EP1902337A1 - Elektrooptisches kommunikations-und energiekabel - Google Patents

Elektrooptisches kommunikations-und energiekabel

Info

Publication number
EP1902337A1
EP1902337A1 EP06752911A EP06752911A EP1902337A1 EP 1902337 A1 EP1902337 A1 EP 1902337A1 EP 06752911 A EP06752911 A EP 06752911A EP 06752911 A EP06752911 A EP 06752911A EP 1902337 A1 EP1902337 A1 EP 1902337A1
Authority
EP
European Patent Office
Prior art keywords
power cable
metal wires
communication
metal
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06752911A
Other languages
English (en)
French (fr)
Inventor
Thomas Rytz
Martin Rutschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brugg Kabel AG
Original Assignee
Brugg Kabel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brugg Kabel AG filed Critical Brugg Kabel AG
Publication of EP1902337A1 publication Critical patent/EP1902337A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables

Definitions

  • the invention relates to an electro-optical communication and power cable, which in a central loose tube made of a smooth, flexible metal tube at least one optical waveguide with a primary sheath, two coaxially extending to the loose tube layers of stranded metal wires, which also serve as traction and shear relief, and an outer sheath. Furthermore, the invention relates to a use of the electro-optical communication and power cable.
  • Optical cables with optical fibers, in particular glass fibers, have been known for several decades.
  • the data is transmitted instead of in the form of electrical impulses through metal conductors as light quanta in optical waveguides.
  • Interfaces are electro-optical couplings, which convert electrical impulses into light quanta and vice versa.
  • An optical waveguide of known design comprises an optical core and an optical cladding, in practice a glass fiber with an outer cladding of approximately 125 ⁇ m in diameter.
  • a primary sheathing of the glass fiber made of a plastic has an outer diameter of, for example, 250 ⁇ m.
  • Electro-optical cables comprise, in addition to at least one optical waveguide, electrical conductors which serve, for example, for supplying voltage or for transmitting electrical signals. The electrical conductors are arranged on or connected to the optical cable.
  • Electro-optical communication and power cables are also called hybrid cables.
  • the loose tube comprises a metal tube of high electrical conductivity, this can itself be used as electrical conductors.
  • the usual steel tubes are little or not suitable because of the low electrical conductivity.
  • EP 0371660 A1 an electro-optical cable is described which comprises a central loose tube with a thin steel tube. This is surrounded by a dielectric layer in which copper strands of high electrical conductivity are embedded. Outside the dielectric layer, a two-layer reinforcement made of steel wires is arranged. These are in turn embedded in the protective sheath.
  • the invention has for its object to further improve an electro-optical cable of the type mentioned above and widen its field of application.
  • the inner wire layer consists of electrically highly conductive metal wires, and the outer wire layer of individual and / or groupwise alternately arranged metal wires of high electrical conductivity on the one hand and metal wires of high tensile strength on the other hand by means of an insulating layer at a distance. th is. Special and further embodiments of the electrical communication and power cable are the subject of dependent claims.
  • metal wires also encompasses metal strands with comparable electrical and mechanical properties.
  • the signals are transmitted optically, if necessary also electrically, the energy exclusively electrically.
  • the electrically well-conducting metal wires are preferably metals having an electrical resistivity of at most 5x10 "5 ⁇ .mm, in particular (1-3) x 10 '5 ⁇ .mm used. Taking into account the material costs are in particular copper, copper alloys, aluminum and Of course, it is also possible to use composite wires coated with one of these metals with good electrical conductivity, in particular with a steel core.
  • the less electrically conductive, outer metal wires have a high tensile strength of at least about 700 N / mm, particularly suitable are wires made of stainless steel.
  • the alternating arrangement of the two different metal wires of the outer wire layer can be done in various ways, for simplicity, the electrically good conductive wires with Cu, the tensile wires with Fe, for example
  • the inner and outer wire layers preferably have the same ohmic resistance.
  • the individual and / or group-wise alternating of the metal wires can thus be regular or irregular.
  • the metal wires of high tensile strength of the outer layer (Fe wires) and the metal tube of the buffer tube are suitably made of the same material, namely a stainless steel.
  • the electrically good conductive metal wires (Cu wires) of the inner layer are preferably directly on the metal tube of the buffer tube. If the metal tube of the loose tube consists of a metal with good electrical conductivity, the metal wires of the inner layer can be replaced by a metal tube of corresponding wall thickness.
  • all metal wires have the same diameter.
  • this diameter can range from fine to massive wire of about 1mm.
  • the wire diameter is usually in the range of 0.3 to 0.5 mm.
  • the thickness of the insulating layer separating the inner and outer wire layers is at least the average radius, preferably at least the average diameter of the metal wires or stranded wire strands.
  • the insulation layer is expediently made of a dielectric plastic, in particular polyethylene or polypropylene.
  • the outer jacket can off consist of the same material or polyurethane, polyamide or FRNC, it serves the mechanical and chemical protection, the outer surface is preferably partially printable well.
