EP1845579A2 - Fuel cell system and appropriate operating method - Google Patents

Fuel cell system and appropriate operating method Download PDF

Info

Publication number
EP1845579A2
EP1845579A2 EP07104975A EP07104975A EP1845579A2 EP 1845579 A2 EP1845579 A2 EP 1845579A2 EP 07104975 A EP07104975 A EP 07104975A EP 07104975 A EP07104975 A EP 07104975A EP 1845579 A2 EP1845579 A2 EP 1845579A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
reformer
fuel
gas
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07104975A
Other languages
German (de)
French (fr)
Other versions
EP1845579B1 (en
EP1845579A3 (en
Inventor
Andreas Kaupert
Karsten Reiners
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Climate Control Systems GmbH and Co KG
Original Assignee
J Eberspaecher GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Eberspaecher GmbH and Co KG filed Critical J Eberspaecher GmbH and Co KG
Publication of EP1845579A2 publication Critical patent/EP1845579A2/en
Publication of EP1845579A3 publication Critical patent/EP1845579A3/en
Application granted granted Critical
Publication of EP1845579B1 publication Critical patent/EP1845579B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04343Temperature; Ambient temperature of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1695Adjusting the feed of the combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell system, in particular for a motor vehicle, with the features of the preamble of claim 1.
  • the invention also relates to a method for switching off such a fuel cell system.
  • Such a fuel cell system is for example from the DE 10 2005 001 361 and includes a fuel cell for generating electricity from oxidizer gas and fuel gas having an anode input, an anode output, a cathode input, a cathode output and at least one power connector, and a fuel gas reformer of oxidizer gas and fuel having a fuel input, an oxidant input, and a fuel gas output ,
  • a fuel gas line connects the fuel gas outlet to the anode inlet.
  • a fuel cell exhaust pipe is provided, which is input side connected to an anode exhaust gas line connected to the anode output of the fuel cell and to a cathode exhaust gas line connected to the cathode output of the fuel cell.
  • the reformer of such fuel cell systems generates a hydrogen-containing reformate or fuel gas, for which purpose it converts, for example with the aid of a catalyst, a rich mixture of oxidizing gas and fuel by means of partial oxidation.
  • particles in particular soot particles, can deposit on or in the catalyst.
  • These particle or soot deposits accumulate more intensively when the fuel cell system is operating with an anode exhaust gas recirculation, in which anode exhaust gas is fed again to the reformer on the input side for mixture formation.
  • the increasing particle or Rußbeladung increases the flow resistance of the catalyst and affects the functioning of the reformer and thus the entire fuel cell system.
  • particulate filters or soot filters in exhaust systems of internal combustion engines a similar problem arises.
  • For the regeneration of the particulate filter it is known to burn off the particle or soot charge during operation of the internal combustion engine.
  • a burning off of the particle charge of the catalyst in the reformer of the fuel cell system during operation of the fuel cell system is ruled out since the temperatures occurring would destroy the anode side of the fuel cell and the resulting reaction products would significantly disrupt the reforming process and the fuel cell process.
  • the present invention addresses the problem of providing a fuel cell system with a way to regenerate the reformer or catalyst, reducing the risk of damaging the anode side of the fuel cell.
  • the invention is based on the general idea of equipping the fuel cell system with a bypass line which connects the fuel gas line to the fuel cell exhaust gas line while bypassing the fuel cell. This makes it possible, during a regeneration process for regenerating the reformer or the catalyst disposed therein dissipate the resulting regeneration products not by the fuel cell, but bypassing the fuel cell through the bypass line. The risk of damage to the anode side of the fuel cell by the regeneration products is thereby eliminated or at least significantly reduced, since contacting of the regeneration products with the anode side is largely avoided.
  • a bypass valve may be arranged in the bypass line, which can be controlled to open and lock the bypass line. This makes it very easy possible to block the bypass line for the normal fuel gas generating operation of the reformer for charging the fuel cell with fuel gas and to open for the regeneration process.
  • the flow resistance between the connection points of the bypass line through the fuel cell and the fuel cell exhaust line may be greater than the flow resistance through the bypass line, such that the regeneration products with open bypass line and open fuel cell exhaust gas flow following the lower flow resistance substantially exclusively through the bypass line.
  • provision may be made for arranging an exhaust gas valve in the fuel cell exhaust gas line upstream of the outlet-side connection point of the bypass line, which exhaust valve can be activated to open and block the fuel cell exhaust gas line. In this way, a flow through the fuel cell with the harmful regeneration products with increased safety can be avoided during the regeneration process by blocking the fuel cell exhaust gas line.
  • the regeneration process can be designed, for example, so that the reformer for the regeneration of the catalyst is acted upon by oxidant gas.
  • the temperatures in the catalytic converter are regularly still high enough for the oxidizer feed to cause the particles to burn off.
  • it is also possible to realize the regeneration by operating the reformer as a burner, that is, fuel and oxidant gas are supplied to the reformer with excess oxygen, which may form a flame to burn off the particulate matter.
  • the regeneration process is temperature-dependent controlled.
  • the oxidizer supply of the reformer or the burner operation of the reformer is reduced and / or interrupted as and as long as the temperature of the fuel cell exceeds the fuel cell limit temperature and / or as soon as and as long as a temperature of the reformer exceeds a predetermined Reformergrenztemperatur.
  • the sole FIGURE 1 shows a schematic schematic diagram of a fuel cell system.
  • a fuel cell system 1 which may be arranged in a motor vehicle, comprises at least one fuel cell 2 and a reformer 3.
  • the fuel cell 2 serves to generate electricity, which it generates in a known manner from an oxidizer gas and a fuel gas.
  • the fuel cell 2 may be formed, for example, as a solid-state fuel cell (SOFC) and preferably as a high-temperature fuel cell.
  • SOFC solid-state fuel cell
  • the fuel cell 2 is supplied on the cathode side with the oxidizer gas, which is formed for example by air or pure oxygen.
  • the fuel cell 2 is supplied during operation on the anode side with the fuel gas, which is hydrogen-containing.
  • the fuel cell 2 has an anode input 4, an anode output 5, a cathode input 6, a cathode output 7 and at least one electrical connection or current termination 8.
  • An electrical load 9 can be connected to the fuel cell 2 or to the fuel cell system 1 via the at least one power connection 8.
  • the electrical load 9 is preferably such electrical load 9 that is not required for the normal driving operation of the vehicle. Rather, these consumers 9 serve the driver to increase comfort when the vehicle is at rest, so when an internal combustion engine of the vehicle is turned off.
  • the fuel cell system 1 thus provides an engine-independent in the vehicle Power supply ready.
  • Consumers 9 may be, for example, an air conditioner, a television, a refrigerator, a cooking station, a microwave oven, and the fuel cell system 1 itself.
  • the reformer 3 is used to produce the hydrogen-containing fuel gas from oxidizer gas, preferably air or oxygen, and from fuel, preferably hydrocarbons.
  • the fuel used to supply the reformer 3 is that fuel which is already available in the vehicle equipped with the fuel cell system 1 for supplying an internal combustion engine.
  • the reformer 3 includes a mixture forming section 10 and immediately adjacent thereto a catalyst section 11.
  • the mixture forming section 10 formation of a mixture of oxidizer gas and fuel occurs.
  • the mixture forming section 10 may also function as an evaporator when liquid fuel is used.
  • a fuel inlet 12 and an oxidant inlet 13 of the reformer 3 are arranged.
  • an anode exhaust gas inlet 14 is provided, which will be explained in more detail below.
  • the mixture forming section 10 optionally includes an igniter 15, which makes it possible to operate the mixture forming section 10 and the reformer 3 as a burner.
  • the catalyst section 11 serves to convert the mixture provided by the mixture-forming section 10 into hydrogen-containing Fuel gas.
  • the catalyst section 11 comprises a catalyst 16 made of a suitable for producing such a fuel gas catalyst material, the z. B. on a suitable substrate, such as ceramic or metal, is applied.
  • a fuel gas outlet 17 of the reformer 3 is formed at the catalyst section 11.
  • the fuel gas outlet 17 is connected to the anode inlet 4 via a fuel gas line 18.
  • an oxidizer supply device 19 which has, for example, a first oxidizer line 20 which is connected to the cathode input 6 and a second oxidizer line 21 which is connected to the oxidant input 13.
  • the two Oxidatortechnischen 20, 21 branch off at 22 from a common Oxidatorzu Operationstechnisch 23, in which a blower or a pump 24 for driving the oxidizer gas to the fuel cell 2 and the reformer 3 is arranged.
  • a fuel supply device 25 To supply the reformer 3 with fuel, a fuel supply device 25 is provided which has a fuel supply line 26 connected to the fuel inlet 12 and a pump 27 arranged therein.
  • a cathode exhaust gas line 28 for discharging cathode exhaust gas.
  • an anode exhaust gas line 29 for discharging Anode exhaust connected.
  • the cathode exhaust gas line 28 is merged at 30 with the anode exhaust gas line 29, which forms a common fuel cell exhaust line 31 for discharging anode exhaust gas and cathode exhaust gas from this connection point 30.
  • the connection point 30 is arranged here within a residual gas burner 32 or the exhaust gas lines 28, 29 and 31 are connected to the residual gas burner 32.
  • the residual gas burner 32 serves to burn anode exhaust gas and cathode exhaust gas to thereby convert not or not completely reacted residues of the fuel gas.
  • the fuel cell system 1 also has a heat exchanger 33, which is also referred to below as the main heat exchanger 33.
  • the main heat exchanger 33 is integrated on the one hand into the fuel cell exhaust gas line 31 downstream of the residual gas burner 32 and on the other hand into the first oxidizer line 20.
  • the main heat exchanger 33 thus enables a heat-transmitting coupling between the exhaust gases of the fuel cell 2 and the residual gas burner 32 and the fuel cell 2 supplied oxidizer gas.
  • the fuel cell system 1 can optionally be equipped with a further heat exchanger 34, which is referred to below as additional heat exchanger 34.
  • the auxiliary heat exchanger 34 is on the one hand in the fuel cell exhaust pipe 31 downstream of the Haupttownübertragers 33rd and on the other hand involved in a waste heat path 35.
  • the waste heat path 35 serves to utilize heat contained in the exhaust gas of the fuel cell 2 or of the residual gas burner 32.
  • the waste heat path 35 is formed by a coolant line of a coolant circuit of the internal combustion engine of the motor vehicle.
  • the fuel cell system 1 can then be used, for example, as a heater for the internal combustion engine.
  • the waste heat path 35 may be formed by a hot air duct of an indoor heater of the vehicle.
  • the fuel cell system 1 can then be used as auxiliary heater for the vehicle when a fan of the indoor heater forms one of the consumers 9.
  • the waste heat path 35 may be formed by the second oxidizer line 21, whereby it is possible to also preheat the oxidant gas supplied to the reformer 3.
  • the fuel cell system 1 may optionally be equipped with a recirculation heat exchanger 36.
  • a recirculation heat exchanger 36 This is on the one hand in the first Oxidatortechnisch 20 upstream of the Haupttownübertragers 33 and on the other hand involved in a return line 37.
  • the return line 37 is connected via a connection point 38 to the anode exhaust gas line 29 and via the anode exhaust gas inlet 14 to the reformer 3.
  • the return line 37 allows a return of anode exhaust gas via the Rezirkulationstageübertrager 36 in the reformer 3.
  • the entrained in the recirculated anode exhaust heat is used here to preheat the fuel cell 2 supplied oxidizer gas.
  • the return line 37 can between the Rezirkulationskorübertrager 36 and the reformer 3 may include a fan 39 for driving the anode exhaust gas.
  • the recirculation heat exchanger 36 can be integrated on the one hand into the second oxidizer line 21 and on the other hand into the return line 37.
  • the fuel cell system 1 shown here also has a thermally insulating insulation box 40, which is indicated here by a broken line. Within the isolation box 40, the particularly hot components of the fuel cell system 1 are arranged. In any case, inside the insulation box 40, the fuel cell 2, the residual gas burner 32 and the main heat exchanger 33 are arranged. In the example shown, the reformer 3 and the recirculation heat exchanger 36 are also arranged inside the insulation box 40. In other embodiments, the recirculation heat exchanger 36 and / or the reformer 3 may be disposed outside of the insulation box 40.
  • the fuel cell system 1 may also include a controller 41 and a sensor 42.
  • the sensor 42 is formed in the present case by a plurality of temperature sensors 43, which are arranged at suitable measuring points.
  • a temperature sensor 43 is located between the mixture forming section 10 and the catalyst section 11 of the reformer 3.
  • a further temperature sensor 43 is arranged at the fuel gas outlet 17.
  • a temperature sensor 43 is also arranged at the outlet of the residual gas burner 32. Furthermore, here is still at the anode output 5, a further temperature sensor 43 arranged.
  • the sensor 42 thus enables the measurement of a temperature of the fuel cell 2, preferably at its anode side.
  • the sensor 42 allows the measurement of a temperature of the reformer 3, in particular a temperature at the catalyst inlet and a temperature at the catalyst outlet. Likewise, a temperature at the Restgasbrennerauslass can be determined.
  • the fuel cell system 1 is equipped with a bypass line 44.
  • the bypass line 44 is connected on the input side at 45 to the fuel gas line 18 and the output side at 46 to the fuel cell exhaust pipe 31.
  • the input-side connection point 45 is arranged as close as possible to the fuel gas outlet 17 in order to have the largest possible volume between the input-side connection point 45 and the anode input 4 within the fuel gas line 18.
  • the output-side connection point 46 is arranged inside the fuel cell exhaust gas line 31 downstream of the additional heat exchanger 34.
  • bypass valve 47 is arranged, by means of which the bypass line 44 can be blocked and opened by appropriate control.
  • the bypass valve 47 is preferably arranged outside of the insulation box 40, whereby it is less expensive to implement.
  • an exhaust gas valve 48 can be arranged in the fuel cell exhaust gas line 31 upstream of the outlet-side connection point 46, with the aid of which the fuel cell exhaust gas line 31 can be opened and blocked by appropriate activation.
  • the arrangement of the exhaust valve 48 downstream of the additional heat exchanger 34 is only an example. Here, too, an arrangement outside the insulation box 40 is preferred.
  • an oxidation catalyst 49 is also arranged in the bypass line 44.
  • the oxidation catalyst 49 is preferably disposed inside the insulation box 40.
  • the Oxidatorzu operations Huawei 19 may be equipped with a third Oxidatortechnisch 50, which is also connected to the oxidation catalyst 49.
  • the third Oxidatortechnisch 50 here an oxidizing valve 51 is arranged, by means of which the third Oxidator effet 50 can be opened and blocked by appropriate control.
  • the oxidizer valve 51 is located outside the insulation box 40, thereby making it inexpensive.
  • a further heat exchanger or cooler 52 may be arranged, which is also integrated into a waste heat path 53.
  • this waste heat path 53 basically the same applies as for the waste heat path 35 of the Rajettaübertragers 34.
  • the radiator 52 is disposed in the bypass line 44 upstream of the bypass valve 47. In this way, overheating of the bypass valve 47 during the regeneration process can be effectively avoided.
  • the controller 41 is connected on the output side at least with the valves 47, 48, 51. On the input side, it can be connected to the sensor system 42 or to its temperature sensors 43. On the output side, it can also be connected to the oxidizer supply device 19 or to its fan 24 and to the fuel supply device 25 or to the pump 27 thereof. Furthermore, the controller 41 is here connected to the ignition device 15 and to the blower 39 of the return line 37.
  • the controller 41 is designed to operate the fuel cell system 1 or to actuate individual components of the fuel cell system 1.
  • the controller 41 is formed by software and / or hardware to carry out the operating method described in more detail below.
  • the fuel cell 2 in particular if it is designed as a high-temperature fuel cell, reaches relatively high temperatures.
  • the catalyst 16 in the reformer 3 is relatively hot.
  • This regeneration process can in principle be activated automatically at each switch-off process, it is also possible to query before the activation of the regeneration process predetermined boundary conditions.
  • the reformer 3 operates in a fuel gas generating operation in which it generates the hydrogen-containing fuel gas from the supplied fuel and the supplied oxidizer gas.
  • the fuel supply device 25 and the Oxidatorzu operations drove 19 in operation and supply the reformer 3 with fuel or oxidizer gas.
  • the bypass valve 47 is controlled to block the bypass passage 44 while the exhaust valve 48 is driven to open the fuel cell exhaust passage 31.
  • the fuel gas generated in the reformer 3 thus inevitably flows through the fuel cell 2.
  • the oxidizing valve 51 is driven to block the third Oxidator effet 50.
  • the fuel gas production operation of the reformer 3 is now terminated first.
  • the controller 41 switches off the supply of oxidizer gas and fuel.
  • no more fuel gas is produced, whereby the power generation process of the fuel cell 2 is terminated.
  • a regeneration process for regenerating the reformer 3 or catalyst 16 is performed.
  • the controller 41 actuates the bypass valve 47 to open the bypass line 44 and the exhaust valve 48 for blocking the fuel cell exhaust line 31.
  • the oxidizing valve 51 may be driven to open the third oxidizer line 50 so as to supply the oxidizing catalyst 49 with oxidizer gas.
  • the start of the regeneration process 45 is still present in the mixture formation section 10, in the catalyst section 11, in the fuel gas line 18 to the input-side junction 45 and in the bypass line 44 between the input-side junction 45 and the oxidation catalyst fuel-containing gas mixture discharged through the oxidation catalyst 49.
  • the oxidizer supplied via the third oxidizer line 50 serves.
  • the oxidation catalyst 49 may also be advantageous for the after-treatment of the regeneration products.
  • the arrangement of the oxidation catalyst 49 within the insulation box 40 is particularly advantageous because the oxidation catalyst 49 thereby heats up during normal operation of the fuel cell system 1 at least to the extent that it is at a suitable operating temperature for the desired oxidation reactions.
  • the regeneration process can be realized, for example, by supplying the reformer 3 with oxidizer gas.
  • the controller 41 z. B. the fan 24 so as to supply oxidizer gas to the reformer 3. It is important that no fuel is supplied.
  • the application of the catalyst 16 with oxidizer leads to a combustion reaction of the particle loading.
  • the burning of the particle charge leads to a temperature increase in the catalyst 16 and thus in the reformer 3.
  • a temperature increase in the fuel cell 2 via the hot combustion products formed during the regeneration process remains as a contact the combustion products with the fuel cell 2 is avoided.
  • a reoxidation of nickel on the anode side of the fuel cell 2 can thereby be avoided since the optionally oxygen-containing regeneration products do not reach the fuel cell 2.
  • the temperature of the reformer 3 and the catalyst 16 is monitored. If during the regeneration process, the temperature of the catalyst 16 and the reformer 3 exceeds a predetermined reformer limit temperature T R , the controller 41 causes a reduction, possibly until the interruption of the Oxidatorzu arrangement.
  • the regeneration process is slowed down or interrupted so that the reformer 3 or the catalyst 16 can cool down.
  • the braked or interrupted regeneration process is intensified or continued, that is to say the oxidizer feed is again increased or restarted.
  • the end of the regeneration process can also be determined. As soon as the controller 41 detects a cooling of the reformer 3 or of the catalytic converter 16 during the regeneration process, that is to say during the oxidizer gas feed to the reformer 3, it is clear that no more burning occurs in the catalytic converter 16 that the regeneration of the catalyst 16 is completed. As a result, the controller 41 can end the regeneration process, ie, in particular, stop the oxidizer supply.
  • the regeneration process can also be realized by operating the reformer 3 as a burner.
  • the fuel supply device 25 and the oxidizer supply device 19 are controlled by the controller 41 so that a lean mixture is formed in the mixture formation section 10, which leads to a flame at its ignition, for example by means of the ignition device 15.
  • the catalyst 16 can be heated so far that a burning of the particle deposition takes place.
  • the implementation of the regeneration process by means of the reformer 3 operated as a burner is advantageous, for example, when the catalyst 16 or the reformer 3 already cools to such an extent before the start of the regeneration process that the supply of oxidizing gas alone does not permit the particle deposition to burn off.

