EP2321373A1 - Modified particles and dispersions comprising said particles - Google Patents

Modified particles and dispersions comprising said particles

Info

Publication number
EP2321373A1
EP2321373A1 EP09782305A EP09782305A EP2321373A1 EP 2321373 A1 EP2321373 A1 EP 2321373A1 EP 09782305 A EP09782305 A EP 09782305A EP 09782305 A EP09782305 A EP 09782305A EP 2321373 A1 EP2321373 A1 EP 2321373A1
Authority
EP
European Patent Office
Prior art keywords
metal
particles
dispersion
modifiers
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09782305A
Other languages
German (de)
French (fr)
Inventor
Imme Domke
Andrey Karpov
Hartmut Hibst
Radoslav Parashkov
Ingolf Hennig
Marcel Kastler
Friederike Fleischhaker
Lothar Weber
Peter Eckerle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09782305A priority Critical patent/EP2321373A1/en
Publication of EP2321373A1 publication Critical patent/EP2321373A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to particles modified with a modifier and a dispersant containing the modified particles.
  • Zinc oxide is a promising semiconductor in thin film transistors (TFTs) to produce cheap TFT circuits in large displays or other electronic circuits.
  • MOSFETs metal oxide semiconductor FETs
  • Essential for the deposition is a colloidally stable dispersion to allow the construction of a homogeneous layer of finely divided nanoscale particles.
  • additives modifiers
  • the use of such additives in general has long been known from other applications.
  • WO 2006/138071 and WO 2006/138072 each disclose a method for depositing a semiconducting zinc oxide layer on a substrate from a colloidal dispersion.
  • the dispersion is preferably applied at room temperature and then baked at temperatures below 300 0 C (annealing).
  • the dispersions used are stabilized, but no statements are made about any stabilizers or modifiers.
  • Preferred modifiers are lauryl ether-11-polyethylene glycol acid, capryl ether-6-polyethylene glycol acid, lauryl ether-4 polyethyleneglycolic acid, lauryl ether-6-polyethyleneglycolic acid and / or lauryl ether-8-polyethyleneglycolic acid.
  • DE 10 2005 007 374 A1 discloses nanoparticles which have been modified with a biodegradable polymer, in particular from polyesters, polycyanoacrylates, polyacrylates, polymethyl acrylates, polyepoxides, polyurethanes and polystyrenes.
  • EP 1630136 A1 discloses titanium dioxide particles which have been modified with a hydrophilic polymer, in particular polycarboxylic acids. The carboxyl group of the modifier is bound via an ester bond to the titanium dioxide. Further modifiers are described in DE 10 2005 047 807 A1.
  • modified particles or dispersions used hitherto are those that they significantly impair the performance of the semiconductor components in the deposition of conductive, semiconductive or dielectric layers, or thermal treatment at temperatures at which the substrates are affected is required to improve the performance. This is especially true when using polymer substrates whose thermal stability is generally lower than the inorganic substrates.
  • the object is achieved according to the invention by surface-modified metal, metal halide, metal chalcogenide, metal nitride, metal phosphide, metal boride or metal phosphate particles or mixtures thereof, wherein the particles have an average particle diameter of 1 to 500 nm and whose surface is coated with an o -
  • the plurality of modifiers selected from the formula (I) (II) and
  • X 1 is selected from O, S and Se
  • X 2 is selected from OH, OCH 3 , OC 2 H 5 , CO 2 H, OSi (R 1 ) 3 -x- y (R 2 ) y (R 3 ) xx, y independently of one another equal to 0, 1, 2 or 3 and the sum of x and y is at most 3, R 1 , R 2 , R 3 , R 4 are independently selected from H, C 1 to C 10 alkyl, X 3 is selected from O, S, Se and CH 2 , n, m, p are independently 0, 1, 2 or 3, preferably 0, 1, 2 and more preferably 1
  • R 5 is selected from C 1 to C 4 alkyl
  • X 6 selected from SH, NH 2 , Si (R 1 3 - ⁇ - y ) (R 2 ) y (R 3 ) ⁇
  • X 7 is selected from C 1 to C 10 alkylene, O, S. Se, Te, r is an integer value from 1 to 1000,
  • R 6 is selected from H, C 1 to C 10 alkyl and halogen.
