EP1694741A1 - Modified alkoxylated polyol compounds - Google Patents

Modified alkoxylated polyol compounds

Info

Publication number
EP1694741A1
EP1694741A1 EP04815188A EP04815188A EP1694741A1 EP 1694741 A1 EP1694741 A1 EP 1694741A1 EP 04815188 A EP04815188 A EP 04815188A EP 04815188 A EP04815188 A EP 04815188A EP 1694741 A1 EP1694741 A1 EP 1694741A1
Authority
EP
European Patent Office
Prior art keywords
hydroxy moieties
capping unit
compound
anionic
alkoxy moiety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04815188A
Other languages
German (de)
French (fr)
Inventor
Jeffrey John Scheibel
Julie Ann Menkhaus
Xinbei Song
Eva Schneiderman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP1694741A1 publication Critical patent/EP1694741A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/08Polyoxyalkylene derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds

Abstract

A modified polyol compound having alkoxylation and having at least one anionic capping unit, uses of the modified polyol compound having alkoxylation and having at least one anionic capping unit and cleaning compositions comprising the same.

Description

Modified Alkoxylated Polyol Compounds
FIELD OF THE INVENTION This invention relates to modified alkoxylated polyol compounds, methods of making modified alkoxylated polyol compounds, and cleaning compositions comprising the same.
BACKGROUND OF THE INVENTION Polyol compounds such as sugars like sucrose or maltitose are known as a sustainable and readily available raw material. Ethoxyates of maltitol is known, e.g., CAS 503446-80-8. This material has been widely disclosed as a surfactant for cosmetic and other personal care applications such as that discussed in JP 2003-096182. Other known ethoxylated polyols include: ethoxylated manitol (CAS 53047-01-2), ethoxylated inostol (CAS 503446-79-5), ethoxylated sorbitol (CAS 53694-15-8). JP 10-081744 discusses the production of polyetherpolyols by adding alkylene oxides to saccharide in the presence of amine catalysts. However, as "catalyst" implies, the amine catalysts do not become incorporated into the polyetherpolyol structure. Also known are a series of amine terminated ethoxylates known in the trade as JEFF AMINES® sold by Huntsman. These are mainly derived from polyethylene glycol and mixtures of polyethylene glycol and polypropylene glycol where the glycols are aminated directly with ammonia and a catalyst. These are called JEFF AMINE D® and JEFF AMINE ED® series. The most complex mixture of the JEFF AMINES® series is the T series. The JEFFAMINES® are based on either trimethylolpropane or glycerine and thus have three ammonia terminated ethoxy/propoxy branches radiating from the glycerin or trimethylolpropane core. Amination of polyols with ammonia and other amines is further exemplified in US 5,371,119, but uses modification of the polyol specifically via epichlorohydrin to form a polyol bis-halohydrin followed by reaction with ammonia or an amine to form repeating networks of amino polyols. This results in formation of a complex polymerized mixture containing multiple polyols linked randomly via the reactive halo hydrin. This complex mixture is not believed to be of value to formulators of cleaning compositions for the purpose of providing cleaning benefits and is targeted towards forming emulsifiers. Simple amination of polyols are described in WO 01/98388 Al discussing simple aminated polyols, further reacted with aldehydes, in particular formaldehyde, to make complex polymeric networks. Included in these complex structures is the ability to have sulfϊde, carboxylate, alkyl esters, alkyl sulphonates, and alkyl phosphates as a functional unit of the complex structure. However, the resulting complex polymeric networks is not believed to be of value to formulators of cleaning compositions for the purpose of providing cleaning benefits. Additionally, it has not been taught to manipulate these materials in a controlled and specific manner. Selective modification of sugar derived polyols to provide modified polyols where the star like structure is tuned to meet the needs of detergent formulators is highly desirable. There also exists a need for materials that are relatively easy to manufacture from sustainable and readily available raw materials, which may be broadly tuned to address specific performance requirements. Stressed conditions also give the additional problem of having anionic surfactants such as linear alkylbenzene sulfonates or alkyl sulfates form larger order aggregates. The aggregation of the anionic surfactant reduces the amount of the anionic surfactant available to clean. There exists a need for materials that are relatively easy to manufacture from sustainable and readily available raw materials, which may be tuned in a controlled and specific manner to address specific formulability and performance requirements. A multifunctional material that provides cleaning and gives increased surfactant availability by preventing formation of larger ordered aggregates of anionic surfactant with free hardness during use is desired. Specific performance requirements include providing cleaning of hydrophobic stains (grease, oil) to hydrophilic stains (clay) associated with outdoor soils. Other performance requirements include used in personal care compositions, such as contact lens solution, uses in adhesives, vulcanization of rubbers, use in polyurethane processes, use as dye additives, use as a dispersant in agricultural applications, use as dispersants for inks, asphalt dispersants, surfactant dissolution aides, in use surfactant solubilizers in presence of calcium and magnesium among other performance requirements. Formulability of some of the current commercial polymers, which provide cleaning of outdoor soils, into granular and liquid laundry detergents, hard surface cleaners, dish cleaning compositions, personal care compositions as well as oil drilling compositions continues to challenge detergent formulators.
SUMMARY OF THE INVENTION The present invention relates to compounds, processes, cleaning compositions, and methods of using said compounds and compositions characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties further comprise an anionic capping unit. The present invention further relates compounds, processes, cleaning compositions, and methods of using said compounds and compositions characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties is replaced by and thus further comprises an anionic capping unit and at least one of the hydroxy moieties is substituted by an amine capping unit. The present invention further relates compounds, processes, cleaning compositions, and methods of using said compounds and compositions characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties is replaced by and thus further comprises an anionic capping unit and at least one of the hydroxy moieties is substituted by a quaternary amine capping unit. The present invention further relates compounds, processes, cleaning compositions, and methods of using said compounds and compositions characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties is replaced by and thus further comprises an anionic capping unit, at least one of the hydroxy moieties is substituted by an amine capping unit and at least one of the hydroxy moieties is substituted by a quaternary amine capping unit.