  • a moisture barrier can be arranged between the wire layer and the outer jacket, and / or a moisture barrier outside or outside the outer wire layer.
  • This barrier is preferably an aluminum foil or a Aluminiumbuchstofflaminat per se known type.
  • the electrical conductors are optimally placed, inside only good conductive metal wires, outside in addition to the parallel well-conducting metal wires and less well conductive metal wires high mechanical tensile strength still allow high electrical performance.
  • the coaxial construction of the electrical conductors eliminates the AC losses in the cable.
  • the electro-optical communication and power cables can almost always be laid directly, for example, under water, especially in open waters and sewers of settlements, commercial and industrial, in the ground, especially along roads or rails, in pipe systems and cable ducts in buildings.
  • Cable is particularly suitable for military tactical use.
  • a smooth, flexible metal tube as a loose tube with two coaxially spaced wire layers allows a small bending radius.
  • a continuous operation can be maintained in a temperature range of -40 to +80 0 C, without affecting the energy or signal transmission.
  • Voltage transformer is usually hardwired, the other voltage converter is adjustable. Voltage transformers are, for example, transformers or switching power supplies. This is an intelligent system with a microcomputer.
  • FIG. 1 is a perspective view of a stepped front end of an optical waveguide (prior art)
  • FIG. 2 shows a cross section through a loose tube with a metal tube.
  • FIG. 3 shows a cross section through an electro-optical communication and power cable
  • Fig. 4 is a diagram of a use of an electro-optical
  • FIG. 1 shows an optical waveguide 10 with an optical core 12 and an optical cladding 14 made of glass and a primary cladding 16
  • the optical core 12 and the optical cladding 14 are, according to their usual material, also for the sake of simplicity as a glass fiber designated. It is distinguished between singlemode fibers and multimode fibers, which is not relevant here and for simplicity's sake not visible in Fig. 1 here.
  • Fig. 2 shows a buffer tube 20 with a metal tube 18 made of a stainless
  • the buffer tube 20 is filled with a core filling compound 22, in the present case with a gel.
  • Fig. 3 is arranged in the center of a buffer tube 20 according to FIG. 2.
  • the metal tube 18 of the buffer tube 20 is stranded in direct contact with an inner, single-layer wire layer 26 consisting of twelve copper wires 28.
  • an insulating layer 30 is extruded from polyethylene, which has a greater thickness a than the diameter of the copper wires 28th
  • the insulating layer 30 is stranded with an outer wire layer 32, which in turn is single-layered.
  • Electrically good conducting wires 28 are arranged individually and in groups alternately with wires 34 of high tensile strength, in this case stainless steel wires.
  • the arrangement along the circumference is not regular, below and above a copper wire 28 is replaced by a stainless steel wire 34.
  • 34 arbitrary combinations can be arranged between copper wires 28 and stainless steel wires.
  • the copper wires 28 of the inner and outer wire layers 26, 32 are connected in parallel.
  • the two wire layers 26, 32 have the same ohmic resistance, in other words they are symmetrical.
  • An outer sheath 36 made of polyurethane protects the communication and Eneriegan 24 mechanically and chemically, it also allows printing.
  • Both the wires 28 of the inner wire layer 26, also as the wires 28, 34 of the outer wire layer 32, are held together by a tether 38 and thus remain positioned in the correct position during the production process.
  • the tether here is a Melinex band from DuPont.
  • a moisture barrier 40 is arranged, in this case an aluminum plastic laminate.
  • a swelling tape which swells when moisture ingress and exerts pressure on all layers, which prevents the penetration of moisture in the longitudinal direction or at least severely limits.
  • an electro-optical communication and power cable 24 is used as a transmission line for the remote supply of a network with an operating voltage of 110 V / 60Hz or 230 V / 50Hz in up to 20 km away.
  • a primary-side voltage converter 44 sets the supplied voltage of 110 V / 60 Hz or 230 V / 50 Hz to a voltage level of 100-1000 VAC or 100-1500 VDC.
  • the secondary-side converter 46 regulates the transmission voltage of 100-1000 VAC or 100-1500 VDC to the conventional ones Mains voltages of 110 V / 60Hz or 230 V / 50Hz back.
  • the voltage converter 44 is equipped with a stand-by mode. This switches off the voltage in the power cable 24 when no load is applied to the voltage converter 46.
  • Example Electro-Optical Communication and Power Cable Electrically highly conductive copper wires 28 and stainless steel wires 34 with a diameter of 0.40 or 0.42 mm are stranded according to the invention.
  • the arrangement in the communication and power cable corresponds to FIG. 3, in particular also the sequence of the copper 28 and stainless steel wires 34. These are separated from each other by means of a 0.6 mm thick PE insulation layer 30 (thickness a).
  • the outer protection is ensured by an outer shell 36 of a 0.8 mm thick Po ⁇ yurett ⁇ anschicr ⁇ .
  • the inner and outer wire layers 26, 34 are enveloped by a Melinex tape.
  • the communication and power cable 24 has an outer diameter of 5.8 mm, weighs 68 kg / m and has a total conductor cross-section of the copper cable of about 1, 5 mm 2 .
  • Conductor of Inner Wire Layer 26 Twelve copper wires, corresponding to a resistance R, of 11.4 ⁇ / km.
  • a standard diameter cable will last for a long time
  • the cable break occurs in this case only at about 4250 N.

