EP1921640A1 - Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core - Google Patents

Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core Download PDF

Info

Publication number
EP1921640A1
EP1921640A1 EP07354060A EP07354060A EP1921640A1 EP 1921640 A1 EP1921640 A1 EP 1921640A1 EP 07354060 A EP07354060 A EP 07354060A EP 07354060 A EP07354060 A EP 07354060A EP 1921640 A1 EP1921640 A1 EP 1921640A1
Authority
EP
European Patent Office
Prior art keywords
magnetic core
branches
inductance
core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07354060A
Other languages
German (de)
French (fr)
Other versions
EP1921640B1 (en
Inventor
Orlando Bastien
Viala Bernard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, STMicroelectronics SA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1921640A1 publication Critical patent/EP1921640A1/en
Application granted granted Critical
Publication of EP1921640B1 publication Critical patent/EP1921640B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/046Printed circuit coils structurally combined with ferromagnetic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

The core (1) has a set of parallel branches (4, 5) arranged in different parallel planes, where the core is in the form of a rectangular spiral comprising two ends (2) joined to one another by a closing segment (3). The parallel branches (4) are perpendicular to the parallel branches (5), where the branches have different thicknesses. Air-gaps having reduced dimensions are arranged in the branches.

Description

Domaine technique de l'inventionTechnical field of the invention

L'invention est relative à un noyau magnétique fermé pour une micro-inductance intégrée.The invention relates to a closed magnetic core for integrated micro-inductance.

État de la techniqueState of the art

L'invention s'inscrit dans la thématique des micro-inductances intégrées pour des applications en électronique de puissance. Elle peut, d'une manière plus générale, s'appliquer à tous les systèmes inductifs (inductances, transformateurs, têtes d'enregistrement magnétique, actionneurs, capteurs, etc...) nécessitant une haute densité de puissance électrique.The invention is part of the theme of integrated micro-inductors for applications in power electronics. It can, more generally, apply to all inductive systems (inductors, transformers, magnetic recording heads, actuators, sensors, etc.) requiring a high density of electrical power.

Il existe depuis de nombreuses années des micro-inductances de divers types, utilisant des bobinages de type spirale ou solénoïde. Cependant, les composants discrets restent très majoritairement utilisés dans des applications utilisant de fortes densités de puissance car ils offrent un meilleur compromis entre inductance et courant de saturation.Micro-inductances of various types have existed for many years, using coils of the spiral or solenoid type. However, the discrete components remain very predominantly used in applications using high power densities because they offer a better compromise between inductance and saturation current.

Un bobinage de type spirale avec plan magnétique est facile à intégrer et permet de travailler à de forts courants. Cependant, ce type de dispositif devient très encombrant dès lors que l'on vise de fortes valeurs d'inductance (L de l'ordre du µH), parce qu'il faut un nombre de tours de spirale élevé. De plus, la résistance de tels dispositifs est importante.A spiral winding with magnetic plane is easy to integrate and allows to work with strong currents. However, this type of device becomes very cumbersome when one targets high values of inductance (L of the order of μH), because it takes a number of high spiral turns. In addition, the resistance of such devices is important.

Les micro-inductances intégrées toroïdales avec bobinage solénoïde, ainsi que leurs améliorations en méandres (voir l'article « Integrated Electroplated Micromachined Magnetic Devices Using Low Temperature Fabrication Processes » by J.Y.Park et. al., IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, n°.1, 2000 ), sont directement inspirées des composants discrets et présentent le meilleur compromis possible entre résistance et niveau d'inductance, car on s'approche du cas idéal du solénoïde infini. Cependant, des simulations montrent que le flux magnétique à l'intérieur du noyau est réparti de façon très inhomogène. Le champ magnétique est plus intense le long des lignes de champ les plus courtes. Les zones du noyau magnétique soumises aux champs les plus intenses sont très rapidement saturées, provoquant une diminution de l'inductance dès des faibles courants, alors que d'autres zones sont soumises à des champs beaucoup plus faibles et ne participent que peu ou pas au phénomène inductif, c'est-à-dire elles n'ont pas de contribution à la valeur de l'inductance. Les zones utiles du noyau magnétique sont donc très vite saturées alors que d'autres zones restent non sollicitées.Toroidal integrated micro-inductors with solenoid windings, as well as their meander improvements (see the article "Integrated Electroplated Micromachined Magnetic Devices Using Low Temperature Manufacturing Processes" by JYPark et. al., IEEE Transactions on Electronics Packaging Manufacturing, Vol. 23, No. 1, 2000 ), are directly inspired by discrete components and offer the best possible compromise between resistance and inductance level, because we approach the ideal case of the infinite solenoid. However, simulations show that the magnetic flux inside the nucleus is distributed very inhomogeneously. The magnetic field is more intense along the shorter field lines. The zones of the magnetic core subjected to the most intense fields are very quickly saturated, causing a decrease of the inductance from weak currents, whereas other zones are subjected to much weaker fields and participate little or not in inductive phenomenon, that is to say they have no contribution to the value of the inductance. The useful areas of the magnetic core are therefore very quickly saturated while other areas remain unsolicited.

