EP1881332A2 - Positioning unit for optical and/or electric test systems - Google Patents

Positioning unit for optical and/or electric test systems Download PDF

Info

Publication number
EP1881332A2
EP1881332A2 EP07111264A EP07111264A EP1881332A2 EP 1881332 A2 EP1881332 A2 EP 1881332A2 EP 07111264 A EP07111264 A EP 07111264A EP 07111264 A EP07111264 A EP 07111264A EP 1881332 A2 EP1881332 A2 EP 1881332A2
Authority
EP
European Patent Office
Prior art keywords
chuck
positioning
drive unit
wafer
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07111264A
Other languages
German (de)
French (fr)
Other versions
EP1881332A3 (en
Inventor
Detlef Gerhard
Johannes Lechner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1881332A2 publication Critical patent/EP1881332A2/en
Publication of EP1881332A3 publication Critical patent/EP1881332A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment

Definitions

  • the invention relates to three-dimensionally movable workpiece carriers, in particular for assemblies, chips on wafers or the like.
  • the positioning and, at the same time, the optimization of the movement of the parts to be treated are considered.
  • the object to be tested is moved up to the measuring needle tips of a measuring instrument, contacted with the measuring tips and measured in the sequence.
  • One application of the positioning systems discussed herein is the use in testing wafers containing a variety of chips, each of which is to be tested individually.
  • a wafer is usually fully tested, whereby random series of tests can be performed.
  • a batch of wafers is provided.
  • a wafer is loaded onto a so-called chuck (carrier) of the test system and the electrical or the functional test are carried out.
  • the test procedure one chip or several chips of the wafer are driven under the measuring needle card containing the measuring needles.
  • the wafer is raised to the extent that the needles contact the respective chips and the test is started. Subsequently, the wafer is lowered and the next chips are positioned relative to the measuring contacts and contacted by lifting the wafer.
  • the positioning and lifting of the wafer should ideally be done in minimal time.
  • Systems of the prior art require a minimum of 100 ms for such positioning and contacting. With every new generation of testers, there is an endeavor to further shorten times.
  • the positioning process must be designed so that the damage to the probe card, measuring contact and the tapping points on a chip remain minimal.
  • positioning is based on the use of controllable drives in the x, y and z directions, with the x-y plane of movement being as parallel as possible to a wafer surface.
  • the z-direction points upwards and is thus perpendicular to the x-y plane and on the wafer.
  • the test equipment has a rotation unit, with which the wafer can be rotated about the z-axis.
  • a z-drive for a coarse movement and a z-drive for a fine, fast movement are mounted on or above the x-y plane or on the corresponding drives.
  • the z-drive for fast motion is based on a cam that performs minimal strokes and can be moved quickly.
  • the chuck is moved.
  • the chuck itself consists of a surface for placing the wafer. Within the bearing surface there are vacuum holes for sucking the wafer. Furthermore, retractable pins are provided in the surface, by means of which raising and lowering of the wafer is feasible. Disadvantages of these devices exist in particular with regard to the necessary movement of large masses, which requires corresponding driving forces.
  • the invention has for its object to provide a positioning system, with the fast and accurate positioning of loaded on Chucks workpieces approach to test adapter and hold for processing.
  • the solution to this problem is achieved by the feature combination according to claim 1.
  • the invention is based on the finding that the desired further developments can be realized with a new motion concept for the construction and movement of a positioning unit.
  • essentially known drive units for conventional three-dimensionally positionable units are used.
  • the realization of the acceleration of certain loading and transport operations is achieved in that above the drives, for example, for the x- and y-axis for positioning during a test process substantially moving units or shares in the mass are drastically reduced. This is especially true for the chuck.