DETAILED DESCRIPTION OF THE INVENTION There exists a need for materials that are relatively easy to manufacture from sustainable and readily available raw materials, which may be broadly tuned to address specific formulability and performance requirements. Polyol compounds such as sugar based materials and polyethylene/polypropylene glycol materials are sustainable and readily available raw materials that lend themselves to be broadly tuned to address specific formulability and performance requirements. As used herein "tune" means having the ability to manipulate the chemical structure of the polyol compounds to achieve distinguishing chemical functionality. For example, an alkoxylated polyol compound modified by comprising an anionic capping unit is a tuned structure giving desired characteristics for specific formulability and performance requirements. Another example, an alkoxylated polyol compound modified by comprising an anionic capping unit and amine capping unit is a tuned structure giving desired characteristics. Another example is when an alkoxylated polyol compound is modified by comprising an anionic capping unit and a quaternary amine capping unit, is a tuned structure giving desired characteristics. Finally another example may contain both elements of the two examples, thus containing an anionic capping unit and an amine and quaternary amine capping unit. The polyol compounds useful in the present invention comprises at least three hydroxy moieties, preferably more than three hydroxy moieties. Most preferably six or more hydroxy moieties. At least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy (EO), propoxy (PO), butoxy (BO) and mixtures thereof preferably ethoxy and propoxy moieties, more preferably ethoxy moieties. The average degree of alkoxylation is from about 1 to about 100, preferably from about 4 to about 60, more preferably from about 10 to about 40. Alkoxylation is preferably block alkoxylation. The polyol compounds useful in the present invention further have at least one of the alkoxy moieties comprising at least one anionic capping unit. Further modifications or tuning of the compound may occur, but one anionic capping unit must be present in the compound of the present invention. One embodiment comprises more than one hydroxy moiety further comprising an alkoxy moiety having an anionic capping unit. For example formula (I):
formula (I) wherein x of formula (I) is from about 1 to about 100, or such as from about 10 to about 40. Suitable anionic capping unit include sulfate, sulfosuccinate, succinate, maleate, phosphate, phthalate, sulfocarboxylate, sulfodicarboxylate, propanesultone, 1,2-disulfopropanol, sulfopropylamine, sulphonate, monocarboxylate, methylene carboxylate, ethylene carboxylate, carbonates, mellitic, pyromellitic, sulfophenol, sulfocatechol, disulfocatechol, tartrate, citrate, acrylate, methacrylate, poly acrylate, poly acrylate-maleate copolymer, and mixtures thereof. Preferably the anionic capping units are sulfate, sulfosuccinate, succinate, maleate, sulfonate, methylene carboxylate and ethylene carboxylate. Suitable polyol compounds for starting materials for use in the present invention include maltitol, sucrose, xylitol, glycerol, pentaerythitol, glucose, maltose, matotriose, maltodextrin, maltopentose, maltohexose, isomaltulose, sorbitol, poly vinyl alcohol, partially hydrolyzed polyvinylacetate, xylan reduced maltotriose, reduced maltodextrins, polyethylene glycol, polypropylene glycol, polyglycerol, diglycerol ether and mixtures thereof. Good examples include the polyol compound being selected as sorbitol, maltitol, sucrose, xylan, polyethylene glycol, polypropylene glycol and mixtures thereof. Another group for the polyol compound is sorbitol, maltitol, sucrose, xylan, and mixtures thereof. Tuning of the polyol compounds can be derived from one or more modifications, dependant upon the desired formulability and performance requirements. Tuning requires anionic modifications and can include incorporating a cationic or zwitterionic charge modifications to the polyol compounds. In one embodiment of the present invention, at least one hydroxy moiety comprises an alkoxy moiety, wherein the alkoxy moiety further comprises at least one anionic capping unit. In another embodiment of the present invention, at least one hydroxy moiety comprises an alkoxy moiety, wherein the alkoxy moiety further comprises more than one anionic capping unit, wherein at least one anionic capping unit, but less than all anionic capping units, is then selectively substituted by a amine capping unit. The amine capping unit is selected from a primary amine containing capping unit, a secondary amine containing capping unit, a tertiary amine containing capping unit, and mixtures thereof. Suitable primary amines for the primary amine containing capping unit include monoamines, diamine, triamine, polyamines, and mixtures thereof. Suitable secondary amines for the secondary amine containing capping unit include monoamines, diamine, triamine, polyamines, and mixtures thereof. Suitable tertiary amines for the tertiary amine containing capping unit include monoamines, diamine, triamine, polyamines, and mixtures thereof. Suitable monoamines, diamines, triamines or polyamines for use in the present invention include ammonia, methyl amine, dimethylamine, ethylene diamine, dimethylaminopropylamine, bis dimethylaminopropylamine (bis DMAPA), hexemethylene diamine, benzylamine, isoquinoline, ethylamine, diethylamine, dodecylamine, tallow triethylenediamine, mono substituted monoamine, monosubstituted diamine, monosubstituted polyamine, disubstituted monoamine, disubstiuted diamine, disubstituted polyamine, trisubstituted triamine, tri-substituted polyamine, multisubstituted polyamine comprising more than three substitutions provided at least one nitrogen contains a hydrogen, and mixtures thereof. In another embodiment of the present invention, at least one of nitrogens in the amine capping unit is quaternized. As used herein "quaternized" means that the amine capping unit is given a positive charge through quaternization or protonization of the amine capping unit. For example, bis-DMAPA contains three nitrogens, only one of the nitrogens need be quaternized. However, it is preferred to have all nitrogens quaternized on any given amine capping unit. The tuning or modification may be combined depending upon the desired formulability and performance requirements. Non-limiting examples of modified polyol compounds of the present invention include:
formula (II)wherein x of formula (I) is from about 1 to about 100; and such as from about 10 to about 40.
formula (III)