Abstract

The system has a reformer (3) for gaseous fuel production from oxidizer gas and fuel and comprising an oxidizer input (13), fuel input (12) and gaseous fuel output (17). A gaseous fuel line (18) connects the gaseous fuel output with an anode input (4) of a fuel cell (2). A fuel cell output gas line (31) is attached over an anode output gas line (29) to an anode output (5) and over a cathode output gas line (28) to a cathode output. A bypass line (44) is connected with the fuel cell output gas line and the gaseous fuel line. An independent claim is also included for a method for disconnecting a fuel cell system.

Description

Die vorliegende Erfindung betrifft ein Brennstoffzellensystem, insbesondere für ein Kraftfahrzeug, mit den Merkmalen des Oberbegriffs des Anspruchs 1. Die Erfindung betrifft außerdem ein Verfahren zum Ausschalten eines derartigen Brennstoffzellensystems.The present invention relates to a fuel cell system, in particular for a motor vehicle, with the features of the preamble of claim 1. The invention also relates to a method for switching off such a fuel cell system.

Ein derartiges Brennstoffzellensystem ist beispielsweise aus der DE 10 2005 001 361 bekannt und umfasst eine Brennstoffzelle zur Stromerzeugung aus Oxidatorgas und Brenngas, die einen Anodeneingang, einen Anodenausgang, einen Kathodeneingang, einen Kathodenausgang und wenigstens einen Stromanschluss aufweist, sowie einen Reformer zur Brenngaserzeugung aus Oxidatorgas und Kraftstoff, der einen Kraftstoffeingang, einen Oxidatoreingang und einen Brenngasausgang aufweist. Dabei verbindet eine Brenngasleitung den Brenngasausgang mit dem Anodeneingang. Des Weiteren ist eine Brennstoffzellenabgasleitung vorgesehen, die eingangsseitig mit einer Anodenabgasleitung, die an den Anodenausgang der Brennstoffzelle angeschlossen ist, und mit einer Kathodenabgasleitung verbunden ist, die an den Kathodenausgang der Brennstoffzelle angeschlossen ist.Such a fuel cell system is for example from the DE 10 2005 001 361 and includes a fuel cell for generating electricity from oxidizer gas and fuel gas having an anode input, an anode output, a cathode input, a cathode output and at least one power connector, and a fuel gas reformer of oxidizer gas and fuel having a fuel input, an oxidant input, and a fuel gas output , In this case, a fuel gas line connects the fuel gas outlet to the anode inlet. Further, a fuel cell exhaust pipe is provided, which is input side connected to an anode exhaust gas line connected to the anode output of the fuel cell and to a cathode exhaust gas line connected to the cathode output of the fuel cell.

Weitere Brennstoffzellensysteme sind beispielsweise aus der DE 103 15 255 A1 und aus der DE 10 2004 002 337 A1 bekannt.Other fuel cell systems are for example from the DE 103 15 255 A1 and from the DE 10 2004 002 337 A1 known.

Der Reformer derartiger Brennstoffzellensysteme generiert ein wasserstoffhaltiges Reformat oder Brenngas, wozu er beispielsweise mit Hilfe eines Katalysators ein fettes Gemisch aus Oxidatorgas und Kraftstoff mittels partieller Oxidation umsetzt. Hierbei können sich Partikel, insbesondere Rußpartikel, am oder im Katalysator ablagern. Diese Partikel- oder Rußablagerungen fallen verstärkt an, wenn das Brennstoffzellensystem mit einer Anodenabgasrückführung arbeitet, bei der Anodenabgas erneut dem Reformer eingangsseitig zur Gemischbildung zugeführt wird. Die zunehmende Partikel- bzw. Rußbeladung erhöht den Durchströmungswiderstand des Katalysators und beeinträchtigt die Funktionsfähigkeit des Reformers und somit des gesamten Brennstoffzellensystems.The reformer of such fuel cell systems generates a hydrogen-containing reformate or fuel gas, for which purpose it converts, for example with the aid of a catalyst, a rich mixture of oxidizing gas and fuel by means of partial oxidation. In this case, particles, in particular soot particles, can deposit on or in the catalyst. These particle or soot deposits accumulate more intensively when the fuel cell system is operating with an anode exhaust gas recirculation, in which anode exhaust gas is fed again to the reformer on the input side for mixture formation. The increasing particle or Rußbeladung increases the flow resistance of the catalyst and affects the functioning of the reformer and thus the entire fuel cell system.

