) * 2000-04-25 2001-11-01 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAUS W.; BRÜCK R.: "Flow improved efficiency by new cell structures in metallic s ubstrates", SAE, vol. SAE, no. 950788 *
MOULIJN J.A.: "Structured catalysts and reactors", 1998, MARCEL DEKKER INC., NEW YORK, ISBN: 0-8247-9921-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008022990A1 (de) * 2008-05-09 2009-11-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfilter mit Hydrolysebeschichtung
US8845973B2 (en) 2008-05-09 2014-09-30 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Particle filter with hydrolysis coating, device and motor vehicle

Also Published As

Publication number Publication date
DE50113505D1 (de) 2008-03-06
JP5199287B2 (ja) 2013-05-15
CN1432100A (zh) 2003-07-23
US20030086837A1 (en) 2003-05-08
CN1288330C (zh) 2006-12-06
US7267805B2 (en) 2007-09-11
ES2299522T3 (es) 2008-06-01
AU2002211949A1 (en) 2001-12-11
EP1285153A1 (de) 2003-02-26
KR100759146B1 (ko) 2007-09-14
DE10026696A1 (de) 2001-12-20
JP4913309B2 (ja) 2012-04-11
KR20030007795A (ko) 2003-01-23
WO2001092692A1 (de) 2001-12-06
JP2003535253A (ja) 2003-11-25
JP2010169097A (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
EP1285153B1 (de) Partikelfalle
EP1440226B1 (de) Offener partikelfilter mit heizelement
EP1276549B1 (de) Verfahren zum entfernen von russpartikeln aus einem abgas und zugehöriges auffangelement
EP2356322B1 (de) Anordnung und verfahren zur reinigung eines abgasstromes einer verbrennungskraftmaschine durch die abscheidung von partikeln
DE60027688T3 (de) Honigwabenstruktur mit gewellter wandung und verfahren zu deren herstellung
EP1834068B1 (de) Verfahren zum entfernen von partikeln aus abgasen sowie faserlage und partikelfilter dazu
EP1567247A1 (de) Partikelfalle mit beschichteter faserlage
DE102017125192A1 (de) Katalytisches Wandstromfilter mit partieller Oberflächenbeschichtung
DE202004021782U1 (de) Partikelfilter umfassend eine metallische Faserlage
EP1812145B1 (de) Beschichtete partikelfalle mit stickstoffdioxid - neubildung
DE60313151T2 (de) Behandlung von abgasen aus einem verbrennungsmotor
EP1527262B1 (de) Abgasfilter und verfahren zum reinigen eines abgases
DE20122703U1 (de) Partikelfalle
DE20122823U1 (de) Partikelfalle mit Hydrolysefunktion
DE102005040319A1 (de) Filteranordnung für eine Abgasbehandlungsvorrichtung
EP1344907A1 (de) Vorrichtung zum Entfernen von Kohlenstoffpartikeln aus Abgasen
EP1431528B1 (de) Abgasreinigungsanordnung
EP2740913A1 (de) Abgasnachbehandlungssystem
DE3627734C2 (de)
DE102006061693A1 (de) Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine
DE20122744U1 (de) Auffangelement zum Entfernen von Rußpartikeln aus einem Abgas
DE10357950A1 (de) Abgassystem mit Abgasrückführung und einem Pulsationsdämpfungselement
DE102007029667A1 (de) Katalysatorträgerkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUECK, ROLF

Inventor name: REIZIG, MEIKE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20041215

17Q First examination report despatched

Effective date: 20041215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50113505

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2299522

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: OBERLAND MANGOLD GMBH

Effective date: 20081016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50113505

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE

Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50113505

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160331 AND 20160406

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180625

Year of fee payment: 18

Ref country code: DE

Payment date: 20180531

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180530

Year of fee payment: 18

Ref country code: FR

Payment date: 20180522

Year of fee payment: 18

APBY Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 18

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

APCA Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4O

RIC2 Information provided on ipc code assigned after grant

Ipc: F01N 13/00 20100101ALI20161010BHEP

Ipc: F01N 3/022 20060101AFI20161010BHEP

Ipc: F01N 3/035 20060101ALI20161010BHEP

Ipc: F01N 3/01 20060101ALI20161010BHEP

Ipc: F01N 3/033 20060101ALI20161010BHEP

Ipc: F01N 3/20 20060101ALI20161010BHEP

Ipc: F01N 3/023 20060101ALI20161010BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113505

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190529

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190529

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 50113505

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 50113505

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20220708