formula (IV) Process of Making The present invention also relates to a process for making the compound of the present invention. The process for making the compound of the present invention comprises the optional step of alkoxylating a polyol compound comprising at least three hydroxy moieties such that the average degree of alkoxylation of at least one hydroxy moiety is between about 1 and about 100; and such as from about 4 to about 60; further such as from about 10 to about 40; to form an alkoxylated polyol comprising at least one alkoxy moiety. Alternatively, an alkoxylated polyol, such as CAS 52625-13-5, a propoxylated sorbitol or sorbitol polyoxy ethylene ether available from Lipo Chemicals Inc., may be used as the starting material of the present invention. If the average degree of alkoxylation is not a desired level, an alkoxylation step may be used to achieve the desired degree of alkoxylation from about 1 to about 100, and such as from about 4 to about 60; further such as from about 10 to about 40. Next, the process comprises the step of reacting at least one alkoxy moiety of the compound with an anionic capping unit to form an anionic alkoxylated polyol, although more anionic capping units may be selected. In one embodiment the process comprises another step of substituting at least one anionic capping unit of the anionic alkoxylated polyol with an amine capping unit to form an anionic aminated alkoxylated polyol. In this process only certain anionic capping units may be substituted such as sulfate, phosphate and carbonate. The process may further comprise the step of quaternizing at least one of the nitrogens in the amine capping of the anionic aminated alkoxylated polyol to form a zwitterionic alkoxylated polyol. Quaternization can be performed on any of the anionic aminated alkoxylated polyols. In one embodiment, the process comprises the step of alkoxylating some or most of the hydroxy moieties of the polyol such that the degree of alkoxylation is from about 1 to about 100; and such as from about 4 to about 60, further such as from about 10 to about 40; to form an alkoxylated polyol. The process further comprises the step of reacting the alkoxy moiety of the alkoxylated polyol with at least one anionic capping unit containing as least one of the following anionic groups; sulfate, phosphate and carbonate; to form an anionic alkoxylated polyol. The process may partially or completely react the alkoxy moiety of the alkoxylated polyol with an anionic capping unit. It is also understood that anionic capping units other than sulfate, phosphate or carbonate may also be present in the anionic alkoxylated polyol. Preferably all alkoxy moieties comprise an anionic capping unit. Optionally, the process comprises the step of substituting the anionic capping unit with an amine capping unit selected from sulfate, phosphate and carbonate and mixtures thereof, to form an aminated anionic alkoxylated polyol (scheme I below). The substitution of the anionic capping units present with an amine capping unit may be partial or complete. Preferably the subsitution of the anionic capping unit with the amine capping unit is partial forming an anionic aminated alkoxylated polyol. Optionally, the process also comprises the process of providing an aminated alkoxylated polyol by direct amination of the alkoxylated polyol using catalytic amination (scheme II below) Optionally, the process may further comprise the step of quaternizing at least one of the nitrogens of the amine capping unit of the anionic aminated alkoxylated polyol forming a zwitterionic alkoxylated polyol. The quaternization of the amine capping unit of the anionic aminated alkoxylated polyol may be partial or complete. In one embodiment, the quaternization is partial. In another embodiment, the quaternization is complete. The quaternization of the nitrogens of the amine capping unit may be partial or complete, preferably complete. A nonlimiting synthesis scheme is exemplified in Synthesis Scheme I and Synthesis Scheme II below:
Synthesis Scheme I Anionic aminated
The process may comprise optionally Step 1, Step 2, and optionally, Step 3 and 4. The step to providing the anionic aminated alkoxylated polyol via a neucleophilic substitution of sulfate moieties by an amine capping unit should be noted. This is a nonlimiting example as phosphate or carbonate groups may also be used for substitution by an amine capping unit. Synthesis Scheme II: 6 times x EO Base Catalyst
,CH2CH2NH2 ,CH2CH2N(CH3), 9 CH3OS03Na
Scheme II is distinguished from Scheme I in two areas; (1) direct substitution of the terminal hydroxy moieties is accomplished by catalytic oxidation/reduction using metal catalysts and hydrogen; (2) sulfation is carried out after amination and quaternization by transulfation as disclosed in US 6,452,035. A zwitterionic alkoxylated polyol of the same composition may be prepared by either Scheme I or Scheme II above. One of skill in the art will recognized that other amine capping units may be used, including but not limited to ammonia or dimethylaminopropylamine. A specific description of the process of the present invention is described in more detail below. Ethoxylation of Polyol Ethoxylation of the polyol, such as sorbitol, may be completed by any known technique, such as that described in EP 174436 Al Propoxylation and butoxylation may also be completed by known techniques. Add sorbitol (17.5g, 0.0962 mol) to an autoclave, purge the autoclave with nitrogen, heat sorbitol to 110-120°C; autoclave stirred and apply vacuum to about 20 mmHg. Vacuum is continuously applied while the autoclave is cooled to about 110-120° C. while introducing 6.2g of a 25% sodium methoxide in methanol solution (0.0288 moles, to achieve a 5% catalyst loading based upon hydroxy moieties). The methanol from the methoxide solution is removed from the autoclave under vacuum. A device is used to monitor the power consumed by the agitator. The agitator power is monitored along with the temperature and pressure. Agitator power and temperature values gradually increase as methanol is removed from the autoclave and the viscosity of the mixture increases and stabilizes in about 1.5 hours indicating that most of the methanol has been removed. The mixture is further heated and agitated under vacuum for an additional 30 minutes. Vacuum is removed and the autoclave is cooled to or kept at 110° C. while it is being charged with nitrogen to 1725 kPa (250 psia) and then vented to ambient pressure. The autoclave is charged to 1380 kPa (200 psia) with nitrogen. Ethylene oxide is added to the autoclave incrementally while closely monitoring the autoclave pressure, temperature, and ethylene oxide flow rate while maintaining the temperature between 110 and 120° C. and limiting any temperature increases due to reaction exotherm. After the addition of 483g of ethylene oxide (10.97 mol, resulting in a total of 19 moles of ethylene oxide per mol of OH), the temperature is increased to 120° C. and the mixture stirred for an additional 2 hours. The reaction mixture is then collected into a 22 L three neck round bottomed flask purged with nitrogen. The strong alkali catalyst is neutralized by slow addition of 2.8g methanesulfonic acid (0.00288 moles) with heating (110° C.) and mechanical stirring. The reaction mixture is then purged of residual ethylene oxide and deodorized by sparging an inert gas (argon or nitrogen) into the mixture through a gas dispersion frit while agitating and heating the mixture to 120° C. for 1 hour. The final reaction product, approximately 500g, is cooled slightly, and poured into a glass container purged with nitrogen for storage. Alternatively, polyol may be purchased with a degree of alkoxylation that is at or below that desired, such as CAS 52625-13-5, a propoxylated sorbitol or sorbitol polyoxy ethylene ether available from Lipo Chemicals Inc. Wherein the desired degree of alkoxylation is achieved by the processes known and/or described above. Sulfation of Sorbitol EO (Average of 19 EO moieties per hydroxy moiety) Weigh into a 500ml Erlenmeyer flask Sorbitol EU4 (299.7g, 0.058 mol) and methylene chloride (300g) ("the solution")_. Equip the flask with a magnetic stirring bar and stir until complete dissolution. Place the flask in an ice bath until the solution reaches about 10°C. Stir vigorous while slowing pouring chlorosulfonic acid (48.3g, 0.415 mol) over