EP1620697A2 - Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d une fibre optique a reseau de bragg - Google Patents

Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d une fibre optique a reseau de bragg

Info

Publication number
EP1620697A2
EP1620697A2 EP04742687A EP04742687A EP1620697A2 EP 1620697 A2 EP1620697 A2 EP 1620697A2 EP 04742687 A EP04742687 A EP 04742687A EP 04742687 A EP04742687 A EP 04742687A EP 1620697 A2 EP1620697 A2 EP 1620697A2
Authority
EP
European Patent Office
Prior art keywords
optical fiber
test body
section
deformation
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04742687A
Other languages
German (de)
English (en)
Inventor
Laurent Morin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1620697A2 publication Critical patent/EP1620697A2/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/50Measuring temperature based on the expansion or contraction of a material the material being a solid arranged for free expansion or contraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the present invention relates to a device, system and method for measuring mechanical and / or thermal deformations by means of a Bragg grating optical fiber, in particular for measuring a force and / or a temperature.
  • An optical fiber 110 transmits electromagnetic radiation 112, maintained in its optical core 114 thanks to a difference between the refractive index n c of the optical core 114 and the refractive index n g of the optical cladding (cladding ) 116, with a low attenuation, of the order of 0.20 dB / km for a transmission with a wavelength of 1.55 ⁇ m.
  • a mechanical sheath (coating) 118 surrounds the optical fiber 110 so as to allow its manipulation without weakening the latter.
  • this sheath 118 is made of polyacrylate or polyimide.
  • the refractive index n c of the optical core 114 can locally undergo longitudinal modulation in the optical core, according to a spatial period ⁇ or "step", so that the optical fiber reflects the radiation propagating at a wavelength ⁇ B given.
  • This local longitudinal index modulation constitutes a Bragg grating and the reflected wavelength ⁇ B is called the Bragg wavelength characteristic of the grating.
  • This wavelength ⁇ B can be predetermined by means of the Bragg relation which is written, in the first order:
  • is the characteristic pitch of the Bragg grating inscribed in the optical fiber
  • n e is the effective index of the guided fundamental mode of the optical fiber
  • T the temperature of the optical fiber at the level of the grating
  • the wavelength of electromagnetic radiation
  • [ ⁇ 3x3 ] the 3 x 3 tensor of the Green-Lagrange deformations of the fiber. This tensor [ ⁇ 3x3 ] of the deformations of Green-
  • the fiber range is a function of local variations in the dimensions of the fiber such as its length. These dimensions can vary depending, for example, on the hydrostatic pressure applied to the section of optical fiber carrying the Bragg grating.
  • an optical fiber provided with at least one Bragg grating can be used to measure physical parameters, for example when these physical parameters influence the length L fi of the optical fiber at a Bragg grating of such that a variation of this parameter leads to a modification of the characteristic wavelength ⁇ B of the Bragg grating.
  • the expression “deformation of the optical fiber” includes mechanical deformations, for example generated by a mechanical action such as an elongation force exerted on the fiber, and thermal deformations generated by a variation in temperature. .
  • a variation in temperature can cause a variation in the effective index of the fiber.
  • the temperature T to which a Bragg grating is subjected modifies its characteristic wavelength ⁇ B.
  • the measurement of the variation of a parameter is carried out by means of a light beam sent into the optical fiber from one of its ends, this beam comprising at least the wavelength ⁇ B of a grating of Bragg inscribes in this optical fiber, as well as the Bragg wavelengths of this network when it is subjected to variations in the physical parameter measured. More precisely, the wavelength ⁇ B characteristic of the Bragg grating exhibits a variation ⁇ B when, for example, a variation ⁇ T of its temperature, ⁇ L fi of the length of the optical fiber and / or ⁇ P of the hydrostatic pressure is produced at the Bragg grating reflecting this wavelength ⁇ B.
  • ⁇ fib is the variation in longitudinal mechanical deformation of the fiber, equal to the first order at the quotient ⁇ L fi / L f i b of the variation of mechanical origin ⁇ L fi of the length L fi of the optical fiber.
  • a measuring device is generally designed so that only the quantity to be measured acts on the signal ⁇ ' ⁇ B / ⁇ B actually measured. For this purpose, it uses a test body 123 (FIG. 1b) on which is fixed, by means of two fixing points 121 and 125, the fiber section 110 of length L fi on which at least one Bragg network 124 is registered.
  • ⁇ ce represents the variation in mechanical deformation of the test body 123, equal to the first order at the quotient ⁇ L ce / L ce of the variation of mechanical origin ⁇ L ce of the length L ce of the test body.
  • this relation (3) allows, from the measurement of the variations ⁇ B of the wavelength reflected by the Bragg grating 124 of the optical fiber 110, to measure a deformation due to: a variation in the temperature to which the Bragg network 124 is subjected, and / or - a variation in the deformation ⁇ L ce / L ce between the anchoring points 121 and 125 of the section of the optical fiber 110 bearing the Bragg network 124.
  • Such a measurement of variation in deformation ⁇ L ce / L ce of the test body 123 can be used to measure a variation in force ⁇ F acting on this test body 123.
  • knowing the thermomechanical properties and the geometry of the test body it is possible to establish a correspondence between the value of this variation of force ⁇ F and a variation ⁇ L C e / L ⁇ of the uniaxial deformation of any fiber aligned between the two anchor points 121 and 125 of this test body.
  • the optical fiber 110 with a Bragg grating 124 is prestressed in tension between the two anchoring points 121 and 125 of the test body 123.
  • this test body 123 when an action is exerted on this test body 123, the latter deforms, causing a variation ⁇ L ce of the distance between the two anchor points 121 and 125 which can be measured by means of the variation ⁇ B of the wavelength reflected by the optical fiber 110 with a Bragg grating 124.
  • the variations ⁇ L ce of the length L ce of the test body are measured by the variations ⁇ B of the Bragg wavelength ⁇ B reflected by the Bragg grating 124 inscribed in the optical fiber 110 .
  • a measuring device fitted with a Bragg grating optical fiber has many advantages. For example, it makes it possible to place the spectral analysis system in charge of measuring the Bragg wavelength at a distance from the measurement point thanks to the low spectral attenuation of the optical fiber with respect to the transmitted radiation. .
  • Such a distance is advantageous when, for example, the measurement is carried out in a hostile environment (high temperature and / or humidity (s)) or difficult to access for the signal processing means.
  • optical fiber is insensitive to external electromagnetic disturbances or that it exhibits a linear behavior in deformations, that it makes it possible to obtain good resolution and that it is insensitive to the aging of the end components (laser sources or connectors for example), the measurement principle being based on a spectral measurement, namely the Bragg wavelength characteristic of the network.
  • the measurement sensitivity of a conventional Bragg grating optical fiber device is insufficient to have sufficient measurement resolution with respect to a temperature and / or a force, and more generally, a deformation.
  • Such a measurement is carried out by detecting the deformations of the pantograph during its action on the catenary wire so that, knowing the thermomechanical behavior of the pantograph, it is possible to calculate the vertical forces applied inter alia by the catenary wire on this pantograph.
  • a pantograph is indeed as a whole dimensioned to present a high rigidity and very limited deformations.
  • a variation of 1 N in the vertical force applied to the shoe of carbon induced, by three-point bending, a variation in longitudinal deformation of the order of 5 x 10 "5 percent, this contact force being able to evolve within a variation range of up to 500 N.
  • the absolute resolution of deformation required by the measuring device to resolve a variation in contact force of 1 N is of the order of
  • the variations in deformations to be measured of structures designed not to vary may also be too small to be able to be measured satisfactorily with a conventional device provided with a Bragg grating optical fiber.
  • the present invention solves the problem mentioned above by proposing a device, a system and a method, the measurement sensitivity of which is greater than that of the usual Bragg grating devices, systems or methods.
  • optical fiber has a longitudinal strain limit at break greater than the elastic longitudinal strain limit of materials generally used to form a test body, and in particular metals, as shown in Figure 2.
  • FIG. 2 is shown, along an abscissa axis 200, the longitudinal deformation ⁇ of an optical fiber with a silica matrix Si0 2 (curve 202) and the deformation of metals during a standard tensile and compression test, namely steels (curve 204) and steels with high elastic limit, also called HLE steels (curve 206), according to the stress ⁇ (ordinate axis 208) to which each material is subjected.
  • the deformation range of a silica optical fiber (curve 202) has a tensile strength deformation limit of the order of 5 percent, significantly greater than the elastic deformation limit of metals, 0.2 percent.
  • the invention also results from the observation that, as shown later, the signal measured by the relative displacement ⁇ B / ⁇ B of the wavelength characteristic of a Bragg grating varies proportionally to the relative variation ⁇ L / L of the distance L between the two anchoring points to the test body of the section of the optical fiber carrying the Bragg grating used to carry out the measurements.
  • a relative variation will be called “deformation” in what follows.
  • the invention relates to a device for measuring uniaxial deformations comprising a section of optical fiber provided with at least one Bragg grating aligned in the direction of the measurement axis, and a test body subjected to the deformations to be measured and transmitting them to the section of optical fiber, means for sending into the fiber a light wave comprising the Bragg wavelengths which can be reached by all Bragg gratings registered on this fiber and means for reading the length of Bragg wave of each of these networks, characterized in that: - the fixing points capable of subjecting this section of fiber to a negative, positive or zero prestressing, and of transmitting to it the elongations of the test body, are separated by a distance (L fi ) presenting a variation ( ⁇ L fi ) when the test body is stressed by the deformation to be measured, the effective length (L ce ) of the test body has an elongation ation ( ⁇ L ce ), when the test body is stressed by the deformation to be measured, the length (L fi )
  • a mechanical element which is not subjected to the same deformation but transmits the corresponding elongation to the fiber.
  • This mechanical element can be an integral part of the test body or constitute a separate element from this test body. It usually has a protruding shape.
  • the length (L fi ) of the optical fiber section is less than the length (L ce ) of the test body.
  • the amplification, by the coefficient K, of the measurement signal can be obtained when the variation ⁇ L fib of the length L fib of the fiber used for the measurement is distinct from the variation ⁇ L ce of the test body.
  • the variation in length ( ⁇ L fib ) of the section of optical fiber is equal to the variation in length ( ⁇ L ce ) of the test body.
  • the invention allows an increase in the resolution of the measurements carried out as long as the mechanical deformation of the test body ⁇ L Ce / L ce is less than the mechanical deformation ⁇ L fi / L fib , of the section of the optical fiber to network. of Bragg used to carry out measurements of deformations.
  • the value K is strictly greater than 1 and its greater value is limited only by additional constraints, for example linked to the materials used. This coefficient K is also limited by the fact that the length L fib must in no case be less than the length of the Bragg grating, or if there are several Bragg grids measuring the deformation of the test body, of the smallest distance measured along the optical fiber which comprises all these Bragg gratings.
  • the strain measurement device also makes it possible to carry out measurements of forces or of mechanical stresses. To do this, it suffices to associate means capable of transforming these mechanical forces or stresses into a uniaxial deformation measured by the device according to the invention.
  • the additional constraints limiting the upper value of K can result from the limitation of the errors induced by the thermal expansion of the mechanical parts whose dimensions and thermomechanical properties determine K.
  • each of these mechanical elements is, by construction, not subject to any of the deformations generated by the mechanical forces or stresses to be measured.
  • the deformation measuring device also makes it possible to carry out temperature measurements. It suffices to associate means capable of transforming these temperatures into a uniaxial deformation measured by the device according to the invention.
  • each mechanical element which is not subjected to the same deformation as the test body, but transmits to the fiber the corresponding elongation is not subjected to the same deformations as the test body on its effective length (L ce ) because it is distinct from the test body, made of a material not necessarily the same coefficient of expansion, and therefore it is not necessarily subject to the same thermal expansion.
  • the deformation measurement device also makes it possible to carry out torque measurements. For this, it suffices to associate means capable of transforming these couples into a difference in deformation of two Bragg gratings each measuring a uniaxial deformation, and arranged in an adequate manner so that this difference is linked to the torque to be measured.
  • This example will be detailed later on in the description of exemplary embodiments of the invention.
  • the constraints of this type of embodiment are the same as those linked to the measurement of mechanical forces and constraints, to which are added the known constraints of differential measurements, such as for example the importance of associating two elements as similar as possible.
  • the fixing of the fibers at the ends can for example be done by welding, gluing, winding around a capstan.
  • the invention places greater demands on the optical fiber than in the measurement devices of the prior art.
  • the invention can generate very high deformation gradients at the embedding of the stressed portion of fiber, which can lead to damage or even breakage of the fiber.
  • the preferred embodiment of the invention uses, at each end of the fiber, a device for fixing this fiber separate from the test body, and constituting a sort of mandrel specific to the optical fiber considered.
  • mandrel comprise at least three jaws distributed around a main axis coincident with the axis of the fiber, each jaw comprising an inner surface consisting of a central portion and two end portions, the end portions being produced so as to extend the central portion while gradually moving away from the main axis of the device, and each comprising at least one part in contact with the mechanically deformable sheath of the optical fiber when the jaw occupies a clamping position.
  • the diameter left free by the jaws tightened to the maximum is a little greater than the diameter of the single core of the fiber.
  • this core being much harder than the mechanical sheath of the fiber, it is essentially the latter which is deformed.
  • an optical fiber with a Bragg grating called phase jump is used, as described in the doctoral thesis of the University of Paris-Sud, Center d'Orsay, supported on November 24, 1999 by Mr. Christophe Martinez, and entitled "Study and production of Bragg grating components in optical fibers", which has a typical spectral width halfway up its central peak of 25 pm compared to the 300 pm of a standard Bragg grating, which improves the measurement resolution of the device.
  • such a device comprises at least one phase jump Bragg grating, and is associated for the reading of its Bragg wavelength ⁇ Bsaut with a second apodized Bragg grating whose filter band includes all the lengths of Bragg wave ⁇ Bsaut that can take the phase jump network in all its extent of measurement.
  • a microstructured optical fiber also called photonic crystal fiber
  • the structure of which has, longitudinally at its optical axis, holes distributed in the section of the fiber, spaced from one another and which can be either empty , or filled with a material that can give this optical fiber a greater effective index than in the absence of this microstructure. It is then possible to register a Bragg grating in this fiber, when for example its optical core is doped with germanium Ge0 2 , according to the usually known methods, at a characteristic wavelength ⁇ B.
  • FIGS. 1a and 1b already described, represent an optical fiber and its known prior use in a force
  • FIG. 2 already described, is a graph representing the elastic longitudinal deformation curves for different materials
  • FIG. 3 is a diagram of a first measuring device according to the invention, designed to measure forces
  • Figure 4 is a diagram of a second measuring device according to the invention
  • Figure 5 shows a use of a sensor according to the invention for measuring the force exerted on a pantograph, inter alia by its catenary line
  • FIG. 5b represents the curves of mechanical iso-deformations of the surface represented by the curve 5a for a set of couples ⁇ u, v ⁇ admissible for application of the sensor in a pantograph
  • FIG. 6a diagrammatically represents a force measurement system comprising a plurality of sensors in accordance with the invention
  • FIG. 6b diagrammatically represents a force measurement device comprising a plurality of optical fibers aligned along a same axis including the dedicated Bragg gratings for measuring mechanical deformations are in the same plane, in accordance with the invention and also allowing the measurement of torque
  • - Figure 6c schematically shows a temperature measurement device with a single Bragg grating kept prestressed and integral with the body
  • FIG. 6a diagrammatically represents a force measurement system comprising a plurality of sensors in accordance with the invention
  • FIG. 6b diagrammatically represents a force measurement device comprising a plurality of optical fibers aligned along a same axis including the dedicated Bragg
  • FIG. 6d schematically represents a measuring device intended preferentially for the measurement of deformations of mechanical origin, the Bragg grating intended for the compensation of thermal effects is maintained in preload and integral with the test body
  • FIG. 6e schematically represents a measuring device intended preferably tially for the measurement of deformations of which the Bragg grating intended for the measurement of deformations of mechanical origin is maintained in a sheath preventing its buckling
  • FIG. 7a schematically represents a cross section of the specific mandrel allowing, according to a preferential variant, to fix the ends of the section of optical fiber subjected to the deformation to be measured
  • FIG. 7b schematically represents an axial section along the plane III - III of the specific mandrel of FIG. 7a
  • Figures 8a, 8b and 8c show various groove bottom profiles usable in the invention for mechanically blocking the optical fiber in its holding device.
  • FIG. 3 represents a device 300 for measuring forces according to the invention.
  • the longitudinal deformation ⁇ ce of the latter is measured by means of an optical fiber
  • thermomechanical properties of the test body it is possible to determine the variation in stress ⁇ exerted on the device from the measurement of its longitudinal deformation ⁇ this obeying, in elastic mode, Hooke's law:
  • E is the d ⁇ oung modulus of the material used for the test body. Knowing the section S of this test body at the place where the longitudinal deformation ⁇ ⁇ is measured, the variation in force ⁇ F exerted on it is deduced according to the relation:
  • the section S of this test body is not necessarily constant. It is enough that the force or the uniaxial stress, oriented in the direction of the section of fiber requested, applies to a section of this test body between two flat sections SI and S2 normal to the axis of measurement, continuous or discontinuous, and defined as follows: - they are opposite one another so that the application of force or stress does not induce any moment of rotation on the test body, these sections serve as supports for the fixing the fiber section, and impose its elongation, - the section between SI and S2 deforms at any point in an elastic manner without ever reaching the domain of plastic deformations.
  • the longitudinal deformation ⁇ this measured is uniaxial, that is to say that it takes place along a single axis corresponding substantially to the axis of the optical fiber 304.
  • This device is therefore particularly interesting for measuring uniaxial deformations or forces.
  • the infinitesimal longitudinal deformation d ⁇ ⁇ of the effective length of the test body can then be defined by the relation:
  • dL ce represents the infinitesimal variation of the effective length of the test body and L ce the effective length of the test body being elongated.
  • ⁇ L ce represents the sum of the infinitesimal length variations of the test body dL ce
  • L 0ce the effective length of the test body before elongation
  • ⁇ ⁇ the sum of the variations of infinitesimal longitudinal deformations d ⁇ ce of the corresponding test body at the elongation ⁇ L ce
  • ln (e) l
  • the infinitesimal longitudinal deformation d ⁇ fib of the Bragg grating section of optical fiber used to measure deformations can be defined by the relation:
  • the deformation measured by the optical fiber with Bragg grating 304 is amplified, in the first order, by a factor K equal to the quotient of the deformation ⁇ fib of the section of the optical fiber 304 used to carry out the measurements, by the deformation ⁇ ce of the test body 302.
  • a device according to the invention will have an amplification factor which is all the greater when the conditions below are satisfied: the product of the Young's modulus of the material constituting the test body by the most small submissive section at deformation is as small as possible, without however allowing this test body to deform at any of its points in a plastic manner, the effective length of the test body L 0ce is the greatest possible for a given length of the fiber section L ofi .