De plus, la puissance maximale passant dans une inductance est déterminée par le volume de matériau magnétique utilisé dans le cas d'un composant intégré. Ce volume est déterminé par l'épaisseur de matériau magnétique (épaisseurs inférieures à 100 microns pour des composants intégrés) et la surface occupée par ce noyau magnétique.In addition, the maximum power passing through an inductor is determined by the volume of magnetic material used in the case of an integrated component. This volume is determined by the thickness of magnetic material (thicknesses less than 100 microns for integrated components) and the area occupied by this magnetic core.

Les transformateurs et inductances avec noyau magnétique en forme de E ou de E-1 sont très utilisés en électrotechnique, essentiellement dans des transformateurs discrets (et dans les dispositifs de type DC/DC discrets) afin de faciliter l'assemblage et le bobinage des inductances, ou bien pour pouvoir jouer sur les facteurs de conversion entre les trois bobinages de chaque branche, ou sur les effets d'inductances mutuelles entre les bobinages distincts de chaque branche (voir l'article « New Magnetic Structures for Switching Converters » de S.Cuk, IEEE Transactions on Magnetics, Vol. MAG-19, n°.2, 1983 ). Dans ces dispositifs, le bobinage n'est pas continu d'une branche à l'autre, mais réalisé par des fils distincts.Transformers and inductors with E-shaped or E-1 magnetic core are widely used in electrical engineering, mainly in discrete transformers (and in discrete DC / DC type devices) to facilitate assembly and winding of inductors , or to be able to play on the conversion factors between the three windings of each branch, or on the effects of mutual inductances between the separate windings of each branch (see the article «New Magnetic Structures for Switching Converters by S.Cuk, IEEE Transactions on Magnetics, Vol. MAG-19, No. 2, 1983 ). In these devices, the winding is not continuous from one branch to the other, but made by separate wires.

La plupart des micro-inductances utilisées sur le marché sont des composants discrets fabriqués par des procédés micromécaniques de micro usinage, collage, micro-enroulement, etc... Ces procédés sont lourds à mettre en oeuvre, à traitement individuel, peu flexibles en termes de conception et limitent grandement la miniaturisation des circuits de puissance. En particulier, l'épaisseur des micro-inductances discrètes (typiquement supérieur à 0.5 mm) ne permet pas une mise en boîtier appropriée aux circuits d'alimentation utilisés actuellement pour la téléphonie mobile, par exemple.Most of the micro-inductances used on the market are discrete components manufactured by micromechanical processes of micro-machining, gluing, micro-winding, etc. These processes are heavy to implement, individual treatment, not very flexible in terms of design and greatly limit the miniaturization of power circuits. In particular, the thickness of the discrete micro-inductors (typically greater than 0.5 mm) does not allow appropriate packaging in the power supply circuits currently used for mobile telephony, for example.

Les techniques de fabrications utilisées en microélectronique permettent une flexibilité bien plus grande au niveau de la mise en oeuvre de conceptions différentes, assurent un traitement collectif et sont compatibles avec l'idée de miniaturisation car l'épaisseur (substrat compris) peut facilement être inférieure à 300 µm). Cependant, elles sont mal adaptées au dépôt de fortes épaisseurs (supérieures à 10µm) de matériaux conducteurs, magnétiques ou diélectriques et à leur gravure après photolithographie.The manufacturing techniques used in microelectronics allow a much greater flexibility in the implementation of different designs, provide a collective treatment and are compatible with the idea of miniaturization because the thickness (including substrate) can easily be less than 300 μ m). However, they are poorly suited to deposition of high thicknesses (greater than 10 μm ) of conductive, magnetic or dielectric materials and to their etching after photolithography.

Pour les composants intégrés, on se heurte à des contraintes de réalisation technologique. En effet, des dépôts de couches conductrices ayant une épaisseur supérieure à 100 micromètres ne sont pour l'instant pas envisageable dans un procédé industriel standard.For integrated components, there are constraints of technological achievement. Indeed, deposits of conductive layers having a thickness greater than 100 microns are currently not feasible in a standard industrial process.

L'article « Numerical Inductor Optimization » de A. von der Weth et al. (Trans. Magn. Soc. Japan, Vol.2, No.5, pp.361-366, 2002 ) décrit une micro-inductance avec un circuit magnétique ouvert de type multi-branche. Une pluralité de spires disjointes les unes des autres constitue un bobinage autour des branches du noyau magnétique. Pour ces dispositifs, on cherche à augmenter le niveau d'inductance et à minimiser les pertes.Article Numerical Inductor Optimization by A. von der Weth et al. (Japan Magnetic Trans., Vol.2, No.5, pp.361-366, 2002). ) describes a micro-inductance with an open multi-branch type magnetic circuit. A plurality of turns disjoined from each other constitutes a winding around the branches of the magnetic core. For these devices, it is sought to increase the level of inductance and to minimize losses.

Les micro-inductances intégrées présentent en général une inductance qui diminue fortement lorsque le courant appliqué aux spires de la micro-inductance est augmenté, même pour des courants faibles, ce qui oblige d'utiliser des inductances discrètes non-intégrées, dans certain cas.The integrated micro-inductors generally have an inductance which decreases greatly when the current applied to the turns of the micro-inductor is increased, even for weak currents, which makes it necessary to use unintegrated discrete inductors in certain cases.