Abstract

Ein elektrooptisches Kommunikations- und Energiekabel (24), umfasst in einer zentralen BËndelader (20) aus einem glatten, flexiblen Metallrohr (18) wenigs- tens einen Lichtwellenleiter (10) mit einer primaren Ummantelung (16). Zwei Schichten (26, 32) aus verseilten Metalldrahten verlaufen koaxial zur BËndelader (20). Die Metalldrahte dienen auch als Zug- und/oder Querentlastung. Die innere Drahtschicht (26) besteht aus elektrisch gut leitenden Metalldrahten (28). Die aussere Drahtschicht (32) umfasst einzeln- und/oder gruppenweise alternie- rend angeordnete Metalldrahte (28) hoher elektrischer Leitfahigkeit einerseits und Metalldrahte (34) hoher Zugfestigkeit andererseits. Die beiden Draht- schichten (36, 32) sind mittels einer lsolationsschicht (30) in Abstand (a) gehal- ten. Das Kommunikations- und Energiekabel (24) dient in erster Linie als elekt- rooptische Power-Verbindung zwischen zwei Spannungswandlern (44, 46) in einem intelligenten System.

Description

Elektrooptisches Kommunikations- und Energiekabel
Die Erfindung bezieht sich auf ein elektrooptisches Kommunikations- und Energiekabel, welches in einer zentralen Bündelader aus einem glatten, flexiblen Metallrohr wenigstens einen Lichtwellenleiter mit einer primären Ummantelung, zwei koaxial zur Bündelader verlaufenden Schichten aus verseilten Metalldrähten, welche auch als Zug- und Querkraftentlastung dienen, und einen Aussen- mantel umfasst. Weiter betrifft die Erfindung eine Verwendung des elektroopti- schen Kommunikations- und Energiekabels.
Optische Kabel mit Lichtwellenleitern, insbesondere Glasfasern, sind seit mehreren Jahrzehnten bekannt. Die Daten werden statt in Form von elektrischen Impulsen durch Metallleiter als Lichtquanten in Lichtwellenleitern übermittelt. Schnittstellen sind elektrooptische Kupplungen, welche elektrische Impulse in Lichtquanten umwandeln und umgekehrt.
Moderne Lichtwellenleiter und optische Kommunikations- und Energiekabel mit wenigstens einem Lichtwellenleiter sind beispielsweise aus der Firmenschrift „Kommunikationskabel/Communication Cables" der Firma Brugg Kabel AG, CH-5201 Brugg, revidierte Ausgabe 2004, bekannt.
Ein Lichtwellenleiter bekannter Bauart umfasst einen optischen Kern und einen optischen Mantel, in der Praxis eine Gläsfaser mit einem Aussenmantel von insgesamt etwa 125 μm Durchmesser. Eine primäre Ummantelung der Glasfaser aus einem Kunststoff hat einen Aussendurchmesser von beispielsweise 250 μm. Je nach Verwendung werden Kabel mit Singlemodefaser oder Multimode- fasern eingesetzt, nähere Angaben sind der vorerwähnten Firmenschrift, Seiten 6-9, zu entnehmen. Elektrooptische Kabel umfassen neben wenigstens einem Lichtellenleiter elektrische Leiter, die beispielsweise zur Spannungsversorgung oder zur Übertragung von elektrischen Signalen dienen. Die elektrischen Leiter sind am optischen Kabel angeordnet oder damit verbunden. Elektrooptische Kommunikati- ons- und Energiekabel werden auch Hybridkabel genannt.
Falls die Bündelader ein Metallrohr von hoher elektrischer Leitfähigkeit umfasst, kann dieses selbst als elektrische Leiter verwendet werden. Die üblichen Stahlrohre sind jedoch dazu wegen der zu niedrigen elektrischen Leitfähigkeit wenig oder nicht geeignet.
Aus der EP 0816885 B1 und der DE 4236608 A1 ist es bekannt, eine Bündelader mit optischen Leitern mit wenigstens einer metallischen Armierungsschicht zu verseilen. Dadurch wird einerseits die Zugkraft erhöht und andererseits die Bündelader gegen Querkräfte besser geschützt.
In der EP 0371660 A1 wird ein elektrooptisches Kabel beschrieben, welches eine zentrale Bündelader mit einem dünnen Stahlrohr umfasst. Dieses ist von einer dielektrischen Schicht umgeben, in welcher Kupferlitzen von hoher elektri- scher Leitfähigkeit eingebettet sind. Ausserhalb der dielektrischen Schicht ist eine zweilagige Bewehrung aus Stahldrähten angeordnet. Diese sind ihrerseits in die schützende Ummantelung eingebettet.
Der Erfindung liegt die Aufgabe zugrunde, ein elektrooptisches Kabel der ein- gangs genannten Art weiter zu verbessern und sein Einsatzgebiet zu verbreitern.