  • test bodies of variable sections are designed as soon as its behavior at all points understood between the sections SI and S2 remains in the elastic range without ever reaching the range of plastic deformations.
  • the device 300 comprises two projecting elements 310, oriented towards one another, fixing the optical fiber 304 at a first end 312 and at a second end 314 such that the length at rest Lo f i b of the section of the optical fiber subjected to elongations is less than the effective length at rest L 0 ⁇ of the test body causing these elongations.
  • a measuring device as described in Figure 3 has the advantage, compared to a strain gauge fixed on a test body, to allow the use of projecting elements, or projections 310 reducing the length of the optical fiber subjected to elongations.
  • these projecting elements are non-deformable vis-à-vis the external actions to be measured to which the test body is subjected, which makes it possible, in particular, to fix the ratio K so independent of the properties of the materials making up these projections.
  • the effective index n e and the step ⁇ of the Bragg grating 306 are dependent on the temperature.
  • a second Bragg lattice 316 is used, which is placed at the same temperature as the first Bragg lattice 306, the variations in deformation of which are due only to the thermal expansion induced by temperature variations. In other words, this second Bragg network
  • a device 400 for measuring forces comprises means 402, such as ventilation ducts, intended to homogenize the temperature within the device, and in particular between the Bragg network 404 intended for the force measurement and the second Bragg grating 406 intended to compensate for the thermal effects of the first Bragg grating.
  • Figures 3 and 4 show test bodies of various shapes, and in particular not having a constant section over their elongation length.
  • an amplification ratio K should be chosen such that the deformation of the optical fiber does not reach its breaking limit.
  • an optical fiber with a silica matrix Si0 2 has an elastic limit in longitudinal deformations of the order of five percent in tension and at least fifteen percent in compression as specified in the article by GA Bail and WW Morey published on December 1, 1994 in the review "Optics Letters", volume 19, n ° 23 and entitled "Compression-tuned single-frequency Bragg grating fiber laser”.
  • a plastic optical fiber has an elastic limit in longitudinal deformations in tensile generally higher with a tensile breaking limit which can commonly exceed one hundred percent. Such elasticity is due to the phenomenon of structural hardening of the polymer matrix caused by the preferential orientation in the direction of application of the force of the macromolecular chains of the polymer.
  • this elastic limit in uniaxial deformation is of the order of 0.2 percent for a standard steel, and 0.35 percent for a steel with high elastic limit.
  • this amplification factor K can be even greater in the case of the use of a plastic optical fiber.
  • the invention makes it possible to amplify the latter in order to carry out their measurement.
  • the bow supports of a pantograph whose longitudinal deformations induced by the vertical forces exerted on it, in particular, by the catenary wire, are of the order of 10 "4 percent , that is to say an elongation of one micrometer for a length of one meter, while their elastic deformation limit is of the order of 0.2 percent.
  • this amplification can be used on a force cell used with a rheological testing device, in tension and / or compression, on a material whose measurement range and resolution can be amplified with the advantage of '' a unidirectional measure independent of the transverse Poisson contraction effects.
  • the invention making it possible to increase the sensitivity of the measurement, it is particularly suitable in cases where the test body cannot present deformations of the magnitude usually used in extensometry, for example when it is necessary to introduce as little plasticity or brittleness as possible. Therefore, an optical fiber can be attached to a network of
  • the amplification factor K being chosen so that the breaking limit of the optical fiber is not reached.
  • a device according to the invention has an increased measurement resolution compared to a known device since the relative longitudinal deformations of the portion of optical fiber located between these two elements are, for identical elongations of the measurement body, larger than with a conventional device.
  • the senor must be dimensioned so that the deformation undergone by the Bragg grating optical fiber is less than its tolerance threshold, that is to say less than the maximum admissible level of deformations whose value depends the desired lifetime of the device.
  • the dimensioning and the choice of the elements forming the device 300 can also take into account the relationship between the variation in force ⁇ F applied to the test body and the variation in mechanical deformation ⁇ fib of the optical fiber.
  • ⁇ F is the variation of external force applied to the test body
  • E t the d ⁇ oung modulus of the test body tube
  • ⁇ ot the external diameter of the tube used for the test body
  • e o the thickness of this tube
  • ⁇ a constant considered equal to one thereafter.
  • Df (u , v) i.e. the domain of admissible values for u and v:
  • the relation (13) makes it possible to define, among the candidate materials for the given specific application, optimal conditions for amplification of the longitudinal deformations of an optical fiber with Bragg gratings according to the invention, namely: a body tube test of modulus d ⁇ oung ⁇ t as small as possible, an effective length of the test body tube L 0ce as large as possible, an outside diameter of test body tube ⁇ ot as small as possible, a thickness of test body tube e o as small as possible.
  • the functions previously indicated make it possible to determine the set of couples ⁇ u, v ⁇ making it possible to obtain an optical fiber deformation ⁇ fib , given for a given amplification factor K, as shown in FIG. 5b which is an example of mechanical iso-deformation curves.
  • the lengths L 0g and L 0d of the two protruding elements 310 for fixing the optical fiber, L 0ce of the test body as well as the length L 0f j b of the optical fiber can be determined in a particularly optimal manner, as can the coefficients thermal expansion or expansion ⁇ ce of the test body, ⁇ g of the protruding element 310 left, ⁇ d of the protruding element 310 right and ⁇ f of the optical fiber.
  • Loce ⁇ g. Log + ⁇ f . L 0 fj b + ⁇ d .
  • a device meeting the criteria mentioned above could include a Duralumin AU4G test body (E t ⁇ 73GPa), an effective length of the test body (L 0ce ) of 20 mm, an outside diameter of the 6.2 mm test body ( ⁇ 0t ), a thickness of the test body (e 0t ) 1 mm, a length of optical fiber (Lo f i b ) of 3 mm and a length of the fixing protruding elements test body (L 0g and L 0d ) of 8.5 mm each.
  • conditions such as the mechanical elongation of thermal origin induced on the optical fiber by the test body are determined and the two holding devices is amplified in order to improve the measurement resolution of temperature variations.
  • the device instead of attenuating the mechanical effects induced by the temperature variation on the optical fiber, which is not not the configuration sought when the device is configured for the preferential measurement of a mechanical deformation or of a force, the device is configured according to conditions such that the optical fiber presents strong variations of deformations of mechanical origin in the event of variations of the temperature.
  • the test body should have a coefficient of thermal expansion ⁇ ce as large as possible, and in particular greater than the coefficient of thermal expansion ct f of the optical fiber and those ⁇ g and ⁇ d of two fasteners
  • the total deformation that is to say the sum of the deformations of mechanical and thermal origin of the optical fiber with Bragg grating, is the amplified result of the thermal deformation of the test body, thereby allowing better resolution of the temperature measurement by the Bragg grating.
  • This configuration makes it possible to take advantage of the advantages provided by a series use of such sensors temperature: use of a single fiber, without the need to use devices such as optical couplers, to make connections specific to each sensor mounted in parallel having the effect, with each division of the optical circuit, of dividing between each of the branches the total optical power transmitted through the optical fiber.
  • a system 600 (FIG. 6a) of measurements is used comprising different devices 602 in accordance with the invention arranged in parallel to carry out various measurements.
  • Such an application has the advantage of being able to be carried out using a single optical fiber 604, having connections 606 specific to each device 602, within which electromagnetic radiation is transmitted at different wavelengths.
  • each device has at least one distinct Bragg wavelength, it is possible to process the spectrally multiplexed information relating to each device 602 by the same spectral analysis system 608 not shown in detail. This 608 system can be moved away from the measurement points.
  • a measurement system comprising several distinct optical fibers each comprising at least one device according to the invention.
  • the reading of the various fibers is carried out sequentially by temporal demultiplexing, the reading of the wavelengths characteristic of each of their Bragg grating (s) being carried out by spectral demultiplexing as already mentioned.
  • a device 610 isolated from external mechanical stresses and only subjected to temperature variations as a reference device in order to reference the measurements provided by the other devices subjected, for their part, to external forces or deformations to be measured.
  • a plurality of Bragg gratings are used within a test body so as to define a deformation of this test body from an average of the longitudinal deformations measured by each network from Bragg.
  • Such an embodiment has the advantage of providing a measure of better resolution of the value sought in a ratio l / root (n) where n is the number of Bragg gratings considered.
  • This embodiment can be carried out by means of a section of optical fiber comprising a plurality of Bragg gratings or by means of a plurality of sections of optical fiber with Bragg gratings.
  • the average mechanical deformation measured by each of these Bragg gratings for all of the optical fibers makes it possible to evaluate the value of the uniaxial force having led to this average mechanical deformation, on the one hand, while, on the other hand, the deviations from this average value of each of the deformations measured by each fiber, make it possible to evaluate the value of the torque exerted on the test body normally at the plane defined by the optical fibers.
  • the fixing of the optical fiber to the test body is of great importance for the reliability of the measurements and their reproducibility.
  • it seems preferable to use a method of fixing the optical fiber to the test body by means of a mechanical pinching which has various advantages such as maintaining the tightening zone, easy dismantling of the fixing. , for example to mechanically prestress the optical fiber precisely, thus avoiding subjecting the optical fiber to mechanical deformations that are unnecessary and harmful to its life, the small size of the device and the possibility of using various groove profiles to trap the fibers.
  • a specific mandrel 700 (FIGS. 7a and 7b) for fixing, comprising three jaws 4 having a progressive curvature 704 at the end of the clamping device, makes it possible to maintain without sliding an optical fiber with tensile forces. or compression exerted on it particularly high, without damaging it.
  • This specific device 700 comprises at least three jaws 701 distributed around a main axis 702 merged with Fiber tax, each jaw comprising a surface interior consisting of a central portion 703 and two end portions 704, the end portions being produced so as to extend the central portion while gradually moving away from the main body of the device, and each comprising at least one contact with the mechanically deformable sheath 710 of the fiber 711 when the jaw occupies a clamping position.
  • this device At its maximum clamping position, this device has a diameter 715 left free by the jaws tightened to the maximum which is a little greater than the diameter of the single core.
  • Bragg gratings can be registered successively in the same fiber. If the Bragg wavelengths ⁇ B ⁇ , ⁇ B2 ... ⁇ Bn of these gratings are sufficiently far apart, these wavelengths ⁇ Bi / ⁇ B2 . . . ⁇ Bn can easily be dissociated without interfering with each other so as to use a single fiber to perform various measurements.
  • the measurement is carried out by detecting either the wavelength of the light reflected towards the source by the Bragg grating (detection by reflection), or the missing wavelength in the light transmitted at the distal end of the fiber. optical (detection by transmission).
  • the groove bottom profiles that can be used to hold an optical fiber are, in the order of preference, ideally a circular profile, and taking into account the difficulties and costs of machining, a square profile (FIG. 8a), equilateral
  • N rated, for example can be used, but its advantage in terms of mechanical retention or low mechanical damage to the optical fiber remains limited compared to the previous bottom groove profiles.
  • optical fiber 656 comprising at least one Bragg grating intended for measuring mechanical deformation in a deformable guide device 652, for example a tube with an inside diameter close to the diameter outside of the optical fiber, so that it can no longer flame, making it possible to continuously extend its longitudinal mechanical deformation in compression: in this case, the optical fiber being always mechanically guided along the same axis, its deformation is always in the same direct relationship with that of the test body 654 through the coefficient K.
  • This particular conditioning of the optical fiber allowing its compression stress has the advantage of being able to exploit, in addition to the field of longitudinal deformations in tension, the field of longitudinal deformations in compression of the optical fiber, thereby increasing the extent of the accessible measures.
  • the range of elastic deformations in compression of an optical fiber with a Si0 2 silica matrix is at least three times greater than its range of elastic deformations in tension, making it possible to multiply by at least four the range of measurement potentially accessible. through the K factor, and therefore the measurement resolution of the device.
  • the optical fiber 644 is provided with: - at least one Bragg grating 642 isolated from external mechanical actions s' acting on the device intended for the compensation of thermal effects and conditioned so as to be maintained in mechanical tension between two holding devices 640 and 641 of which at least one of them is protruding, and at least one Bragg grating 646 maintained in positive or zero negative mechanical prestressing by two holding devices 649 and 650 of which at least one is projecting, and aligned with its two anchor points 647 and 648, characterized in that this portion of fiber can be kept guided in an anti-buckling holding device as described in FIG. 6e.
  • This configuration of the device has the double advantage: of allowing a serial multiplexing of such devices because the Bragg 642 network dedicated to the compensation of thermal effects is completely isolated from the external mechanical actions exerted on the device, which makes it possible to take advantage intrinsic advantages provided by such use: use of a single fiber, without the need to use devices such as optical couplers, to make connections specific to each sensor mounted in parallel having the effect, with each division of the optical circuit, to divide between each of the branches the total optical power transmitted through the optical fiber, to improve the precision of the device, since the thermal compensation of such a device integrates in addition to the previous solutions through the structure 643, the effects thermal expansion of the test body acting in a similar way on the (s) Bragg 646 network (s) dedicated to measuring mechanical deformation.
  • a concrete example of application of the invention lies in its use, within a pantograph, for measuring the force exerted on the latter by its action on a catenary.
  • the action of a catenary on a pantograph results in a slight deformation which, thanks to the invention, can be sufficiently amplified to be measured in order to control this action and thus ensure optimal contact between the pantograph and the catenary.
  • the invention thus relates to a device for measuring uniaxial deformations comprising a section of optical fiber provided with at least one Bragg grating aligned in the direction of the measurement axis, and a test body subjected to the deformations at measuring and transmitting them to the section of optical fiber, this device being intended to be placed in operating conditions where the fiber is excited by a light wave comprising the Bragg wavelength or the Bragg wavelengths which can reach all the Bragg gratings inscribed in this fiber and where this fiber is connected to means for reading the Bragg wavelength of each of these gratings and, if there are several Bragg gratings, demultiplexing means, this device being characterized in that: the fixing points capable of subjecting this section of fiber to a negative, positive or zero prestressing, and to transmitting to it the elongations of the test body, so nt separated by a distance (L fi ) with a variation ( ⁇ L fi ) when the test body is stressed by the deformation to be measured, the effective length (L
  • the length (L fib ) of the section of optical fiber is less than the length (L ce ) of the test body.
  • the variation in length ( ⁇ L fib ) of the optical fiber section is equal to the variation in length ( ⁇ L ce ) of the test body.
  • the optical fiber comprises a plurality of Bragg gratings assigned to the measurement of the deformations of the same test body, and the length (L fib ) of the optical fiber section is greater than the smallest distance along the fiber optic which includes all of these Bragg gratings.
  • the prestressing places the section of optical fiber in tension, the deformations to be measured reduce this tension, and the initial prestressing is sufficient for the section of optical fiber to remain taut even when it is subjected to the greatest deformation of its span.
  • Prestressing places the section of optical fiber in compression, and this section of fiber is surrounded by an anti-buckling device.
  • the anti-buckling device comprises at least one section of a deformable rigid sheath surrounding the optical fiber and sliding on it with the smallest possible clearance, these sections being separated from each other by cylindrical or toric pieces of material which is sufficiently elastic to allow the greatest compression deformation that the section of optical fiber can reach over a measuring range.
  • a device for measuring mechanical forces or stresses comprises means capable of transforming these mechanical forces or stresses into a uniaxial deformation measured by a device conforming to one of points 1 to 8. 10.
  • the device according to point 9 further comprises a Bragg grating, on a second section of optical fiber, this network being decoupled from the external mechanical forces to be measured, and subjected to the same temperature as the Bragg grating (s) of the first dedicated section (s) measuring mechanical forces deforming the test body, in order to compensate for thermal effects on the measurement.
  • a temperature measuring device comprises means capable of transforming these temperatures into a uniaxial deformation measured by a device conforming to one of points 1 to 8.
  • the device comprises means capable of homogenizing the temperature of the Bragg gratings assigned to the same test body.
  • the means capable of homogenizing the temperature allow the free circulation of a heat transfer fluid.
  • the test body is of constant section.
  • the test body is of variable section.
  • the device comprises at least one projecting element, integral with the test body, to which the optical fiber is fixed, this projecting element being undeformable with respect to the external actions to be measured to which the test body is subjected.
  • test body The test body, the optical fiber and the protruding element (s) verify the relationship:
  • ⁇ ce is the coefficient of thermal expansion of the test body and L 0ce its length
  • ⁇ g and ⁇ d the coefficients of thermal expansion of the salient element (s) and L 0g and L 0d their length
  • test body for any portion of optical fiber maintained prestressed between 2 fixing devices, the test body, the optical fiber and the elements verify the relationship:
  • L 0ce is the effective length of the test body
  • L 0g and L 0d the length of the projecting elements
  • L 0fib the length of the optical fiber under mechanical pre-stress between the two projecting elements
  • the section of optical fiber is fixed to a fixing device comprising a specific mandrel (700) comprising at least three jaws (701) distributed around a main axis (702) merged with Fiber tax, each jaw comprising an interior surface consisting of a central portion (703) and two end portions (704), the end portions being produced so as to extend the central portion while gradually moving away from the main tax of the device, and each comprising at least one part in contact with the mechanically deformable sheath (710) of the fiber (711) when the jaw occupies a clamping position.
  • the diameter (715) left free by the jaws tightened to the maximum is a little greater than the diameter of the single core (716) of the fiber.
  • test body 21 The test body is integral with, or incorporated into, a pantograph. 22.
  • a temperature measuring device in accordance with one of points 11, 12 or 13 according to which the coefficient of thermal expansion of the test body ⁇ ce is as large as possible, and in particular greater than the coefficient of thermal expansion ⁇ f of the optical fiber and to those ⁇ g and ⁇ d of the two fixing elements (310) of the optical fiber.
  • a strain measurement system comprising several optical fibers, each provided with at least a device according to one of points 1 to 23, which includes a time demultiplexing device making it possible to successively read the signals of each of the fibers, and in that these signals are then demultiplexed spectrally to obtain the characteristic wavelength Bragg gratings.
  • a device according to one of points 22 or 23 which measures the result of external mechanical interactions acting on a pantograph.