the period of about 5 minutes to form a reaction solution. Stir the reaction solution in the ice bath for 1.5 hours. Place a solution of sodium methoxide (197g of 25% in methanol) in 50g of methylene chloride in a IL Erlenmeyer flask ("base solution") and chill in an ice bath until the temperature of the solution reaches about 10°C. Stir the base solution vigorous using a magnetic stirring bar. Slowly pour the reaction solution into the base solution over a period of about 3 minutes. A mild exotherm should be observed. The resulting solution becomes milky as salts form. After addition is complete, measure the pH to be about 12. Add to this resulting solution about 100 ml of distilled water, and transfer the resulting emulsion to a IL round bottom flask and use a rotary evaporator at 50°C to strip, in portions, to obtain a clear solution. Transfer the clear solution to a Kulgelrohr apparatus. At 60°C and 133 Pa (1mm Hg) strip the solution to yield 366g of off-white waxy solid, 90% active (10% salts). Carbon NMR spectrum (500 MHz; pulse sequence: s2pul, solvent D20; relax, delay 0.300 sec, pulse 45.0; acq. time 1.090 sec) shows an absence of alcohol groups at about 60ppm and the emergence of a new peak at about 67ppm consistent with formation of the end group sulfate. Proton NMR spectrum (500 MHz or 300 MHz; pulse sequence: s2pul, solvent D20; relax, delay 1.000 sec, pulse 45.0; acq. time 2.345 sec) shows a new peak at about 4ppm which was integrated against the ethoxy group protons at about 3.5ppm and is consistent with the molecule having 6 end group sulfates.
Example 2: Amination of Sorbitol EO Hexasulfate Of Example 1
Weigh into a 200ml glass liner sorbitol EOπ4 hexasulfate (61.3g of 90% active, 0.0095 mol) and 3-(dimethylamino)propylamine ("DMAPA" 18.5g, 0.181 mol). Heat the liner in a rocking autoclave at 152 kPa (150 psig) under nitrogen until the temperature reaches 165°C and hold at 165°C for 2 hours. Cool to room temperature (20 - 25°C). Take the material up in 150 ml of methylene chloride and centrifuge to separate the salts. Transfer the supernatant to a 500ml round bottom flask and strip the supernatant on a rotary evaporator at 50°C until most (less than 5 mL) of the solvent is removed. Heat on a Kugelrohr apparatus at 120°C and 133 Pa (1mm Hg) for 30 minutes to remove excess amine to afford 47.8g of brown hard solid. Proton NMR (500 MHz or 300 MHz; pulse sequence: s2pul, solvent D20; relax, delay 0.300 sec, pulse 45.0; acq. time 3.744 sec) indicated about 3 sulfates and about 2 DMAPA per molecule. Example 3: Quaternization of Amine Containing Sulfate Of Example 2
Dissolve an aminated Sorbitol EOn4 in lOOg of methylene chloride in a 500ml round bottom flask equipped with a magnestic stirring bar and chill in an ice bath until the temperature reaches 10°C. Adjust the solution to a pH 12 with sodium methoxide (25% solution in methanol). Add to the solution methyl iodide (15.0g, 0.106mol). Stopper the flask and stir the solution overnight (about 14 hours). Strip the solution on a Kugelrohr apparatus at 50°C and 133 Pa (1mm Hg) to afford 66g of tacky brown solid. Proton NMR (500 MHz or 300 MHz; pulse sequence: s2pul, solvent D20; relax, delay 1.000 sec, pulse 45.0; acq. time 2.345 sec) indicated that all nitrogens in the amine capping unit were fully quaternized. Cleaning Compositions The present invention further relates to a cleaning composition comprising the modified alkoxylated polyol compound of the present invention. The cleaning compositions can be in any conventional form, namely, in the form of a liquid, powder, granules, agglomerate, paste, tablet, pouches, bar, gel, types delivered in dual-compartment containers, spray or foam detergents, premoistened wipes (i.e., the cleaning composition in combination with a nonwoven material such as that discussed in US 6,121,165, Mackey, et al.), dry wipes (i.e., the cleaning composition in combination with a nonwoven materials, such as that discussed in US 5,980,931, Fowler, et al.) activated with water by a consumer, and other homogeneous or multiphase consumer cleaning product forms. In addition to cleaning compositions, the compounds of the present invention may be also suitable for use or incorporation into industrial cleaners (i.e. floor cleaners). Often these cleaning compositions will additionally comprise surfactants and other cleaning adjunct ingredients, discussed in more detail below. In one embodiment, the cleaning composition of the present invention is a liquid or solid laundry detergent composition. In another embodiment, the cleaning composition of the present invention is a hard surface cleaning composition, preferably wherein the hard surface cleaning composition impregnates a nonwoven substrate. As used herein "impregnate" means that the hard surface cleaning composition is placed in contact with a nonwoven substrate such that at least a portion of the nonwoven substrate is penetrated by the hard surface cleaning composition, preferably the hard surface cleaning composition saturates the nonwoven substrate. In another embodiment the cleaning composition is a liquid dish cleaning composition, such as liquid hand dishwashing compositions, solid automatic dishwashing cleaning compositions, liquid automatic dishwashing cleaning compositions, and tab/unit does forms of automatic dishwashing cleaning compositions. The cleaning composition may also be utilized in car care compositions, for cleaning various surfaces such as hard wood, tile, ceramic, plastic, leather, metal, glass. This cleaning composition could be also designed to be used in a personal care composition such as shampoo composition, body wash, liquid or solid soap and other cleaning composition in which surfactant comes into contact with free hardness and in all compositions that require hardness tolerant surfactant system, such as oil drilling compositions. Modified Alkoxylated Polyol Compounds The cleaning composition of the present invention may comprise from about 0.005% to about 30%, and such as from about 0.01% to about 10%, further such as from about 0.05%o to about 5% by weight of the cleaning composition of a modified polyol compound as described herein.
Surfactants - The cleaning composition of the present invention may comprise a surfactant or surfactant system comprising surfactants selected from nonionic, anionic, cationic, ampholytic, zwitterionic, semi-polar nonionic surfactants; and other adjuncts such as alkyl alcohols, or mixtures thereof. The cleaning composition of the present invention further comprises from about from about 0.01% to about 90%, and such as from about 0.01% to about 80%, further such as from about 0.05% to about 50%, more further such as from about 0.05% to about 40%) by weight of the cleaning composition of a surfactant system having one or more surfactants. Anionic Surfactants Nonlimiting examples of anionic surfactants useful herein include: C8-Cι8 alkyl benzene sulfonates (LAS); Cι0-C20 primary, branched-chain and random alkyl sulfates (AS); Cι0-Cι8 secondary (2,3) alkyl sulfates; Cjo-C)S alkyl alkoxy sulfates (AEXS) wherein x is from 1-30; Cι0- C[8 alkyl alkoxy carboxylates comprising 1-5 ethoxy units; mid-chain branched alkyl sulfates as discussed in US 6,020,303 and US 6,060,443; mid-chain branched alkyl alkoxy sulfates as discussed in US 6,008,181 and US 6,020,303; modified alkylbenzene sulfonate (MLAS) as discussed in WO 99/05243, WO 99/05242 and WO 99/05244; methyl ester sulfonate (MES); and alpha-olefm sulfonate (AOS). Nonionic Surfactants