Die Aufgabe wird erfindungsgemäss dadurch gelöst, dass die innere Drahtschicht aus elektrisch gut leitenden Metalldrähten besteht, und die äussere Drahtschicht aus einzel- und/oder gruppenweise alternierend angeordneten Metalldrähten hoher elektrischer Leitfähigkeit einerseits und Metalldrähten hoher Zugfestigkeit andererseits mittels einer Isolationsschicht in Abstand gehal- ten ist. Spezielle und weiterführende Ausführungsformen des elektrischen Kommunikations- und Energiekabels sind Gegenstand von abhängigen Patentansprüchen.
Hier und im Folgenden umfasst der Ausdruck „Metalldrähte" auch Metalllitzen mit vergleichbaren elektrischen und mechanischen Eigenschaften. In elektroop- tischen Kommunikations- und Energiekabeln, werden die Signale optisch, notfalls eventuell auch elektrisch, die Energie ausschliesslich elektrisch übertragen.
Als elektrisch gut leitende Metalldrähte werden vorzugsweise Metalle mit einem spezifischen elektrischen Widerstand von höchstens 5x10 "5Ω.mm, insbesondere (1-3) x 10'5 Ω.mm, eingesetzt. Unter Berücksichtigung der Materialkosten fallen insbesondere Kupfer, Kupferlegierungen, Aluminium und Aluminiumlegie- rung in diese Gruppe. Selbstverständlich können auch mit einem dieser elektrisch gut leitenden Metalle beschichtete Verbunddrähte, insbesondere mit einem Stahlkern, eingesetzt werden.
Die elektrisch weniger gut leitenden, äusseren Metalldrähte haben eine hohe Zugfestigkeit von wenigstens etwa 700 N/mm, besonders gut geeignet sind Drähte aus einem rostfreien Edelstahl.
Die alternierende Anordnung der beiden verschiedenen Metalldrähte der äusseren Drahtschicht kann auf verschiedenste Arten erfolgen, einfachheitshalber werden die elektrisch gut leitenden Drähte mit Cu, die zugfesten Drähte mit Fe bezeichnet, beispielsweise
- ...Fe.Cu.Fe.Cu.Fe.Cu...
- ...Fe.Fe.Cu.Cu.Fe.Fe.Cu.Cu...
- ...Fe.Fe.Cu.Fe.Cu.Fe.Fe.Cu... - ...Cu.Cu.Fe.Cu.Cu.Fe.Cu.Cu.Fe...
- ...Fe.Fe.Cu.Fe.Cu.Fe.Cu.Fe...
- ...Fe.Fe.Fe.Cu.Fe.Cu.Fe.Cu.Fe.Cu.Fe.Fe.Fe.Fe.Cu.Fe... Die innere und die äussere Drahtschicht weisen vorzugsweise denselben ohm- schen Widerstand auf.
Das einzelne- und/oder gruppenweise Alternieren der Metalldrähte kann also regelmässig oder unregelmässig sein. Je höher der Anteil an Fe-Drähten ist, desto geringer ist die elektrische Transportleistung der äusseren Drahtschicht. Bei höherem Anteil der Fe-Drähte in der äusseren Drahtschicht ist dafür die Zug- und Querkraftentlastung deutlich besser.
Die Metalldrähte hoher Zugfestigkeit der Aussenschicht (Fe-Drähte) und das Metallrohr der Bündelader bestehen zweckmässig aus dem gleichen Material, nämlich einem rostfreien Edelstahl.
Die elektrisch gut leitenden Metalldrähte (Cu-Drähte) der Innenschicht liegen bevorzugt direkt auf dem Metallrohr der Bündelader auf. Falls das Metallrohr der Bündelader aus einem elektrisch gut leitenden Metall besteht, können die Metalldrähte der Innenschicht durch ein Metallrohr entsprechender Wanddicke ersetzt sein.
Insbesondere aus fabrikationstechnischen Gründen haben in der Regel alle Metalldrähte den gleichen Durchmesser. Je nach Verwendung kann sich dieser Durchmesser vom feinen bis zum massiven Draht von etwa 1mm erstrecken. Bei üblicher Verwendung liegt der Drahtdurchmesser meist im Bereich von 0,3 bis 0,5 mm.
Die Dicke der die innere und die äussere Drahtschicht trennenden Isolationsschicht liegt bei wenigstens dem durchschnittlichen Radius, vorzugsweise bei wenigstens dem durchschnittlichen Durchmesser der Metalldrähte beziehungsweise der verseilten Drahtlitzen.
Die Isolationsschicht besteht zweckmässig aus einem dielektrischen Kunststoff, insbesondere Polyethylen oder Polypropylen. Der Aussenmantel kann aus demselben Material oder aus Polyurethan, Polyamid oder FRNC bestehen, er dient dem mechanischen und chemischen Schutz, die äussere Oberfläche ist vorzugsweise teilweise gut bedruckbar.
Weiter kann zwischen der Drahtschicht und dem Aussenmantel ein Quellband und/oder ausserhalb der äusseren Drahtschicht eine Feuchtigkeitssperre angeordnet sein. Diese Sperre ist vorzugsweise eine Aluminiumfolie oder ein Aluminiumkunststofflaminat an sich bekannter Bauart.
Für das erfindungsgemässe elektrooptische Kommunikations- und Energiekabel ergeben sich zusammengefasst folgende Vorteile