Bei Partikelfiltern oder Rußfiltern in Abgasanlagen von Brennkraftmaschinen stellt sich ein ähnliches Problem. Zur Regeneration des Partikelfilters ist es bekannt, die Partikel- bzw. Rußbeladung während des Betriebs der Brennkraftmaschine abzubrennen. Ein Abbrennen der Partikelbeladung des Katalysators im Reformer des Brennstoffzellensystems während des Betriebs des Brennstoffzellensystems scheidet aus, da die dabei auftretenden Temperaturen die Anodenseite der Brennstoffzelle zerstören würden und die dabei entstehenden Reaktionsprodukte den Reformerprozess sowie den Brennstoffzellenprozess erheblich stören würden.In particulate filters or soot filters in exhaust systems of internal combustion engines, a similar problem arises. For the regeneration of the particulate filter, it is known to burn off the particle or soot charge during operation of the internal combustion engine. A burning off of the particle charge of the catalyst in the reformer of the fuel cell system during operation of the fuel cell system is ruled out since the temperatures occurring would destroy the anode side of the fuel cell and the resulting reaction products would significantly disrupt the reforming process and the fuel cell process.

Die vorliegende Erfindung beschäftigt sich mit dem Problem, für ein Brennstoffzellensystem einen Weg zur Regeneration des Reformers bzw. des Katalysators aufzuzeigen, bei dem die Gefahr einer Beschädigung der Anodenseite der Brennstoffzelle reduziert ist.The present invention addresses the problem of providing a fuel cell system with a way to regenerate the reformer or catalyst, reducing the risk of damaging the anode side of the fuel cell.

Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.This problem is solved according to the invention by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, das Brennstoffzellensystem mit einer Bypassleitung auszustatten, welche die Brenngasleitung unter Umgehung der Brennstoffzelle mit der Brennstoffzellenabgasleitung verbindet. Hierdurch ist es möglich, während eines Regenerationsprozesses zum Regenieren des Reformers bzw. des darin angeordneten Katalysators die dabei entstehenden Regenerationsprodukte nicht durch die Brennstoffzelle, sondern unter Umgehung der Brennstoffzelle durch die Bypassleitung abzuführen. Die Gefahr einer Beschädigung der Anodenseite der Brennstoffzelle durch die Regenerationsprodukte wird dadurch beseitigt oder zumindest erheblich reduziert, da eine Kontaktierung der Regenerationsprodukte mit der Anodenseite weitgehend vermieden wird.The invention is based on the general idea of equipping the fuel cell system with a bypass line which connects the fuel gas line to the fuel cell exhaust gas line while bypassing the fuel cell. This makes it possible, during a regeneration process for regenerating the reformer or the catalyst disposed therein dissipate the resulting regeneration products not by the fuel cell, but bypassing the fuel cell through the bypass line. The risk of damage to the anode side of the fuel cell by the regeneration products is thereby eliminated or at least significantly reduced, since contacting of the regeneration products with the anode side is largely avoided.

Zweckmäßig kann in der Bypassleitung ein Bypassventil angeordnet sein, das zum Öffnen und Sperren der Bypassleitung angesteuert werden kann. Hierdurch ist es besonders einfach möglich, die Bypassleitung für den normalen Brenngaserzeugungsbetrieb des Reformers zur Beaufschlagung der Brennstoffzelle mit Brenngas zu sperren und für den Regenerationsprozess zu öffnen. Grundsätzlich kann der Strömungswiderstand zwischen den Anschlussstellen der Bypassleitung durch die Brennstoffzelle und die Brennstoffzellenabgasleitung größer sein als der Strömungswiderstand durch die Bypassleitung, derart, dass die Regenerationsprodukte bei geöffneter Bypassleitung und bei offener Brennstoffzellenabgasleitung dem geringeren Strömungswiderstand folgend im wesentlichen ausschließlich durch die Bypassleitung abströmen. Bei einer anderen Ausführungsform kann jedoch vorgesehen sein, in der Brennstoffzellenabgasleitung stromauf der ausgangsseitigen Anschlussstelle der Bypassleitung ein Abgasventil anzuordnen, das zum Öffnen und Sperren der Brennstoffzellenabgasleitung ansteuerbar ist. Auf diese Weise lässt sich während des Regenerationsprozesses durch Sperren der Brennstoffzellenabgasleitung eine Durchströmung der Brennstoffzelle mit den schädlichen Regenerationsprodukten mit erhöhter Sicherheit vermeiden.Appropriately, a bypass valve may be arranged in the bypass line, which can be controlled to open and lock the bypass line. This makes it very easy possible to block the bypass line for the normal fuel gas generating operation of the reformer for charging the fuel cell with fuel gas and to open for the regeneration process. In principle, the flow resistance between the connection points of the bypass line through the fuel cell and the fuel cell exhaust line may be greater than the flow resistance through the bypass line, such that the regeneration products with open bypass line and open fuel cell exhaust gas flow following the lower flow resistance substantially exclusively through the bypass line. In another embodiment, however, provision may be made for arranging an exhaust gas valve in the fuel cell exhaust gas line upstream of the outlet-side connection point of the bypass line, which exhaust valve can be activated to open and block the fuel cell exhaust gas line. In this way, a flow through the fuel cell with the harmful regeneration products with increased safety can be avoided during the regeneration process by blocking the fuel cell exhaust gas line.

Der Regenerationsprozess kann beispielsweise so ausgestaltet sein, dass der Reformer für die Regeneration des Katalysators mit Oxidatorgas beaufschlagt wird. Bei Erreichen der Brennstoffzellengrenztemperatur in der Brennstoffzelle sind die Temperaturen im Katalysator regelmäßig noch so hoch, dass die Oxidatorzufuhr zum Abbrand der Partikel führt. Alternativ ist es ebenso möglich, die Regeneration dadurch zu realisieren, dass der Reformer als Brenner betrieben wird, das bedeutet, dass dem Reformer Kraftstoff und Oxidatorgas mit Sauerstoffüberschuss zugeführt werden, wodurch sich eine Flamme zum Abbrennen der Partikelbeladung bilden kann.The regeneration process can be designed, for example, so that the reformer for the regeneration of the catalyst is acted upon by oxidant gas. When the fuel cell limit temperature in the fuel cell is reached, the temperatures in the catalytic converter are regularly still high enough for the oxidizer feed to cause the particles to burn off. Alternatively, it is also possible to realize the regeneration by operating the reformer as a burner, that is, fuel and oxidant gas are supplied to the reformer with excess oxygen, which may form a flame to burn off the particulate matter.

Vorzugsweise wird der Regenerationsprozess temperaturabhängig gesteuert. Beispielsweise wird die Oxidatorversorgung des Reformers bzw. der Brennerbetrieb des Reformers reduziert und/oder unterbrochen, sobald und solange die Temperatur der Brennstoffzelle die Brennstoffzellengrenztemperatur übersteigt und/oder sobald und solange eine Temperatur des Reformers eine vorbestimmte Reformergrenztemperatur übersteigt.Preferably, the regeneration process is temperature-dependent controlled. For example, the oxidizer supply of the reformer or the burner operation of the reformer is reduced and / or interrupted as and as long as the temperature of the fuel cell exceeds the fuel cell limit temperature and / or as soon as and as long as a temperature of the reformer exceeds a predetermined Reformergrenztemperatur.

Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus der Zeichnung und aus der zugehörigen Figurenbeschreibung anhand der Zeichnung.Other important features and advantages of the invention will become apparent from the dependent claims, from the drawing and from the associated description of the figures with reference to the drawing.

Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.

Bevorzugte Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert.Preferred embodiments of the invention are illustrated in the drawings and will be explained in more detail in the following description.

Die einzige Figur 1 zeigt eine schematische, schaltplanartige Prinzipdarstellung eines Brennstoffzellensystems.The sole FIGURE 1 shows a schematic schematic diagram of a fuel cell system.

Entsprechend Fig. 1 umfasst ein Brennstoffzellensystem 1, das in einem Kraftfahrzeug angeordnet sein kann, zumindest eine Brennstoffzelle 2 und einen Reformer 3. Die Brennstoffzelle 2 dient zur Erzeugung von Strom, den sie in bekannter Weise aus einem Oxidatorgas und einem Brenngas erzeugt. Die Brennstoffzelle 2 kann beispielsweise als Festkörper-Brennstoffzelle (SOFC) und vorzugsweise als Hochtemperatur-Brennstoffzelle ausgebildet sein. Für die Stromerzeugung wird die Brennstoffzelle 2 kathodenseitig mit dem Oxidatorgas versorgt, das beispielsweise durch Luft oder durch reinen Sauerstoff gebildet ist. Außerdem wird die Brennstoffzelle 2 im Betrieb anodenseitig mit dem Brenngas versorgt, das wasserstoffhaltig ist. Dementsprechend weist die Brennstoffzelle 2 einen Anodeneingang 4, einen Anodenausgang 5, einen Kathodeneingang 6, einen Kathodenausgang 7 und zumindest einen elektrischen Anschluss oder Stromabschluss 8 auf. Über den wenigstens einen Stromanschluss 8 ist ein elektrischer Verbraucher 9 an die Brennstoffzelle 2 bzw. an das Brennstoffzellensystem 1 anschließbar.1, a fuel cell system 1, which may be arranged in a motor vehicle, comprises at least one fuel cell 2 and a reformer 3. The fuel cell 2 serves to generate electricity, which it generates in a known manner from an oxidizer gas and a fuel gas. The fuel cell 2 may be formed, for example, as a solid-state fuel cell (SOFC) and preferably as a high-temperature fuel cell. For the power generation, the fuel cell 2 is supplied on the cathode side with the oxidizer gas, which is formed for example by air or pure oxygen. In addition, the fuel cell 2 is supplied during operation on the anode side with the fuel gas, which is hydrogen-containing. Accordingly, the fuel cell 2 has an anode input 4, an anode output 5, a cathode input 6, a cathode output 7 and at least one electrical connection or current termination 8. An electrical load 9 can be connected to the fuel cell 2 or to the fuel cell system 1 via the at least one power connection 8.

Bei einem in einem Kraftfahrzeug angeordneten Brennstoffzellensystem 1 handelt es sich beim elektrischen Verbraucher 9 vorzugsweise um solche elektrische Verbraucher 9, die für den normalen Fahrbetrieb des Fahrzeugs nicht erforderlich sind. Vielmehr dienen diese Verbraucher 9 dem Fahrzeugführer zur Komfortsteigerung, wenn das Fahrzeug ruht, also wenn eine Brennkraftmaschine des Fahrzeugs ausgeschaltet ist. Das Brennstoffzellensystem 1 stellt im Fahrzeug demnach eine motorunabhängige Stromversorgung bereit. Verbraucher 9 können beispielsweise sein eine Klimaanlage, ein Fernsehgerät, ein Kühlschrank, eine Kochstelle, ein Mikrowellenherd und das Brennstoffzellensystem 1 selbst.In a fuel cell system 1 arranged in a motor vehicle, the electrical load 9 is preferably such electrical load 9 that is not required for the normal driving operation of the vehicle. Rather, these consumers 9 serve the driver to increase comfort when the vehicle is at rest, so when an internal combustion engine of the vehicle is turned off. The fuel cell system 1 thus provides an engine-independent in the vehicle Power supply ready. Consumers 9 may be, for example, an air conditioner, a television, a refrigerator, a cooking station, a microwave oven, and the fuel cell system 1 itself.

Der Reformer 3 dient zur Erzeugung des wasserstoffhaltigen Brenngases aus Oxidatorgas, vorzugsweise Luft oder Sauerstoff, und aus Kraftstoff, vorzugsweise Kohlenwasserstoffe. Vorzugsweise wird als Kraftstoff zur Versorgung des Reformers 3 derjenige Kraftstoff verwendet, der in dem mit dem Brennstoffzellensystem 1 ausgestatteten Fahrzeug zur Versorgung einer Brennkraftmaschine ohnehin zur Verfügung steht.The reformer 3 is used to produce the hydrogen-containing fuel gas from oxidizer gas, preferably air or oxygen, and from fuel, preferably hydrocarbons. Preferably, the fuel used to supply the reformer 3 is that fuel which is already available in the vehicle equipped with the fuel cell system 1 for supplying an internal combustion engine.