Non-limiting examples of nonionic surfactants include: Cι2-Cι8 alkyl ethoxylates, such as, NEODOL® nonionic surfactants from Shell; Cβ-Cπ alkyl phenol alkoxylates wherein the alkoxylate units are a mixture of ethyleneoxy and propyleneoxy units; C]2-Cι8 alcohol and C6-Cι2 alkyl phenol condensates with ethylene oxide/propylene oxide block alkyl polyamine ethoxylates such as PLURONIC® from BASF; Cι4-C22 mid-chain branched alcohols, BA, as discussed in US 6,150,322; Cι4-C22 mid-chain branched alkyl alkoxylates, BAEXj wherein x 1-30, as discussed in US 6,153,577, US 6,020,303 and US 6,093,856; Alkylpolysaccharides as discussed in U.S. 4,565,647 Llenado, issued January 26, 1986; specifically alkylpolyglycosides as discussed in US 4,483,780 and US 4,483,779; Polyhydroxy fatty acid amides (GS-base) as discussed in US 5,332,528; and ether capped poly(oxyalkylated) alcohol surfactants as discussed in US 6,482,994 and WO 01/42408. Cationic Surfactants Non-limiting examples of anionic surfactants include: the quaternary ammonium surfactants, which can have up to 26 carbon atoms include: alkoxylate quaternary ammonium (AQA) surfactants as discussed in US 6,136,769; dimethyl hydroxyethyl quaternary ammonium as discussed in 6,004,922; polyamine cationic surfactants as discussed in WO 98/35002, WO 98/35003, WO 98/35004, WO 98/35005, and WO 98/35006; cationic ester surfactants as discussed in US Patents Nos 4,228,042, 4,239,660 4,260,529 and US 6,022,844; and amino surfactants as discussed in US 6,221,825 and WO 00/47708, specifically amido propyldimethyl amine (APA). Zwitterionic Surfactants Non-limiting examples of zwitterionic surfactants include: derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants; betaine, including alkyl dimethyl betaine and cocodimethyl amidopropyl betaine, C8 to s ( 2 to Ci8) amine oxides and sulfo and hydroxy betaines, such as N-alkyl-N,N-dimethylammino-l -propane sulfonate where the alkyl group can be C8 to Cι8, Cio to C[ . Ampholytic Surfactants Non-limiting examples of ampholytic surfactants include: aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight- or branched-chain. One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35, for examples of ampholytic surfactants. Semi-Polar Nonionic Surfactants Non-limiting examples of semi-polar nonionic surfactants include: water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms. See WO 01/32816, US 4,681,704, and US 4,133,779. Gemini Surfactants Gemini Surfactants are compounds having at least two hydrophobic groups and at least two hydrophilic groups per molecule have been introduced. These have become known as "gemini surfactants" in the literature, e.g., Chemtech, March 1993, pp 30-33, and J. American Chemical Soc, 115, 10083-10090 (1993) and the references cited therein. Cleaning Adjunct Materials In general, a cleaning adjunct is any material required to transform a cleaning composition containing only the minimum essential ingredients into a cleaning composition useful for laundry, hard surface, personal care, consumer, commercial and/or industrial cleaning purposes. In certain embodiments, cleaning adjuncts are easily recognizable to those of skill in the art as being absolutely characteristic of cleaning products, especially of cleaning products intended for direct use by a consumer in a domestic environment. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the cleaning composition and the nature of the cleaning operation for which it is to be used. The cleaning adjunct ingredients if used with bleach should have good stability therewith. Certain embodiments of cleaning compositions herein should be boron-free and/or phosphate-free as required by legislation. Levels of cleaning adjuncts are from about 0.00001% to about 99.9%, and such as from about 0.0001% to about 50% by weight of the cleaning compositions. Use levels of the overall cleaning compositions can vary widely depending on the intended application, ranging for example from a few ppm in solution to so-called "direct application" of the neat cleaning composition to the surface to be cleaned. Quite typically, cleaning compositions herein such as laundry detergents, laundry detergent additives, hard surface cleaners, synthetic and soap-based laundry bars, fabric softeners and fabric treatment liquids, solids and treatment articles of all kinds will require several adjuncts, though certain simply formulated products, such as bleach additives, may require only, for example, an oxygen bleaching agent and a surfactant as described herein. A comprehensive list of suitable laundry or cleaning adjunct materials can be found in WO 99/05242. Common cleaning adjuncts include builders, enzymes, polymers not discussed above, bleaches, bleach activators, catalytic materials and the like excluding any materials already defined hereinabove. Other cleaning adjuncts herein can include suds boosters, suds suppressors (antifoams) and the like, diverse active ingredients or specialized materials such as dispersant polymers (e.g., from BASF Corp. or Rohm & Haas) other than those described above, color speckles, silvercare, anti-tarnish and/or anti-corrosion agents, dyes, fillers, germicides, alkalinity sources, hydrotropes, anti-oxidants, enzyme stabilizing agents, pro-perfumes, perfumes, solubilizing agents, carriers, processing aids, pigments, and, for liquid formulations, solvents, chelating agents, dye transfer inhibiting agents, dispersants, brighteners, suds suppressors, dyes, structure elasticizing agents, fabric softeners, anti-abrasion agents, hydrotropes, processing aids, and other fabric care agents, surface and skin care agents. Suitable examples of such other cleaning adjuncts and levels of use are found in U.S. Patent Nos. 5,576,282, 6,306,812 Bl and 6,326,348 Bl. Method of Use The present invention includes a method for cleaning a surface or fabric. Such method includes the steps of contacting a modified alkoxylated polyol compound of the present invention or an embodiment of the cleaning composition comprising the modified alkoxylated polyol compound of the present invention, in neat form or diluted in a wash liquor, with at least a portion of a surface or fabric then optionally rinsing such surface or fabric. Preferably the surface or fabric is subjected to a washing step prior to the aforementioned optional rinsing step. For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in home care (hard surface cleaning compositions), personal care and/or laundry applications. Accordingly, the present invention includes a method for cleaning a surface and/or laundering a fabric. The method comprises the steps of contacting a surface and/or fabric to be cleaned/laundered with the modified alkoxylated polyol compound or a cleaning composition comprising the modified alkoxylated polyol compound. The surface may comprise most any hard surface being found in a typical home such as hard wood, tile, ceramic, plastic, leather, metal, glass, or may consist of a cleaning surfaces in a personal care product such as hair and skin. The surface may also include dishes, glasses, and other cooking surfaces. The fabric may comprise most any fabric capable of being laundered in normal consumer use conditions. The cleaning composition solution pH is chosen to be the most complimentary to a surface to be cleaned spanning broad range of pH, from about 5 to about 11. For personal care such as skin and hair cleaning pH of such