- Eine Bündelader aus einem Metallrohr, eine innere Drahtschicht aus elektrisch gut leitenden Metalldrähten und eine äussere Drahtschicht aus einzeln- und/oder gruppenweise alternierend angeordneten Metalldrähten hoher elektrischer Leitfähigkeit einerseits und Metalldrähten hoher Zugfestigkeit andererseits gewährleisten auch einen optimalen Schutz der optischen Lichtwellenleiter gegen Zug- und Querkräfte. Die elektrischen Leiter sind optimal platziert, innen ausschliesslich gut leitende Metalldrähte, aussen neben den parallel geschalteten gut leitenden Metalldrähten auch weniger gut leitende Metalldrähte hoher mechanischer Zugfestigkeit erlauben trotzdem eine hohe elektrische Leistung. Der koaxiale Aufbau der elektrischen Leiter eliminiert die Wechselstromverluste im Kabel.
- Die elektrooptischen Kommunikations- und Energiekabel können praktisch immer direkt verlegt werden, beispielsweise unter Wasser, insbesondere in offenen Gewässern und in Abwasserkanälen von Siedlungen, Gewerbe- und Industrie, im Erdreich, insbesondere entlang von Strassen oder Schienen, in Rohranlagen und Kabelkanälen in Gebäuden. Das
Kabel eignet sich insbesondere für den militärisch taktischen Einsatz. - Ein glattes, flexibles Metallrohr als Bündelader mit zwei koaxial in Abstand gehaltenen Drahtschichten erlaubt einen kleinen Biegeradius.
- Ein Dauerbetrieb kann in einem Temperaturbereich von -40 bis +80 0C aufrechterhalten werden, ohne dass eine Beeinträchtigung der Energieoder Signalübertragung erfolgt.
Eine besonders vorteilhafte Verwendung des Kommunikations- und Energiekabels als elektrooptische Power-Verbindung zwischen zwei Span- nungswandlem über eine Distanz bis etwa 20 Kilometer. Einer der beiden
Spannungswandler ist in der Regel fest verkabelt, der andere Spannungswandler ist regelbar. Spannungswandler sind beispielsweise Transformatoren oder Schaltnetzteile. Es handelt sich hier um ein intelligentes System mit einem Microcomputer.
Die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen, welche auch Gegenstand von abhängigen Patentansprüchen sind, näher erläutert. Es zeigen schematisch:
- Fig. 1 eine perspektivische Ansicht eines abgestuften stirnseitigen Endes eines Lichtwellenleiters (Stand der Technik),
- Fig. 2 einen Querschnitt durch eine Bündelader mit einem Metallrohr
(Stand der Technik),
- Fig. 3 einen Querschnitt durch ein elektrooptisches Kommunikations- und Energiekabel, und
- Fig. 4 ein Schema einer Verwendung eines elektrooptischen
Kommunikations- und Energiekabels.
Fig. 1 zeigt einen Lichtwellenleiter 10 mit einem optischen Kern 12 und ei- nem optischen Mantel 14 aus Glas und einer Primärummantelung 16 aus
Kunststoff. Der optische Kern 12 und der optische Mantel 14 werden, entsprechend ihrem üblichen Material, auch einfachheitshalber als Glasfaser bezeichnet. Es wird zwischen Singlemode-Fasern und Multimode-Fasem unterschieden, was hier nicht relevant und einfachheitshalber in Fig. 1 nicht erkennbar ist.
Fig. 2 zeigt eine Bündelader 20 mit einem Metallrohr 18 aus einem rostfreien
Edelstahl, zwölf darin längslaufend angeordneten Lichtwellenleitern 10 ge- mäss Fig. 1. Die Bündelader 20 ist mit einer Aderfüllmasse 22 gefüllt, vorliegend mit einem Gel.
In einem elektrooptischen Kommunikations- und Energiekabel 24 gemäss
Fig. 3 ist im Zentrum eine Bündelader 20 gemäss Fig. 2 angeordnet. Das Metallrohr 18 der Bündelader 20 ist in Direktkontakt mit einer inneren, einlagigen Drahtschicht 26 verseilt, die aus zwölf Kupferdrähten 28 besteht. Auf diese innere Drahtschicht 26 ist eine Isolationsschicht 30 aus Polyethylen extrudiert, welche eine grossere Dicke a aufweist ist als der Durchmesser der Kupferdrähte 28.
Die Isolationsschicht 30 wird mit einer äusseren Drahtschicht 32 verseilt, die wiederum einlagig ausgebildet ist. Elektrisch gut leitende Drähte 28 sind einzeln und gruppenweise alternierend mit Drähten 34 hoher Zugfestigkeit angeordnet, vorliegend rostfreien Edelstahldrähten. Die Anordnung entlang des Umfangs ist nicht regelmässig, unten und oben ist jeweils ein Kupferdraht 28 durch einen Edelstahldraht 34 ersetzt. Dadurch ist die elektrische Leitfähigkeit des ganzen Kommunikations- und Energiekabels 24 zugunsten der mechanischen Festigkeit etwas herabgesetzt. Wie bereits erwähnt können zwischen Kupfer- 28 und Edelstahldrähten 34 beliebige Kombinationen angeordnet sein.