Les puces microélectroniques de petites dimensions (quelques millimètres au carré) sont généralement de forme carrée. L'intégration d'inductances impose donc des contraintes que l'on ne connaît pas pour les composants discrets. Les solutions proposées sont donc souvent complexes. Pour les inductances, en particulier, on cherche à minimiser la surface occupée, d'autant plus que le recours aux techniques de dépôt en couches minces limite grandement les épaisseurs utiles. En effet, la puissance d'une inductance Llsat 2 (L étant l'inductance et Isat le courant de saturation) dépend directement du volume de matériau magnétique disponible.Microelectronic chips of small dimensions (a few millimeters squared) are generally square. The integration of inductances therefore imposes constraints that are unknown for discrete components. The proposed solutions are therefore often complex. For inductances, in particular, it is sought to minimize the area occupied, especially since the use of thin film deposition techniques greatly limits the useful thicknesses. Indeed, the power of an inductance Ll sat 2 (where L is the inductance and I sat the saturation current) depends directly on the volume of available magnetic material.

Objet de l'inventionObject of the invention

L'objet de l'invention est d'augmenter la compacité d'un noyau d'une micro-inductance intégrée et, pour un encombrement donné, d'augmenter la valeur de l'inductance.The object of the invention is to increase the compactness of a core of an integrated micro-inductance and, for a given size, to increase the value of the inductance.

Selon l'invention, ce but est atteint par un noyau magnétique selon les revendications annexées et plus particulièrement par le fait que le noyau magnétique a une forme de spirale comportant deux extrémités reliées l'une à l'autre par un segment de fermeture.According to the invention, this object is achieved by a magnetic core according to the appended claims and more particularly by the fact that the magnetic core has a spiral shape having two ends connected to one another by a closing segment.

L'invention a également pour but une micro-inductance intégrée comportant un noyau magnétique selon l'invention.The invention also aims an integrated micro-inductance comprising a magnetic core according to the invention.

Description sommaire des dessinsBrief description of the drawings

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :

  • la figure 1 représente, en vue de perspective, un mode de réalisation particulier d'un noyau magnétique fermé selon l'invention,
  • les figures 2 à 4 illustrent respectivement, en vue de dessus, deux noyaux magnétiques fermés selon l'art antérieur et un mode de réalisation particulier du noyau magnétique fermé selon l'invention,
  • la figure 5 représente, en coupe selon l'axe A-A de la figure 4, un mode de réalisation particulier de l'invention,
  • la figure 6 représente, en vue de dessus, un mode de réalisation particulier d'un noyau magnétique fermé selon l'invention,
  • la figure 7 illustre un mode de réalisation particulier d'une micro-inductance intégrée selon l'invention.
Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention given by way of non-limiting example and represented in the accompanying drawings, in which:
  • FIG. 1 represents, in perspective view, a particular embodiment of a closed magnetic core according to the invention,
  • FIGS. 2 to 4 respectively show, in plan view, two closed magnetic cores according to the prior art and a particular embodiment of the closed magnetic core according to the invention,
  • FIG. 5 represents, in section along the axis AA of FIG. 4, a particular embodiment of the invention,
  • FIG. 6 represents, in top view, a particular embodiment of a closed magnetic core according to the invention,
  • FIG. 7 illustrates a particular embodiment of an integrated micro-inductor according to the invention.

Description d'un mode préférentiel de l'inventionDescription of a preferred embodiment of the invention

Le noyau magnétique 1, représenté sur la figure 1, a une forme de spirale. La spirale comporte deux extrémités 2 reliées l'une à l'autre par un segment de fermeture 3. Ainsi, le noyau magnétique 1 est fermé.The magnetic core 1, shown in Figure 1, has a spiral shape. The spiral has two ends 2 connected to each other by a closing segment 3. Thus, the magnetic core 1 is closed.

Sur la figure 1, le noyau magnétique 1 est constitué par un premier jeu 4 de cinq branches parallèles et un second jeu 5 de quatre branches parallèles, sensiblement perpendiculaires aux branches du premier jeu 4. La spirale constituée par l'ensemble des branches des deux jeux 4 et 5 est ainsi rectangulaire. Le raccordement constitué par le segment de fermeture 3 s'ajoute à la spirale pour former le noyau magnétique 1.In FIG. 1, the magnetic core 1 consists of a first set 4 of five parallel branches and a second set of four parallel branches, substantially perpendicular to the branches of the first set 4. The spiral constituted by all the branches of the two sets 4 and 5 is thus rectangular. The connection constituted by the closing segment 3 is added to the spiral to form the magnetic core 1.

Comme illustré par l'intermédiaire des figures 2 à 4, le noyau magnétique 1 permet de maximiser l'occupation de l'espace au centre du noyau 1 et de la micro-inductance correspondante.As illustrated by means of FIGS. 2 to 4, the magnetic core 1 makes it possible to maximize the occupation of the space in the center of the core 1 and the corresponding micro-inductance.

On définit une longueur I du noyau magnétique, correspondant à la longueur développée du circuit magnétique, et le nombre N de spires du bobinage entourant le noyau magnétique 1. On peut démontrer, par l'intermédiaire du modèle des réluctances, les expressions suivantes (L étant l'inductance et Isat le courant de saturation) : L N 2 / I ,

Figure imgb0001
I sat I / N et
Figure imgb0002
LI sat 2 I .
Figure imgb0003
We define a length I of the magnetic core, corresponding to the developed length of the magnetic circuit, and the number N of turns of the coil surrounding the magnetic core 1. It is possible to demonstrate, by means of the reluctance model, the following expressions (L being the inductance and I sat the saturation current): The ~ NOT 2 / I ,
Figure imgb0001
I sat ~ I / N and
Figure imgb0002
LI sat 2 ~ I .
Figure imgb0003

Ainsi, pour augmenter la puissance de saturation Psat=LIsat 2 de l'inductance, on cherche à augmenter la longueur I du noyau magnétique. L'inductance L et le courant de saturation Isat résultent ainsi d'un compromis sur le nombre de spires N, qui est d'autant plus grand que la longueur I du noyau est grand.Thus, to increase the saturation power P sat = LI sat 2 of the inductor, it is sought to increase the length I of the magnetic core. The inductance L and the saturation current I sat thus result from a compromise on the number of turns N, which is all the greater as the length I of the core is large.