Der Reformer 3 umfasst einen Gemischbildungsabschnitt 10 und unmittelbar daran angrenzend einen Katalysatorabschnitt 11. Im Gemischbildungsabschnitt 10 erfolgt die Bildung eines Gemischs aus Oxidatorgas und Kraftstoff. Gleichzeitig kann der Gemischbildungsabschnitt 10 auch als Verdampfer arbeiten, wenn flüssiger Kraftstoff verwendet wird. Am Gemischbildungsabschnitt 10 sind ein Kraftstoffeingang 12 und ein Oxidatoreingang 13 des Reformers 3 angeordnet. Des Weiteren ist noch ein Anodenabgaseingang 14 vorgesehen, der weiter unten näher erläutert wird. Außerdem enthält der Gemischbildungsabschnitt 10 optional eine Zündeinrichtung 15, die es ermöglicht, den Gemischbildungsabschnitt 10 bzw. den Reformer 3 als Brenner zu betreiben.The reformer 3 includes a mixture forming section 10 and immediately adjacent thereto a catalyst section 11. In the mixture forming section 10, formation of a mixture of oxidizer gas and fuel occurs. At the same time, the mixture forming section 10 may also function as an evaporator when liquid fuel is used. At the mixture forming section 10, a fuel inlet 12 and an oxidant inlet 13 of the reformer 3 are arranged. Furthermore, an anode exhaust gas inlet 14 is provided, which will be explained in more detail below. In addition, the mixture forming section 10 optionally includes an igniter 15, which makes it possible to operate the mixture forming section 10 and the reformer 3 as a burner.

Der Katalysatorabschnitt 11 dient zur Umsetzung des vom Gemischbildungsabschnitt 10 bereitgestellten Gemischs in wasserstoffhaltiges Brenngas. Hierzu umfasst der Katalysatorabschnitt 11 einen Katalysator 16 aus einem zur Herstellung eines derartigen Brenngases geeigneten Katalysatormaterial, das z. B. auf ein geeignetes Substrat, z.B. aus Keramik oder Metall, aufgebracht ist. Am Katalysatorabschnitt 11 ist ein Brenngasausgang 17 des Reformers 3 ausgebildet. Der Brenngasausgang 17 ist über eine Brenngasleitung 18 mit dem Anodeneingang 4 verbunden.The catalyst section 11 serves to convert the mixture provided by the mixture-forming section 10 into hydrogen-containing Fuel gas. For this purpose, the catalyst section 11 comprises a catalyst 16 made of a suitable for producing such a fuel gas catalyst material, the z. B. on a suitable substrate, such as ceramic or metal, is applied. At the catalyst section 11, a fuel gas outlet 17 of the reformer 3 is formed. The fuel gas outlet 17 is connected to the anode inlet 4 via a fuel gas line 18.

Zur Versorgung der Brennstoffzelle 2 und des Reformers 3 mit Oxidatorgas ist eine Oxidatorzuführungseinrichtung 19 vorgesehen, die beispielsweise eine erste Oxidatorleitung 20, die an den Kathodeneingang 6 angeschlossen ist, und eine zweite Oxidatorleitung 21 aufweist, die an den Oxidatoreingang 13 angeschlossen ist. Die beiden Oxidatorleitungen 20, 21 zweigen bei 22 von einer gemeinsamen Oxidatorzuführungsleitung 23 ab, in der ein Gebläse oder eine Pumpe 24 zum Antreiben des Oxidatorgases zur Brennstoffzelle 2 bzw. zum Reformer 3 angeordnet ist.To supply the fuel cell 2 and the reformer 3 with oxidizer gas, an oxidizer supply device 19 is provided, which has, for example, a first oxidizer line 20 which is connected to the cathode input 6 and a second oxidizer line 21 which is connected to the oxidant input 13. The two Oxidatorleitungen 20, 21 branch off at 22 from a common Oxidatorzuführungsleitung 23, in which a blower or a pump 24 for driving the oxidizer gas to the fuel cell 2 and the reformer 3 is arranged.

Zur Versorgung des Reformers 3 mit Kraftstoff ist eine Kraftstoffzuführungseinrichtung 25 vorgesehen, die eine an den Kraftstoffeingang 12 angeschlossene Kraftstoffzuführungsleitung 26 sowie eine darin angeordnete Pumpe 27 aufweist.To supply the reformer 3 with fuel, a fuel supply device 25 is provided which has a fuel supply line 26 connected to the fuel inlet 12 and a pump 27 arranged therein.

An den Kathodenausgang 7 ist eine Kathodenabgasleitung 28 zum Abführen von Kathodenabgas angeschlossen. An den Anodenausgang 5 ist eine Anodenabgasleitung 29 zum Abführen von Anodenabgas angeschlossen. Die Kathodenabgasleitung 28 ist bei 30 mit der Anodenabgasleitung 29 zusammengeführt, die ab dieser Anschlussstelle 30 eine gemeinsame Brennstoffzellenabgasleitung 31 zum Abführen von Anodenabgas und Kathodenabgas bildet. Die Anschlussstelle 30 ist hier innerhalb eines Restgasbrenners 32 angeordnet bzw. sind die Abgasleitungen 28, 29 und 31 an den Restgasbrenner 32 angeschlossen. Der Restgasbrenner 32 dient dazu, Anodenabgas und Kathodenabgas zu verbrennen, um dadurch nicht oder nicht vollständig umgesetzte Reste des Brenngases umzusetzen. Hierdurch werden zum einen die Emissionswerte des Brennstoffzellensystems 1 verbessert. Zum anderen wird im Brennstoffzellenabgas Wärme freigesetzt. Durch Nutzung dieser Wärme lässt sich der Wirkungsgrad des Brennstoffzellensystems 1 verbessern. Hierzu weist das Brennstoffzellensystem 1 außerdem einen Wärmeübertrager 33 auf, der im folgenden auch als Hauptwärmeübertrager 33 bezeichnet wird. Der Hauptwärmeübertrager 33 ist einerseits in die Brennstoffzellenabgasleitung 31 stromab des Restgasbrenners 32 und andererseits in die erste Oxidatorleitung 20 eingebunden. Der Hauptwärmeübertrager 33 ermöglich somit eine wärmeübertragende Kopplung zwischen den Abgasen der Brennstoffzelle 2 bzw. des Restgasbrenners 32 und dem der Brennstoffzelle 2 zugeführten Oxidatorgas.Connected to the cathode output 7 is a cathode exhaust gas line 28 for discharging cathode exhaust gas. At the anode outlet 5 is an anode exhaust gas line 29 for discharging Anode exhaust connected. The cathode exhaust gas line 28 is merged at 30 with the anode exhaust gas line 29, which forms a common fuel cell exhaust line 31 for discharging anode exhaust gas and cathode exhaust gas from this connection point 30. The connection point 30 is arranged here within a residual gas burner 32 or the exhaust gas lines 28, 29 and 31 are connected to the residual gas burner 32. The residual gas burner 32 serves to burn anode exhaust gas and cathode exhaust gas to thereby convert not or not completely reacted residues of the fuel gas. As a result, on the one hand, the emission values of the fuel cell system 1 are improved. On the other hand, heat is released in the fuel cell exhaust gas. By utilizing this heat, the efficiency of the fuel cell system 1 can be improved. For this purpose, the fuel cell system 1 also has a heat exchanger 33, which is also referred to below as the main heat exchanger 33. The main heat exchanger 33 is integrated on the one hand into the fuel cell exhaust gas line 31 downstream of the residual gas burner 32 and on the other hand into the first oxidizer line 20. The main heat exchanger 33 thus enables a heat-transmitting coupling between the exhaust gases of the fuel cell 2 and the residual gas burner 32 and the fuel cell 2 supplied oxidizer gas.

Des Weiteren kann das Brennstoffzellensystem 1 optional mit einem weiteren Wärmeübertrager 34 ausgestattet sein, der im folgenden als Zusatzwärmeübertrager 34 bezeichnet wird. Der Zusatzwärmeübertrager 34 ist einerseits in die Brennstoffzellenabgasleitung 31 stromab des Hauptwärmeübertragers 33 und andererseits in einen Abwärmepfad 35 eingebunden. Der Abwärmepfad 35 dient zur Nutzung von im Abgas der Brennstoffzelle 2 bzw. des Restgasbrenners 32 enthaltener Wärme. Beispielsweise ist der Abwärmepfad 35 durch eine Kühlmittelleitung eines Kühlmittelkreises der Brennkraftmaschine des Kraftfahrzeugs gebildet. Das Brennstoffzellensystem 1 kann dann beispielsweise als Zuheizer für die Brennkraftmaschine genutzt werden. Alternativ kann der Abwärmepfad 35 durch eine Warmluftleitung einer Innenheizeinrichtung des Fahrzeugs gebildet sein. Das Brennstoffzellensystem 1 lässt sich dann als Standheizung für das Fahrzeug verwenden, wenn ein Gebläse der Innenraumheizeinrichtung einen der Verbraucher 9 bildet. Alternativ kann der Abwärmepfad 35 auch durch die zweite Oxidatorleitung 21 gebildet sein, wodurch es möglich ist, auch das dem Reformer 3 zugeführte Oxidatorgas vorzuwärmen.Furthermore, the fuel cell system 1 can optionally be equipped with a further heat exchanger 34, which is referred to below as additional heat exchanger 34. The auxiliary heat exchanger 34 is on the one hand in the fuel cell exhaust pipe 31 downstream of the Hauptwärmeübertragers 33rd and on the other hand involved in a waste heat path 35. The waste heat path 35 serves to utilize heat contained in the exhaust gas of the fuel cell 2 or of the residual gas burner 32. For example, the waste heat path 35 is formed by a coolant line of a coolant circuit of the internal combustion engine of the motor vehicle. The fuel cell system 1 can then be used, for example, as a heater for the internal combustion engine. Alternatively, the waste heat path 35 may be formed by a hot air duct of an indoor heater of the vehicle. The fuel cell system 1 can then be used as auxiliary heater for the vehicle when a fan of the indoor heater forms one of the consumers 9. Alternatively, the waste heat path 35 may be formed by the second oxidizer line 21, whereby it is possible to also preheat the oxidant gas supplied to the reformer 3.

Des Weiteren kann das Brennstoffzellensystem 1 optional mit einem Rezirkulationswärmeübertrager 36 ausgestattet sein. Dieser ist einerseits in die erste Oxidatorleitung 20 stromauf des Hauptwärmeübertragers 33 und andererseits in eine Rückführleitung 37 eingebunden. Die Rückführleitung 37 ist über eine Anschlussstelle 38 an die Anodenabgasleitung 29 und über den Anodenabgaseingang 14 an den Reformer 3 angeschlossen. Die Rückführleitung 37 ermöglicht eine Rückführung von Anodenabgas über den Rezirkulationswärmeübertrager 36 in den Reformer 3. Die im rückgeführten Anodenabgas mitgeführte Wärme wird hierbei zur Vorwärmung des der Brennstoffzelle 2 zugeführten Oxidatorgases genutzt. In der Rückführleitung 37 kann zwischen dem Rezirkulationswärmeübertrager 36 und dem Reformer 3 ein Gebläse 39 zum Antreiben des Anodenabgases enthalten sein. Alternativ kann der Rezirkulationswärmeübertrager 36 einerseits in die zweite Oxidatorleitung 21 und andererseits in die Rückführleitung 37 eingebunden sein.Furthermore, the fuel cell system 1 may optionally be equipped with a recirculation heat exchanger 36. This is on the one hand in the first Oxidatorleitung 20 upstream of the Hauptwärmeübertragers 33 and on the other hand involved in a return line 37. The return line 37 is connected via a connection point 38 to the anode exhaust gas line 29 and via the anode exhaust gas inlet 14 to the reformer 3. The return line 37 allows a return of anode exhaust gas via the Rezirkulationswärmeübertrager 36 in the reformer 3. The entrained in the recirculated anode exhaust heat is used here to preheat the fuel cell 2 supplied oxidizer gas. In the return line 37 can between the Rezirkulationswärmeübertrager 36 and the reformer 3 may include a fan 39 for driving the anode exhaust gas. Alternatively, the recirculation heat exchanger 36 can be integrated on the one hand into the second oxidizer line 21 and on the other hand into the return line 37.