Abstract

Dispositif de mesure de déformations uniaxiales comprenant un tronçon de fibre optique muni d'au moins un réseau de Bragg aligné selon la direction de l'axe de mesure, et un corps d'épreuve soumis aux déformations à mesurer et les transmettant au tronçon de fibre optique, ce dispositif étant caractérisé en ce que : les points de fixation aptes à soumettre ce tronçon de fibre à une précontrainte négative, positive ou nulle, et à lui transmettre les élongations du corps d'épreuve, sont séparés par une distance (Lfib) présentant une variation ( ΔLfib) lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur effective (LCe) du corps d'épreuve présente une élongation (ΔLCe), lorsque le corps d'épreuve est sollicité par la déformation à mesurer, - la longueur (Lfib) du tronçon de fibre optique et la longueur effective (LCe) du corps de mesure sont telles que la déformation longitudinale ( ΔLfib/Lfib) du tronçon de la fibre optique est strictement supérieure à la déformation (ΔLCe/Lce) du corps d'épreuve qui en est à l'origine, définissant ainsi un coefficient d'amplification K strictement supérieur à 1, et égal au premier ordre au quotient (ΔLfib/Lfib) /( ΔLce/Lce).

Description

DISPOSITIF, SYSTEME ET PROCEDE DE MESURE DE
DEFORMATIONS MECANIQUES ET/OU THERMIQUES
UNIAXIALES AU MOYEN D'UNE FIBRE OPTIQUE A RESEAU
DE BRAGG
La présente invention se rapporte à un dispositif, à un système et à un procédé de mesure de déformations mécaniques et/ou thermiques au moyen d'une fibre optique à réseau de Bragg, notamment pour mesurer une force et/ou une température.
I. L'art antérieur
Une fibre optique 110 (figure 1) transmet un rayonnement électromagnétique 112, maintenu dans son coeur optique 114 grâce à une différence entre l'indice de réfraction nc du coeur optique 114 et l'indice de réfraction ng de la gaine optique (cladding) 116, avec une faible atténuation, de l'ordre de 0,20 dB/km pour une transmission avec une longueur d'onde de 1,55 μm.
Par ailleurs, une gaine mécanique (coating) 118 entoure la fibre optique 110 de façon à permettre sa manipulation sans fragiliser cette dernière. De façon classique, cette gaine 118 est constituée de polyacrylate ou de polyimide. L'indice nc de réfraction du coeur optique 114 peut localement subir une modulation longitudinale dans le coeur optique, selon une période spatiale Λ ou « pas », pour que la fibre optique réfléchisse le rayonnement se propageant à une longueur d'onde λB donnée. Cette modulation locale longitudinale d'indice constitue un réseau de Bragg et la longueur d'onde λB réfléchie est dénommée longueur d'onde de Bragg caractéristique du réseau.
Cette longueur d'onde λB peut être prédéterminée au moyen de la relation de Bragg qui s'écrit, au premier ordre :
λB = 2 Λ ne(T,λ, [ε3χ3]) (1)
où Λ est le pas caractéristique du réseau de Bragg inscrit dans la fibre optique, ne est l'indice effectif du mode fondamental guidé de la fibre optique, T la température de la fibre optique au niveau du réseau, λ la longueur d'onde du rayonnement électromagnétique et [ε3x3] le tenseur 3 x 3 des déformations de Green-Lagrange de la fibre. Ce tenseur [ε3x3] des déformations de Green-
Lagrange de la fibre est fonction des variations locales des dimensions de la fibre telles que sa longueur. Ces dimensions peuvent varier en fonction, par exemple de la pression hydrostatique s'appliquant sur le tronçon de fibre optique portant le réseau de Bragg.
Il apparaît donc que la longueur d'onde de Bragg λB d'un réseau de Bragg est fonction de paramètres physiques, mécaniques et/ou thermiques, influant sur ce réseau. De ce fait, une fibre optique munie d'au moins un réseau de Bragg peut être utilisée pour mesurer des paramètres physiques, par exemple lorsque ces paramètres physiques influent sur la longueur Lfi de la fibre optique au niveau d'un réseau de Bragg de telle sorte qu'une variation de ce paramètre entraîne une modification de la longueur d'onde caractéristique λB du réseau de Bragg.
Il convient de préciser que l'expression « déformation de la fibre optique » comprend les déformations mécaniques, par exemple générées par une action mécanique telle qu'une force d'élongation exercée sur la fibre, et les déformations thermiques générées par une variation de température. Par exemple, une variation de température peut engendrer une variation de l'indice effectif de la fibre. De fait, la température T à laquelle est soumis un réseau de Bragg modifie sa longueur d'onde caractéristique λB.
Par ailleurs, il est connu que la détermination d'une déformation mesurée par un réseau de Bragg est optimale lorsque sa déformation reste homogène, c'est-à-dire lorsque le réseau passe d'un pas Λ au repos à un pas Λm sous l'effet d'une variation de la grandeur à mesurer. Une absence de gradient de déformation le long du réseau garantit une telle homogénéité.
La mesure de la variation d'un paramètre s'effectue au moyen d'un faisceau lumineux envoyé dans la fibre optique à partir d'une de ses extrémités, ce faisceau comportant au moins la longueur d'onde λB d'un réseau de Bragg inscrit dans cette fibre optique, ainsi que les longueurs d'ondes de Bragg de ce réseau lorsqu'il est soumis à des variations du paramètre physique mesuré. Plus précisément, la longueur d'onde λB caractéristique du réseau de Bragg présente une variation ΔλB lorsque, par exemple, une variation ΔT de sa température, ΔLfi de la longueur de la fibre optique et/ou ΔP de la pression hydrostatique se produit au niveau du réseau de Bragg réfléchissant cette longueur d'onde λB.
Lorsque la fibre est déformée de façon uniaxiale selon son axe de propagation optique, une telle relation peut être formulée en différentiant la relation (1) en fonction de la température T, de la longueur Lfib de la fibre optique comprenant le réseau de Bragg et de la pression hydrostatique P entourant cette fibre optique au niveau du réseau de Bragg. Il vient alors :
Δ'λBB = a' ΔT + b' Δεfib + c' ΔP (2)
où a', b' et c' sont, dans une première approximation, des constantes propres à la nature de la fibre optique considérée et Δ'λB la variation de la longueur d'onde caractéristique λB du réseau de Bragg, Δεfib est la variation de déformation mécanique longitudinale de la fibre, égale au premier ordre au quotient ΔLfi /Lfib de la variation d'origine mécanique ΔLfi de la longueur Lfi de la fibre optique.
Un dispositif de mesure est généralement conçu de telle sorte que seule la grandeur à mesurer agisse sur le signal Δ'λBB effectivement mesuré. A cet effet, il utilise un corps d'épreuve 123 (figure lb) sur lequel est fixé, au moyen de deux points de fixations 121 et 125, le tronçon de fibre 110 de longueur Lfi sur lequel est inscrit au moins un réseau de Bragg 124.
Dans ce cas, la relation (2) s'écrit sous la forme :
ΔλBB = a ΔT + b Δεce + C ΔP (3)
où a, b et c sont des constantes respectivement dépendantes de a', b' et c', prenant en compte la géométrie du corps d'épreuve 123 et ses caractéristiques thermomécaniques. En outre, Δεce représente la variation de déformation mécanique du corps d'épreuve 123, égale au premier ordre au quotient ΔLce/Lce de la variation d'origine mécanique ΔLce de la longueur Lce du corps d'épreuve.
En négligeant l'influence de la pression (c ΔP), cette relation (3) permet, à partir de la mesure des variations ΔλB de la longueur d'onde réfléchie par le réseau de Bragg 124 de la fibre optique 110, de mesurer une déformation due à : une variation de la température à laquelle est soumis le réseau de Bragg 124, et/ou - une variation de la déformation ΔLce/Lce entre les points d'ancrage 121 et 125 du tronçon de la fibre optique 110 portant le réseau de Bragg 124.
Une telle mesure de variation de déformation ΔLce/Lce du corps d'épreuve 123 peut être utilisée pour mesurer une variation de force ΔF s'exerçant sur ce corps d'épreuve 123. De fait, connaissant les propriétés thermomécaniques et la géométrie du corps d'épreuve, il est possible d'établir une correspondance entre la valeur de cette variation de force ΔF et une variation ΔLCe/Lœ de la déformation uniaxiale de toute fibre alignée entre les deux points d'ancrage 121 et 125 de ce corps d'épreuve.
Dans cet exemple, la fibre optique 110 à réseau de Bragg 124 est précontrainte en traction entre les deux points d'ancrage 121 et 125 du corps d'épreuve 123.
Ainsi, lorsqu'une action est exercée sur ce corps d'épreuve 123, ce dernier se déforme en entraînant une variation ΔLce de la distance entre les deux points d'ancrage 121 et 125 qui peut être mesurée au moyen de la variation ΔλB de la longueur d'onde réfléchie par la fibre optique 110 à réseau de Bragg 124.
En d'autres termes, les variations ΔLce de la longueur Lce du corps d'épreuve sont mesurées par les variations ΔλB de la longueur d'onde λB de Bragg réfléchie par le réseau de Bragg 124 inscrit dans la fibre optique 110.
Un dispositif de mesure muni d'une fibre optique à réseau de Bragg présente de nombreux avantages. Par exemple, il permet de placer le système d'analyse spectrale en charge de la mesure de la longueur d'onde de Bragg à distance du point de mesure grâce à la faible atténuation spectrale de la fibre optique vis-à-vis du rayonnement transmis.
Un tel éloignement est avantageux lorsque, par exemple, la mesure est effectuée dans un milieu hostile (température et/ou humidité élevée(s)) ou difficilement accessible pour les moyens de traitement du signal.
D'autres avantages résident dans le fait que la fibre optique est insensible aux perturbations électromagnétiques extérieures ou qu'elle présente un comportement linéaire en déformations, qu'elle permet d'obtenir une bonne résolution et qu'elle est insensible au vieillissement des composants d'extrémités (sources laser ou connectique par exemple), le principe de mesure reposant sur une mesure spectrale, à savoir la longueur d'onde de Bragg caractéristique du réseau.
II. Le problème résolu par l'invention
Toutefois, dans certains cas, la sensibilité de mesure d'un dispositif classique à fibre optique à réseau de Bragg est insuffisante pour avoir une résolution de mesure suffisante vis- à-vis d'une température et/ou d'une force, et plus généralement, d'une déformation.
Par exemple, on peut désirer mesurer la force de contact entre un pantographe et son fil caténaire de façon à minimiser cette force et réduire l'usure de ses éléments.
Une telle mesure s'effectue en détectant les déformations du pantographe lors de son action sur le fil caténaire de telle sorte que, connaissant le comportement thermomécanique du pantographe, on puisse calculer les efforts verticaux appliqués entre autres par le fil caténaire sur ce pantographe.
Dans ce cas, la sensibilité de mesure ou de détection d'une fibre optique à réseau de Bragg utilisée de façon classique comme dans l'art antérieur, est insuffisante.
Un pantographe est en effet dans son ensemble dimensionné pour présenter une forte rigidité et des déformations très limitées. Ainsi, dans un premier exemple, une variation de 1 N de la force verticale appliquée sur le patin de carbone induit, par flexion trois points, une variation de déformation longitudinale de l'ordre de 5 x 10"5 pour cent, cette force de contact pouvant évoluer dans une plage de variation allant jusqu'à 500 N. En d'autres termes, la résolution absolue de déformation requise par le dispositif de mesure pour résoudre une variation de force de contact de 1 N est de l'ordre de
5 x 10"5 pour cent.
Une telle résolution ne peut pas être fournie par des jauges de déformations électriques résistives car le signal de mesure fourni par ces jauges est perturbé du fait des champs électromagnétiques générés par le fil caténaire.
Selon d'autres exemples, les variations de déformations à mesurer de structures conçues pour ne pas varier, telles que des bâtiments, des ponts ou des barrages, peuvent aussi être trop faibles pour pouvoir être mesurées de façon satisfaisante avec un dispositif classique muni d'une fibre optique à réseau de Bragg.
III. L'invention
La présente invention résout le problème précédemment mentionné en proposant un dispositif, un système et un procédé dont la sensibilité de mesure est supérieure à celles des dispositifs, systèmes ou procédés usuels à fibre optique à réseau de Bragg.
L'invention résulte de la constatation qu'une fibre optique a une limite de déformation longitudinale à la rupture supérieure à la limite de déformation longitudinale élastique des matériaux généralement utilisés pour former un corps d'épreuve, et en particulier des métaux, comme cela est montré sur la figure 2.
Sur cette figure 2 est représentée, selon un axe des abscisses 200, la déformation longitudinale ε d'une fibre optique à matrice en silice Si02 (courbe 202) et la déformation de métaux pendant un essai de traction et de compression standard, à savoir des aciers (courbe 204) et des aciers à haute limite élastique, encore appelés aciers HLE (courbe 206), en fonction de la contrainte σ (axe des ordonnées 208) à laquelle est soumis chaque matériau.
On constate alors que le domaine de déformations d'une fibre optique silice (courbe 202) présente une limite de déformation à rupture en traction de l'ordre de 5 pour cent, nettement supérieure à la limite de déformation élastique des métaux, de l'ordre de 0,2 pour cent.
L'invention résulte aussi de la constatation que, comme montré ultérieurement, le signal mesuré par le déplacement relatif ΔλBB de la longueur d'onde caractéristique d'un réseau de Bragg varie proportionnellement à la variation relative ΔL/L de la distance L entre les deux points d'ancrage au corps d'épreuve du tronçon de la fibre optique portant le réseau de Bragg utilisé pour effectuer les mesures. Conformément à l'usage, une telle variation relative sera appelée « déformation » dans ce qui suit.
Or, dans le quotient ΔL/L, on constate que seule la variation ΔL de la longueur L du tronçon de la fibre optique utilisé pour effectuer des mesures, c'est-à-dire compris entre deux points d'attaches du corps d'épreuve, est liée à la grandeur à mesurer.
En d'autres termes, on peut modifier la longueur L du tronçon de fibre optique à réseau de Bragg sollicité pour effectuer les mesures de déformations pour que cette longueur soit inférieure à la longueur du corps de mesure Lce d'un facteur K. Dans ce cas, on augmente le déplacement relatif ΔλBB de la longueur d'onde caractéristique d'un réseau de Bragg de ce facteur K, facilitant ainsi la mesure de cette variation. C'est pourquoi, l'invention concerne un dispositif de mesure de déformations uniaxiales comprenant un tronçon de fibre optique muni d'au moins un réseau de Bragg aligné selon la direction de l'axe de mesure, et un corps d'épreuve soumis aux déformations à mesurer et les transmettant au tronçon de fibre optique, des moyens pour envoyer dans la fibre une onde lumineuse comportant les longueurs d'onde de Bragg que peuvent atteindre tous les réseaux de Bragg inscrits sur cette fibre et des moyens de lecture de la longueur d'onde de Bragg de chacun de ces réseaux, caractérisé en ce que : - les points de fixation aptes à soumettre ce tronçon de fibre à une précontrainte négative, positive ou nulle, et à lui transmettre les élongations du corps d'épreuve, sont séparés par une distance (Lfi ) présentant une variation (ΔLfi ) lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur effective (Lce) du corps d'épreuve présente une élongation (ΔLce), lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur (Lfi ) du tronçon de fibre optique et la longueur effective (Lce) du corps de mesure sont telles que la déformation longitudinale (ΔLfib/Lfib) du tronçon de la fibre optique est strictement supérieure à la déformation (ΔLce/Lce) du corps d'épreuve qui en est à l'origine, définissant ainsi un coefficient d'amplification K strictement supérieur à 1, et égal au premier ordre au quotient (ΔLfi /Lfjb) / (ΔLce/Lce).
Pour des déformations uniaxiales de grande amplitude, c'est-à-dire au delà de 5 pour cent, comme celles par exemple qu'il est possible d'obtenir avec une fibre plastique, il faut également prendre en compte les termes au-delà du premier ordre, et la définition de K devient :
ln[l+(ΔL Lflb)] / ln[l+(ΔLce/Lce)]
Entre la partie du corps d'épreuve délimitée par la longueur effective Lce et soumise à la déformation uniaxiale à mesurer, et les points d'accrochage de la fibre espacés de Lfi , il existe, à au moins une des extrémités du tronçon de fibre optique, un élément mécanique qui n'est pas soumis à la même déformation mais transmet à la fibre l'élongation correspondante. Cet élément mécanique, peut faire partie intégrante du corps d'épreuve ou constituer un élément distinct de ce corps d'épreuve. Il a généralement une forme en saillie. Ainsi, préférentiellement la longueur (Lfi ) du tronçon de fibre optique est inférieure à la longueur (Lce) du corps d'épreuve.