composition preferably has a pH from about 5 to about 8 for laundry cleaning compositions pH of from about 8 to about 10. The compositions are preferably employed at concentrations of from about 200 ppm to about 10,000 ppm in solution. The water temperatures preferably range from about 5 °C to about 100 °C. For use in laundry cleaning compositions, the compositions are preferably employed at concentrations from about 200 ppm to about 10000 ppm in solution (or wash liquor). The water temperatures preferably range from about 5°C to about 60°C. The water to fabric ratio is preferably from about 1:1 to about 20:1. The present invention included a method for cleaning a surface or fabric. Such method includes the step of contacting a nonwoven substrate impregnated with an embodiment of the cleaning composition of the present invention, and contacting the nonwoven substrate with at least a portion of a surface and/or fabric. The method may further comprise a washing step. For purposes of the present invention, washing includes but is not limited to, scrubbing, and mechanical agitation. The method may further comprise a rinsing step. As used herein "nonwoven substrate" can comprise any conventionally fashioned nonwoven sheet or web having suitable basis weight, caliper (thickness), absorbency and strength characteristics. Examples of suitable commercially available nonwoven substrates include those marketed under the tradename SONTARA® by DuPont and POLYWEB® by James River Corp. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in hard surface applications. Accordingly, the present invention includes a method for cleaning hard surfaces. The method comprises the steps of contacting a hard surface to be cleaned with a hard surface solution or nonwoven substrate impregnated with an embodiment of the cleaning composition of the present invention. The method of use comprises the steps of contacting the cleaning composition with at least a portion of the nonwoven substrate, then contacting a hard surface by the hand of a user or by the use of an implement to which the nonwoven substrate attaches. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are ideally suited for use in liquid dish cleaning compositions. The method for using a liquid dish composition of the present invention comprises the steps of contacting soiled dishes with an effective amount, typically from about 0.5 ml. to about 20 ml. (per 25 dishes being treated) of the liquid dish cleaning composition of the present invention diluted in water. Suitable examples may be seen below in Table 5. Generally, from about 0.01 ml. to about 150 ml. of a liquid dish cleaning composition of the invention is combined with from about 2000 ml. to about 20000 ml of water in a sink having a volumetric capacity in the range of from about 1000 ml. to about 20000 ml.. The soiled dishes are immersed in the sink containing the diluted compositions then obtained, where contacting the soiled surface of the dish with a cloth, sponge, or similar article cleans them. The cloth, sponge, or similar article may be immersed in the detergent composition and water mixture prior to being contacted with the dish surface, and is typically contacted with the dish surface for a period of time ranged from about 1 to about 10 seconds. The contacting of cloth, sponge, or similar article to the dish surface is preferably accompanied by a concurrent scrubbing of the dish surface. Another method of use will comprise immersing the soiled dishes into a water bath without any liquid dish cleaning composition. A device for absorbing liquid dish cleaning composition, such as a sponge, is placed directly into a separate quantity of undiluted liquid dish cleaning composition for a period of time typically ranging from about 1 to about 5 seconds. The absorbing device, and consequently the undiluted liquid dish cleaning composition, is then contacted individually to the surface of each of the soiled dishes to remove said soiling. The absorbing device is typically contacted with each dish surface for a period of time range from about 1 to about 10 seconds. The contacting of the absorbing device to the dish surface is preferably accompanied by concurrent scrubbing. As will be appreciated by one skilled in the art, the cleaning compositions of the present invention are also suited for use in personal cleaning care applications. Accordingly, the present invention includes a method for cleaning skin or hair. The method comprises the steps of contacting a skin / hair to be cleaned with a cleaning solution or nonwoven substrate impregnated with an embodiment of the cleaning compositions discussed herein. The method of use of the nonwoven substrate when contacting skin and hair may be by the hand of a user or by the use of an implement to which the nonwoven substrate attaches. Other Compositions Other compositions that comprise the compound of the present invention may be used in personal care compositions, such as contact lens solution, used as adhesives, in the vulcanization of rubbers, used in polyurethane manufacturing processes, used in dye compositions, used as an ink composition, used as a dispersant in agricultural applications, such as a dispersant in an antifungal composition, among other compositions. Formulations Table 1 -Li uid Laundr Cleaning Compositions
polymer according to any one of Examples 1-3 and formula I-IVof the present application. Table 2 Low Sudsin Granular Laundr Cleaning Compositions
1 Cs-io mido propyl dimethyl amine
2 Amorphous Sodium Silicate (Siθ2:Na2θ; 2.0 ratio) 3 Hydrated Sodium Aluminosilicate of formula Nai2( 102Siθ2)i2- 27H2O having a primary particle size in the range from 0.1 to 10 micrometers
4Anhydrous sodium carbonate with a particle size between 200μm and 900μm
5 4:1 acrylic acid/maleic acid, average molecular weigh about 70,000 or 6:4 acrylic acid/maleic acid, average molecular weight about 10,000)
6 polymer according to any one of Examples 1-3 or formula I-IV of the present invention
7 one or more enzymes such as:
Protease - Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename SAVINASE®; Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int. Inc.
Alcalase- Proteolytic enzyme, having 5.3% by weight of active enzyme, sold by NOVO Industries A S
Cellulase - Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A S under the tradename CAREZYME®.
Amylase - Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename TERMAMYL 120T®; Amylolytic enzyme, as disclosed in PCT/ US9703635.
Lipase - Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename LIPOLASE®; Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO
Industries A/S under the tradename LIPOLASE ULTRA®.
Endolase - Endoglucanase enzyme, having 1.5% by weight of active enzyme, sold by NOVO Industries
A/S.
sodium tripolyphosphate
2. Zeolite A: Hydrated Sodium AluminosiUcate of formula Nai 2(A102Siθ2)i2- 27^0 having a primary particle size in the range from 0.1 to 10 micrometers
3. An modified alkoxylated polyol compound according to Examples 1-3 and formula I-IV of the present application . suds suppressor 1 Mw=4500
1 polymer according to Examples 1-3 and formula I-IVof the present application. such as Dow Corning AF Emulsion or polydimethyl siloxane
1 as described in US 6,645,925 Bl
2 a polymer according to Examples 1- 3 and formula I-IVof the present invention. All documents cited in the Detailed Description of the Invention are, are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