Die Kupferdrähte 28 der inneren und äusseren Drahtschicht 26, 32 sind pa- rallel geschaltet. Vorzugsweise haben die beiden Drahtschichten 26, 32 denselben ohmschen Widerstand, sie sind mit anderen Worten symmetrisch ausgebildet. Ein Aussenmantel 36 aus Polyurethan schützt das Kommunikations- und Eneriekabel 24 mechanisch und chemisch, er erlaubt auch eine Bedruckung.
Sowohl die Drähte 28 der inneren Drahtschicht 26 auch als die Drähte 28, 34 der äusseren Drahtschicht 32 sind mit einem Halteband beziehungsweise -netz 38 zusammengehalten und bleiben so während dem Produktionsvorgang in der richtigen Lage positioniert. Das Halteband ist vorliegend ein Melinex-Band der Firma DuPont.
Zwischen der äusseren Drahtschicht 32 und dem Aussenmantel 36 ist fakultativ - nur teilweise angedeutet - eine Feuchtigkeitssperre 40 angeordnet, vorliegend ein Aluminium- Kunststofflaminat.
Nach einer nicht dargestellten Variante kann zwischen der äusseren Drahtschicht 32 und dem Aussenmantel 36, innerhalb einer allenfalls vorliegenden Feuchtigkeitssperre 40, ein Quellband angeordnet sein, das beim Eindringen von Feuchtigkeit aufquillt und auf alle Schichten einen Druck ausübt, welcher das Vordringen der Feuchtigkeit in Längsrichtung verhindert oder zumindest stark einschränkt.
Gemäss einer in Fig. 4 dargestellten Verwendung ist zur Fernspeisung eines Netzes mit einer Betriebsspannung von 110 V/60Hz oder 230 V/50Hz in bis zu 20 km Entfernung ein elektrooptisches Kommunikations- und Energiekabel 24 als Übertragungsleitung eingesetzt. Ein primärseitiger Spannungswandler 44 setzt die eingespeiste Spannung von 110 V/60Hz oder 230 V/50Hz auf ein Spannungsniveau von 100 - 1000 VAC beziehungsweise 100 - 1500 VDC.
Der sekundärseitige Wandler 46 regelt die Übertragungsspannung von 100 - 1000 VAC beziehungsweise 100 - 1500 VDC auf die gebräuchlichen Netzspannungen von 110 V/60Hz oder 230 V/50Hz zurück.
Der Spannungswandler 44 ist mit einem Stand-by Modus ausgestattet. Dieser schaltet die Spannung im Energiekabel 24 ab, wenn am Spannungswandler 46 keine Last anliegt.
Beispiel Elektrooptisches Kommunikations- und Energiekabel Elektrisch gut leitende Kupferdrähte 28 und rostfreie Stahldrähte 34, mit ei- nem Durchmesser von 0,40 bzw. 0,42 mm werden erfindungsgemäss verseilt. Die Anordnung im Kommunikations- und Energiekabel entspricht Fig. 3, insbesondere auch die Sequenz der Kupfer- 28 und rostfreien Stahldrähte 34. Diese sind mittels einer 0,6 mm starken PE-Isolationsschicht 30 (Dicke a) voneinander getrennt. Der äussere Schutz wird von einem Aussenmantel 36 aus einer 0,8 mm dicken PoϊyurettϊanschicrΛ gewährleistet. Die innere und die äussere Drahtschicht 26, 34 sind von einem Melinex-Band umhüllt. Das Kommunikations- und Energiekabel 24 hat einen Aussendurchmesser von 5,8 mm, wiegt 68 kg/m und hat einen gesamten Leiterquerschnitt der Kupferkabel von etwa 1 ,5 mm2.
Elektrische Leitfähigkeit
- δCu = 0,0172 (Ω.mm2)/m
- δEdeistahi = 0,4129 (Ω.mm2)/m.
Widerstände pro km und pro Draht
- Cu-Draht: Querschnitt = 0,1257 mm2, dies entspricht einem Wider- stand Reu von 136.8 Ω/km.
- Edelstahl-Draht: Querschnitt = 0,1385mm2, dies entspricht einem Wi- derstand REdeistaw von 1031.5 Ω/km
Widerstand der gesamten Drahtschichten pro km
- Leiter der inneren Drahtschicht 26: Zwölf Kupferdrähte, dies entspricht einem Widerstand R, von 11.4 Ω/km.
- Leiter der Süsseren Drahtschicht 32: Zehn Kupferdrähte, dies entsprechend einem Widerstand R3 von 12,45 Ω/km.
- Der Widerstand der parallel geschalteten Kupferdrähte 28 der inneren und äusseren Drahtschichten 26, 32 entspricht einem Leiterwiderstand R = (12.45x73,7)/(12,45+73,7)= 11 ,53 Ω/km.
Ein Kabel eines üblichen Durchmessers hält beispielsweise einer dauernden
Zugbelastung von etwa 3000 N und einer Querdruckbelastung von etwa 1000 N/cm stand, ohne dass dabei die Funktion beeinträchtigt wird. Der Kabelbruch erfolgt in diesem Fall erst bei etwa 4250 N.