Il convient de noter que l'amplification, par le coefficient K, du signal de mesure peut être obtenue lorsque la variation ΔLfib de la longueur Lfib de la fibre utilisée pour la mesure est distincte de la variation ΔLce du corps d'épreuve. Toutefois, selon la réalisation préférentielle de l'invention, la variation de longueur (ΔLfib) du tronçon de fibre optique est égale à la variation de longueur (ΔLce) du corps d'épreuve.
De fait, l'invention permet une augmentation de la résolution des mesures effectuées tant que la déformation mécanique du corps d'épreuve ΔLCe/Lce est inférieure à la déformation mécanique ΔLfi /Lfib, du tronçon de la fibre optique à réseau de Bragg utilisé pour effectuer des mesures de déformations.
A titre d'exemple, pour un facteur K égal à trois (ΔLCe/Lce = 3 (ΔLfi /Lfib)), la dynamique du signal mesuré ΔλBB, c'est-à-dire la plage de valeurs mesurées, devient trois fois plus étendue, ce qui entraîne que la sensibilité du dispositif est multipliée par ce facteur K.
La valeur K est strictement supérieure à 1 et sa valeur supérieure n'est limitée que par des contraintes annexes, par exemple liées aux matériaux sollicités. Ce coefficient K est aussi limité par le fait que la longueur Lfib ne doit en aucun cas être inférieure à la longueur du réseau de Bragg, ou s'il y a plusieurs réseaux de Bragg mesurant la déformation du corps d'épreuve, de la plus petite distance mesurée le long de la fibre optique qui comporte tous ces réseaux de Bragg.
Enfin, ce coefficient K est aussi limité par le fait que le seuil de rupture de la fibre optique ne doit pas être atteint.
Le dispositif de mesure de déformations selon l'invention permet aussi de réaliser des mesures de forces ou de contraintes mécaniques. Il suffit pour cela de lui associer des moyens aptes à transformer ces forces ou ces contraintes mécaniques en une déformation uniaxiale mesurée par le dispositif conforme à l'invention. Dans ce cas, les contraintes annexes limitant la valeur supérieure de K peuvent résulter de la limitation des erreurs induites par la dilatation thermique des pièces mécaniques dont les dimensions et les propriétés thermomécaniques déterminent K.
Il a été précisé qu'entre la partie du corps d'épreuve délimitée par la longueur effective Lce, et les points d'accrochage de la fibre espacés de Lfib, il existait au moins un élément mécanique qui n'est pas soumis à la même déformation que le corps d'épreuve mais transmet à la fibre l'élongation correspondante. Dans le cas des. mesures de forces ou de contraintes mécaniques, chacun de ces éléments mécaniques n'est, par construction, soumis à aucune des déformations engendrées par les forces ou contraintes mécaniques à mesurer.
Le dispositif de mesure de déformations selon l'invention permet aussi de réaliser des mesures de températures. Il suffit pour cela de lui associer des moyens aptes à transformer ces températures en une déformation uniaxiale mesurée par le dispositif conforme à l'invention.
Dans ce cas, chaque élément mécanique qui n'est pas soumis à la même déformation que le corps d'épreuve, mais transmet à la fibre l'élongation correspondante, n'est pas soumis aux mêmes déformations que le corps d'épreuve sur sa longueur effective (Lce) parce qu'il est distinct du corps d'épreuve, réalisé dans un matériau n'ayant pas nécessairement le même coefficient de dilatation, et qu'en conséquence il n'est pas nécessairement soumis à la même expansion thermique.
Le dispositif de mesure de déformations selon l'invention permet aussi de réaliser des mesures de couple. Il suffit pour cela de lui associer des moyens aptes à transformer ces couples en une différence de déformation de deux réseaux de Bragg mesurant chacun une déformation uniaxiale, et agencés de manière adéquate pour que cette différence soit liée au couple à mesurer. Cet exemple sera détaillé ultérieurement lors de la description d'exemples de réalisation de l'invention. Les contraintes de ce type de réalisation sont les mêmes que celles liées à la mesure de forces et contraintes mécaniques, auxquelles s'ajoutent les contraintes connues des mesures différentielles, comme par exemple l'importance d'associer deux éléments aussi semblables que possibles.
Il est important de souligner que le principe de l'invention, qui vise à amplifier les déformations subies par un corps d'épreuve au niveau du réseau de Bragg d'une fibre optique, est contraire à l'usage habituel selon lequel on tend à limiter les sollicitations du matériau deformable formant le corps d'épreuve afin de préserver ses propriétés métrologiques et sa durée de vie.
On ne sortirait pas du cadre de l'invention en associant à chaque corps d'épreuve plusieurs tronçons en parallèle d'une ou de plusieurs fibres optiques, portant chacun au moins un réseau de Bragg et conformes à l'invention ci- dessus.
La fixation des fibres aux extrémités peut par exemple se faire par soudure, collage, enroulement autour d'un cabestan. Toutefois l'invention sollicite plus fortement la fibre optique que dans les dispositifs de mesure de l'art antérieur. Ainsi l'invention peut générer des gradients de déformation très élevés aux encastrements de la portion de fibre sollicitée, ce qui peut conduire à des endommagements voire une rupture de la fibre.
Pour éviter cela, la réalisation préférentielle de l'invention recourt, à chaque extrémité de la fibre, à un dispositif de fixation de cette fibre distinct du corps d'épreuve, et constituant une sorte de mandrin spécifique à la fibre optique considérée.
Ces sortes de mandrin comportent au moins trois mors répartis autour d'un axe principal confondu avec l'axe de la fibre, chaque mors comprenant une surface intérieure constituée d'une portion centrale et de deux portions d'extrémité, les portions d'extrémité étant réalisées de manière à prolonger la portion centrale en s'écartant progressivement de l'axe principal du dispositif, et comportant chacune au moins une partie en contact avec la gaine mécaniquement deformable de la fibre optique lorsque le mors occupe une position de serrage.
De manière préférentielle, le diamètre laissé libre par les mors serrés au maximum est un peu supérieur au diamètre du seul coeur de la fibre. Ainsi, lors du serrage, ce coeur étant beaucoup plus dur que la gaine mécanique de la fibre, c'est essentiellement cette dernière qui se trouve déformée.
Selon une autre variante de l'invention, on utilise une fibre optique à réseau de Bragg dite à saut de phase, telle que décrite dans la thèse de doctorat de l'Université de Paris-Sud, Centre d'Orsay, soutenue le 24 novembre 1999 par M. Christophe Martinez, et intitulée « Etude et réalisation de composants à réseaux de Bragg dans les fibres optiques », qui présente une largeur spectrale typique à mi-hauteur de son pic central de 25 pm à comparer aux 300 pm d'un réseau de Bragg standard, ce qui permet d'améliorer la résolution de mesure du dispositif.
Plus précisément, un tel dispositif comporte au moins un réseau de Bragg à saut de phase, et est associé pour la lecture des sa longueur d'onde de Bragg λBsaut à un second réseau de Bragg apodisé dont la bande de filtrage inclut toutes les longueurs d'onde de Bragg λBsaut que peut prendre le réseau à saut de phase dans toute son étendue de mesure.
Selon une autre variante, on utilise une fibre optique microstructuree, aussi appelée fibre à cristaux photoniques, dont la structure présente, longitudinalement à son axe optique, des trous répartis dans la section de la fibre, espacés les uns des autres et pouvant être soit vides, soit remplis d'un matériau pouvant conférer à cette fibre optique un indice effectif plus grand qu'en l'absence de cette microstructure. Il est alors possible d'inscrire un réseau de Bragg dans cette fibre, lorsque par exemple son coeur optique est dopé en germanium Ge02, selon les méthodes habituellement connues, à une longueur d'onde caractéristique λB. L'avantage procuré par l'augmentation de l'indice effectif apporté par cette microstructure, pouvant être de quelques pour cent permettant de faire passer l'indice effectif de la fibre d'une valeur de 1,46 à 1,50 par exemple, permet alors d'augmenter la sensibilité à toute influence des paramètres extérieurs du réseau de Bragg ainsi inscrit d'un même ordre de grandeur.
D'autres caractéristiques et avantages de l'invention apparaîtront avec la description effectuée ci-dessous au moyen des figures ci-jointes sur lesquelles : les figures la et lb, déjà décrites, représentent une fibre optique et son utilisation antérieure connue dans un capteur de force, la figure 2, déjà décrite, est un graphique représentant les courbes de déformations longitudinales élastiques pour différents matériaux, la figure 3 est un schéma d'un premier dispositif de mesure conforme à l'invention, conçu pour mesurer des forces, - la figure 4 est un schéma d'un second dispositif de mesure conforme à l'invention, la figure 5 représente une utilisation d'un capteur conforme à l'invention pour la mesure de la force exercée sur un pantographe, entre autres par sa ligne caténaire, - la figure 5a représente la surface 3D de la fonction t=f(u,v) de la variation de déformations mécaniques de la fibre optique t=Δεfi en fonction du facteur d'amplification K=u et de la variation de déformation mécanique du corps d'épreuve v=Δεce pour un ensemble de couples {u,v} admissibles pour une application du capteur dans un pantographe, la figure 5b représente les courbes d'iso- déformations mécaniques de la surface représentée par la courbe 5a pour un ensemble de couples {u,v} admissibles pour une application du capteur dans un pantographe, la figure 6a représente schématiquement un système de mesure de force comprenant une pluralité de capteurs conformes à l'invention, la figure 6b représente schématiquement un dispositif de mesure de force comprenant une pluralité de fibres optiques alignées selon un même axe dont les réseaux de Bragg dédiés à la mesure des déformations mécaniques sont dans un même plan, conforme à l'invention et permettant en outre la mesure de couple, - la figure 6c représente schématiquement un dispositif de mesure de température à un seul réseau de Bragg maintenu précontraint et solidaire du corps d'épreuve, la figure 6d représente schématiquement un dispositif de mesure destiné préférentiellement à la mesure de déformations d'origine mécanique, dont le réseau de Bragg destiné à la compensation des effets thermiques est maintenu en précontrainte et solidaire du corps d'épreuve, la figure 6e représente schématiquement un dispositif de mesure destiné préférentiellement à la mesure de déformations dont le réseau de Bragg destiné à la mesure des déformations d'origine mécanique est maintenu dans une gaine empêchant son flambage, la figure 7a représente schématiquement une coupe transversale du mandrin spécifique permettant, selon une variante préférentielle, de fixer les extrémités du tronçon de fibre optique soumis à la déformation à mesurer, la figure 7b représente schématiquement une coupe axiale selon le plan III - III du mandrin spécifique de la figure 7a, et les figures 8a, 8b et 8c représentent divers profils de fond de rainure utilisables dans l'invention pour bloquer mécaniquement la fibre optique dans son dispositif de maintien. Un premier mode de réalisation est décrit ci-dessous à l'aide la figure 3 qui représente un dispositif 300 de mesure de forces conforme à l'invention.
Pour déterminer la force appliquée sur le corps d'épreuve 302 de ce dispositif, on mesure la déformation longitudinale Δεce de ce dernier au moyen d'une fibre optique
304 à réseau de Bragg 306.
Connaissant les propriétés thermomécaniques du corps d'épreuve, il est possible de déterminer la variation de contrainte Δσ exercée sur le dispositif à partir de la mesure de sa déformation longitudinale Δεce obéissant, en mode élastique, à la loi de Hooke :
Δσ = E . Δε ce
où E est le module dΥoung du matériau utilisé pour le corps d'épreuve. Connaissant la section S de ce corps d'épreuve à l'endroit où est mesurée la déformation longitudinale Δεœ, la variation de force ΔF exercée sur celui-ci se déduit selon la relation :
ΔF = Δσ. S
En pratique, la section S de ce corps d'épreuve n'est pas nécessairement constante. Il suffit que la force ou la contrainte uniaxiale, orientée selon la direction du tronçon de fibre sollicité, s'applique sur un tronçon de ce corps d'épreuve compris entre deux sections planes SI et S2 normales à l'axe de mesure, continues ou discontinues, et définies comme suit : - elles sont en regard l'une de l'autre de manière à ce que l'application de la force ou de la contrainte n'induise aucun moment de rotation sur le corps d'épreuve, ces sections servent d'appuis aux dispositifs de fixation du tronçon de fibre, et lui imposent son élongation, - le tronçon compris entre SI et S2 se déforme en tout point de manière élastique sans jamais atteindre le domaine de déformations plastiques.
Dans ce qui suit on appelle Lce la distance entre ces deux sections planes SI et S2 orthogonales à la direction du tronçon de fibre sollicité. Elle constitue fonctionnellement la longueur effective de ce corps d'épreuve.
Par ailleurs, il convient de noter que la déformation longitudinale Δεce mesurée est uniaxiale, c'est-à-dire qu'elle s'effectue selon un seul axe correspondant sensiblement à l'axe de la fibre optique 304. Ce dispositif est donc particulièrement intéressant pour mesurer des déformations ou efforts uniaxiaux. La déformation longitudinale infinitésimale dεœ de la longueur effective du corps d'épreuve peut alors être définie par la relation :
où dLce représente la variation infinitésimale de la longueur effective du corps d'épreuve et Lce la longueur effective du corps d'épreuve en cours d'élongation.
En intégrant la relation (3), on obtient :
Δεce = ln[l+(ΔLce/Loce)] (4)
où ΔLce représente la somme des variations de longueur infinitésimales du corps d'épreuve dLce, L0ce la longueur effective du corps d'épreuve avant élongation, Δεœ la somme des variations de déformations longitudinales infinitésimales dεce du corps d'épreuve correspondant à l'élongation ΔLce, In étant le logarithme népérien de base e~2.71828182846 tel que ln(e) = l.
De façon analogue, la déformation longitudinale infinitésimale dεfib du tronçon de fibre optique à réseau de Bragg utilisé pour mesurer des déformations peut être définie par la relation :
fib = dLfib/Lfib (5)
où dLfj représente la variation infinitésimale de la longueur effective du corps d'épreuve, Lfi la longueur effective du corps d'épreuve en cours d'élongation.
En intégrant la relation (5), on obtient :
Δεfib = ln[l+(ΔLflh U)flb)] = ln[(l+ξ.(ΔLce/L0fib)]
où L0fib est la longueur de base initiale de la fibre optique et ξ est un coefficient pratiquement égal à 1. Cette nouvelle relation (6) peut aussi s'écrire de façon à faire apparaître un facteur K égal au quotient de la longueur initiale L0ce du corps d'épreuve par la longueur initiale
L0fi de la fibre optique, ce quotient étant multiplié par le coefficient ξ (K = ξ(LOCe/l-ofib)) :
Δεfib = ln[l+ξ(Loce/Lofib)(ΔLce/Lθce)] = ln[l + K.(ΔLœ/Loce)] (7)
Finalement, en supposant que la déformation longitudinale Δεœ du corps d'épreuve est sensiblement inférieure à 1, on peut effectuer un développement en série à l'ordre 1 de l'expression (7) pour obtenir la relation (8) suivante :
Δεfib = K.Δεce + θ(K.Δεce) (8)
Ainsi, la déformation mesurée par la fibre optique à réseau de Bragg 304 est amplifiée, au premier ordre, d'un facteur K égal au quotient de la déformation Δεfib du tronçon de la fibre optique 304 utilisé pour effectuer les mesures, par la déformation Δεce du corps d'épreuve 302.
En choisissant un rapport K adapté, on peut ainsi amplifier de ce facteur K les déformations du corps d'épreuve 302 mesurées par la fibre optique 304 afin d'obtenir une résolution de mesure améliorée. D'une façon générale, un dispositif selon l'invention aura un facteur d'amplification d'autant plus grand que les conditions ci-dessous sont vérifiées : le produit du module d'Young du matériau constituant le corps d'épreuve par la plus petite section soumise à déformation est le plus faible possible, sans toutefois permettre à ce corps d'épreuve de se déformer en un quelconque de ses points de façon plastique, la longueur effective du corps d'épreuve L0ce est la plus grande possible pour une longueur donnée du tronçon de fibre Lofi .
En outre, s'il est naturel pour l'homme du métier de concevoir un corps d'épreuve de section constante, l'invention permet aussi d'utiliser des corps d'épreuve de sections variables dès lors que son comportement en tout point compris entre les sections SI et S2 reste dans le domaine élastique sans jamais atteindre le domaine de déformations plastiques.