  • the structure of the positioning unit thus includes, from bottom to top, first a Z drive (A) followed by a Y drive unit (B) and an X drive unit (C). Following this, a rotary drive unit (D) is provided and a Z 'drive unit (E) for fine positioning of the chuck (G).
  • the Z-drive axis (A) for the coarse positioning is below the xy units, which is generally referred to as a table.
  • the chuck which receives, for example, a populated wafer to be tested, for example, is therefore the uppermost component of the positioning unit and can transport the wafer relative to a test system, position it for the actual test and move on at high speed.
  • the new concept of a positioning unit with a correspondingly high positioning frequency has the disadvantage that the lower Z drive must move the entire movement system.
  • the new concept entails that a substantial advantage can be achieved by having to carry minimal loads to be moved during a test and the associated workpiece positioning.
  • the chuck (G) itself has no lifting device for a wafer, what with a essential weight reduction is connected.
  • the lifting device can be approached at a position to which the existing on the chuck wafer is to be removed from this. By mutual movements between the lifting device and the chuck, the wafer can be lifted off the chuck.
  • the Z 'drive unit (E) is to be understood as having a piezoelectric actuator, corresponding strokes can be performed at high frequency.
  • chuck (G) with vertical through holes which cooperate with an externally placed lifting device (F), in the sense that pins of the lifting device are inserted and made in through holes within the chuck.
  • the figure shows according to the new movement concept, a positioning system, or a positioning unit for accelerating the positioning of a chuck.
  • the structure of the drives from bottom to top is as follows: coarse Z drive followed by the X and Y drive units, on which in turn sits a rotary drive.
  • coarse Z drive followed by the X and Y drive units, on which in turn sits a rotary drive.
  • piezo drive is used for the fine positioning of the chuck.
  • this construction has the disadvantage that the lower Z drive carries the entire movement system
  • this distribution of the movement units responsible for the drives in the z-direction has the great advantage that during the test of a chip, which is positioned on a wafer on a chuck, the necessary wafer positioning with corresponding Position changes by moving reduced masses, which are located above the xy table, is accomplished.
  • the upper z'-drive is a piezomotor with which the Chuck can be lifted quickly and accurately.
  • the chuck has no lifting device for a wafer lying on it.
  • the chuck has only through holes which are positioned below a resting wafer and are operable by the pins of an external lifting device to lift the wafer off the chuck.
  • there is a zone inside the chuck which is positioned below the wafer and at which the external lifting device F with corresponding pins 2 is retractable to lift a wafer.
  • the entire process is achieved by relative positions of wafer and lifting device.
  • the chuck is moved to a defined transfer position so that the pins of the lifting device positioned outside the chuck can lift the wafer.
  • the internal structure of the chuck G has a honeycomb shape of closely adjacent cavities with correspondingly low mass.
  • the z'-drive E is used for fine positioning.
  • This drive is designed for example as a piezo drive and controlled by a programmable waveform generator. In this way, the acceleration behavior of the movement of the chuck can be optimized. Advantages arise in particular through minimal Bumps or minimal clinking when striking the wafer surface to the measuring needles.
  • the advantages of the positioning unit described above are the greatly reduced mass of the chuck and thus the possibility of using a piezo drive. With this structure, positioning speeds can be achieved, which move a wafer or a chip from one position to the next within 30 ms.
  • the movement structure is indicated.
  • a so-called measuring card with the measuring needles is positioned above the chuck G, but not part of the movement system.