Une inductance annulaire selon l'art antérieur, représentée à la figure 2, s'adapte particulièrement bien à une puce de forme carrée. La longueur de l'anneau développé dépend du périmètre extérieur de la puce. Cette géométrie ne permet pas d'exploiter la partie centrale de la puce.An annular inductor according to the prior art, shown in Figure 2, adapts particularly well to a square-shaped chip. The length of the developed ring depends on the outer perimeter of the chip. This geometry does not exploit the central part of the chip.

La figure 3 représente une amélioration de l'inductance annulaire, l'inductance en méandres décrite dans l'article de Park précité. L'inductance en méandres permet d'utiliser la zone centrale en étirant l'une des quatre branches de l'anneau de manière à constituer un ou plusieurs méandres couvrant la partie centrale. Cette solution permet d'augmenter la longueur I du noyau à surface constante. En utilisant des règles de conception habituelles, l'occupation de la zone centrale par le noyau en méandres (figure 3) permet d'obtenir un gain sur la longueur I du noyau de l'ordre de 33%, par rapport au noyau annulaire (figure 2). En augmentant le nombre N de spires en fonction de la longueur I du noyau, on obtient un compromis avec un gain sur l'inductance L d'environ 20 % et un gain sur le courant de saturation Isat d'environ 10 %.FIG. 3 represents an improvement in the annular inductance, the meandering inductance described in the aforementioned Park article. The meandering inductance makes it possible to use the central zone by stretching one of the four branches of the ring so as to constitute one or more meanders covering the central part. This solution makes it possible to increase the length I of the constant surface core. By using usual design rules, the occupation of the central zone by the meandering core (FIG. 3) makes it possible to obtain a gain on the length I of the core of the order of 33%, with respect to the annular core ( Figure 2). By increasing the number N of turns according to the length I of the core, a compromise is obtained with a gain on the inductance L of about 20% and a gain on the saturation current I sat of about 10%.

Toutefois, l'inductance sous forme de méandres n'est optimale que dans des cas particuliers où la largeur de l'anneau et la largeur des branches vérifient certaines conditions de géométrie. En effet, la zone centrale doit être suffisamment grande pour permettre l'insertion d'un nombre entier de méandres.However, the meandering inductance is optimal only in special cases where the width of the ring and the width of the branches satisfy certain geometry conditions. Indeed, the central zone must be large enough to allow the insertion of an integer number of meanders.

Comme représenté à la figure 3, le noyau a une largeur globale T, les branches ont une largeur W et l'espacement entre deux branches adjacentes doit être supérieur à un espacement minimum S. Ainsi, pour un nombre Nm de méandres donné, la largeur globale T du noyau doit remplir la condition : T 2 W + Nm * 2 W + ( 2 Nm + 1 ) * S .

Figure imgb0004
As shown in FIG. 3, the core has an overall width T, the branches have a width W and the spacing between two adjacent branches must be greater than a minimum spacing S. Thus, for a given number Nm of meanders, the width T global of the core must fulfill the condition: T 2 W + nm * 2 W + ( 2 nm + 1 ) * S .
Figure imgb0004

Le rapport du nombre Nm de méandres sur la surface de la zone centrale est maximisé lorsque la partie gauche et la partie droite de l'équation sont égales : T = 2 W + Nm * 2 W + ( 2 Nm + 1 ) * S .

Figure imgb0005
The ratio of the number Nm of meanders on the surface of the central zone is maximized when the left part and the right part of the equation are equal: T = 2 W + nm * 2 W + ( 2 nm + 1 ) * S .
Figure imgb0005

En admettant que la largeur W des branches et l'espacement minimum S sont égaux (S=W) la condition se simplifie : T / W 3 + 4 Nm ,

Figure imgb0006

où T/W est le rapport de la largeur globale T sur la largeur W des branches. Pour T/W=7, 11, 15..., le noyau en méandres permet donc de remplir la zone centrale de façon optimale. Pour T/W=9, 13, 17... cependant, une partie importante de la zone centrale reste inutilisée. La mise en oeuvre de noyaux en méandres est donc restrictive dans la pratique puisque la taille de la puce et la largeur des branches sont en général imposées de façon indépendante. Une partie de la zone centrale peut ainsi rester inutilisée.Assuming that the width W of the branches and the minimum spacing S are equal (S = W) the condition is simplified: T / W 3 + 4 nm ,
Figure imgb0006

where T / W is the ratio of the overall width T to the width W of the branches. For T / W = 7, 11, 15 ..., the meandering core makes it possible to fill the central zone optimally. For T / W = 9, 13, 17 ... however, some significant amount of the central area remains unused. The implementation of meander cores is therefore restrictive in practice since the size of the chip and the width of the branches are in general imposed independently. Part of the central area can remain unused.