Pour obtenir un rapport K supérieur à un, le dispositif 300 comprend deux éléments saillants 310, orientés l'un vers l'autre, fixant la fibre optique 304 à une première extrémité 312 et à une seconde extrémité 314 telles que la longueur au repos Lofib du tronçon de la fibre optique soumise à des élongations est inférieure à la longueur effective au repos L du corps d'épreuve provoquant ces élongations. II convient de signaler qu'un dispositif de mesure tel que décrit à la figure 3 présente l'avantage, par rapport à une jauge de déformation fixée sur un corps d'épreuve, de permettre l'utilisation d'éléments saillants, ou saillies 310 réduisant la longueur de la fibre optique soumise à des élongations.
Dans cette réalisation préférée, ces éléments saillants sont indéformables vis-à-vis des actions extérieures à mesurer auxquelles est soumis le corps d'épreuve ce qui permet, notamment, de fixer le rapport K de façon indépendante des propriétés des matériaux composants ces saillies.
L'indice effectif ne et le pas Λ du réseau de Bragg 306 sont dépendants de la température. De façon à compenser les effets de la température sur la mesure spectrale, on utilise un deuxième réseau de Bragg 316, qui est placé à la même température que le premier réseau de Bragg 306, dont les variations de déformations ne sont dues qu'à la dilatation thermique induite par des variations de température. En d'autres termes, ce deuxième réseau de Bragg
316 n'est pas sensible aux déformations d'origine mécanique du corps d'épreuve de telle sorte que, à partir de la connaissance de la mesure spectrale de sa longueur d'onde de Bragg caractéristique, on peut corriger les mesures spectrales du premier réseau de Bragg 306 de façon à compenser les effets de la température sur l'indice effectif ne et le pas du réseau Λ.
Selon une variante, représentée à la figure 4, un dispositif 400 de mesure de forces comprend des moyens 402, tels que des conduits de ventilation, destinés à homogénéiser la température au sein du dispositif, et notamment entre le réseau de Bragg 404 destiné à la mesure de la force et le second réseau de Bragg 406 destiné à la compensation des effets thermiques du premier réseau de Bragg.
Il est important de remarquer que les figures 3 et 4 montrent des corps d'épreuve de formes diverses, et notamment ne présentant pas une section constante sur leur longueur d'élongation.
Par ailleurs, comme indiqué antérieurement, il convient de choisir un rapport K d'amplification tel que la déformation de la fibre optique n'atteigne pas sa limite de rupture.
A cet effet, on rappelle qu'une fibre optique à matrice en silice Si02 présente υne limite élastique en déformations longitudinales de l'ordre de cinq pour cent en traction et au moins de quinze pour cent en compression comme le précise l'article de G.A. Bail et W.W. Morey paru le 1er décembre 1994 dans la revue « Optics Letters », volume 19, n°23 et intitulé « Compression-tuned single-frequency Bragg grating fiber laser ».
Par ailleurs, une fibre optique en plastique présente une limite élastique en déformations longitudinales en traction généralement supérieure avec une limite de rupture en traction pouvant couramment dépasser cent pour cent. Une telle élasticité est due au phénomène de durcissement structural de la matrice polymère provoqué par l'orientation préférentielle dans la direction d'application de la force des chaînes macromoléculaires du polymère.
Comme décrit précédemment à l'aide de la figure 2 ces valeurs sont nettement supérieures à celles d'un composé, tel qu'un métal, une céramique ou un matériau piezo-électrique pouvant former le corps d'épreuve, dont les déformations doivent rester dans le domaine élastique pour ne pas présenter d'erreur de mesure. Typiquement, cette limite élastique en déformation uniaxiale est de l'ordre de 0,2 pour cent pour un acier standard, et de 0,35 pour cent pour un acier à haute limite élastique. Dans l'exemple particulier d'un corps d'épreuve réalisé dans un acier dont la limite élastique est proche de 0,2 pour cent, et muni d'une fibre optique à matrice en silice Si02 dans laquelle est inscrit un réseau de Bragg, il est possible d'atteindre un facteur d'amplification K supérieur à 25 (K > 5/0,2) pour une utilisation de la fibre optique uniquement en traction, et supérieur à 100 (K > (5+15)/0,2) si cette fibre est utilisée en compression.
Etant donnée la faculté d'une fibre optique plastique à pouvoir s'élonger encore plus, ce facteur K d'amplification peut être encore plus grand dans le cas de l'utilisation d'une fibre optique plastique.
Par ailleurs, lorsque le corps d'épreuve est constitué d'un matériau ne présentant que de très faibles déformations, l'invention permet d'amplifier ces dernières pour effectuer leur mesure. Tel est le cas, dans ce second exemple, des supports d'archet d'un pantographe dont les déformations longitudinales induites par les efforts verticaux exercés sur lui, notamment, par le fil caténaire, sont de l'ordre de 10"4 pour cent, c'est-à-dire un allongement de un micromètre pour une longueur de un mètre, alors que leur limite de déformation élastique est de Tordre de 0,2 pour cent.
Selon un autre exemple, cette amplification peut être utilisée sur une cellule de force utilisée avec un dispositif de tests rhéologiques, en traction et/ou compression, sur un matériau dont l'étendue de mesure et la résolution peuvent être amplifiées avec l'avantage d'une mesure unidirectionnelle indépendante des effets de contraction transverses de Poisson.
L'invention permettant d'augmenter la sensibilité de la mesure, elle convient particulièrement dans les cas où le corps d'épreuve ne peut présenter des déformations de l'ampleur habituellement utilisée en extensométrie, par exemple lorsqu'il est nécessaire d'introduire le moins possible de plasticité ou de fragilité. Dès lors, on peut fixer une fibre optique à réseau de
Bragg en deux points d'un corps d'épreuve, de telle sorte que les variations de déformations de ce corps d'épreuve soient transmises de façon amplifiée vis-à-vis de la fibre optique à réseau de Bragg, le facteur d'amplification K étant choisi de telle sorte que la limite de rupture de la fibre optique ne soit pas atteinte.
Un dispositif conforme à l'invention présente une résolution de mesure accrue par rapport à un dispositif connu puisque les déformations longitudinales relatives de la portion de fibre optique située entre ces deux éléments sont, pour des élongations identiques du corps de mesure, plus amples qu'avec un dispositif classique.
En d'autres termes, le capteur doit être dimensionné pour que la déformation subie par la fibre optique à réseau de Bragg soit inférieure à son seuil de tolérance, c'est-à-dire inférieure au niveau maximal de déformations admissible dont la valeur dépend de la durée de vie souhaitée du dispositif.
Pour définir cette valeur, on peut utiliser les conditions de Weibull, par exemple décrites dans l'article de M. Jean Phalippou intitulé « Verres, Propriétés et applications », AF 3 601, Traité « Sciences fondamentales », Techniques de l'Ingénieur, 249, Rue de Crimée, F-75925 Paris Cedex 19.
Le dimensionnement et le choix des éléments formant le dispositif 300 peut aussi prendre en compte la relation entre la variation de force ΔF appliquée sur le corps d'épreuve et la variation de déformation mécanique Δεfib de la fibre optique.
A cet effet, on peut considérer, par exemple pour un tube corps d'épreuve de géométrie cylindrique, que la variation de déformation mécanique Δεfi de la fibre optique est mesurée par une relation du type :
Δεfib = ln[l+ξ(Loce/ ofib)-(exp(ΔF/(π.Et.(Φot-eot).eot))-l)] (9)
où ΔF est la variation de force extérieure appliquée sur le corps d'épreuve, Et le module dΥoung du tube corps d'épreuve, Φot le diamètre extérieur du tube utilisé pour le corps d'épreuve, eo l'épaisseur de ce tube et ξ une constante considérée comme égale à un par la suite.
La relation (9) peut être considérée comme une fonction f(u,v) de deux variables u et v telles que : t = f(u,v) (10) qui peut s'étudier mathématiquement en considérant les paramètres t, u, v et j définis suivant les relations : t=Δεfib, v=ΔF/[Et.(Φot-eot).e0t)] et j qui représente un jeu entre le corps d'épreuve et le dispositif de maintien de la fibre permettant son assemblage. Une telle étude a été effectuée sur le domaine de définition Df{u,v). de la fonction f, c'est-à-dire le domaine des valeurs admissibles pour u et v :
(H) En considérant les valeurs indiquées dans les tableaux 1 et 2 à la fin de la présente description, l'étude de cette fonction a permis déterminer les conditions optimales {u,v}opt pour lesquelles la déformation longitudinale de la fibre optique Δεfib est maximale, traduisant les conditions d'amplification maximale de la déformation mécanique du corps d'épreuve, à savoir :
{M;V} ( = [ma*fc max(ΔF) 1 (12)
° [min(Eo . ' min(E min( ) -min(e0 min(e0,)J
Le maximum des déformations mécaniques longitudinales de la fibre optique est alors obtenu pour des conditions telles que :
Le résultat numérique de l'étude de cette fonction est représenté sur la figure 5a en fonction de u=K (axe 500), de v (axe 502) et de la valeur de la déformation mécanique Δεfi obtenue.
La relation (13) permet de définir, parmi les matériaux candidats à l'application spécifique donnée, des conditions optimales d'amplification des déformations longitudinales d'une fibre optique à réseaux de Bragg conformément à l'invention, à savoir : un tube corps d'épreuve de module dΥoung Εt le plus petit possible, une longueur effective du tube corps d'épreuve L0ce la plus grande possible, un diamètre extérieur de tube corps d'épreuve Φot le plus petit possible, une épaisseur de tube corps d'épreuve eo la plus petite possible. Par ailleurs, les fonctions précédemment indiquées permettent de déterminer l'ensemble des couples {u,v} permettant d'obtenir une déformation de fibre optique Δεfib, donnée pour un facteur d'amplification K donné, comme montré sur la figure 5b qui est un exemple de courbes d'iso- déformations mécaniques.
Les longueurs L0g et L0d des deux éléments saillants 310 de fixation de la fibre optique, L0ce du corps d'épreuve ainsi que la longueur L0fjb de la fibre optique peuvent être déterminées de façon particulièrement optimale, tout comme les coefficients d'expansion ou de dilatation thermique αce du corps d'épreuve, αg de l'élément saillant 310 gauche, αd de Télément saillant 310 droit et αf de la fibre optique.
De fait, la compensation des contraintes mécaniques ayant pour origine la dilatation thermique des différents éléments constitutifs du capteur conduit à choisir des coefficients d'expansion thermique respectent au mieux l'égalité :
αce. Loce = αg. Log + αf. L0fjb + αd. Lod
D'autre part, pour limiter les erreurs de mesure engendrées par le comportement mécanique non reproductible en cisaillement de la gaine polymère protectrice de la fibre optique lorsque celle-ci est soumise à déformation mécanique en traction ou en compression et maintenue serrée dans ses éléments saillants de fixation 310, il apparaît que les longueurs Loce du corps d'épreuve, L0g et od des éléments saillants gauche et droit de fixation de la fibre optique et L0fib de la fibre optique doivent au mieux respecter l'égalité :
Log = Lod = Lfjfjb/2 = Lfjce/4
En effet, une telle relation permet de minimiser les effets de cisaillement de la gaine en polymère de la fibre optique, et plus généralement de tout revêtement deformable, et d'accroître la durée de vie de cette fibre optique en respectant les conditions de Weibull déjà mentionnées.
A titre d'exemple, un dispositif satisfaisant aux critères précédemment mentionnés pourrait comprendre un corps d'épreuve en Duralumin AU4G (Et~73GPa), une longueur effective du corps d'épreuve (L0ce) de 20 mm, un diamètre extérieur du corps d'épreuve (Φ0t) de 6,2 mm, une épaisseur du corps d'épreuve (e0t) de 1 mm, une longueur de fibre optique (Lofib) de 3 mm et une longueur des éléments saillants fixateurs du corps d'épreuve (L0g et L0d) de 8,5 mm chacun.
Selon une autre utilisation d'un dispositif conforme à l'invention, on détermine des conditions telles que l'élongation mécanique d'origine thermique induite sur la fibre optique par le corps d'épreuve et les deux dispositifs de maintien soit amplifiée afin d'améliorer la résolution de mesure de variations de températures.
Ainsi, au lieu d'atténuer les effets mécaniques induits par la variation de température sur la fibre optique, ce qui n'est pas la configuration recherchée lorsque le dispositif est configuré pour la mesure préférentielle d'une déformation mécanique ou d'une force, on configure le dispositif selon des conditions telles que la fibre optique présente de fortes variations de déformations d'origine mécanique en cas de variations de la température.
A cet effet, il convient que le corps d'épreuve ait un coefficient d'expansion thermique αce le plus grand possible, et notamment supérieur au coefficient d'expansion thermique ctf de la fibre optique et à ceux αg et αd des deux éléments de fixation
310 de la fibre optique.
Ainsi, la déformation totale, c'est-à-dire la somme des déformations d'origine mécanique et thermique de la fibre optique à réseau de Bragg, est le résultat amplifié de la déformation thermique du corps d'épreuve, permettant de ce fait une meilleure résolution de la mesure de la température par le réseau de Bragg.
Par ailleurs, pour que cette amplification soit, pour une même géométrie de dispositif, la plus grande possible, il est nécessaire que les coefficients d'expansion thermique αg et αd des deux éléments de fixation de la fibre optique soient égaux et les plus faibles possibles.
Il est à noter que dans ce cas particulier où seule la mesure de la température est recherchée, il n'est pas indispensable, comme montré sur la figure 6c, de pourvoir le dispositif d'un réseau de Bragg de compensation thermique tel que représenté par la figure 4.
Cette configuration permet de tirer parti des avantages procurés par une utilisation en série de tels capteurs de température : utilisation d'une fibre unique, sans nécessité d'utiliser des dispositifs tels des coupleurs optiques, pour effectuer des branchements propres à chaque capteur monté en parallèle ayant pour effet, à chaque division du circuit optique, de diviser entre chacune des branches la puissance optique totale transmise au travers de la fibre optique.
Dans une réalisation de l'invention, on utilise un système 600 (figure 6a) de mesures comprenant différents dispositifs 602 conformes à l'invention disposés en parallèles pour effectuer diverses mesures. Une telle application présente l'avantage de pouvoir être effectuée à l'aide d'une unique fibre optique 604, présentant des branchements 606 propres à chaque dispositif 602, au sein desquels est transmis un rayonnement électromagnétique selon différentes longueurs d'ondes.
Dès lors, en considérant que chaque dispositif présente au moins une longueur d'onde de Bragg distincte, il est possible de traiter les informations spectralement multiplexées relatives à chaque dispositif 602 par un même système d'analyse spectrale 608 non représenté en détail. Ce système 608 peut être déporté loin des points de mesure.
Il est aussi possible de réaliser un système de mesure comportant plusieurs fibres optiques distinctes comportant chacune au moins un dispositif selon l'invention. Dans ce cas, la lecture des diverses fibres s'effectue séquentiellement par démultiplexage temporel, la lecture des longueurs d'ondes caractéristiques de chacun de leur(s) réseau(x) de Bragg étant réalisée par démultiplexage spectral comme déjà évoqué. Pour compenser les dispersions de comportement thermomécaniques entre les dispositifs pouvant provenir d'une dispersion pendant leur processus de fabrication, il est possible d'utiliser un dispositif 610 isolé des contraintes mécaniques extérieures et uniquement soumis aux variations de température comme un dispositif de référence afin de référencer les mesures fournies par les autres dispositifs soumis, quant à eux, à des efforts ou à des déformations extérieurs à mesurer.
Selon une réalisation de l'invention, on utilise une pluralité de réseaux de Bragg au sein d'un corps d'épreuve de façon à définir une déformation de ce corps d'épreuve à partir d'une moyenne des déformations longitudinales mesurées par chaque réseau de Bragg.
Une telle réalisation présente l'avantage de fournir une mesure de meilleure résolution de la valeur recherchée dans un rapport l/racine(n) où n est le nombre de réseaux de Bragg considérés.