Abstract

The unit (1) has a X-drive unit (C), a Y-drive unit (B), and a Z-drive unit (A) that is provided for rough positioning of chucks (G). A Z`-drive unit (E) is provided for fine positioning of the chucks. A lifting device for the workpiece that is positioned on the chucks is represented separately from the chucks. The lifting device exhibits a set of spikes (2) that are directed upward and parallel to z-axis. The spikes work together with passage openings in the chuck.

Description

Die Erfindung betrifft dreidimensional verfahrbare Werkstückträger, insbesondere für Baugruppen, Chips auf Wafern oder ähnlichem. Betrachtet werden insbesondere die Positionierung und dabei die Optimierung der Bewegung der zu behandelnden Teile.The invention relates to three-dimensionally movable workpiece carriers, in particular for assemblies, chips on wafers or the like. In particular, the positioning and, at the same time, the optimization of the movement of the parts to be treated are considered.

Zum elektrischen Testen von Baugruppen, Chips auf Wafern oder sonstiger Komponenten wird das zu testende Objekt an die Messnadelspitzen eines Messinstruments herangefahren, mit den Messspitzen kontaktiert und in der Folge vermessen.For electrical testing of assemblies, chips on wafers or other components, the object to be tested is moved up to the measuring needle tips of a measuring instrument, contacted with the measuring tips and measured in the sequence.

Eine Anwendungsmöglichkeit der hier behandelten Positioniersysteme ist der Einsatz beim Testen von Wafern, die eine Vielzahl von Chips enthalten, von denen jeder einzeln zu testen ist. Hierbei wird ein Wafer meist vollständig getestet, wobei auch stichprobenweise Testreihen durchgeführt werden können. Zum Prüfen wird ein Los von Wafern bereitgestellt. Aus diesem heraus wird ein Wafer auf einen so genannten Chuck (Träger) des Testsystems geladen und der elektrische beziehungsweise der Funktionstest werden durchgeführt. Während des Testablaufs wird ein Chip oder es werden mehrere Chips des Wafers unter die Messnadelkarte, die die Messnadeln enthält, gefahren. Der Wafer wird insoweit angehoben, dass die Messnadeln die betreffenden Chips kontaktieren und der Test wird gestartet. Anschließend wird der Wafer abgesenkt und es werden die nächsten Chips relativ zu den Messkontakten positioniert und durch Anheben des Wafers kontaktiert.One application of the positioning systems discussed herein is the use in testing wafers containing a variety of chips, each of which is to be tested individually. In this case, a wafer is usually fully tested, whereby random series of tests can be performed. For testing, a batch of wafers is provided. For this purpose, a wafer is loaded onto a so-called chuck (carrier) of the test system and the electrical or the functional test are carried out. During the test procedure, one chip or several chips of the wafer are driven under the measuring needle card containing the measuring needles. The wafer is raised to the extent that the needles contact the respective chips and the test is started. Subsequently, the wafer is lowered and the next chips are positioned relative to the measuring contacts and contacted by lifting the wafer.

Das Positionieren und Anheben des Wafers sollte idealer Weise in minimaler Zeit erfolgen. Systeme nach dem Stand der Technik benötigen für derartige Positionierungen und Kontaktierungen minimal 100 ms. Mit jeder neuen Prüfgerätegeneration ist die Bestrebung verbunden, die Zeiten weiter zu verkürzen.The positioning and lifting of the wafer should ideally be done in minimal time. Systems of the prior art require a minimum of 100 ms for such positioning and contacting. With every new generation of testers, there is an endeavor to further shorten times.

Trotzdem ist der Positioniervorgang so zu gestalten, dass die Beschädigungen an Nadelkarte, Messkontakt und an den Abgreifstellen an einem Chip minimal bleiben.Nevertheless, the positioning process must be designed so that the damage to the probe card, measuring contact and the tapping points on a chip remain minimal.

Bei Systemen nach dem Stand der Technik basiert eine Positionierung auf der Verwendung von steuerbaren Antrieben in x-, y- und z-Richtung, wobei die x-y-Ebene der Bewegung möglichst parallel zu einer Waferfläche ist. Die z-Richtung zeigt nach oben und steht damit senkrecht auf der x-y-Ebene und auf dem Wafer. Zusätzlich besitzen die Testgeräte eine Rotationseinheit, mit der der Wafer um die z-Achse gedreht werden kann.In prior art systems, positioning is based on the use of controllable drives in the x, y and z directions, with the x-y plane of movement being as parallel as possible to a wafer surface. The z-direction points upwards and is thus perpendicular to the x-y plane and on the wafer. In addition, the test equipment has a rotation unit, with which the wafer can be rotated about the z-axis.