Claims

Patentansprüche
1. Elektrooptisches Kommunikations- und Energiekabel (24), welches in einer zentralen Bündelader (20) aus einem glatten, flexiblen Metallrohr (18) wenigstens einen Lichtwellenleiter (10) mit einer primären Umman- telung (16), zwei koaxial zur Bündelader (20) verlaufende Schichten (26, 32) aus verseilten Metalldrähten, welche auch als Zug- und/oder Querentlastung dienen, und einen Aussenmantel (36) umfasst,
dadurch gekennzeichnet, dass
die innere Drahtschicht (26) aus elektrisch gut leitenden Metalldrähten (28) besteht, und die äussere Drahtschicht (32) aus einzeln- und/oder gruppenweise alternierend angeordneten Metalldrähten (28) hoher elekt- rischer Leitfähigkeit einerseits und Metalldrähten (34) hoher Zugfestigkeit andererseits mittels einer Isolationsschicht (30) in Abstand (a) gehalten sind.
2. Kommunikations- und Energiekabel (24) nach Anspruch 1 , dadurch gekennzeichnet, dass die elektrisch gut leitenden, parallel geschalteten Metalldrähte (28) einen spezifischen elektrischen Widerstand von höchstens etwa 5x10 "5 Ω.mm, vorzugsweise von (1-3) x 10"5 Ω.mm, und die übrigen Metalldrähte (34) eine Zugfestigkeit von etwa 700 N/mm aufweisen.
3. Kommunikations- und Energiekabel (24) nach Anspruch 2, dadurch gekennzeichnet, dass die elektrisch gut leitenden Metalldrähte (28) aus Kupfer, einer Kupferlegierung, Aluminium oder einer Aluminiumlegierung bestehen oder mit einem dieser Metalle beschichtet sind, die Metalldrähte (34) hoher Zugfestigkeit vorzugsweise aus einem rostfreien Edelstahl, insbesondere aus dem gleichen Metall wie das Metallrohr (18) der Bündelader (20), bestehen.
4. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die innere Drahtschicht (26) direkt auf dem Metallrohr (18) aufliegt oder von diesem ersetzt ist.
5. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass alle Metalldrähte (28, 34) den gleichen Durchmesser haben.
6. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dicke a der die Drahtschichten (26, 32) trennenden Isolationsschicht (30) wenigstens dem durchschnittlichen Radius, vorzugsweise wenigstens den durchschnittlichen Durchmesser der Metalldrähte (28, 34), entspricht.
7. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Isolationsschicht (30) aus PoIy- ethylen oder Polypropylen, und der Aussenmantel (36) aus Polyurethan oder dem gleichen Material wie die Isolationsschicht (30) besteht.
8. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die beiden Drahtschichten (26, 32) etwa denselben ohmschen Widerstand aufweisen, also symmetrisch ausgebildet sind, und vorzugsweise von je einem Halteband oder -netz (38) umhüllt sind.
9. Kommunikations- und Energiekabel (24) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass zwischen der äusseren Drahtschicht (32) und dem Aussenmantel (36) ein Quellband und/oder aus- serhalb der äusseren Drahtschicht (32) eine Feuchtigkeitssperre (40), vorzugsweise eine Aluminiumfolie oder ein Aluminium-Kunststofflaminat angeordnet ist.
10. Verwendung des Kommunikations- und Energiekabels (24) nach einem der Ansprüche 1 bis 9 als elektrooptische Power-Verbindung zwischen zwei Spannungswandlern (44, 46) in einem intelligenten System, insbesondere zwischen einem fest verkabelten (44) und einem regelbaren Spannungswandler (46) über eine Distanz (d) bis etwa 20 km.
11. Verwendung des Kommunikations- und Energiekabels (24) nach Anspruch 10 zur Übertragung elektrischer Energie in einer Power-Verbindung mit einer 50 Hz- oder 60 Hz-Wechselspannung von 100 - 1000 VAC oder einer Gleichspannung von 100 - 1500 VDC.
EP06752911A 2005-07-14 2006-07-07 Elektrooptisches kommunikations-und energiekabel Withdrawn EP1902337A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01169/05A CH705337B1 (de) 2005-07-14 2005-07-14 Elektrooptisches Kommunikations- und Energiekabel.
PCT/CH2006/000361 WO2007006167A1 (de) 2005-07-14 2006-07-07 Elektrooptisches kommunikations-und energiekabel

Publications (1)

Publication Number Publication Date
EP1902337A1 true EP1902337A1 (de) 2008-03-26

Family

ID=35500834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06752911A Withdrawn EP1902337A1 (de) 2005-07-14 2006-07-07 Elektrooptisches kommunikations-und energiekabel

Country Status (5)

Country Link
US (1) US20080247716A1 (de)
EP (1) EP1902337A1 (de)
CA (1) CA2614986A1 (de)
CH (1) CH705337B1 (de)
WO (1) WO2007006167A1 (de)