Das hier gezeigte Brennstoffzellensystem 1 weist außerdem eine thermisch isolierende Isolationsbox 40 auf, die hier durch eine unterbrochene Linie angedeutet ist. Innerhalb der Isolationsbox 40 sind die besonders heißen Komponenten des Brennstoffzellensystems 1 angeordnet. In jedem Fall sind im Inneren der Isolationsbox 40 die Brennstoffzelle 2, der Restgasbrenner 32 und der Hauptwärmeübertrager 33 angeordnet. Im gezeigten Beispiel sind außerdem der Reformer 3 und der Rezirkulationswärmeübertrager 36 innerhalb der Isolationsbox 40 angeordnet. Bei anderen Ausführungsformen können der Rezirkulationswärmeübertrager 36 und/oder der Reformer 3 außerhalb der Isolationsbox 40 angeordnet sein.The fuel cell system 1 shown here also has a thermally insulating insulation box 40, which is indicated here by a broken line. Within the isolation box 40, the particularly hot components of the fuel cell system 1 are arranged. In any case, inside the insulation box 40, the fuel cell 2, the residual gas burner 32 and the main heat exchanger 33 are arranged. In the example shown, the reformer 3 and the recirculation heat exchanger 36 are also arranged inside the insulation box 40. In other embodiments, the recirculation heat exchanger 36 and / or the reformer 3 may be disposed outside of the insulation box 40.

Das Brennstoffzellensystem 1 kann außerdem eine Steuerung 41 sowie eine Sensorik 42 aufweisen. Die Sensorik 42 ist im vorliegenden Fall durch mehrere Temperatursensoren 43 gebildet, die an geeigneten Messstellen angeordnet sind. Beispielsweise befindet sich ein Temperatursensor 43 zwischen dem Gemischbildungsabschnitt 10 und dem Katalysatorabschnitt 11 des Reformers 3. Ein weiterer Temperatursensor 43 ist am Brenngasausgang 17 angeordnet. Ein Temperatursensor 43 ist außerdem am Ausgang des Restgasbrenners 32 angeordnet. Ferner ist hier noch am Anodenausgang 5 ein weiterer Temperatursensor 43 angeordnet. Die Sensorik 42 ermöglicht somit die Messung einer Temperatur der Brennstoffzelle 2, vorzugsweise an deren Anodenseite. Des Weiteren ermöglicht die Sensorik 42 die Messung einer Temperatur des Reformers 3, insbesondere eine Temperatur am Katalysatoreinlass sowie eine Temperatur am Katalysatorauslass. Ebenso kann eine Temperatur am Restgasbrennerauslass ermittelt werden.The fuel cell system 1 may also include a controller 41 and a sensor 42. The sensor 42 is formed in the present case by a plurality of temperature sensors 43, which are arranged at suitable measuring points. For example, a temperature sensor 43 is located between the mixture forming section 10 and the catalyst section 11 of the reformer 3. A further temperature sensor 43 is arranged at the fuel gas outlet 17. A temperature sensor 43 is also arranged at the outlet of the residual gas burner 32. Furthermore, here is still at the anode output 5, a further temperature sensor 43 arranged. The sensor 42 thus enables the measurement of a temperature of the fuel cell 2, preferably at its anode side. Furthermore, the sensor 42 allows the measurement of a temperature of the reformer 3, in particular a temperature at the catalyst inlet and a temperature at the catalyst outlet. Likewise, a temperature at the Restgasbrennerauslass can be determined.

Des Weiteren ist das erfindungsgemäße Brennstoffzellensystem 1 mit einer Bypassleitung 44 ausgestattet. Die Bypassleitung 44 ist eingangsseitig bei 45 an die Brenngasleitung 18 und ausgangsseitig bei 46 an die Brennstoffzellenabgasleitung 31 angeschlossen. Die eingangsseitige Anschlussstelle 45 ist dabei möglichst nahe am Brenngasausgang 17 angeordnet, um innerhalb der Brenngasleitung 18 ein möglichst großes Volumen zwischen der eingangsseitigen Anschlussstelle 45 und dem Anodeneingang 4 zu haben. Die ausgangsseitige Anschlussstelle 46 ist im vorliegenden Fall innerhalb der Brennstoffzellenabgasleitung 31 stromab des Zusatzwärmeübertragers 34 angeordnet. Ebenso ist es grundsätzlich möglich, die ausgangsseitige Anschlussstelle 46 zwischen den beiden Wärmeübertragern 33, 34 oder zwischen dem Restgasbrenner 32 und dem Hauptwärmeübertrager 33 oder stromauf des Restgasbrenners 32 anzuordnen.Furthermore, the fuel cell system 1 according to the invention is equipped with a bypass line 44. The bypass line 44 is connected on the input side at 45 to the fuel gas line 18 and the output side at 46 to the fuel cell exhaust pipe 31. The input-side connection point 45 is arranged as close as possible to the fuel gas outlet 17 in order to have the largest possible volume between the input-side connection point 45 and the anode input 4 within the fuel gas line 18. In the present case, the output-side connection point 46 is arranged inside the fuel cell exhaust gas line 31 downstream of the additional heat exchanger 34. Likewise, it is basically possible to arrange the output-side connection point 46 between the two heat exchangers 33, 34 or between the residual gas burner 32 and the main heat exchanger 33 or upstream of the residual gas burner 32.

In der Bypassleitung 44 ist ein Bypassventil 47 angeordnet, mit dessen Hilfe durch entsprechende Ansteuerung die Bypassleitung 44 gesperrt und geöffnet werden kann. Das Bypassventil 47 ist vorzugsweise außerhalb der Isolationsbox 40 angeordnet, wodurch es preiswerter realisierbar ist.In the bypass line 44, a bypass valve 47 is arranged, by means of which the bypass line 44 can be blocked and opened by appropriate control. The bypass valve 47 is preferably arranged outside of the insulation box 40, whereby it is less expensive to implement.

Des Weiteren kann in der Brennstoffzellenabgasleitung 31 stromauf der ausgangsseitigen Anschlussstelle 46 ein Abgasventil 48 angeordnet sein, mit dessen Hilfe durch entsprechende Ansteuerung die Brennstoffzellenabgasleitung 31 geöffnet und gesperrt werden kann. Auch die Anordnung des Abgasventils 48 stromab des Zusatzwärmeübertragers 34 ist hier nur exemplarisch. Bevorzugt wird auch hier eine Anordnung außerhalb der Isolationsbox 40.Furthermore, an exhaust gas valve 48 can be arranged in the fuel cell exhaust gas line 31 upstream of the outlet-side connection point 46, with the aid of which the fuel cell exhaust gas line 31 can be opened and blocked by appropriate activation. The arrangement of the exhaust valve 48 downstream of the additional heat exchanger 34 is only an example. Here, too, an arrangement outside the insulation box 40 is preferred.

Bei der in Fig. 1 gezeigten besonderen Ausführungsform ist in der Bypassleitung 44 außerdem ein Oxidationskatalysator 49 angeordnet. Der Oxidationskatalysator 49 ist vorzugsweise innerhalb der Isolationsbox 40 angeordnet. Desweiteren kann die Oxidatorzuführungseinrichtung 19 mit einer dritten Oxidatorleitung 50 ausgestattet sein, die ebenfalls an den Oxidationskatalysator 49 angeschlossen ist. In der dritten Oxidatorleitung 50 ist hier ein Oxidatorventil 51 angeordnet, mit dessen Hilfe die dritte Oxidatorleitung 50 durch entsprechende Ansteuerung geöffnet und gesperrt werden kann. Vorzugsweise ist das Oxidatorventil 51 außerhalb der Isolationsbox 40 angeordnet, wodurch es preiswert baut.In the particular embodiment shown in FIG. 1, an oxidation catalyst 49 is also arranged in the bypass line 44. The oxidation catalyst 49 is preferably disposed inside the insulation box 40. Furthermore, the Oxidatorzuführungseinrichtung 19 may be equipped with a third Oxidatorleitung 50, which is also connected to the oxidation catalyst 49. In the third Oxidatorleitung 50 here an oxidizing valve 51 is arranged, by means of which the third Oxidatorleitung 50 can be opened and blocked by appropriate control. Preferably, the oxidizer valve 51 is located outside the insulation box 40, thereby making it inexpensive.

Außerdem kann in der Bypassleitung 44 ein weiterer Wärmeübertrager oder Kühler 52 angeordnet sein, der ebenfalls in einen Abwärmepfad 53 eingebunden ist. Für diesen Abwärmepfad 53 gilt im Grunde dasselbe wie für den Abwärmepfad 35 des Zusatzwärmeübertragers 34. Insbesondere handelt es sich somit beim Abwärmepfad 53 um einen Kühlkreis einer Brennkraftmaschine. Vorzugsweise ist der Kühler 52 in der Bypassleitung 44 stromauf des Bypassventils 47 angeordnet. Auf diese Weise kann effektiv eine Überhitzung des Bypassventils 47 während des Regenerationsprozess vermieden werden.In addition, in the bypass line 44, a further heat exchanger or cooler 52 may be arranged, which is also integrated into a waste heat path 53. For this waste heat path 53 basically the same applies as for the waste heat path 35 of the Zusatzwärmeübertragers 34. In particular, it is thus the waste heat path 53 to a cooling circuit of an internal combustion engine. Preferably, the radiator 52 is disposed in the bypass line 44 upstream of the bypass valve 47. In this way, overheating of the bypass valve 47 during the regeneration process can be effectively avoided.

Die Steuerung 41 ist ausgangsseitig zumindest mit den Ventilen 47, 48, 51 verbunden. Eingangsseitig kann sie an die Sensorik 42 bzw. an deren Temperatursensoren 43 angeschlossen sein. Ausgangsseitig kann sie außerdem an die Oxidatorzuführungseinrichtung 19 bzw. an deren Gebläse 24 und an die Kraftstoffzuführungseinrichtung 25 bzw. an deren Pumpe 27 angeschlossen sein. Des Weiteren ist die Steuerung 41 hier an die Zündeinrichtung 15 und an das Gebläse 39 der Rückführleitung 37 angeschlossen. Die Steuerung 41 ist zum Betreiben des Brennstoffzellensystems 1 bzw. zur Betätigung einzelner Komponenten des Brennstoffzellensystems 1 ausgestaltet. Insbesondere ist die Steuerung 41 softwaremäßig und/oder hardwaremäßig zur Durchführung des im folgenden näher beschriebenen Betriebsverfahrens ausgebildet.The controller 41 is connected on the output side at least with the valves 47, 48, 51. On the input side, it can be connected to the sensor system 42 or to its temperature sensors 43. On the output side, it can also be connected to the oxidizer supply device 19 or to its fan 24 and to the fuel supply device 25 or to the pump 27 thereof. Furthermore, the controller 41 is here connected to the ignition device 15 and to the blower 39 of the return line 37. The controller 41 is designed to operate the fuel cell system 1 or to actuate individual components of the fuel cell system 1. In particular, the controller 41 is formed by software and / or hardware to carry out the operating method described in more detail below.

Im normalen Betrieb des Brennstoffzellensystems 1 erreicht die Brennstoffzelle 2, insbesondere wenn sie als Hochtemperatur-Brennstoffzelle ausgestaltet ist, relativ hohe Temperaturen. Auch der Katalysator 16 im Reformer 3 wird vergleichsweise heiß. Gleichzeitig kommt es im Katalysator 16 zu einer Ablagerung von Partikeln, vorzugsweise von Rußpartikeln. Um diese Partikel wieder vom Katalysator 11 entfernen zu können, wird regelmäßig beim Abschalten des Brennstoffzellensystems 1 ein Regenerationsprozess zum Regenerieren des Reformers 3 bzw. des Katalysators 16 durchgeführt. Dieser Regenerationsprozess kann grundsätzlich bei jedem Ausschaltvorgang automatisch aktiviert werden, ebenso ist es möglich, vor der Aktivierung des Regenerationsprozesses vorbestimmte Randbedingungen abzufragen.During normal operation of the fuel cell system 1, the fuel cell 2, in particular if it is designed as a high-temperature fuel cell, reaches relatively high temperatures. Also, the catalyst 16 in the reformer 3 is relatively hot. At the same time there is a deposit of particles in the catalyst 16, preferably of soot particles. To remove these particles from the catalyst 11 again To be able to, a regeneration process for regenerating the reformer 3 and the catalyst 16 is performed regularly when switching off the fuel cell system 1. This regeneration process can in principle be activated automatically at each switch-off process, it is also possible to query before the activation of the regeneration process predetermined boundary conditions.