Zum Erreichen hoher Positionierungsgeschwindigkeiten werden oft zwei z-Antriebe verwendet. Ein z-Antrieb für eine grobe Bewegung und ein z-Antrieb für eine feine schnelle Bewegung. Beide z-Antriebe sind auf beziehungsweise oberhalb der x-y-Ebene beziehungsweise auf den entsprechenden Antrieben gelagert. Der z-Antrieb für die schnelle Bewegung basiert hierbei beispielsweise auf einer Kurvenscheibe, die minimale Hübe ausführt und schnell bewegt werden kann. Mittels dieser Antriebe wird der Chuck bewegt. Der Chuck selbst besteht aus einer Fläche zum Auflegen des Wafers. Innerhalb der Auflagefläche sind Vakuumbohrungen zur Ansaugung des Wafers vorhanden. Weiterhin sind in der Fläche versenkbare Stifte vorgesehen, mittels der ein Anheben und Absenken des Wafers durchführbar ist. Nachteile dieser Vorrichtungen bestehen insbesondere hinsichtlich der notwendigen Bewegung von großen Massen, was entsprechende Antriebskräfte erfordert.To achieve high positioning speeds often two z-drives are used. A z-drive for a coarse movement and a z-drive for a fine, fast movement. Both z-drives are mounted on or above the x-y plane or on the corresponding drives. For example, the z-drive for fast motion is based on a cam that performs minimal strokes and can be moved quickly. By means of these drives, the chuck is moved. The chuck itself consists of a surface for placing the wafer. Within the bearing surface there are vacuum holes for sucking the wafer. Furthermore, retractable pins are provided in the surface, by means of which raising and lowering of the wafer is feasible. Disadvantages of these devices exist in particular with regard to the necessary movement of large masses, which requires corresponding driving forces.

Der Erfindung liegt die Aufgabe zugrunde, ein Positioniersystem bereitzustellen, mit dem schnelle und genaue Positionierungen von auf Chucks geladenen Werkstücken an Testadapter heranzufahren und zur Bearbeitung zu halten. Die Lösung dieser Aufgabe geschieht durch die Merkmalskombination entsprechend Anspruch 1.The invention has for its object to provide a positioning system, with the fast and accurate positioning of loaded on Chucks workpieces approach to test adapter and hold for processing. The solution to this problem is achieved by the feature combination according to claim 1.

Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.Advantageous embodiments can be found in the dependent claims.

Der Erfindung liegt die Erkenntnis zugrunde, dass mit einem neuen Bewegungskonzept für den Aufbau und die Bewegung einer Positioniereinheit die gewünschten Weiterentwicklungen realisierbar sind.
Hierzu werden im Wesentlichen bekannte Antriebseinheiten für übliche dreidimensional positionierbare Einheiten verwandt. Die Realisierung der Beschleunigung bestimmter Lade- und Transportvorgänge wird dadurch erreicht, dass oberhalb der Antriebe, beispielsweise für die x- und y-Achse die für die Positionierung während eines Testvorganges im Wesentlichen bewegten Einheiten oder Anteile in der Masse drastisch reduziert werden. Dies gilt insbesondere für den Chuck. Der Aufbau der Positioniereinheit beinhaltet damit von unten nach oben betrachtet zunächst einen Z-Antrieb (A) gefolgt von einer Y-Antriebseinheit (B) und einer X-Antriebseinheit (C). Im Anschluss daran ist eine Rotationsantriebseinheit (D) vorgesehen und eine Z'-Antriebseinheit (E) zur Feinpositionierung des Chucks (G). Damit befindet sich die Z-Antriebsachse (A) für die Grobpositionierung unterhalb der x-y-Einheiten, die allgemein als Tisch bezeichnet wird. Der Chuck, der beispielsweise einen zu testenden beispielsweise einen bestückten Wafer aufnimmt, ist somit das oberste Bestandteil der Positioniereinheit und kann den Wafer relativ zu einem Testsystem transportieren, zum eigentlichen Test positionieren und mit hoher Geschwindigkeit weiter verfahren.
The invention is based on the finding that the desired further developments can be realized with a new motion concept for the construction and movement of a positioning unit.
For this purpose, essentially known drive units for conventional three-dimensionally positionable units are used. The realization of the acceleration of certain loading and transport operations is achieved in that above the drives, for example, for the x- and y-axis for positioning during a test process substantially moving units or shares in the mass are drastically reduced. This is especially true for the chuck. The structure of the positioning unit thus includes, from bottom to top, first a Z drive (A) followed by a Y drive unit (B) and an X drive unit (C). Following this, a rotary drive unit (D) is provided and a Z 'drive unit (E) for fine positioning of the chuck (G). Thus, the Z-drive axis (A) for the coarse positioning is below the xy units, which is generally referred to as a table. The chuck, which receives, for example, a populated wafer to be tested, for example, is therefore the uppermost component of the positioning unit and can transport the wafer relative to a test system, position it for the actual test and move on at high speed.