Ce mode de réalisation peut être réalisé au moyen d'un tronçon de fibre optique comprenant une pluralité de réseaux de Bragg ou au moyen d'une pluralité de tronçons de fibres optique à réseaux de Bragg.
Dans ce dernier cas, conformément au dispositif de mesure de forces représenté sur la figure 6b, si ces fibres optiques à réseaux de Bragg sont dans un même plan, alignées suivant une même direction, il est possible d'utiliser les mesures fournies par chacun des réseaux de Bragg pour déterminer la valeur d'un couple s'exerçant sur le corps d'épreuve normalement au plan défini par les fibres optiques. A cet effet, la déformation mécanique moyenne mesurée par chacun de ces réseaux de Bragg pour l'ensemble des fibres optiques permet d'évaluer la valeur de l'effort uniaxial ayant conduit à cette déformation mécanique moyenne, d'une part, tandis que, d'autre part, les écarts à cette valeur moyenne de chacune des déformations mesurées par chaque fibre, permettent d'évaluer la valeur du couple s'exerçant sur le corps d'épreuve normalement au plan défini par les fibres optiques.
La fixation de la fibre optique au corps d'épreuve est d'une grande importance pour la fiabilité des mesures et leur reproductibilité. A cet effet, il semble préférable d'utiliser un procédé de fixation de la fibre optique au corps d'épreuve au moyen d'un pincement mécanique qui présente divers avantages tels que le maintien de la zone de serrage, le démontage aisé de la fixation, par exemple pour précontraindre mécaniquement de façon précise la fibre optique, évitant ainsi de faire subir à la fibre optique des déformations mécaniques inutiles et néfastes pour sa durée de vie, le faible encombrement du dispositif et la possibilité d'utiliser des profils de rainures divers pour coincer les fibres.
En outre, l'utilisation d'un mandrin spécifique 700 (figures 7a et 7b) de fixation, comprenant trois mors 4 ayant une courbure progressive 704 en bout du dispositif de serrage, permet de maintenir sans glissement une fibre optique avec des forces de traction ou de compression s'exerçant sur celle-ci particulièrement élevées, sans l'endommager.
Ce dispositif spécifique 700 comporte au moins trois mors 701 répartis autour d'un axe principal 702 confondu avec Taxe de la fibre, chaque mors comprenant une surface intérieure constituée d'une portion centrale 703 et de deux portions d'extrémité 704, les portions d'extrémité étant réalisées de manière à prolonger la portion centrale en s'écartant progressivement de Taxe principal du dispositif, et comportant chacune au moins une partie en contact avec la gaine mécaniquement deformable 710 de la fibre 711 lorsque le mors occupe une position de serrage.
A sa position de serrage maximum, ce dispositif présente un diamètre 715 laissé libre par les mors serrés au maximum qui est un peu supérieur au diamètre du seul coeur
716 de la fibre.
Plusieurs réseaux de Bragg peuvent être inscrits de façon successive dans une même fibre. Si les longueurs d'onde λBι, λB2... λBn de Bragg de ces réseaux sont suffisamment éloignées entre elles, ces longueurs d'ondes λBi/ λB2... λBn peuvent aisément être dissociées sans interférer entre elles de façon à utiliser une seule fibre pour effectuer diverses mesures.
La mesure s'effectue en détectant soit la longueur d'onde de la lumière réfléchie vers la source par le réseau de Bragg (détection par réflexion), soit la longueur d'onde manquante dans la lumière transmise à l'extrémité distale de la fibre optique (détection par transmission).
Les profils de fond de rainure utilisables pour maintenir une fibre optique sont, dans Tordre de préférence, de façon idéale un profil circulaire, et compte tenu des difficultés et des coûts d'usinage, un profil carré (figure 8a), équilatéral
(figure 8b) et à angle droit (figure 8c) qui présentent les avantages d'être plus simples à réaliser. Tout autre profil de fond de rainure plus complexe (à
N cotés par exemple) peut être utilisé mais son intérêt en terme de maintien mécanique ou de faible endommagement mécanique de la fibre optique reste limité par rapport aux profils de fond de rainure précédents.
La déformation plastique de la portion ou du tronçon de fibre optique considéré, si celle-ci est possible, est autorisée dans un tel dispositif à condition cependant que cette portion de fibre optique ainsi déformée ne présente pas de flambage ce qui est le cas si la fibre optique est toujours sollicitée en traction.
Ceci peut être particulièrement intéressant dans le cas de fibres optiques plastiques dont la matrice est par nature faite d'un matériau non fragile et dont le domaine de déformations plastiques est très étendu. Dans le cas où la tension mécanique de cette portion de fibre optique, lors du retour élastique du corps d'épreuve ou de sa sollicitation mécanique inverse (traction ou compression), passe par zéro et présente un début de flambage, la mesure alors produite par le réseau de Bragg n'est plus en relation avec celle du corps d'épreuve et devient sans intérêt.
Il reste alors possible (figure 6e) de conditionner la portion de fibre optique 656 comprenant au moins un réseau de Bragg destiné à la mesure de la déformation mécanique dans un dispositif guide deformable 652, par exemple un tube d'un diamètre intérieur proche du diamètre extérieur de la fibre optique, afin qu'elle ne puisse plus flamber, permettant de prolonger continûment sa déformation mécanique longitudinale en compression : dans ce cas, la fibre optique étant toujours mécaniquement guidée selon un même axe, sa déformation est toujours en même relation directe avec celle du corps d'épreuve 654 au travers du coefficient K.
Ce conditionnement particulier de la fibre optique permettant sa sollicitation en compression présente l'avantage de pouvoir exploiter, en plus du domaine de déformations longitudinales en traction, le domaine de déformations longitudinales en compression de la fibre optique, augmentant d'autant l'étendue des mesures accessibles.
Par exemple, le domaine de déformations élastiques en compression d'une fibre optique à matrice silice Si02 est au moins trois fois plus étendu que son domaine de déformations élastiques en traction, permettant de multiplier par au moins quatre l'étendue de mesure potentiellement accessible au travers du facteur K, et par conséquent la résolution de mesure du dispositif.
La présence éventuelle d'une déformation plastique résiduelle sur la fibre optique à réseau de Bragg ne dégrade pas dans une première approximation le facteur d'amplification K, mais peut déplacer le point médian de l'étendue de mesure dans le cas où le flambage de cette portion de fibre optique n'est pas contenu.
Selon un autre mode de réalisation d'un dispositif destiné préférentiellement à la mesure de déformations d'origine mécanique (figure 6d), la fibre optique 644 est munie : - d'au moins un réseau de Bragg 642 isolé des actions mécaniques extérieures s'exerçant sur le dispositif destiné à la compensation des effets thermiques et conditionné de façon à être maintenu en tension mécanique entre deux dispositifs de maintien 640 et 641 dont au moins un d'entre eux est saillant, et au moins un réseau de Bragg 646 maintenu en précontrainte mécanique négative positive ou nulle par deux dispositifs de maintien 649 et 650 dont au moins un d'entre eux est saillant, et aligné avec ses deux points d'ancrage 647 et 648, caractérisé en ce que cette portion de fibre peut être maintenue guidée dans un dispositif de maintien anti-flambage tel que décrit en figure 6e. Cette configuration de dispositif présente le double avantage : de permettre un multiplexage en série de tels dispositifs car le réseau de Bragg 642 dédié à la compensation des effets thermiques est totalement isolé des actions mécaniques extérieures s'exerçant sur le dispositif, ce qui permet tirer parti des avantages intrinsèques procurés par une telle utilisation : utilisation d'une fibre unique, sans nécessité d'utiliser des dispositifs tels des coupleurs optiques, pour effectuer des branchements propres à chaque capteur monté en parallèle ayant pour effet, à chaque division du circuit optique, de diviser entre chacune des branches la puissance optique totale transmise au travers de la fibre optique, d'améliorer la précision du dispositif, car la compensation thermique d'un tel dispositif intègre en plus des solutions précédentes au travers de la structure 643, les effets de la dilatation thermique du corps d'épreuve s'exerçant de façon similaire sur le(s) réseau(x) de Bragg 646 dédiés à la mesure de la déformation mécanique. Un exemple concret d'application de l'invention réside dans son utilisation, au sein d'un pantographe, pour mesure la force exercer sur ce dernier par son action sur un caténaire.
En effet, l'action d'un caténaire sur un pantographe entraîne une faible déformation qui, grâce à l'invention, peut être suffisamment amplifiée pour être mesurée afin de contrôler cette action et assurer ainsi un contact optimal entre le pantographe et le caténaire.
Tableau 1
Tableau 2
En bref :
1. L'invention concerne ainsi un dispositif de mesure de déformations uniaxiales comprenant un tronçon de fibre optique muni d'au moins un réseau de Bragg aligné selon la direction de l'axe de mesure, et un corps d'épreuve soumis aux déformations à mesurer et les transmettant au tronçon de fibre optique, ce dispositif étant destiné à être mis dans des conditions de fonctionnement où la fibre est excitée par une onde lumineuse comportant la longueur d'onde de Bragg ou les longueurs d'onde de Bragg que peuvent atteindre tous les réseaux de Bragg inscrits dans cette fibre et où cette fibre est reliée à des moyens de lecture de la longueur d'onde de Bragg de chacun de ces réseaux et, s'il y a plusieurs réseaux de Bragg, de moyens de démultiplexage, ce dispositif étant caractérisé en ce que : les points de fixation aptes à soumettre ce tronçon de fibre à une précontrainte négative, positive ou nulle, et à lui transmettre les élongations du corps d'épreuve, sont séparés par une distance (Lfi ) présentant une variation (ΔLfi ) lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur effective (Lœ) du corps d'épreuve présente une élongation (ΔLce), lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur (Lfib) du tronçon de fibre optique et la longueur effective (Lœ) du corps de mesure sont telles que la déformation longitudinale (ΔLfi /Lfi ) du tronçon de la fibre optique est strictement supérieure à la déformation (ΔLce/Lce) du corps d'épreuve qui en est à l'origine, définissant ainsi un coefficient d'amplification K strictement supérieur à 1, et égal au premier ordre au quotient (ΔLfib/Lfi ) / (ΔLce/LCe).
Le dispositif peut aussi présenter les caractéristiques suivantes :
2. La longueur (Lfib) du tronçon de fibre optique est inférieure à la longueur (Lce) du corps d'épreuve.
3. La variation de longueur (ΔLfib) du tronçon de fibre optique est égale à la variation de longueur (ΔLce) du corps d'épreuve.
4. La fibre optique comprend une pluralité de réseaux de Bragg affectés à la mesure des déformations d'un même corps d'épreuve, et la longueur (Lfib) du tronçon de fibre optique est supérieure à la plus petite distance le long de la fibre optique qui comporte tous ces réseaux de Bragg.
5. La précontrainte place le tronçon de fibre optique en tension, et les déformations à mesurer augmentent cette tension.
6. La précontrainte place le tronçon de fibre optique en tension, les déformations à mesurer diminuent cette tension, et la précontrainte initiale est suffisante pour que le tronçon de fibre optique reste toujours tendu même lorsqu'il est soumis à la plus grande déformation de son étendue de mesure.
7. La précontrainte place le tronçon de fibre optique en compression, et ce tronçon de fibre est entouré d'un dispositif anti-flambage.
8. Le dispositif anti-flambage comporte au moins un tronçon d'une gaine rigide deformable entourant la fibre optique et coulissant sur elle avec un jeu le plus faible possible, ces tronçons étant séparés entre eux par des pièces cylindriques ou toriques en matériau suffisamment élastique pour autoriser la plus forte déformation en compression que peut atteindre le tronçon de fibre optique sur on étendue de mesure. 9. Un dispositif de mesure de forces ou de contraintes mécaniques comporte des moyens aptes à transformer ces forces ou ces contraintes mécaniques en une déformation uniaxiale mesurée par un dispositif conforme à l'un des points 1 à 8. 10. Le dispositif selon le point 9, comprend en outre un réseau de Bragg, sur un second tronçon de fibre optique, ce réseau étant découplé des efforts mécaniques extérieurs à mesurer, et soumis à la même température que le(s) réseau(x) de Bragg du premier tronçon dédié(s) à la mesure des efforts mécaniques déformant le corps d'épreuve, ceci afin d'effectuer une compensation des effets thermiques sur la mesure.
11. Un dispositif de mesure de températures comporte des moyens aptes à transformer ces températures en une déformation uniaxiale mesurée par un dispositif conforme à l'un des points 1 à 8.
12. Le dispositif comprend des moyens aptes à homogénéiser la température des réseaux de Bragg affectés à un même corps d'épreuve.
13. Les moyens aptes à homogénéiser la température permettent la libre circulation d'un fluide caloporteur.
14. Le corps d'épreuve est de section constante.
15. Le corps d'épreuve est de section variable. 16. Le dispositif comprend au moins un élément saillant, solidaire du corps d'épreuve, auquel est fixée la fibre optique, cet élément saillant étant indéformable vis-à-vis des actions extérieures à mesurer auxquelles est soumis le corps d'épreuve.
17. Le corps d'épreuve, la fibre optique et Télément (ou les éléments) saillant(s) vérifient la relation :
α. ce - Loce — Otg. Log + Otf. Lofj + Otd. Li Od
où αce est le coefficient d'expansion thermique du corps d'épreuve et L0ce sa longueur, αg et αd les coefficients d'expansion thermique du ou des éléments saillants et L0g et L0d leur longueur, et αf le coefficient d'expansion thermique de la fibre optique et L0rjb sa longueur en pré-contrainte mécanique entre ses deux points d'accrochage.
18. Pour toute portion de fibre optique maintenue précontrainte entre 2 dispositifs de fixation, le corps d'épreuve, la fibre optique et les éléments vérifient la relation :
Lθg = Lfjd = ofib/2 = Loce/4
où L0ce est la longueur effective du corps d'épreuve, L0g et L0d la longueur des éléments saillants, et L0fib la longueur de la fibre optique en pré-contrainte mécanique entre les deux éléments saillants.
19. A chacune de ses extrémités, le tronçon de fibre optique est fixé à un dispositif de fixation comportant un mandrin spécifique (700) comportant au moins trois mors (701) répartis autour d'un axe principal (702) confondu avec Taxe de la fibre, chaque mors comprenant une surface intérieure constituée d'une portion centrale (703) et de deux portions d'extrémités (704), les portions d'extrémité étant réalisées de manière à prolonger la portion centrale en s'ecartant progressivement de Taxe principal du dispositif, et comportant chacune au moins une partie en contact avec la gaine mécaniquement deformable (710) de la fibre (711) lorsque le mors occupe une position de serrage. 20. Le diamètre (715) laissé libre par les mors serrés au maximum est un peu supérieur au diamètre du seul coeur (716) de la fibre.
21. Le corps d'épreuve est solidaire d'un, ou incorporé dans un, pantographe. 22. Un dispositif de mesure de forces ou de contraintes mécaniques selon le point 9 ou 10 dans lequel le produit du module d'Young du matériau constituant le corps d'épreuve par la plus petite section soumise à déformation est le plus faible possible, sans toutefois permettre à ce corps d'épreuve de se déformer en un quelconque de ses points de façon plastique.
23. Un dispositif de mesure de températures conforme à l'un des points 11, 12 ou 13 selon lequel le coefficient d'expansion thermique du corps d'épreuve αce est le plus grand possible, et notamment supérieur au coefficient d'expansion thermique αf de la fibre optique et à ceux αg et αd des deux éléments de fixation (310) de la fibre optique.
24. Un système de mesures de déformations, comportant plusieurs fibres optiques, chacune munie d'au moins un dispositif selon l'un des points 1 à 23, qui comporte un dispositif de démultiplexage temporel permettant de lire successivement les signaux de chacune des fibres, et en ce que ces signaux sont ensuite démultiplexés spectralement pour obtenir la longueur d'onde caractéristique de chacun des réseaux de Bragg.
25. Un dispositif selon l'un des points 22 ou 23 qui mesure la résultante des interactions mécaniques extérieures agissant sur un pantographe.