WHAT IS CLAIMED IS:
1. A compound characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties further comprise an anionic capping unit.
2. A compound characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties further comprises an anionic capping unit and at least one of the hydroxy moieties is substituted by an amine capping unit.
3. A compound characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties further comprises an anionic capping unit and at least one of the hydroxy moieties is substituted by a quaternary amine capping unit.
4. A compound characterized by comprising a polyol compound, the polyol compound comprising at least three hydroxy moieties, at least one of the hydroxy moieties further comprising a alkoxy moiety, the alkoxy moiety is selected from the group consisting of ethoxy, propoxy, butoxy and mixtures thereof; further wherein at least one of the hydroxy moieties further comprises an anionic capping unit, at least one of the hydroxy moieties is substituted by an amine capping unit and at least one of the hydroxy moieties is substituted by a quaternary amine capping unit.
5. The compound of Claim 1 wherein the hydroxy moieties comprise the alkoxy moiety comprising an average degree of alkoxylation per hydroxy moiety from 1 to 100.
6. The compound of any of Claims 1 to 5 wherein at least one of the anionic capping units is substituted by an amine capping unit.
7. The compound of any of Claims 2 or 4 wherein the amine capping unit is selected from the group consisting of ammonia, methyl amine, dimethylamine, ethylene diamine, dimethylaminopropylamine, bis dimethylaminopropylamine (bis DMAPA), hexemethylene diamine, ethylamine, diethylamine, dodecylamine, benzylamine, polyethylene imine, isoquinoline, tallow triethylenediamine, mono substituted monoamine, monosubstituted diamine, monosubstituted polyamine, disubstituted monoamine, disubstiuted diamine, disubstituted polyamine, trisubstituted triamine, tri substituted polyamine, multisubstituted polyamine comprising more than three substitutions provided at least one nitrogen contains a hydrogen, and mixtures thereof.
8. The compound of any of Claims 1, 2, 3, or 4 wherein the polyol compound is derived from a sugar or reduced sugar monomers being selected from the group of: glucose, maltose, maltotriose, maltopentose, maltohexose sorbitol, maltitol, sucrose, xylitol, glycerol, glycerol derivatives, polyglycerol, pentaerythitol, poly vinyl alcohol, xylan, reduced maltotriose, reduced maltodextrins, and mixtures thereof.
9. A cleaning composition comprising a compound characterized by comprising the compound according to any one of Claims 1 , 2, 3, or 4.
10. The cleaning composition of Claim 18 wherein the cleaning composition further comprises a surfactant selected from anionic, nonionic, cationic, zwitterionic, amphoteric, and mixtures thereof.
EP04815188A 2003-12-19 2004-12-17 Modified alkoxylated polyol compounds Withdrawn EP1694741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53138503P 2003-12-19 2003-12-19
PCT/US2004/043074 WO2005063847A1 (en) 2003-12-19 2004-12-17 Modified alkoxylated polyol compounds