Das neue Konzept einer Positioniereinheit mit einer entsprechend hohen Positionierfrequenz, beispielsweise im Bereich von 100 ms weist zwar den Nachteil auf, dass der untere Z-Antrieb das gesamte Bewegungssystem bewegen muss. Das neue Konzept ist jedoch damit verbunden, dass ein wesentlicher Vorteil erzielbar ist, indem die während eines Tests und der damit verbundenen Werkstückpositionierung zu bewegenden Antriebe minimale Lasten zu transportieren haben.The new concept of a positioning unit with a correspondingly high positioning frequency, for example in the range of 100 ms, has the disadvantage that the lower Z drive must move the entire movement system. However, the new concept entails that a substantial advantage can be achieved by having to carry minimal loads to be moved during a test and the associated workpiece positioning.

Es ist besonders vorteilhaft, wenn der Chuck (G) selbst keine Aushebevorrichtung für einen Wafer aufweist, was mit einer wesentlichen Gewichtsreduzierung verbunden ist. Die Hebevorrichtung ist dafür an einer Position anfahrbar, an welche der auf dem Chuck vorhandene Wafer von diesen entnommen werden soll. Durch gegenseitige Bewegungen zwischen Hebevorrichtung und Chuck kann der Wafer vom Chuck abgehoben werden.It is particularly advantageous if the chuck (G) itself has no lifting device for a wafer, what with a essential weight reduction is connected. The lifting device can be approached at a position to which the existing on the chuck wafer is to be removed from this. By mutual movements between the lifting device and the chuck, the wafer can be lifted off the chuck.

Wenn die Z'-Antriebseinheit (E) mit einem piezoelektrischen Aktor verstehen ist, lassen sich entsprechende Hübe mit hoher Frequenz ausführen. Um das Gewicht für die zu beschleunigenden Massen weiterhin zu reduzieren, ist es vorteilhaft, den Chuck in Wabenform herzustellen. Dies bietet die Möglichkeit einer mechanisch stabilen Konstruktion mit gleichzeitig reduzierter Masse.If the Z 'drive unit (E) is to be understood as having a piezoelectric actuator, corresponding strokes can be performed at high frequency. In order to further reduce the weight of the masses to be accelerated, it is advantageous to manufacture the honeycomb chuck. This offers the possibility of a mechanically stable construction with simultaneously reduced mass.

Es ist weiterhin vorteilhaft, den Chuck (G) mit senkrechten Durchgangsbohrungen auszustatten, die mit einer extern platzierten Hebevorrichtung (F) zusammenwirken, in dem Sinn, dass Stifte der Hebevorrichtung in Durchgangsbohrungen innerhalb des Chucks eingeführt und durchgeführt werden.It is also advantageous to provide the chuck (G) with vertical through holes which cooperate with an externally placed lifting device (F), in the sense that pins of the lifting device are inserted and made in through holes within the chuck.

Im Folgenden wird anhand der schematischen Figur ein Ausführungsbeispiel beschrieben.In the following, an embodiment will be described with reference to the schematic figure.

Die Figur zeigt entsprechend dem neuen Bewegungskonzept ein Positioniersystem, beziehungsweise eine Positioniereinheit zur Beschleunigung der Positionierung eines Chucks.The figure shows according to the new movement concept, a positioning system, or a positioning unit for accelerating the positioning of a chuck.