Families Citing this family (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
EP2394378A1 (de) 2009-02-03 2011-12-14 Corning Cable Systems LLC Verteilte antennensysteme auf glasfaserbasis, bestandteile und entsprechende verfahren zur überwachung und konfigurierung dafür
WO2010091004A1 (en) 2009-02-03 2010-08-12 Corning Cable Systems Llc Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
CH701871A1 (de) 2009-09-25 2011-03-31 Brugg Ag Kabelwerke Elektrooptisches Kabel.
US8280259B2 (en) 2009-11-13 2012-10-02 Corning Cable Systems Llc Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
US8546690B2 (en) * 2010-01-05 2013-10-01 Belden Inc. Multimedia cable
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
CN103119865A (zh) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 支持远程天线单元之间的数字数据信号传播的远程天线集群和相关系统、组件和方法
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
CN203504582U (zh) 2011-02-21 2014-03-26 康宁光缆系统有限责任公司 一种分布式天线系统及用于在其中分配电力的电源装置
CN103609146B (zh) 2011-04-29 2017-05-31 康宁光缆系统有限责任公司 用于增加分布式天线系统中的射频(rf)功率的系统、方法和装置
CN103548290B (zh) 2011-04-29 2016-08-31 康宁光缆系统有限责任公司 判定分布式天线系统中的通信传播延迟及相关组件、系统与方法
DE202011105000U1 (de) 2011-08-25 2011-12-20 Amphenol-Tuchel Electronics Gmbh Elektrooptisches Kabel
WO2013033489A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical rotary joint and methods of use
WO2013148986A1 (en) 2012-03-30 2013-10-03 Corning Cable Systems Llc Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods
EP2842245A1 (de) 2012-04-25 2015-03-04 Corning Optical Communications LLC Verteilte antennensystemarchitekturen
WO2014024192A1 (en) 2012-08-07 2014-02-13 Corning Mobile Access Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
CN105308876B (zh) 2012-11-29 2018-06-22 康宁光电通信有限责任公司 分布式天线系统中的远程单元天线结合
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
EP2931132B1 (de) 2012-12-13 2023-07-05 Philips Image Guided Therapy Corporation Vorrichtung zur gezielten kanülierung
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
JP2016506276A (ja) 2012-12-20 2016-03-03 ジェレミー スティガール, 血管内画像の位置の特定
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
CA2895993A1 (en) 2012-12-21 2014-06-26 Jason Spencer System and method for graphical processing of medical data
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
JP6243453B2 (ja) 2013-03-07 2017-12-06 ボルケーノ コーポレイション 血管内画像におけるマルチモーダルセグメンテーション
US20140276923A1 (en) 2013-03-12 2014-09-18 Volcano Corporation Vibrating catheter and methods of use
CN105228518B (zh) 2013-03-12 2018-10-09 火山公司 用于诊断冠状微脉管疾病的系统和方法
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
EP3008828B1 (de) 2013-06-12 2017-08-09 Corning Optical Communications Wireless Ltd. Zeitduplexierung (tdd) in verteilten kommunikationssystemen, einschliesslich verteilten antennensystemen (dass)
CN105452951B (zh) 2013-06-12 2018-10-19 康宁光电通信无线公司 电压控制式光学定向耦合器
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
CN104297875B (zh) * 2014-10-13 2017-07-07 中天科技海缆有限公司 一种高压光电复合缆用等电位光纤单元及其制备方法
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
WO2016071902A1 (en) 2014-11-03 2016-05-12 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (rf) isolation in multiple-input multiple-output (mimo) antenna arrangement
WO2016075696A1 (en) 2014-11-13 2016-05-19 Corning Optical Communications Wireless Ltd. Analog distributed antenna systems (dass) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (rf) communications signals
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) * 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
WO2016098111A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital- analog interface modules (da!ms) for flexibly.distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
WO2016098109A1 (en) 2014-12-18 2016-06-23 Corning Optical Communications Wireless Ltd. Digital interface modules (dims) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (dass)
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US20160249365A1 (en) 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US20180259676A1 (en) * 2017-03-10 2018-09-13 Eas Ip, Llc Litz Wire As Tracer Wire And Litz Wire Marker Tape
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
WO2023128506A1 (ko) * 2021-12-31 2023-07-06 엘에스전선 주식회사 해저 광케이블

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801409A1 (de) * 1988-01-15 1989-07-27 Siemens Ag Lichtwellenleiter-seekabel mit regeneratorversorgung
US5202944A (en) * 1990-06-15 1993-04-13 Westech Geophysical, Inc. Communication and power cable
US5042903A (en) * 1990-07-30 1991-08-27 Westinghouse Electric Corp. High voltage tow cable with optical fiber
DE4337486A1 (de) * 1993-09-29 1995-03-30 Norddeutsche Seekabelwerke Ag Kabel, insbesondere optisches Luftkabel, und Verfahren zur Herstellung desselben
US6236789B1 (en) * 1999-12-22 2001-05-22 Pirelli Cables And Systems Llc Composite cable for access networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007006167A1 *

Also Published As

Publication number Publication date
WO2007006167A1 (de) 2007-01-18
CH705337B1 (de) 2013-02-15
CA2614986A1 (en) 2007-01-18
US20080247716A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
EP1902337A1 (de) Elektrooptisches kommunikations-und energiekabel
DE3518909A1 (de) Starkstromkabel, insbesondere fuer spannungen von 6 bis 60 kv, mit eingelegten lichtwellenleitern
DE69837579T2 (de) Faseroptischeskombinationskabel
EP1760505B1 (de) Verbundkabel
EP0476438A2 (de) Elektro-optisches Freileiterseil mit 24 und mehr Lichtwellenleitern
US6567592B1 (en) Optical cables with flexible strength sections
DE10028562A1 (de) Optische Übertragungselemente enthaltendes Luftkabelund Verfahren zur Herstellung eines Luftkabels
CN1823525A (zh) 具有强度构件的光纤电缆
EP2019394A1 (de) Flexible elektrische Leitung
DE60223167T2 (de) Faseroptisches anschlusskabel
DE2604766A1 (de) Phasenseilkabel fuer starkstrom- freileitungsnetze zur gleichzeitigen energie- und informationsuebertragung
DE3232108A1 (de) Optisches kabel
DE2801231C2 (de) Mit Isoliermaterial ummanteltes Starkstromkabel
EP0443085B1 (de) Elektrisches Freileiterseil mit integrierten Lichtwellenleitern
EP1653483B1 (de) Mehradrige flexible elektrische Leitung
EP1225598B1 (de) Flexible elektrische Leitung
DE2948757A1 (de) Verstaerkter optischer faserleiter und optisches faserkabel
DE102006015878B4 (de) Flexible elektrische Steuerleitung
DE3538664C2 (de)
WO2011035450A2 (de) Elektrooptisches kabel
DE3224596C2 (de)
DE2733782C2 (de) Zugfestes elektrisches Kabel mit Kabelseele, Innenmantel und tragenden Bewehrungselementen
EP0704734A2 (de) Seekabel
DE202005008731U1 (de) Hybridkabel
DE3139018C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110201