Le noyau magnétique 1 fermé en forme de spirale présente une plus grande indépendance vis-à-vis des contraintes dimensionnelles, et permet ainsi d'optimiser la longueur I du noyau, l'inductance L et le courant de saturation Isat pour une surface donnée quelconque. Comme précédemment, le gain sur la longueur de noyau I et le gain en puissance du noyau en spirale (figure 4) peuvent être évalués vis-à-vis de la structure annulaire de référence (figure 2). Il convient alors de distinguer deux cas :

  • Lorsque le rapport T/W équivaut essentiellement à la partie de droite de l'équation ci-dessus, c'est-à-dire lorsque T / W 3 + 4 Nm = 7 , 11 , 15 ,
    Figure imgb0007

    le noyau en spirale fermé et le noyau en méandres sont comparables, car le gain sur la longueur et le gain sur la puissance sont comparables.
  • Lorsque l'équation ci-dessus n'est pas vérifiée, le noyau en spirale fermée permet d'obtenir un gain en longueur I et un gain en puissance plus importants que le noyau en méandres, par exemple pour T/W compris entre 8 et 10 (8<T/W<10) ou pour T/W compris entre 12 et 14 (12<T/W<14).
The spiral-shaped closed magnetic core 1 has a greater independence with respect to the dimensional constraints, and thus makes it possible to optimize the length I of the core, the inductance L and the saturation current I sat for a given surface. any. As before, the gain on the core length I and the power gain of the spiral core (FIG. 4) can be evaluated with respect to the annular reference structure (FIG. 2). It is then necessary to distinguish two cases:
  • When the T / W ratio is essentially equivalent to the right-hand part of the equation above, ie when T / W 3 + 4 nm = 7 , 11 , 15 ... ,
    Figure imgb0007

    the closed spiral core and the meandering core are comparable because the gain in length and the gain in power are comparable.
  • When the above equation is not satisfied, the closed spiral core makes it possible to obtain a greater gain in length I and power gain than the meandering core, for example for T / W between 8 and 10 (8 <T / W <10) or for T / W between 12 and 14 (12 <T / W <14).

En particulier, dans le cas d'un rapport T/W = 9, le noyau en spirale (figure 4) permet d'obtenir 53% de gain sur la longueur I et sur la puissance, par rapport à l'anneau (figure 2).In particular, in the case of a ratio T / W = 9, the spiral core (FIG. 4) makes it possible to obtain 53% gain on the length I and on the power, with respect to the ring (FIG. ).

Les branches et le segment de fermeture 3 ont une direction préférentielle de propagation du flux magnétique en dynamique. Les axes magnétiques des branches et du segment de fermeture 3 sont orientés les uns par rapport aux autres, de manière à obtenir un flux sous forme d'une boucle fermée comme représenté à la figure 4 par les flèches 6.The branches and the closure segment 3 have a preferential direction of propagation of the magnetic flux in dynamics. The magnetic axes of the branches and the closing segment 3 are oriented relative to the other, so as to obtain a flow in the form of a closed loop as represented in FIG. 4 by the arrows 6.

Les branches peuvent être disposées dans des plans différents parallèles. Ainsi, comme représenté à la figure 5, le premier jeu 4 de branches parallèles est disposé dans un premier plan et le second jeu 5 de branches parallèles est disposé dans un second plan, parallèle au premier plan et supérieur au premier plan sur la figure 5. Par ailleurs, les branches peuvent avoir des épaisseurs différentes. Ainsi, sur la figure 5 les branches du premier jeu 4 sont moins épaisses que les branches du second jeu 5. Ceci permet notamment d'adapter le noyau aux contraintes locales de la puce utilisée et des composants électroniques adjacents.The branches can be arranged in different parallel planes. Thus, as shown in FIG. 5, the first set of parallel branches is arranged in a first plane and the second set of parallel branches is arranged in a second plane, parallel to the first plane and greater than the first plane in FIG. In addition, the branches can have different thicknesses. Thus, in FIG. 5 the branches of the first set 4 are less thick than the branches of the second set 5. This makes it possible in particular to adapt the core to the local constraints of the chip used and the adjacent electronic components.

Un ou plusieurs entrefers peuvent éventuellement couper le noyau magnétique 1 afin d'augmenter la réluctance du circuit magnétique. Le noyau magnétique 1 représenté à la figure 6 comporte plusieurs entrefers 11 de dimension faible (au moins un facteur 1 /10 entre la dimension de l'entrefer et la longueur totale du circuit magnétique). Les entrefers peuvent être disposés dans une ou plusieurs des branches.One or more air gaps may optionally cut the magnetic core 1 to increase the reluctance of the magnetic circuit. The magnetic core 1 shown in FIG. 6 comprises several air gaps 11 of small size (at least a factor 1/10 between the dimension of the gap and the total length of the magnetic circuit). The gaps can be arranged in one or more branches.