Claims

REVENDICATIONS
1. Dispositif de mesure de déformation uniaxiales comprenant un tronçon de fibre optique muni d'au moins un réseau de Bragg aligné selon la direction de Taxe de mesure, et un corps d'épreuve soumis aux déformations à mesurer et les transmettant au tronçon de fibre optique, ce dispositif étant destiné à être mis dans des conditions de fonctionnement où la fibre est excitée par une onde lumineuse comportant la longueur d'onde de Bragg ou de les longueurs d'onde de Bragg que peuvent atteindre tous les réseaux de Bragg inscrits dans cette fibre et où cette fibre est reliée à des moyens de lecture de la longueur d'onde de Bragg de chacun de ces réseaux et, s'il y a plusieurs réseaux de Bragg, de moyens de démultiplexage, ce dispositif étant caractérisé en ce que : les points de fixation aptes à soumettre ce tronçon de fibre à une précontrainte négative, positive ou nulle, et à lui transmettre les élongations du corps d'épreuve, sont séparés par un distance (Lflb) présentant une variation (Δ b) lorsque le corps d'épreuve est sollicité par la déformation à mesurer), la longueur effective (Ue) du corps d'épreuve présente une élongation (Δl_ce), lorsque le corps d'épreuve est sollicité par la déformation à mesurer, la longueur (U ) du tronçon de fibre optique et la longueur effective ( e) du corps de mesure sont tels que la déformation longitudinale (Δ b/ b) du tronçon de la fibre optique est strictement supérieure à la déformation (ΔLœ/l-ce) du corps d'épreuve qui en est à l'origine, définissant ainsi un coefficient d'amplification K strictement supérieur à 1, et égal au premier ordre au quotient
2. Dispositif selon la revendication 1 caractérisé en ce que la longueur b) du tronçon de fibre optique est inférieure à la longueur (Lce) du corps d'épreuve.
3. Dispositif selon Tune des revendications précédentes caractérisé en ce que la variation de longueur (ΔLfi ) du tronçon de fibre optique est égale à la variation de longueur (Δl_ce) du corps d'épreuve.
4. Dispositif selon la revendication 1, 2 ou 3, caractérisé en ce que la fibre optique comprend une pluralité de réseaux de Bragg affectés à la mesure des déformations d'un même corps d'épreuve, et en ce que la longueur ( b) du tronçon de fibre optique est supérieure à la plus petite distance le long de la fibre optique qui comporte tous ces réseaux de Bragg.
5. Dispositif selon la revendication 1, 2, 3 ou 4 caractérisé en ce que la précontrainte place le tronçon de fibre optique en tension, et en ce que les déformations à mesurer augmentent cette tension.
6. Dispositif selon la revendication 5, caractérisé en ce que la précontrainte place le tronçon de fibre optique en tension, en ce que les déformation à mesurer diminuent cette tension, et en ce que la précontrainte initiale est suffisante pour que le tronçon de fibre optique reste toujours tendu même lorsqu'il est soumis à la plus grande déformation de son étendue de mesure.
7. Dispositif selon la revendication 1, 2, 3 ou 4 caractérisé en ce que la précontrainte place le tronçon de fibre optique en compression, et en ce que ce tronçon de fibre est entouré d'un dispositif anti-flambage.
8. Dispositif selon la revendication 7, caractérisé en ce que le dispositif anti-flambage comporte au moins un tronçon d'une gaine rigide deformable entourant la fibre optique et coulissant sur elle avec un jeu le plus faible possible, ces tronçons étant séparés entre eux par des pièces cylindriques ou toriques en matériau suffisamment élastique pour autoriser la plus forte déformation en compression que peut atteindre le tronçon de fibre optique sur on étendue de mesure.
9. Dispositif de mesure de forces ou de contraintes mécaniques comportant des moyens aptes à transformer ces forces ou ces contraintes mécaniques en une déformation uniaxiale mesurée par un dispositif conforme à Tune quelconque des revendications 1 à 8.
10. Dispositif selon la revendication 9, caractérisé en ce qu'il comprend en outre un réseau de Bragg, sur un second tronçon de fibre optique, ce réseau étant découplé des efforts mécaniques extérieurs à mesurer, et soumis à la même température que le(s) réseau(x) de Bragg du premier tronçon dédié(s) à la mesure des efforts mécaniques déformant le corps d'épreuve, ceci afin d'effectuer une compensation des effets thermiques sur la mesure.
11. Dispositif de mesure de températures comportant dans moyens aptes à transformer ces températures en une déformation uniaxiale mesurée par un dispositif conforme à Tune quelconque des revendications 1 à 8.
12. Dispositif selon Tune quelconque des revendications 1 à 11 caractérisé en ce qu'il comprend des moyens aptes à homogénéiser la température des réseaux de Bragg affectés à un même corps d'épreuve.
13. Dispositif selon la revendication 12 caractérisé en ce que les moyens aptes à homogénéiser la température permettent la libre circulation d'un fluide caloporteur.
14. Dispositif selon Tune des revendications précédentes caractérisé en ce qu'il comprend un corps d'épreuve de section constante.
15. Dispositif selon Tune des revendications précédentes caractérisé en ce qu'il comprend un corps d'épreuve de section variable.
16. Dispositif selon Tune des revendications précédentes caractérisé en ce qu'il comprend au moins un élément saillant, solidaire du corps d'épreuve, auquel est fixée la fibre optique, cet élément saillant étant indéformable vis-à-vis des actions extérieures à mesurer auxquelles est soumis le corps d'épreuve.
17. Dispositif selon la revendication 16 caractérisé en ce que le corps d'épreuve, la fibre optique et Télément (ou les éléments) saillant(s) vérifient la relation : Oce.Loce = ≈g-l-Og + CCf . l_ofib + ≈d.Lod où αce est le coefficient d'expansion thermique du corps d'épreuve et ce sa longueur, αg et α les coefficients d'expansion thermique du ou des éléments saillants et l_og et Lod leur longueur, et αf le coefficient d'expansion thermique de la fibre optique et l_ofi sa longueur en pré-contrainte mécanique entre ses deux points d'accrochage.
18. Dispositif selon la revendication 16 ou 17 caractérisé en ce que, pour toute portion de fibre optique maintenue précontrainte entre 2 dispositifs de fixation, le corps d'épreuve, la fibre optique et les éléments vérifient la relation :
Lθg = d = Lθfib/2 = Loce/4 où Loœ est la longueur effective du corps d'épreuve, l_og et d la longueur des éléments saillants, et L fi la longueur de la fibre optique en pré-contrainte mécanique entre les deux éléments saillants.
19. Dispositif selon Tune quelconque des revendications précédentes dans lequel, à chacune de ses extrémités, le tronçon de fibre optique est fixé à un dispositif de fixation comportant un mandrin spécifique (700) comportant au moins trois mors (701) répartis autour d'un axe principal (702) confondu avec Taxe de la fibre, chaque mors comprenant une surface intérieure constituée d'une portion centrale (703) et de deux portions d'extrémités (704), les portions d'extrémité étant réalisées de manière à prolonger la portion centrale en s'ecartant progressivement de Taxe principal du dispositif, et comportant chacune au moins une partie en contact avec la gaine mécaniquement deformable (710) de la fibre (711) lorsque le mors occupe une position de serrage.
20. Dispositif selon la revendication 19 caractérisé en ce que le diamètre (715) laissé libre par les mors serrés au maximum est un peu supérieur au diamètre du seul cœur (716) de la fibre.
21. Dispositif selon Tune quelconque des revendications précédentes caractérisé en ce que le corps d'épreuve est solidaire, ou incorporé dans, un pantographe.
22. Dispositif de mesure de forces ou de contraintes mécaniques conforme à l'une des revendications 9 ou 10 caractérisé en ce que le produit du module dΥoung du matériau constituant le corps d'épreuve par la plus petite section soumise à déformation est le plus faible possible, sans toutefois permettre à ce corps d'épreuve de se déformer en un quelconque de ses points de façon plastique.
23. Dispositif de mesure de températures conforme à l'une des revendications 11, 12 ou 13 selon lequel le coefficient d'expansion thermique du corps d'épreuve αce est le plus grand possible, et notamment supérieur au coefficient d'expansion thermique αf de la fibre optique et à ceux αg et αd des deux éléments de fixation (310) de la fibre optique.
24. Système de mesures de déformations, comportant plusieurs fibres optiques, chacune munie d'au moins un dispositif selon
Tune quelconque des revendications 1 à 23, caractérisé en ce qu'il comporte un dispositif de démultiplexage temporel permettant de lire successivement les signaux de chacune des fibres, et en ce que ces signaux sont ensuite démultiplexés spectralement pour obtenir la longueur d'onde caractéristique de chacun des réseaux de Bragg.
25. Système selon Tune des revendications 22 ou 23 caractérisé en ce qu'il mesure la résultante des interactions mécaniques extérieures agissant sur un pantographe.
EP04742687A 2003-05-07 2004-05-07 Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d une fibre optique a reseau de bragg Ceased EP1620697A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0305584A FR2854689B1 (fr) 2003-05-07 2003-05-07 Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d'une fibre optique a reseau de bragg
PCT/FR2004/001130 WO2004099713A2 (fr) 2003-05-07 2004-05-07 Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d'une fibre optique a reseau de bragg