Im normalen Betrieb des Brennstoffzellensystems 1 arbeitet der Reformer 3 in einem Brenngaserzeugungsbetrieb, bei dem er aus dem zugeführten Kraftstoff und dem zugeführten Oxidatorgas das wasserstoffhaltige Brenngas generiert. Hierzu sind die Kraftstoffzuführungseinrichtung 25 und die Oxidatorzuführungseinrichtung 19 in Betrieb und versorgen den Reformer 3 mit Kraftstoff bzw. Oxidatorgas. In diesem Brenngaserzeugungsbetrieb ist das Bypassventil 47 zum Sperren der Bypassleitung 44 angesteuert, während das Abgasventil 48 zum Öffnen der Brennstoffzellenabgasleitung 31 angesteuert ist. Das im Reformer 3 erzeugte Brenngas strömt somit zwangsläufig durch die Brennstoffzelle 2. Desweiteren ist das Oxidatorventil 51 zum Sperren der dritten Oxidatorleitung 50 angesteuert.In the normal operation of the fuel cell system 1, the reformer 3 operates in a fuel gas generating operation in which it generates the hydrogen-containing fuel gas from the supplied fuel and the supplied oxidizer gas. For this purpose, the fuel supply device 25 and the Oxidatorzuführungseinrichtung 19 in operation and supply the reformer 3 with fuel or oxidizer gas. In this fuel gas generating operation, the bypass valve 47 is controlled to block the bypass passage 44 while the exhaust valve 48 is driven to open the fuel cell exhaust passage 31. The fuel gas generated in the reformer 3 thus inevitably flows through the fuel cell 2. Furthermore, the oxidizing valve 51 is driven to block the third Oxidatorleitung 50.

Zum Ausschalten des Brennstoffzellensystems 1 wird nun zunächst der Brenngaserzeugungsbetrieb des Reformers 3 beendet. Hierzu schaltet beispielsweise die Steuerung 41 die Zufuhr von Oxidatorgas und Kraftstoff ab. In der Folge wird auch kein Brenngas mehr produziert, wodurch auch der Stromerzeugungsprozess der Brennstoffzelle 2 beendet wird. Erst nach Beendigung des Brenngaserzeugungsbetriebs wird ein Regenerationsprozess zur Regeneration des Reformers 3 bzw. Katalysators 16 durchgeführt. Zur Realisierung des Regenerationsprozesses betätigt die Steuerung 41 das Bypassventil 47 zum Öffnen der Bypassleitung 44 und das Abgasventil 48 zum Sperren der Brennstoffzellenabgasleitung 31. In der Folge können Regenerationsprodukte, die während des Regenerationsprozesses aus dem Reformer 3 durch den Brenngasausgang 17 ausströmen über die Bypassleitung 44 unter Umgehung der Brennstoffzelle 2 und hier außerdem unter Umgehung des Restgasbrenners 32 sowie der Wärmeübertrager 33, 34 über die Brennstoffzellenabgasleitung 31 abgeführt werden. Eine Kontaktierung der schädlichen Regenerationsprodukte mit der Anodenseite der Brennstoffzelle 2 kann dadurch effektiv vermieden werden. Das zwischen der eingangsseitigen Anschlussstelle 45 und dem Anodeneingang 4 eingeschlossene restliche Brenngas dient dabei gleichzeitig als isolierender "Puffer", der ebenfalls ein Vordringen der Regenerationsprodukte zur Anodenseite der Brennstoffzelle 2 behindern.To switch off the fuel cell system 1, the fuel gas production operation of the reformer 3 is now terminated first. For this purpose, for example, the controller 41 switches off the supply of oxidizer gas and fuel. As a result, no more fuel gas is produced, whereby the power generation process of the fuel cell 2 is terminated. First After completion of the fuel gas generation operation, a regeneration process for regenerating the reformer 3 or catalyst 16 is performed. To implement the regeneration process, the controller 41 actuates the bypass valve 47 to open the bypass line 44 and the exhaust valve 48 for blocking the fuel cell exhaust line 31. As a result, regeneration products that flow out of the reformer 3 through the fuel gas outlet 17 during the regeneration process via the bypass line 44 under Bypassing of the fuel cell 2 and here also bypassing the residual gas burner 32 and the heat exchanger 33, 34 are discharged via the fuel cell exhaust pipe 31. A contacting of the harmful regeneration products with the anode side of the fuel cell 2 can be effectively avoided. The remaining fuel gas enclosed between the input-side connection point 45 and the anode input 4 serves at the same time as an insulating "buffer", which also impedes penetration of the regeneration products to the anode side of the fuel cell 2.

Mit Beginn des Regenerationsprozesses oder vorab kann das Oxidatorventil 51 zum Öffnen der dritten Oxidatorleitung 50 angesteuert werden, um auf diese Weise den Oxidationskatalysator 49 mit Oxidatorgas zu versorgen. Mit Beginn des Regenerationsprozesses wird noch im Gemischbildungsabschnitt 10, im Katalysatorabschnitt 11, in der Brenngasleitung 18 bis zur eingangsseitigen Anschlussstelle 45 und in der Bypassleitung 44 zwischen der eingangsseitigen Anschlussstelle 45 und dem Oxidationskatalysator 45 vorhandenes Brenngas sowie kraftstoffhaltiges Gasgemisch durch den Oxidationskatalysator 49 abgeführt. Durch eine im Oxidationskatalysator 49 ablaufende, entsprechende Oxidationsreaktion lässt sich somit eine Schadstoffemission effektiv verhindern. Zur Unterstützung der Oxidationsreaktion dient der über die dritte Oxidatorleitung 50 zugeführte Oxidator. Auch für die Nachbehandlung der Regenerationsprodukte kann der Oxidationskatalysator 49 vorteilhaft sein. Die Anordnung des Oxidationskatalysators 49 innerhalb der Isolationsbox 40 ist dabei besonders vorteilhaft, da sich der Oxidationskatalysator 49 dadurch während des normalen Betriebs des Brennstoffzellensystems 1 zumindest soweit aufheizt, dass er sich für die gewünschten Oxidationsreaktionen auf einer geeigneten Betriebstemperatur befindet.At the beginning of the regeneration process, or in advance, the oxidizing valve 51 may be driven to open the third oxidizer line 50 so as to supply the oxidizing catalyst 49 with oxidizer gas. With the start of the regeneration process 45 is still present in the mixture formation section 10, in the catalyst section 11, in the fuel gas line 18 to the input-side junction 45 and in the bypass line 44 between the input-side junction 45 and the oxidation catalyst fuel-containing gas mixture discharged through the oxidation catalyst 49. By running in the oxidation catalyst 49, corresponding oxidation reaction can thus effectively prevent a pollutant emission. In order to support the oxidation reaction, the oxidizer supplied via the third oxidizer line 50 serves. The oxidation catalyst 49 may also be advantageous for the after-treatment of the regeneration products. The arrangement of the oxidation catalyst 49 within the insulation box 40 is particularly advantageous because the oxidation catalyst 49 thereby heats up during normal operation of the fuel cell system 1 at least to the extent that it is at a suitable operating temperature for the desired oxidation reactions.

Der Regenerationsprozess kann beispielsweise dadurch realisiert werden, dass der Reformer 3 mit Oxidatorgas versorgt wird. Hierzu betätigt die Steuerung 41 z. B. das Gebläse 24, um so Oxidatorgas dem Reformer 3 zuzuführen. Wichtig ist, dass dabei kein Kraftstoff zugeführt wird. Bei hinreichend hoher Temperatur des Katalysators 16 führt die Beaufschlagung des Katalysators 16 mit Oxidator zu einer Abbrandreaktion der Partikelbeladung.The regeneration process can be realized, for example, by supplying the reformer 3 with oxidizer gas. For this purpose, the controller 41 z. B. the fan 24 so as to supply oxidizer gas to the reformer 3. It is important that no fuel is supplied. At a sufficiently high temperature of the catalyst 16, the application of the catalyst 16 with oxidizer leads to a combustion reaction of the particle loading.

Während des Regenerationsprozesses führt der Abbrand der Partikelbeladung zu einer Temperaturerhöhung im Katalysator 16 und somit im Reformer 3. Eine Temperaturerhöhung in der Brennstoffzelle 2 über die beim Regenerationsprozess gebildeten heißen Verbrennungsprodukte bleibt aus, da ein Kontakt der Verbrennungsprodukte mit der Brennstoffzelle 2 vermieden wird. Gleichzeitig lässt sich dadurch auch eine Reoxidation von Nickel auf der Anodenseite der Brennstoffzelle 2 vermeiden, da die gegebenenfalls sauerstoffhaltigen Regenerationsprodukte nicht zur Brennstoffzelle 2 gelangen.During the regeneration process, the burning of the particle charge leads to a temperature increase in the catalyst 16 and thus in the reformer 3. A temperature increase in the fuel cell 2 via the hot combustion products formed during the regeneration process remains as a contact the combustion products with the fuel cell 2 is avoided. At the same time, a reoxidation of nickel on the anode side of the fuel cell 2 can thereby be avoided since the optionally oxygen-containing regeneration products do not reach the fuel cell 2.

Während des Regenerationsprozesses wird beispielsweise die Temperatur des Reformers 3 bzw. des Katalysators 16 überwacht. Falls während des Regenerationsprozesses die Temperatur des Katalysators 16 bzw. des Reformers 3 eine vorbestimmte Reformergrenztemperatur TR übersteigt, veranlasst die Steuerung 41 eine Reduzierung, gegebenenfalls bis zur Unterbrechung der Oxidatorzuführung.During the regeneration process, for example, the temperature of the reformer 3 and the catalyst 16 is monitored. If during the regeneration process, the temperature of the catalyst 16 and the reformer 3 exceeds a predetermined reformer limit temperature T R , the controller 41 causes a reduction, possibly until the interruption of the Oxidatorzuführung.

Durch das Reduzieren bzw. Ausschalten der Oxidatorversorgung wird der Regenerationsvorgang verlangsamt bzw. unterbrochen, so dass der Reformer 3 bzw. der Katalysator 16 abkühlen können. Sobald die Temperatur des Reformers 3 bzw. des Katalysators 16 unter die Reformergrenztemperatur TR fällt, wird der gebremste bzw. unterbrochene Regenerationsprozess intensiviert bzw. fortgesetzt, das heißt, die Oxidatorzuführung wird wieder erhöht bzw. neu gestartet.By reducing or switching off the oxidizer supply, the regeneration process is slowed down or interrupted so that the reformer 3 or the catalyst 16 can cool down. As soon as the temperature of the reformer 3 or of the catalytic converter 16 falls below the reformer limit temperature T R , the braked or interrupted regeneration process is intensified or continued, that is to say the oxidizer feed is again increased or restarted.

Über die Kontrolle der Temperaturen kann außerdem das Ende des Regenerationsprozesses ermittelt werden. Sobald die Steuerung 41 während des Regenerationsprozesses, also während der Oxidatorgaszuführung zum Reformer 3 eine Abkühlung des Reformers 3 bzw. des Katalysators 16 feststellt, ist klar, dass im Katalysator 16 kein Abbrand mehr erfolgt, so dass die Regeneration des Katalysators 16 beendet ist. In der Folge kann die Steuerung 41 den Regenerationsprozess beenden, also insbesondere die Oxidatorzuführung stoppen.By controlling the temperatures, the end of the regeneration process can also be determined. As soon as the controller 41 detects a cooling of the reformer 3 or of the catalytic converter 16 during the regeneration process, that is to say during the oxidizer gas feed to the reformer 3, it is clear that no more burning occurs in the catalytic converter 16 that the regeneration of the catalyst 16 is completed. As a result, the controller 41 can end the regeneration process, ie, in particular, stop the oxidizer supply.