Comme représenté aux figures 1, 4 et 6, les branches constituent une spirale de type rectangulaire, ou au moins sensiblement rectangulaire, ayant deux spires s'inscrivant dans deux rectangles concentriques. Cependant, selon les besoins, des spirales plus complexes peuvent être envisagées. Les formes mises en jeu peuvent être quelconques, par exemple la géométrie de la spirale est rectangulaire, ronde, carrée ou octogonale. L'homme du métier détermine la forme particulière en utilisant des logiciels de simulation tels que le logiciel Flux de la société Cedrat ou le logiciel Maxwell de la société Ansoft.As represented in FIGS. 1, 4 and 6, the branches constitute a spiral of rectangular type, or at least substantially rectangular, having two turns forming part of two concentric rectangles. However, as needed, more complex spirals may be considered. The forms involved may be arbitrary, for example the geometry of the spiral is rectangular, round, square or octagonal. The person skilled in the art determines the particular form by using simulation software such as the Flux software from Cedrat or the Maxwell software from Ansoft.

La figure 7 illustre une micro-inductance comportant le noyau magnétique 1 selon l'invention. Une pluralité de spires 9 disjointes constitue un bobinage autour du noyau magnétique 1. Toutes les branches du noyau peuvent comporter des spires de bobinage. De préférence, les spires enveloppent la quasi-totalité de la surface du noyau magnétique 1, un écart d'isolement minimum séparant les spires adjacentes. Chaque spire peut comporter une section plane inférieure dans un plan inférieur, une section plane supérieure dans un plan supérieur et deux sections montantes. Le bobinage comporte, de préférence, une entrée électrique unique et une sortie électrique unique. Le segment de fermeture 3 ne comporte, de préférence, pas de spires 9.FIG. 7 illustrates a micro-inductance comprising the magnetic core 1 according to the invention. A plurality of disjointed turns 9 constitute a winding around the magnetic core 1. All the branches of the core may comprise winding turns. Preferably, the turns envelop substantially all of the surface of the magnetic core 1, a minimum isolation gap separating the adjacent turns. Each turn may comprise a lower plane section in a lower plane, an upper plane section in an upper plane and two rising sections. The winding preferably comprises a single electrical input and a single electrical output. The closing segment 3 preferably has no turns 9.

Pour les composants intégrés utilisant des techniques de micro-fabrication classiques, la micro-inductance ne présente aucune difficulté de fabrication additionnelle par rapport aux systèmes conventionnels préexistants.For integrated components using conventional micro-fabrication techniques, the micro-inductance presents no additional manufacturing difficulties compared to conventional pre-existing systems.

Pour le noyau magnétique 1, on utilise des matériaux magnétiques à forte perméabilité (supérieure à 10), typiquement des alliages à base de fer (Fe) et/ou de nickel (Ni) et/ou de cobalt (Co) et pouvant contenir l'un ou plusieurs des éléments suivants : aluminium (Al), silicium (Si), tantale (Ta), hafnium (Hf), azote (N), oxygène (O) et bore (B). Le noyau peut être hétérogène et constitué de plusieurs couches ferromagnétiques et conductrices ou diélectriques (non magnétiques) ou antiferromagnétiques. En particulier, le noyau peut être constitué d'une alternance de couches magnétiques et de couches intermédiaires, par exemple un empilement comportant deux couches magnétiques séparées par une couche intermédiaire. Les couches intermédiaires peuvent, par exemple, être en métal (cuivre Cu, titane Ti ou ruthénium Ru, par exemple) ou en un matériau isolant comme l'oxyde de silicium SiO2 ou l'oxyde d'aluminium Al2O3, par exemple. Les couches intermédiaires peuvent également être constituées par des matériaux antiferromagnétiques comme l'oxyde de nickel NiO ou les alliages de manganèse (Mn) comportant du nickel (NiMn), de l'iridium (IrMn) ou du platine (PtMn).For the magnetic core 1, high permeability magnetic materials (greater than 10), typically iron (Fe) and / or nickel (Ni) and / or cobalt (Co) alloys, which can contain one or more of aluminum, Al, Si, Tantalum, Hf, N, O, and B The core may be heterogeneous and consist of several ferromagnetic and conductive or dielectric (non-magnetic) or antiferromagnetic layers. In particular, the core may consist of an alternation of magnetic layers and intermediate layers, for example a stack comprising two magnetic layers separated by an intermediate layer. The intermediate layers may, for example, be metal (Cu copper, titanium Ti or ruthenium Ru, for example) or an insulating material such as silicon oxide SiO 2 or aluminum oxide Al 2 O 3 , for example. example. The intermediate layers may also consist of antiferromagnetic materials such as nickel oxide NiO or alloys of manganese (Mn) comprising nickel (NiMn), iridium (IrMn) or platinum (PtMn).

La micro-inductance n'est pas limitée dans sa fréquence d'utilisation, et pourrait convenir à des utilisations à haute fréquence, qui réclament toujours plus de puissance. On peut alors très bien imaginer de tels composants travaillant dans la gamme des micro-ondes et remplaçant les inductances intégrées ou discrètes, avec ou sans matériau magnétique, qui sont habituellement utilisées. On retrouve alors des applications de type filtrage, adaptation d'impédance, etc.The micro-inductance is not limited in its frequency of use, and may be suitable for high frequency uses, which always demand more power. One can then very well imagine such components working in the range of microwaves and replacing integrated or discrete inductances, with or without magnetic material, which are usually used. We then find applications such as filtering, impedance matching, etc.