Publications (1)

Publication Number Publication Date
EP1694741A1 true EP1694741A1 (en) 2006-08-30

Family

ID=34738644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04815188A Withdrawn EP1694741A1 (en) 2003-12-19 2004-12-17 Modified alkoxylated polyol compounds

Country Status (8)

Country Link
EP (1) EP1694741A1 (en)
JP (1) JP2007520459A (en)
CN (1) CN1894305B (en)
AR (1) AR047292A1 (en)
BR (1) BRPI0417536A (en)
CA (1) CA2549571A1 (en)
MX (1) MXPA06007020A (en)
WO (1) WO2005063847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119779B2 (en) 2006-06-12 2015-09-01 The Procter & Gamble Company Lotioned wipe product comprising an anti-stick agent and a performance enhancing agent

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006066060A1 (en) * 2004-12-17 2006-06-22 The Procter & Gamble Company Hydrophilically modified polyols for improved hydrophobic soil cleaning
CA2590434A1 (en) * 2004-12-17 2006-06-22 The Procter & Gamble Company Hydrophobically modified polyols for improved hydrophobic soil cleaning
CA2655173C (en) 2006-06-12 2013-11-19 The Procter & Gamble Company A lotioned wipe product comprising an anti-stick agent and a performance enhancing agent
US8093352B2 (en) 2008-08-05 2012-01-10 Alcon Research, Ltd. Polyalkylene oxide polyquaternary ammonium biocides
CN105732442B (en) * 2016-01-27 2017-11-03 江苏苏博特新材料股份有限公司 Oligomeric-type surfactant, its preparation method and application
MX2023004466A (en) * 2020-10-19 2023-05-03 Oxiteno S A Ind E Comercio Composition, agrochemical formulation, methods for increasing water and nutrient availability and for improving pest control in plants and seeds, and uses of the composition and the agrochemical formulation.

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591784A (en) * 1982-06-24 1984-01-07 東邦化学工業株式会社 Dyeing aid for polyester fiber or polyester/cellulose fiber blended mixture
NO165797C (en) * 1985-01-03 1991-04-10 Berol Kemi Ab SURFACE ACTIVE COMPOUND AND EMULSION CONTAINING THIS, AND USE THEREOF.
DE3633421C1 (en) * 1986-10-01 1987-07-23 Goldschmidt Ag Th Polyoxyalkylene ethers containing hydroxyl and sulfonate groups and their use in the production of dispersible polyurethanes
JPH06306041A (en) * 1993-04-23 1994-11-01 Kao Corp Monoglyceride disulfate salt and production of monoglyceride sulfate containing the disulfate salt
ES2127364T3 (en) * 1993-08-10 1999-04-16 Ciba Geigy Ag MARKETED MOISTURIZERS.
US5650234A (en) * 1994-09-09 1997-07-22 Surface Engineering Technologies, Division Of Innerdyne, Inc. Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces
DE4441363A1 (en) * 1994-11-21 1996-05-23 Huels Chemische Werke Ag Amphiphilic compounds with at least two hydrophilic and at least two hydrophobic groups based on di, oligo or polyol ethers
US5686603A (en) * 1995-05-04 1997-11-11 Lever Brothers Company, Division Of Conopco, Inc. Sulfated polyhydroxy compounds as anionic surfactants and a process for their manufacture
JPH09249636A (en) * 1996-03-19 1997-09-22 Kao Corp Production of n-alkylamidoalkanol sulfuric acid ester salt
JPH10279553A (en) * 1997-04-03 1998-10-20 Lion Corp Production of (poly)glyceryl ether sulfate salt
JP2001097942A (en) * 1999-09-28 2001-04-10 Kao Corp Method for preparing monoglyceride sulfate
JP4208462B2 (en) * 2000-12-28 2009-01-14 株式会社Adeka Surfactant
US6602839B2 (en) * 2001-01-05 2003-08-05 Huntsman Petrochemical Corporation Advanced sulfosuccinamate surfactants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005063847A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119779B2 (en) 2006-06-12 2015-09-01 The Procter & Gamble Company Lotioned wipe product comprising an anti-stick agent and a performance enhancing agent

Also Published As

Publication number Publication date
BRPI0417536A (en) 2007-03-27
AR047292A1 (en) 2006-01-11
CA2549571A1 (en) 2005-07-14
JP2007520459A (en) 2007-07-26
WO2005063847A1 (en) 2005-07-14
CN1894305A (en) 2007-01-10
MXPA06007020A (en) 2006-08-31
CN1894305B (en) 2010-10-13

Similar Documents

Publication Publication Date Title
US7678755B2 (en) Modified alkoxylated polyol compounds
EP4107204B1 (en) Alkoxylated polyalkylene imines or alkoxylated polyamines with improved biodegradability
US7332467B2 (en) Hydrophilically modified polyols for improved hydrophobic soil cleaning
US7326675B2 (en) Hydrophobically modified polyols for improved hydrophobic soil cleaning
KR20150139887A (en) Polyetheramines based on 1,3-dialcohols
CA2702824A1 (en) Cleaning compositions with alkoxylated polyalkanolamines
US7468348B2 (en) Alkoxylated polyol containing bleach activating terminating functional groups
US7439219B2 (en) Modified alkoxylated polyol compounds
US20050153860A1 (en) Hydrophobic polyamine ethoxylates
EP1694741A1 (en) Modified alkoxylated polyol compounds
MXPA06008784A (en) Alkoxylated polyol containing bleach activating terminating functional groups

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070222

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110222