Bei einer anderen Ausführungsform kann der Regenerationsprozess auch dadurch realisiert werden, dass der Reformer 3 als Brenner betrieben wird. Beim Brennerbetrieb des Reformers 3 werden von der Steuerung 41 die Kraftstoffzuführungseinrichtung 25 und die Oxidatorzuführungseinrichtung 19 so angesteuert, dass im Gemischbildungsabschnitt 10 ein mageres Gemisch gebildet wird, das bei seiner Zündung beispielsweise mittels der Zündeinrichtung 15 zu einer Flamme führt. Mit Hilfe der Flamme kann der Katalysator 16 so weit aufgeheizt werden, dass ein Abbrand der Partikelablagerung erfolgt. Die Durchführung des Regenerationsprozesses mit Hilfe des als Brenner betriebenen Reformers 3 ist beispielsweise dann vorteilhaft, wenn der Katalysator 16 bzw. der Reformer 3 vor Beginn des Regenerationsprozesses bereits so weit abkühlt, dass die Zuführung von Oxidatorgas alleine keinen Abbrand der Partikelablagerung ermöglicht.In another embodiment, the regeneration process can also be realized by operating the reformer 3 as a burner. During burner operation of the reformer 3, the fuel supply device 25 and the oxidizer supply device 19 are controlled by the controller 41 so that a lean mixture is formed in the mixture formation section 10, which leads to a flame at its ignition, for example by means of the ignition device 15. With the help of the flame, the catalyst 16 can be heated so far that a burning of the particle deposition takes place. The implementation of the regeneration process by means of the reformer 3 operated as a burner is advantageous, for example, when the catalyst 16 or the reformer 3 already cools to such an extent before the start of the regeneration process that the supply of oxidizing gas alone does not permit the particle deposition to burn off.

Auch hier kann vorgesehen sein, den Brennerbetrieb des Reformers 3 zu reduzieren bzw. zu unterbrechen, sobald und solange sich der Reformer 3 bzw. der Katalysator 16 über die Reformergrenztemperatur TR aufheizt. Die jeweilige Reduzierung bzw. Unterbrechung wird dann wieder beendet und der Brennerbetrieb des Reformers 3 intensiviert bzw. erneut gestartet, wenn die Temperatur im Reformer 3 bzw. im Katalysator 16 wieder unter die vorbestimmte Reformergrenztemperatur TR fällt.Again, it may be provided to reduce or interrupt the burner operation of the reformer 3 as soon as and as long as the reformer 3 or the catalyst 16 heats up via the reformer boundary temperature T R. The respective reduction or interruption is then terminated again and the burner operation of the reformer 3 intensified or restarted when the temperature in the reformer 3 or in the catalyst 16 again falls below the predetermined reformer limit temperature T R.

Claims (11)

Brennstoffzellensystem, insbesondere für ein Kraftfahrzeug, - mit einer Brennstoffzelle (2) zur Stromerzeugung aus Oxidatorgas und Brenngas, die einen Anodeneingang (4), einen Anodenausgang (5), einen Kathodeneingang (6), einen Kathodenausgang (7) und wenigstens einen Stromanschluss (8) aufweist, - mit einem Reformer (3) zur Brenngaserzeugung aus Oxidatorgas und Kraftstoff, der einen Oxidatoreingang (13), einen Kraftstoffeingang (12) und einen Brenngasausgang (17) aufweist, - mit einer Brenngasleitung (18), die den Brenngasausgang (17) mit dem Anodeneingang (4) verbindet, - mit einer Brennstoffzellenabgasleitung (31), die über eine Anodenabgasleitung (29) an den Anodenausgang (5) und über eine Kathodenabgasleitung (28) an den Kathodenausgang (7) angeschlossen ist, dadurch gekennzeichnet, - dass eine Bypassleitung (44) vorgesehen ist, die einerseits mit der Brenngasleitung (18) und andererseits mit der Brennstoffzellenabgasleitung (31) verbunden ist. Fuel cell system, in particular for a motor vehicle, - having a fuel cell (2) for generating electricity from oxidizer gas and fuel gas, which has an anode input (4), an anode output (5), a cathode input (6), a cathode output (7) and at least one power connector (8), - having a reformer (3) for fuel gas production of oxidizer gas and fuel, which has an oxidant input (13), a fuel inlet (12) and a fuel gas outlet (17), with a fuel gas line (18) connecting the fuel gas outlet (17) to the anode inlet (4), - With a fuel cell exhaust pipe (31) which is connected via an anode exhaust gas line (29) to the anode output (5) and via a cathode exhaust gas line (28) to the cathode output (7), characterized, - That a bypass line (44) is provided, which is connected on the one hand with the fuel gas line (18) and on the other hand with the fuel cell exhaust gas line (31). Brennstoffzellensystem nach Anspruch 1,
dadurch gekennzeichnet,
dass in der Bypassleitung (44) ein Bypassventil (47) angeordnet ist, das zum Öffnen und Sperren der Bypassleitung (44) ansteuerbar ist.
Fuel cell system according to claim 1,
characterized,
that in the bypass line (44), a bypass valve (47) is arranged, which can be controlled to open and lock the bypass line (44).
Brennstoffzellensystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass in der Brennstoffzellenabgasleitung (31) stromauf einer ausgangsseitigen Anschlussstelle (46) der Bypassleitung (44) ein Abgasventil (48) angeordnet ist, das zum Öffnen und Sperren der Brennstoffzellenabgasleitung (31) ansteuerbar ist.
Fuel cell system according to claim 1 or 2,
characterized,
that in the fuel cell exhaust line (31) upstream of an output-side connecting point (46) of the bypass line (44) an exhaust valve (48) is arranged, the opening and shutting of the fuel cell exhaust line (31) is controllable.
Brennstoffzellensystem nach Anspruch 2 oder 3,
dadurch gekennzeichnet, - dass eine Steuerung (41) vorgesehen ist, die so ausgestaltet ist, dass sie beim Ausschalten des Brennstoffzellensystems (1) einen Regenerationsprozess zum Regenerieren des Reformers (3) oder eines zur Brenngaserzeugung aus Oxidatorgas und Kraftstoff im Reformer (3) angeordneten Katalysators (16) durchführt, und/oder - dass die Steuerung (41) so ausgestaltet ist, dass sie das Bypassventil (44) für einen Brenngaserzeugungsbetrieb des Reformers (3) zum Sperren der Bypassleitung (44) und für den Regenerationsprozess zum Öffnen der Bypassleitung (44) ansteuert und/oder dass sie das Abgasventil (48) für einen Brenngaserzeugungsbetrieb des Reformers (3) zum Öffnen der Brennstoffzellenabgasleitung (31) und für den Regenerationsprozess zum Sperren der Brennstoffzellenabgasleitung (31) ansteuert.
Fuel cell system according to claim 2 or 3,
characterized, - that a control unit (41) is provided, which is designed so that it when switching off the fuel cell system (1) a regeneration process for regenerating the reformer (3) or arranged for fuel gas generation from oxidant gas and fuel in the reformer (3) catalyst (16 ), and / or - That the controller (41) is designed so that it controls the bypass valve (44) for a fuel gas generating operation of the reformer (3) for blocking the bypass line (44) and for the regeneration process for opening the bypass line (44) and / or the exhaust valve (48) for a fuel gas generating operation of the reformer (3) for opening the fuel cell exhaust pipe (31) and for the regeneration process for blocking the fuel cell exhaust gas line (31) drives.
Brennstoffzellensystem nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, - dass in der Brennstoffzellenabgasleitung (31) ein Restgasbrenner (32) angeordnet ist, wobei die Bypassleitung (44) stromauf oder stromab des Restgasbrenners (32) an die Brennstoffzellenabgasleitung (31) angeschlossen ist, und/oder - dass in der Brennstoffzellenabgasleitung (31) stromab des Restgasbrenners (32) ein Hauptwärmeübertrager (33) angeordnet ist, wobei die Bypassleitung (44) stromauf oder stromab des Hauptwärmeübertragers (33) an die Brennstoffzellenabgasleitung (31) angeschlossen ist, und/oder - dass in der Brennstoffzellenabgasleitung (31) stromab des Hauptwärmeübertragers (33) ein Zusatzwärmeübertrager (34) angeordnet ist, wobei die Bypassleitung (44) stromauf oder stromab des Zusatzwärmeübertragers (34) an die Brennstoffzellenabgasleitung (31) angeschlossen ist.
Fuel cell system according to one of claims 1 to 4,
characterized, - That in the fuel cell exhaust gas line (31) a residual gas burner (32) is arranged, wherein the bypass line (44) upstream or downstream of the residual gas burner (32) is connected to the fuel cell exhaust gas line (31), and / or - That in the fuel cell exhaust pipe (31) downstream of the residual gas burner (32) a main heat exchanger (33) is arranged, wherein the bypass line (44) upstream or downstream of the Hauptwärmeübertragers (33) to the fuel cell exhaust pipe (31) is connected, and / or - That in the fuel cell exhaust pipe (31) downstream of the Hauptwärmeübertragers (33) an additional heat exchanger (34) is arranged, wherein the bypass line (44) upstream or downstream of the Zusatzwärmeübertragers (34) to the fuel cell exhaust pipe (31) is connected.
Brennstoffzellensystem nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, - dass in der Bypassleitung (44) ein Oxidationskatalysator (49) angeordnet ist, und/oder - dass an den Oxidationskatalysator (49) eine dritte Oxidatorleitung (59) angeschlossen ist, und/oder - dass der Oxidationskatalysator (49) in der Bypassleitung (44) stromauf des Bypassventils (47) angeordnet ist, und/oder - dass in der dritten Oxidationsleitung (50) ein Oxidatorventil (51) angeordnet ist.
Fuel cell system according to one of claims 1 to 5,
characterized, - That in the bypass line (44), an oxidation catalyst (49) is arranged, and / or - That the oxidation catalyst (49) has a third Oxidatorleitung (59) is connected, and / or - That the oxidation catalyst (49) in the bypass line (44) upstream of the bypass valve (47) is arranged, and / or - That in the third oxidation line (50) an oxidizer valve (51) is arranged.
Brennstoffzellensystem nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, - dass zumindest die Brennstoffzelle (2) innerhalb einer thermisch isolierenden Isolationsbox (40) angeordnet ist, wobei die Bypassleitung (44) außerhalb der Isolationsbox (40) an die Brennstoffzellenabgasleitung (31) angeschlossen ist, und/oder - dass das Bypassventil (44) außerhalb der Isolationsbox (40) angeordnet ist, und/oder - dass das Abgasventil (48) außerhalb der Isolationsbox (40) angeordnet ist, und/oder - dass das Oxidatorventil (51) außerhalb der Isolationsbox (40) angeordnet ist, und/oder - dass der Oxidationskatalysator (49) innerhalb der Isolationsbox (40) angeordnet ist.
Fuel cell system according to one of claims 1 to 6,
characterized, - That at least the fuel cell (2) within a thermally insulating insulating box (40) is arranged, wherein the bypass line (44) outside the insulation box (40) to the fuel cell exhaust pipe (31) is connected, and / or - That the bypass valve (44) outside the insulation box (40) is arranged, and / or - That the exhaust valve (48) outside the insulation box (40) is arranged, and / or - That the oxidizer valve (51) outside the insulation box (40) is arranged, and / or - That the oxidation catalyst (49) is disposed within the insulation box (40).
Verfahren zum Ausschalten eines Brennstoffzellensystems (1) nach einem der Ansprüche 1 bis 7, - bei dem ein Brenngaserzeugungsbetrieb des Reformers (3), bei dem eine aus dem Brenngasausgang (17) austretende Strömung durch die Brennstoffzelle (2) geführt wird, beendet wird, - bei dem nach dem Beenden des Brenngaserzeugungsbetriebs ein Regenerationsprozess zum Regenerieren des Reformers (3) oder eines zur Brenngaserzeugung aus Oxidatorgas und Kraftstoff im Reformer (3) angeordneten Katalysators (16) durchgeführt wird, - bei dem zur Durchführung des Regenerationsprozesses eine aus dem Brenngasausgang (17) austretende Strömung durch die Bypassleitung (44) geführt wird. Method for switching off a fuel cell system (1) according to one of Claims 1 to 7, in which a fuel gas production operation of the reformer (3) in which a flow emerging from the fuel gas outlet (17) is passed through the fuel cell (2) is terminated, in which a regeneration process for regenerating the reformer (3) or a catalyst (16) arranged to produce fuel gas from oxidant gas and fuel in the reformer (3) is carried out after the completion of the fuel gas production operation, - In which for carrying out the regeneration process from the fuel gas outlet (17) exiting flow through the bypass line (44) is guided. Verfahren nach Anspruch 8,
dadurch gekennzeichnet, - dass zur Durchführung des Brenngaserzeugungsbetriebs die Bypassleitung (44) gesperrt wird, und/oder - dass zur Durchführung des Regenerationsprozesses die Bypassleitung (44) geöffnet wird, und/oder - dass zur Durchführung des Brenngaserzeugungsbetriebs die Brennstoffzellenabgasleitung (31) geöffnet wird, und/oder - dass zur Durchführung des Regenerationsprozesses die Brennstoffzellenabgasleitung (31) gesperrt wird, und/oder - dass zur Durchführung des Brenngaserzeugungsbetriebs die dritte Oxidatorleitung (50) gesperrt wird, und/oder - dass zur Durchführung des Regenerationsprozess die dritte Oxidatorleitung (50) geöffnet wird.
Method according to claim 8,
characterized, - That for carrying out the fuel gas generating operation, the bypass line (44) is locked, and / or - That for carrying out the regeneration process, the bypass line (44) is opened, and / or - That for carrying out the fuel gas generating operation, the fuel cell exhaust gas line (31) is opened, and / or - That for carrying out the regeneration process, the fuel cell exhaust pipe (31) is locked, and / or - That for carrying out the fuel gas generating operation, the third Oxidatorleitung (50) is locked, and / or - That for carrying out the regeneration process, the third Oxidatorleitung (50) is opened.
Verfahren nach Anspruch 8 oder 9,
dadurch gekennzeichnet, - dass der Reformer (3) während des Regenerationsprozesses mit Oxidatorgas versorgt wird, und/oder - dass die Oxidatorgasversorgung des Reformers (3) während des Regenerationsprozesses beendet oder reduziert wird, sobald sich der Reformer (3) über eine vorbestimmte Reformergrenztemperatur (TR) aufheizt, und/oder - dass die Oxidatorgasversorgung des Reformers (3) während des Regenerationsprozesses erhöht oder erneut gestartet wird, sobald der Reformer (3) unter die Reformergrenztemperatur (TR) abgekühlt ist, und/oder - dass der Regenerationsprozess beendet wird, sobald die Oxidatorgasversorgung des Reformers (3) zur einer Abkühlung des Reformers (3) führt.
Method according to claim 8 or 9,
characterized, - That the reformer (3) is supplied with oxidizer gas during the regeneration process, and / or - That the Oxidatorgasversorgung the reformer (3) is terminated or reduced during the regeneration process, as soon as the reformer (3) over a predetermined reformer limit temperature (T R ) heats up, and / or - That the Oxidatorgasversorgung the reformer (3) is increased or restarted during the regeneration process, when the reformer (3) has cooled below the reformer limit temperature (T R ), and / or - That the regeneration process is terminated when the Oxidatorgasversorgung the reformer (3) leads to a cooling of the reformer (3).
Verfahren nach Anspruch 8 oder 9,
dadurch gekennzeichnet, - dass der Reformer (3) während des Regenerationsprozesses als Brenner betrieben wird, und/oder - dass während des Regenerationsprozesses der Brennerbetrieb des Reformers (3) reduziert oder beendet wird, sobald sich der Reformer (3) über eine vorbestimmte Reformergrenztemperatur (TR) aufheizt, und/oder - dass während des Regenerationsprozesses der Brennerbetrieb des Reformers (3) erhöht oder erneut gestartet wird, sobald der Reformer (3) unter die Reformergrenztemperatur (TR) abgekühlt ist.
Method according to claim 8 or 9,
characterized, - That the reformer (3) is operated as a burner during the regeneration process, and / or - That during the regeneration process, the burner operation of the reformer (3) is reduced or terminated as soon as the reformer (3) over a predetermined Reformergrenztemperatur (T R ) heats up, and / or - That during the regeneration process, the burner operation of the reformer (3) is increased or restarted when the reformer (3) is cooled below the Reformergrenztemperatur (T R ).
EP07104975A 2006-04-12 2007-03-27 Fuel cell system and appropriate operating method Active EP1845579B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006017614A DE102006017614A1 (en) 2006-04-12 2006-04-12 Fuel cell system and associated operating method