Claims (9)

Noyau magnétique (1) fermé pour une micro-inductance intégrée, caractérisé en ce qu'il a une forme de spirale comportant deux extrémités (2) reliées l'une à l'autre par un segment de fermeture (3).Magnetic core (1) closed for integrated micro-inductance, characterized in that it has a spiral shape having two ends (2) connected to one another by a closing segment (3). Noyau magnétique (1) selon la revendication 1, caractérisé en ce qu'il a une forme de spirale de type rectangulaire.Magnetic core (1) according to claim 1, characterized in that it has a spiral shape of rectangular type. Noyau magnétique (1) selon l'une des revendications 1 et 2, caractérisé en ce que le noyau magnétique (1) est constitué par une pluralité de branches.Magnetic core (1) according to one of claims 1 and 2, characterized in that the magnetic core (1) is constituted by a plurality of branches. Noyau magnétique (1) selon la revendication 3, caractérisé en ce qu'au moins deux branches sont disposées dans des plans différents parallèles.Magnetic core (1) according to claim 3, characterized in that at least two branches are arranged in different parallel planes. Noyau magnétique (1) selon la revendication 4, caractérisé en ce qu'un premier jeu (4) de branches parallèles est disposé dans un premier plan et un second jeu (5) de branches parallèles est disposé dans un second plan.Magnetic core (1) according to claim 4, characterized in that a first set (4) of parallel branches is arranged in a first plane and a second set (5) of parallel branches is arranged in a second plane. Noyau magnétique (1) selon la revendication 5, caractérisé en ce que les branches du premier jeu (4) de branches parallèles sont sensiblement perpendiculaires aux branches du second jeu (5) de branches parallèles.Magnetic core (1) according to claim 5, characterized in that the branches of the first set (4) of parallel branches are substantially perpendicular to the branches of the second set (5) of parallel branches. Noyau magnétique (1) selon l'une quelconque des revendications 3 à 6, caractérisé en ce qu'au moins deux branches ont des épaisseurs différentes.Magnetic core (1) according to one of Claims 3 to 6, characterized in that at least two branches have different thicknesses. Noyau magnétique (1) selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte au moins un entrefer (11).Magnetic core (1) according to any one of claims 1 to 7, characterized in that it comprises at least one gap (11). Micro-inductance intégrée, caractérisée en ce qu'elle comporte un noyau magnétique (1) selon l'une quelconque des revendications 1 à 8.Integrated micro-inductor, characterized in that it comprises a magnetic core (1) according to any one of Claims 1 to 8.
EP07354060A 2006-11-07 2007-11-06 Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core Not-in-force EP1921640B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0609714A FR2908231B1 (en) 2006-11-07 2006-11-07 SPIRAL-SHAPED MAGNETIC CORE AND INTEGRATED MICRO-INDUCTANCE COMPRISING SUCH MAGNETIC CORE CLOSED

Publications (2)

Publication Number Publication Date
EP1921640A1 true EP1921640A1 (en) 2008-05-14
EP1921640B1 EP1921640B1 (en) 2009-08-26

Family

ID=38004847

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07354060A Not-in-force EP1921640B1 (en) 2006-11-07 2007-11-06 Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core

Country Status (6)

Country Link
US (1) US20080106364A1 (en)
EP (1) EP1921640B1 (en)
JP (1) JP2008187166A (en)
AT (1) ATE441193T1 (en)
DE (1) DE602007002139D1 (en)
FR (1) FR2908231B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150061815A1 (en) 2013-09-04 2015-03-05 International Business Machines Corporation Planar inductors with closed magnetic loops
US10290414B2 (en) * 2015-08-31 2019-05-14 Qualcomm Incorporated Substrate comprising an embedded inductor and a thin film magnetic core
US10600566B2 (en) 2016-10-13 2020-03-24 International Business Machines Corporation Method for forming a planar, closed loop magnetic structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3016067A1 (en) * 1980-04-25 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Hybrid circuit with integral inductor - wound with turns partly on substrate and partly on flexible insulation ribbon
US6114937A (en) * 1996-08-23 2000-09-05 International Business Machines Corporation Integrated circuit spiral inductor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3465238A (en) * 1967-10-02 1969-09-02 Jacob Marlow Position and velocity detecting apparatus
US4309655A (en) * 1978-06-23 1982-01-05 Lgz Landis & Gyr Zug Ag Measuring transformer
JPS61196505A (en) * 1985-02-26 1986-08-30 Nec Corp Inductance structure
JPH01106410A (en) * 1987-10-20 1989-04-24 Victor Co Of Japan Ltd Inductance element
JPH0513235A (en) * 1991-07-03 1993-01-22 Sumitomo Electric Ind Ltd Inductance element
JPH07220932A (en) * 1994-02-04 1995-08-18 Mitsubishi Electric Corp Coil element and its module
JP2694114B2 (en) * 1994-02-28 1997-12-24 株式会社アモルファス・電子デバイス研究所 Thin film magnetic element and manufacturing method thereof
WO1997002583A1 (en) * 1995-06-30 1997-01-23 Hitachi Metals, Ltd. Magnetic core
US5847518A (en) * 1996-07-08 1998-12-08 Hitachi Ferrite Electronics, Ltd. High voltage transformer with secondary coil windings on opposing bobbins
TR199902411A3 (en) * 1998-11-02 2000-06-21 Lincoln Global, Inc. Output coil and method of use for direct current welding machine
JP2000283998A (en) * 1999-03-31 2000-10-13 Osaki Electric Co Ltd Magnetic circuit for converting electricity quantity into magnetic flux
US6815220B2 (en) * 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
FR2811135B1 (en) * 2000-06-29 2002-11-22 Memscap MICRO-COMPONENT OF THE MICRO-INDUCTANCE OR MICRO-TRANSFORMER TYPE
US6700472B2 (en) * 2001-12-11 2004-03-02 Intersil Americas Inc. Magnetic thin film inductors
JP3971697B2 (en) * 2002-01-16 2007-09-05 Tdk株式会社 High-frequency magnetic thin film and magnetic element
US6825749B1 (en) * 2004-01-26 2004-11-30 National Applied Research Laboratories National Chip Implementation Center Symmetric crossover structure of two lines for RF integrated circuits
JP4541800B2 (en) * 2004-08-20 2010-09-08 ルネサスエレクトロニクス株式会社 Semiconductor device with inductor
KR100688858B1 (en) * 2004-12-30 2007-03-02 삼성전기주식회사 Printed circuit board with spiral three dimension inductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3016067A1 (en) * 1980-04-25 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Hybrid circuit with integral inductor - wound with turns partly on substrate and partly on flexible insulation ribbon
US6114937A (en) * 1996-08-23 2000-09-05 International Business Machines Corporation Integrated circuit spiral inductor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. VON DER WETH ET AL.: "Numerical Inductor Optimization", TRANS. MAGN. SOC., vol. 2, no. 5, 2002, pages 361 - 366
J.Y.PARK: "Integrated Electroplated Micromachined Magnetic Devices Using Low Temperature Fabrication Processes", IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, vol. 23, no. 1, 2000
JAE YEONG PARK ET AL: "Integrated Electroplated Micromachined Magnetic Devices Using Low Temperature Fabrication Processes", IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, IEEE, PISCATAWAY, NY, US, vol. 23, no. 1, January 2000 (2000-01-01), XP011020016, ISSN: 1521-334X *
S.CUK: "New Magnetic Structures for Switching Converters", IEEE TRANSACTIONS ON MAGNETICS, vol. 19, no. 2, 1983