Die Minimierung der Massen oberhalb der x-, y-Antriebe, die bei der Positionierung während des Test/der Prüfung auch verwendet werden, sowie eine drastisch reduzierte Masse für den Chuck tragen zur Erreichung der gestellten Anforderungen bei.The minimization of masses above the x, y drives, which are also used in positioning during the test / test, as well as drastically reduced mass for the chuck, contribute to meeting the stated requirements.

Der Aufbau der Antriebe von unten nach oben ist wie folgt: Grober Z-Antrieb gefolgt von den X- und Y-Antriebseinheiten, auf denen wiederum ein Rotationsantrieb sitzt. Für die Feinpositionierung des Chucks wird ein so genannter Piezo-Antrieb verwendet. Dieser Aufbau weist wie gesagt den Nachteil auf, dass der untere Z-Antrieb das gesamte Bewegungssystem tragen muss, wobei sich jedoch durch diese Aufteilung der Bewegungseinheiten die für die Antriebe in z-Richtung verantwortlich sind, der große Vorteil ergibt, dass die während des Tests eines Chips, der auf einem Wafer auf einem Chuck positioniert ist, die hierfür notwendige Waferpositionierung mit entsprechenden Positionsveränderungen durch Bewegung reduzierter Massen, die sich oberhalb des x-y-Tisches befinden, bewerkstelligt wird.The structure of the drives from bottom to top is as follows: coarse Z drive followed by the X and Y drive units, on which in turn sits a rotary drive. For the fine positioning of the chuck a so-called piezo drive is used. As stated, this construction has the disadvantage that the lower Z drive carries the entire movement system However, this distribution of the movement units responsible for the drives in the z-direction has the great advantage that during the test of a chip, which is positioned on a wafer on a chuck, the necessary wafer positioning with corresponding Position changes by moving reduced masses, which are located above the xy table, is accomplished.

Der obere z'-Antrieb ist ein Piezomotor mit dem der Chuck schnell und genau gehoben werden kann. Der Chuck besitzt keine Aushebevorrichtung für einen auf ihm liegenden Wafer. Der Chuck weist lediglich durchgehende Löcher auf, die unterhalb eines Aufliegenden Wafers positioniert sind und durch die Stifte einer externen Hebevorrichtung zum Abheben des Wafers vom Chuck durchführbar sind. Somit existiert eine Zone innerhalb des Chucks, die unterhalb des Wafers positioniert ist und an der die externe Hebevorrichtung F mit entsprechenden Stiften 2 einfahrbar ist, um einen Wafer abzuheben.The upper z'-drive is a piezomotor with which the Chuck can be lifted quickly and accurately. The chuck has no lifting device for a wafer lying on it. The chuck has only through holes which are positioned below a resting wafer and are operable by the pins of an external lifting device to lift the wafer off the chuck. Thus, there is a zone inside the chuck which is positioned below the wafer and at which the external lifting device F with corresponding pins 2 is retractable to lift a wafer.

Der gesamte Vorgang wird durch Relativpositionen von Wafer und Hebevorrichtung erreicht.The entire process is achieved by relative positions of wafer and lifting device.

Zum Ausheben des Wafers wird der Chuck in eine definierte Transferstellung gefahren, so dass die Stifte der außerhalb des Chucks positionierten Aushebevorrichtung den Wafer anheben können.To lift the wafer, the chuck is moved to a defined transfer position so that the pins of the lifting device positioned outside the chuck can lift the wafer.

Zur Gewichtsreduzierung besitzt der innere Aufbau des Chucks G eine Wabenform aus dicht nebeneinander liegenden Hohlräumen mit entsprechend geringer Masse. Zur schnellen Positionierung des Chucks in z-Richtung wird nur der obere Piezoantrieb, der z'-Antrieb E zur Feinpositionierung verwendet. Dieser Antrieb wird beispielsweise als Piezoantrieb ausgelegt und über einen programmierbaren Wellenformgenerator angesteuert. So lässt sich das Beschleunigungsverhalten der Bewegung des Chucks optimieren. Vorteile ergeben sich insbesondere durch minimale Stöße beziehungsweise minimales Klirren beim Anschlagen der Waferoberfläche an die Messnadeln.To reduce weight, the internal structure of the chuck G has a honeycomb shape of closely adjacent cavities with correspondingly low mass. For quick positioning of the chuck in the z-direction, only the upper piezo drive, the z'-drive E is used for fine positioning. This drive is designed for example as a piezo drive and controlled by a programmable waveform generator. In this way, the acceleration behavior of the movement of the chuck can be optimized. Advantages arise in particular through minimal Bumps or minimal clinking when striking the wafer surface to the measuring needles.