Publications (3)

Publication Number Publication Date
EP1845579A2 true EP1845579A2 (en) 2007-10-17
EP1845579A3 EP1845579A3 (en) 2009-07-01
EP1845579B1 EP1845579B1 (en) 2010-10-13

Family

ID=38267673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07104975A Active EP1845579B1 (en) 2006-04-12 2007-03-27 Fuel cell system and appropriate operating method

Country Status (3)

Country Link
EP (1) EP1845579B1 (en)
AT (1) ATE484856T1 (en)
DE (2) DE102006017614A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011031755A1 (en) * 2009-09-08 2011-03-17 The Ohio State University Reseach Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
GB2499488A (en) * 2011-12-09 2013-08-21 Bosch Gmbh Robert Fuel cell system
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127199A1 (en) * 2000-07-27 2002-02-14 Gen Motors Corp Operating device for reacting hydrocarbon fuel with water and air comprises feeding first stream through reactor, and reacting to heat catalyst beds
EP1198020A2 (en) * 2000-10-12 2002-04-17 Nissan Motor Co., Ltd. Fuel cell drive system
US20030093950A1 (en) * 2001-11-19 2003-05-22 Goebel Steven G. Integrated fuel processor for rapid start and operational control
US6608463B1 (en) * 2002-06-24 2003-08-19 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated air supply system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9914662D0 (en) * 1999-06-24 1999-08-25 Johnson Matthey Plc Catalysts
DE10315255A1 (en) * 2003-04-03 2004-10-21 J. Eberspächer GmbH & Co. KG Fuel cell system and burner arrangement for a fuel cell system
DE102004002337A1 (en) * 2004-01-16 2005-08-11 Bayerische Motoren Werke Ag An energy conversion device and method of operating the energy conversion device
DE102005001361A1 (en) * 2005-01-11 2006-07-20 J. Eberspächer GmbH & Co. KG The fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127199A1 (en) * 2000-07-27 2002-02-14 Gen Motors Corp Operating device for reacting hydrocarbon fuel with water and air comprises feeding first stream through reactor, and reacting to heat catalyst beds
EP1198020A2 (en) * 2000-10-12 2002-04-17 Nissan Motor Co., Ltd. Fuel cell drive system
US20030093950A1 (en) * 2001-11-19 2003-05-22 Goebel Steven G. Integrated fuel processor for rapid start and operational control
US6608463B1 (en) * 2002-06-24 2003-08-19 Delphi Technologies, Inc. Solid-oxide fuel cell system having an integrated air supply system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10081772B2 (en) 2008-09-26 2018-09-25 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
US10865346B2 (en) 2009-09-08 2020-12-15 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US9371227B2 (en) 2009-09-08 2016-06-21 Ohio State Innovation Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US9518236B2 (en) 2009-09-08 2016-12-13 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
US10253266B2 (en) 2009-09-08 2019-04-09 Ohio State Innovation Foundation Synthetic fuels and chemicals production with in-situ CO2 capture
WO2011031755A1 (en) * 2009-09-08 2011-03-17 The Ohio State University Reseach Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US10010847B2 (en) 2010-11-08 2018-07-03 Ohio State Innovation Foundation Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
US10502414B2 (en) 2011-05-11 2019-12-10 Ohio State Innovation Foundation Oxygen carrying materials
GB2499488A (en) * 2011-12-09 2013-08-21 Bosch Gmbh Robert Fuel cell system
GB2499488B (en) * 2011-12-09 2016-12-28 Bosch Gmbh Robert Fuel-cell system and process for operation thereof
US10144640B2 (en) 2013-02-05 2018-12-04 Ohio State Innovation Foundation Methods for fuel conversion
US10501318B2 (en) 2013-02-05 2019-12-10 Ohio State Innovation Foundation Methods for fuel conversion
US10022693B2 (en) 2014-02-27 2018-07-17 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
US11090624B2 (en) 2017-07-31 2021-08-17 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11826700B2 (en) 2018-08-09 2023-11-28 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
US11767275B2 (en) 2019-04-09 2023-09-26 Ohio State Innovation Foundation Alkene generation using metal sulfide particles

Also Published As

Publication number Publication date
DE502007005311D1 (en) 2010-11-25
EP1845579B1 (en) 2010-10-13
EP1845579A3 (en) 2009-07-01
DE102006017614A1 (en) 2007-10-18
ATE484856T1 (en) 2010-10-15

Similar Documents

Publication Publication Date Title
EP1845579B1 (en) Fuel cell system and appropriate operating method
EP1643094B1 (en) Exhaust system for an internal combustion engine and corresponding operating method
DE102009060679A1 (en) Operating method for a fuel cell system
DE10244883B4 (en) Heating system for a vehicle
EP1855342B1 (en) Fuel cell system
DE102004048335B4 (en) Exhaust system for an internal combustion engine and associated operating method
EP1439082B1 (en) Apparatus for conditioning a vehicle
DE102008018152A1 (en) Fuel cell system and associated operating method
EP1947723B1 (en) System for providing energy
DE102004028651A1 (en) Internal combustion engine
EP2028350B1 (en) Combustion engine system
EP1844856B1 (en) Fuel cell system and corresponding operating method
EP1845578B1 (en) Fuel cell system
EP1845576B1 (en) Fuel cell system
EP1739777B1 (en) Fuel cell system for vehicles
DE102006023857B4 (en) Fuel cell system and associated operating method
EP1942537B1 (en) Fuel cell system including a regeneration arrangement for a reformer and method thereof
DE10258196A1 (en) Interior heating and cooling system for motor vehicle, has by-pass line that bridges the segment of heat transfer circuit which runs through an internal combustion engine to form an isolated circuit in a bridged operating state
EP1657771B1 (en) Fuel cell system for production of electricity in a vehicle with internal combustion engine
EP1845577B1 (en) Fuel cell system
DE102005030474A1 (en) Fuel cell system for vehicles has reformate burner arrangement that sends incineration gases to fuel cell before and after anti-condensation temperature is reached by remaining hydrocarbons and water vapor in reformer
DE102004048338A1 (en) Internal combustion engine for motor vehicle, has oxidation catalyst and injecting mechanism arranged between exhaust tube and heat exchanger for injecting secondary fuel into exhaust tube
EP1925790B1 (en) System of an internal combustion engine
EP1919018A1 (en) Fuel cell system
EP1451454B1 (en) Method for operating an internal combustion engine and internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 8/04 20060101ALI20090528BHEP

Ipc: H01M 8/12 20060101ALN20090528BHEP

Ipc: H01M 8/06 20060101AFI20070726BHEP

Ipc: B01J 38/12 20060101ALI20090528BHEP

Ipc: C01B 3/38 20060101ALI20090528BHEP

Ipc: H01M 8/24 20060101ALN20090528BHEP

17P Request for examination filed

Effective date: 20100104

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REF Corresponds to:

Ref document number: 502007005311

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

26N No opposition filed

Effective date: 20110714

BERE Be: lapsed

Owner name: J. EBERSPACHER G.M.B.H. & CO. KG

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005311

Country of ref document: DE

Effective date: 20110714

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110327

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110328

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484856

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005311

Country of ref document: DE

Representative=s name: BRP RENAUD UND PARTNER MBB RECHTSANWAELTE PATE, DE

Effective date: 20131212

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005311

Country of ref document: DE

Representative=s name: BRP RENAUD UND PARTNER MBB, DE

Effective date: 20131212

Ref country code: DE

Ref legal event code: R082

Ref document number: 502007005311

Country of ref document: DE

Representative=s name: BRP RENAUD & PARTNER, DE

Effective date: 20131212

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007005311

Country of ref document: DE

Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO, DE

Free format text: FORMER OWNER: J. EBERSPAECHER GMBH & CO. KG, 73730 ESSLINGEN, DE

Effective date: 20131212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 17