Also Published As

Publication number Publication date
FR2908231A1 (en) 2008-05-09
US20080106364A1 (en) 2008-05-08
JP2008187166A (en) 2008-08-14
FR2908231B1 (en) 2009-01-23
EP1921640B1 (en) 2009-08-26
ATE441193T1 (en) 2009-09-15
DE602007002139D1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
KR101792281B1 (en) Power Inductor and Manufacturing Method for the Same
WO2017090736A1 (en) Spin current magnetization reversal-type magnetoresistive effect element and method for producing spin current magnetization reversal-type magnetoresistive effect element
EP1187149A1 (en) Microcomponent of the type microinductance or microtransformer
FR2793943A1 (en) MICRO-COMPONENTS OF THE MICRO-INDUCTANCE OR MICRO-TRANSFORMER TYPE, AND METHOD FOR MANUFACTURING SUCH MICRO-COMPONENTS
US20070230042A1 (en) Thin film device
US20090322458A1 (en) Magnetic component
KR102004238B1 (en) Chip electronic component and manufacturing method thereof
EP1916675B1 (en) Coil comprising several coil branches and micro-inductance comprising one of these coils
EP1921640B1 (en) Spiral-shaped closed magnetic core and integrated micro-inductance comprising such a closed magnetic core
WO2000044008A2 (en) Discrete inductive-type electronic component, method for the production thereof
EP3579255B1 (en) Integrated circuit comprising variable inductance
EP3033755B1 (en) Ferrite device for power application and manufacturing method of device
FR2907589A1 (en) Integrated micro-induction coil for e.g. power electronics application, has disjointed loops constituting winding around core, where core has four parallel branches that are enclosed by winding and have ends connected by respective bases
FR2811135A1 (en) MICRO-COMPONENT OF THE MICRO-INDUCTANCE OR MICRO-TRANSFORMER TYPE
FR3066854B1 (en) INTEGRATED MAGNETIC DEVICE WITH VARIABLE INDUCTANCE AND METHOD OF MAKING SAME
FR2905792A1 (en) Closed magnetic circuit for e.g. integrated transformer, has two magnetic layers alternately and respectively provided with two sets of elementary ferromagnetic sub-layers separated from two insulating non-magnetic sub-layers
WO2010122919A1 (en) Magnetic sensor
EP3506326A2 (en) Inductive filter device with toroidal magnetic core
EP3391461B1 (en) Wireless communication module, plate suitable for use in manufacturing said module and method for manufacturing said module
JP2019179899A (en) Magnetoresistance effect device
FR2909482A1 (en) Rectilinear solenoid winding for e.g. permeameter, has turns, whose one of dimensions is variable and determined individually with respect to position of turns along winding and predetermined magnetic characteristic of winding
EP1178504A1 (en) Micro component of the micro inductance or micro transformer type
FR3037187B1 (en) MAGNETOELECTRIC INDUCTIVE COMPONENT ELECTROSTATICALLY CONNECTED
FR2823365A1 (en) Inductance electrical winding having continuous wire with first direction wire emanating central point/second wire opposite direction with both wires having same electrical sense
FR2897200A1 (en) Inductor e.g. magnetomechanical inductor, for being integrated e.g. on silicon, has permanent magnets creating static magnetic field in plane of membrane portion that is cut under form of plane pattern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081105

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602007002139

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091226

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091207

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Effective date: 20091130

Owner name: STMICROELECTRONICS SA

Effective date: 20091130

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101130

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111130

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121106

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007002139

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121106