Die Vorteile der oben beschriebenen Positioniereinheit liegen in der stark reduzierten Masse des Chucks und somit in der Möglichkeit, einen Piezoantrieb zu verwenden. Mit diesem Aufbau können Positioniergeschwindigkeiten erreicht werden, die einen Wafer beziehungsweise einen Chip von einer zur nächsten Position innerhalb von 30 ms versetzen. In der Darstellung entsprechend der beiliegenden Figur ist der Bewegungsaufbau angedeutet. Eine so genannte Messkarte mit den Messnadeln ist oberhalb des Chucks G positioniert, jedoch nicht Bestandteil des Bewegungssystems.The advantages of the positioning unit described above are the greatly reduced mass of the chuck and thus the possibility of using a piezo drive. With this structure, positioning speeds can be achieved, which move a wafer or a chip from one position to the next within 30 ms. In the illustration corresponding to the accompanying figure, the movement structure is indicated. A so-called measuring card with the measuring needles is positioned above the chuck G, but not part of the movement system.

Claims (4)

Positioniereinheit (1) zur kurzzeitigen dreidimensionalen Positionierung von auf einem Chuck (G) geladenen Werkstücken relativ zu einem optischen oder elektrischen Testsystem, welche Folgendes aufweist: - eine z-Antriebseinheit (A) zur Grobpositionierung des Chucks (G), - eine y-Antriebseinheit (B), - eine X-Antriebseinheit (C), - eine Rotationsantriebseinheit (D), - eine Z'-Antriebseinheit (E) zur Feinpositionierung des Chucks (G), wobei eine Hebevorrichtung für ein auf dem Chuck (G) positioniertes Werkstück separat vom Chuck dargestellt ist, mehrere nach oben und parallel zur z-Achse gerichtete Stifte (2) aufweist, die mit Durchgangsöffnungen im Chuck zusammenwirken.Positioning unit (1) for the short-term three-dimensional positioning of workpieces loaded on a chuck (G) relative to an optical or electrical test system, comprising: a z-drive unit (A) for coarse positioning of the chuck (G), a y-drive unit (B), an X-drive unit (C), a rotary drive unit (D), a Z 'drive unit (E) for fine positioning of the chuck (G), wherein a lifting device for a workpiece positioned on the chuck (G) is shown separately from the chuck, a plurality of upwardly and parallel to the z-axis directed pins (2), which cooperate with through holes in the chuck. Positioniereinheit nach Anspruch 1, bei denen die Z'-Antriebseinheit (E) zur Feinpositionierung des Chucks (G) einen piezoelektrischen Aktor aufweist.Positioning unit according to claim 1, wherein the Z 'drive unit (E) for fine positioning of the chuck (G) comprises a piezoelectric actuator. Positioniereinheit nach Anspruch 1 oder 2, bei der der Chuck (G) eine Wabenform zur Reduzierung der Masse aufweist.A positioning unit according to claim 1 or 2, wherein the chuck (G) has a honeycomb shape for reducing the mass. Positioniereinheit nach Anspruch 3, bei der Hohlräume im Chuck (G) senkrechte Durchgänge bilden.Positioning unit according to claim 3, in which cavities in the chuck (G) form vertical passages.
EP07111264A 2006-07-03 2007-06-28 Positioning unit for optical and/or electric test systems Withdrawn EP1881332A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610030589 DE102006030589A1 (en) 2006-07-03 2006-07-03 Positioning unit for temporary three-dimensional positioning of workpiece, has lifting device represented separately from chucks, where lifting device has spikes that are parallel to z-axis and work together with passage openings in chuck