Publications (1)

Publication Number Publication Date
EP1620697A2 true EP1620697A2 (fr) 2006-02-01

Family

ID=33306227

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742687A Ceased EP1620697A2 (fr) 2003-05-07 2004-05-07 Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d une fibre optique a reseau de bragg

Country Status (6)

Country Link
US (1) US7406877B2 (fr)
EP (1) EP1620697A2 (fr)
JP (1) JP2006525501A (fr)
KR (1) KR20060014042A (fr)
FR (1) FR2854689B1 (fr)
WO (1) WO2004099713A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680344A (zh) * 2018-05-23 2018-10-19 中国科学技术大学 一种含百纳米尺寸通孔的光学高分辨率测试靶的制造方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249896B4 (de) * 2002-10-25 2007-06-21 Siemens Ag Verfahren und Einrichtung zur Messung der Kontaktkraft eines Stromabnehmers
DE102004055524A1 (de) * 2004-11-17 2006-05-24 Siemens Ag Optisches Verfahren und optische Einrichtung zur Überwachung eines elektrischen Leiters
JP4690030B2 (ja) * 2004-12-22 2011-06-01 前田建設工業株式会社 トンネル内空変位計測システムおよびトンネル内空変位計測方法
FR2901548B1 (fr) * 2006-05-24 2008-07-25 Lemantec Internat Sarl Organe de levage a moyens de mesure de charge et /ou de contraintes
DE102007008464B4 (de) * 2007-02-19 2012-01-05 Hottinger Baldwin Messtechnik Gmbh Optischer Dehnungsmessstreifen
US8106791B2 (en) * 2007-04-13 2012-01-31 Chevron U.S.A. Inc. System and method for receiving and decoding electromagnetic transmissions within a well
JP5385516B2 (ja) * 2007-07-10 2014-01-08 エヌ・ティ・ティ・インフラネット株式会社 変形量センサ、変形量測定装置、変形量測定方法
US7841234B2 (en) * 2007-07-30 2010-11-30 Chevron U.S.A. Inc. System and method for sensing pressure using an inductive element
EP2128571B1 (fr) * 2008-05-28 2014-07-23 Smartec SA Jauge de contraint à fibre optique avec couplage de contrainte distribuée
US7796844B2 (en) 2008-07-22 2010-09-14 The Hong Kong Polytechnic University Temperature-compensated fibre optic strain gauge
EP2422173B1 (fr) * 2009-04-22 2016-02-17 Hottinger Baldwin Messtechnik GmbH Dispositif optique de mesure d'allongement à fibre à réseau de bragg
FR2959309B1 (fr) * 2010-04-22 2012-06-29 Commissariat Energie Atomique Dispositif de mesure combinee de pression et de temperature faiblement intrusif
IT1401900B1 (it) 2010-06-30 2013-08-28 Milano Politecnico Cella di carico con sensori in fibra ottica a reticolo di bragg
NL1038312C2 (nl) 2010-10-16 2012-04-17 Stinis Beheer Bv Werkwijze en inrichting voor het detecteren van scheurvorming in een hijsorgaan.
FR2974263B1 (fr) * 2011-04-14 2014-10-24 Thales Sa Hydrophone tout optique insensible a la temperature et a la pression statique
US8792753B2 (en) * 2011-06-30 2014-07-29 General Electric Company Method and system for a fiber optic sensor
NL2009357A (en) * 2011-09-27 2013-03-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
CN102768094B (zh) * 2012-08-08 2017-11-21 上海森首光电科技有限公司 一种光纤光栅压力传感器
CN102868447B (zh) * 2012-09-24 2015-07-15 深圳太辰光通信股份有限公司 一种光纤光栅追踪器与光纤线路故障检测方法
WO2014062672A1 (fr) * 2012-10-15 2014-04-24 Gangbing Song Systèmes et procédés à réseau de bragg sur fibre pour la détection d'humidité
GB2511473A (en) * 2012-11-07 2014-09-10 Univ City Optical monitoring system
CN102997860B (zh) * 2012-11-26 2015-05-20 山东大学 一种表贴式光纤光栅应变计
WO2015069623A1 (fr) 2013-11-08 2015-05-14 United Technologies Corporation Capteur de température à réseau de fibres
CN104864914B (zh) * 2015-06-04 2017-03-08 武汉理工大学 基于光纤传感的气缸气体压力和温度在线检测方法和系统
WO2017078806A1 (fr) * 2015-07-11 2017-05-11 Fsp Llc Capteur de pression à fibre monomode
US10123745B1 (en) 2015-08-21 2018-11-13 Greatbatch Ltd. Apparatus and method for cardiac signal noise detection and disposition based on physiologic relevance
DE102015115925B3 (de) * 2015-09-21 2016-12-08 fos4X GmbH Lichtleiter-Einspannvorrichtung, faseroptischer Sensor und Herstellungsverfahren
US9816941B2 (en) * 2016-03-28 2017-11-14 Saudi Arabian Oil Company Systems and methods for constructing and testing composite photonic structures
CN106996843B (zh) * 2017-05-05 2023-02-28 哈电集团(秦皇岛)重型装备有限公司 高温气冷堆蒸汽出口连接管管夹预紧力测量装置及方法
KR102059967B1 (ko) 2018-03-16 2019-12-27 한국과학기술연구원 온도 및 스트레인의 동시 측정을 위한 광섬유 복합 공진 구조체
DE102018214195A1 (de) * 2018-08-22 2020-03-19 Aktiebolaget Skf Verfahren zum Befestigen einer Faser mit einem Faser-Bragg-Sensorsegment an eine Komponente oder Lagervorrichtung mit einer derartigen Faser
IT201900014481A1 (it) * 2019-08-09 2021-02-09 Rolleri S P A Utensile per una pressa piegatrice e apparato per monitorare la sollecitazione esercitata da detto utensile
CN113405627B (zh) * 2021-06-10 2022-04-08 湖北工程学院 一种可变量程的液位测量方法及其装置
CN114152374B (zh) * 2021-11-09 2022-10-04 天津大学 一种基于光纤布拉格光栅的高精度微型扭矩传感器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724528B4 (de) * 1997-06-11 2005-09-15 Institut für Physikalische Hochtechnologie e.V. Temperaturkompensiertes faseroptisches Bragg-Gitter
NO308050B1 (no) * 1997-12-05 2000-07-10 Optoplan As Anordning for registrering av strekk
EP1099101B1 (fr) * 1998-06-26 2005-09-14 CiDra Corporation Capteur de pression non intrusif a fibre optique pour mesures de pression non stationnaire dans une canalisation
US6490931B1 (en) * 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
DE19943387A1 (de) * 1999-09-10 2001-11-22 Siemens Ag Verfahren zur Herstellung eines optischen Gitters auf einem optischen Leiter und Anordnung mit einem solchen Gitter und solchen Leiter
DE10004384C2 (de) * 2000-02-02 2003-04-03 Daimler Chrysler Ag Anordnung und Verfahren zur Erfassung von Dehnungen und Temperaturen und deren Veränderungen einer auf einem Träger, insbesondere einem aus Metall, Kunststoff oder Keramik bestehenden Träger, applizierten Deckschicht
US6337737B1 (en) * 2001-03-09 2002-01-08 Ciena Corporation Fiber-Bragg-grating-based strain measuring apparatus, system and method
NO315249B1 (no) * 2001-05-25 2003-08-04 Optoplan As Optisk distribuert bolgeledersensor
US6923048B2 (en) * 2003-09-24 2005-08-02 Siemens Aktiengesellschaft Method and apparatus of monitoring temperature and strain by using fiber Bragg grating (FBG) sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004099713A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108680344A (zh) * 2018-05-23 2018-10-19 中国科学技术大学 一种含百纳米尺寸通孔的光学高分辨率测试靶的制造方法

Also Published As

Publication number Publication date
FR2854689A1 (fr) 2004-11-12
KR20060014042A (ko) 2006-02-14
FR2854689B1 (fr) 2005-09-02
US20070107529A1 (en) 2007-05-17
US7406877B2 (en) 2008-08-05
WO2004099713A2 (fr) 2004-11-18
JP2006525501A (ja) 2006-11-09
WO2004099713A3 (fr) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2004099713A2 (fr) Dispositif, systeme et procede de mesure de deformations mecaniques et/ou thermiques uniaxiales au moyen d'une fibre optique a reseau de bragg
EP0546899B1 (fr) Structure à contrôle d'endommagement intrinsèque, procédés de fabrication et méthode d'utilisation
Kisała et al. Method of simultaneous measurement of two direction force and temperature using FBG sensor head
EP1056985B1 (fr) Capteur d'extensiometrie destine a mesurer des deformations a calage mecanique de premiere pose et calibrage automatique en fonction de ce calage
EP3433575B1 (fr) Capteur de courbure a fibre optique et dispositif de mesure comprenant ledit capteur
Hongo et al. Applications of fiber Bragg grating sensors and high‐speed interrogation techniques
CA2402675A1 (fr) Dispositif a fibre optique pour la mesure de contraintes
FR2826448A1 (fr) Systeme de mesure differentielle fonde sur l'utilisation de paires de reseaux de bragg
WO2019243745A1 (fr) Capteur à fibre optique à réseau de bragg associé à une structure diffusante et procédés de localisation et d'installation d'un tel capteur
EP0655124A1 (fr) Capteur a fibre optique reconfigurable
EP0984243B1 (fr) Dispositif à fibre optique pour la mesure de contraintes
EP1588124B1 (fr) Extensometre a corps d'epreuve flexible et reseaux de bragg
EP1519806B1 (fr) Dispositif de fixation d'une fibre rigide et fragile comprenant une gaine mecaniquement deformable et susceptible d'etre soumise a au moins une contrainte mecanique
Epaarachchi et al. The response of embedded NIR (830 nm) fiber Bragg grating sensors in glass fiber composites under fatigue loading
FR2959309A1 (fr) Dispositif de mesure combinee de pression et de temperature faiblement intrusif
Tahir et al. Strain measurements using fibre Bragg grating sensor
Abdi et al. Validation of a single-mode polymer optical fiber sensor and interrogator for large strain measurements
EP0747678B1 (fr) Appareils de mesure de force à capteur optique permettant la limitation de défauts d'excentration, notamment pour un pèse-personne
EP0502781A1 (fr) Capteur optique, en particulier capteur de pression et procédé de mesure optique correspondant
FR3111189A1 (fr) Capteur d’érosion à réseau de bragg pour environnement difficile
WO2023007104A1 (fr) Dispositif de mesure de pression hydrostatique, notamment absolue et/ou de température et procédé de mesure associé
EP4097423B1 (fr) Système de mesure d'une pluralité de paramètres physiques en un point de mesure par une fibre optique multimode
Li et al. A sapphire fiber Bragg grating strain sensor operating in high temperature environment
Luyckx et al. Feasibility study on measuring axial and transverse stress/strain components in composite materials using Bragg sensors
EP0715154B1 (fr) Capteur de contrainte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MAURIN, LAURENT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070306

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090503