Publications (2)

Publication Number Publication Date
EP1881332A2 true EP1881332A2 (en) 2008-01-23
EP1881332A3 EP1881332A3 (en) 2008-03-12

Family

ID=38626222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07111264A Withdrawn EP1881332A3 (en) 2006-07-03 2007-06-28 Positioning unit for optical and/or electric test systems

Country Status (2)

Country Link
EP (1) EP1881332A3 (en)
DE (1) DE102006030589A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013107698A1 (en) * 2012-01-16 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sample positioning device and method for operation thereof
US8870789B2 (en) 2009-02-03 2014-10-28 Roche Diagnostics Operations, Inc. Lancing system and tape cassette for a lancing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771372B1 (en) 2001-11-01 2004-08-03 Therma-Wave, Inc. Rotational stage with vertical axis adjustment
WO2005069352A1 (en) 2004-01-16 2005-07-28 Icos Vision Systems N.V. Lifting device and method for lifting and changing wafers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288694B2 (en) * 2001-12-20 2009-07-01 株式会社ニコン Substrate holding apparatus, exposure apparatus, and device manufacturing method
US6756751B2 (en) * 2002-02-15 2004-06-29 Active Precision, Inc. Multiple degree of freedom substrate manipulator
US6888289B2 (en) * 2002-07-16 2005-05-03 Baldor Electric Company Multi-axes, sub-micron positioner
US7187188B2 (en) * 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6771372B1 (en) 2001-11-01 2004-08-03 Therma-Wave, Inc. Rotational stage with vertical axis adjustment
WO2005069352A1 (en) 2004-01-16 2005-07-28 Icos Vision Systems N.V. Lifting device and method for lifting and changing wafers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8870789B2 (en) 2009-02-03 2014-10-28 Roche Diagnostics Operations, Inc. Lancing system and tape cassette for a lancing device
WO2013107698A1 (en) * 2012-01-16 2013-07-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sample positioning device and method for operation thereof

Also Published As

Publication number Publication date
EP1881332A3 (en) 2008-03-12
DE102006030589A1 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
DE102010040242B4 (en) Modular prober and method of operation
EP0470118B1 (en) Testing device for testing electrical or electronic test specimens
AT517258B1 (en) Device for handling aligned pairs of wafers
DE19928524B4 (en) IC tester
DE102010025760B4 (en) Device for testing an integrated circuit
DE2028910C3 (en) Device for sorting electrical circuit elements
DE10121501A1 (en) Test station mount for ICs has indexed rotation reduces height maintains planarity
DE202009015945U1 (en) PCB separator
DE102014102359B4 (en) Turret handling devices and method of operation therefor
DE102018217297A1 (en) Device for dividing a workpiece
DE102014106572A1 (en) Machine tool system and method for operating a machine tool system
WO2011127962A1 (en) Method and device for contacting a row of contact surfaces with probe tips
DE112006000517T5 (en) Working Level, Focus Beam Work Tool and Focus Beam Working Process
EP1881332A2 (en) Positioning unit for optical and/or electric test systems
DE102019006050A1 (en) Pin lifting device with sliding guide
DE102004030881B4 (en) Method and prober for contacting a contact surface with a contact tip
DE102007016553A1 (en) Device and method for the electrical contacting of semiconductor devices on a wafer
WO2010031685A1 (en) Method for testing electronic components of a repetitive pattern under defined thermal conditions
DE102004013707B9 (en) Device for testing substrates
DE19822000C2 (en) Test methods for integrated circuits on a wafer
DE102007005208A1 (en) Method for testing electronic components, includes testing auxiliary components and chips, where chips are arranged on wafer and auxiliary components are arranged between chips
EP0102971A1 (en) Device for mounting electric and electronic circuit components on an object
DE102021134477B4 (en) Machine tool and method for equipping and/or removing the machine tool with a workpiece pallet
DE102018121911A1 (en) Method for positioning the test substrate, probes and inspection unit relative to each other and Prober for its execution
DE102020203225A1 (en) Calibration method and machine tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080910

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090625

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105