  • the modifiers have a decomposition temperature at which deformation, warpage, decomposition or other thermal changes of the substrate are not observed, especially when the modified particles are applied to the polymer substrate. This allows the modifiers to be removed from the layer applied to a polymer substrate without affecting the structure of the substrate.
  • the decomposition temperature of the modifier (s) used is preferably below 250 ° C.
  • the decomposition temperature should furthermore be above 50 ° C., preferably above 75 ° C., more preferably above 100 ° C., in order to avoid premature decomposition.
  • the decomposition temperature is preferably below 200 ° C., more preferably below 150 ° C.
  • the decomposition temperature is the temperature at which the organic modifier loses its original structure and is decomposed into smaller molecules (eg CO 2 ).
  • X 2 is preferably selected from OH, OCH 3 , COOH, OSi (R 1 ) 3 -x- y (R 2 ) y (R 3 ) ⁇ , particularly preferably selected from OH or OSi (R 1 ) 3-x- y (R 2 ) y (R 3 ) ⁇ .
  • X 3 is selected from O, S, CH 2, in particular selected from O and CH 2. Particularly preferably, X 3 is CH 2.
  • x and y are independently of one another equal to 0, 1 or 2, particularly preferably 0 or 1.
  • R 1 , R 2 , R 3 and R 4 are independently selected from H and Ci to C 4 alkyl, more preferably H, methyl and ethyl.
  • n, m, p are each independently equal to O, 1, 2, more preferably 0 or 1. Furthermore, it is particularly preferred if at least one of m, n or p is 0.
  • X 5 is selected from H, OH, OSi (R 1) (3 -x- y) (R 2) x (R 3) y, CO 2 R 5, OCO 2 R 5, more preferably from CO 2 R 5 .
  • R 5 is preferably selected from methyl, ethyl or tert-butyl, very particularly preferably from ethyl or tert-butyl.
  • Halogens for the purposes of the present invention are F, Cl, Br and I.
  • X 6 is preferably selected from SH, OSi (R 1 3 -x- y ) (R 2 ) y (R 3 ) x, particularly preferably OSi (R 1 3 - x - y ) (R 2 ) y (R 3 ) x
  • X 7 is selected from C 1 to C 4 alkylene, more preferably selected from -CH 2 - and -C 2 H 4 -.
  • r is an integer value of 1 to 100, more preferably from 1 to 10.
  • R 6 is preferably selected from H and C 1 to C 4 alkyl, particularly preferably selected from methyl or ethyl.
  • Preferred modifiers are furthermore those of the formulas Ia to Ih.
  • n, p, X 1 , X 2 , X 4 and X 5 have the abovementioned meanings and R 1 , R 2 , R 3 are selected from C 1 --dAlkyl, more preferably methyl, ethyl or t-butyl.
  • -HC CH-, CH 2 .
  • X 5 is selected from OCH 3 , OC 2 H 5 , CO 2 R 5 and OCO 2 R 5 .
  • Particularly preferred modifiers are compounds of the following structures IV to IX:
  • the particles may be metal, metal chalcogenide, metal phosphide, metal boride, metal nitride or metal phosphate particles or mixtures thereof.
  • the metal chalcogenide, metal phosphide, metal boride, metal phosphate and / or metal nitride particles, in particular metal oxide particles, may here be doped or undoped.
  • Suitable metal halides in the context of the present invention are metal fluorides, metal chlorides, metal bromides and metal iodides, preferably fluorides and chlorides. Particularly preferred are metal chlorides.
  • Suitable metal chalcogenides in the context of the present invention are oxides, sulfides, selenides and tellurides, preferably oxides and sulfides.
  • Suitable metal chalcogenide compounds for depositing semiconductive layers are, in addition to the oxides, for example CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, Cu-In-Ga-Se. Particularly preferred are metal oxide particles.
  • Preferred metal nitrides are AIN, GaN, InN, Al-Ga-N, In-Ga-N, Al-Ga-In-N.
  • Preferred metal phosphides are GaP, InP, Al-Ga-P, Ga-As-P, Al-Ga-In-P.
  • Preferred metal phosphates are rare earth phosphates (lanthanum, cerium, terbium).
  • the particles in particular metal oxide particles, may be dielectric, semiconductive or conductive compounds.
  • binary systems are metal oxides of group 2 (eg MgO), group 3 (eg Y 2 O 3 ), group 4 (eg TiO 2 , ZrO 2 , HfO 2 ), 5 (eg V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 ), Group 6 (e.g., Cr 2 O 3 , MoO 3 , WO 3 ), Group 7 (e.g., MnO 2 ), Group 8 (e.g. B.
  • group 2 eg MgO
  • group 3 eg Y 2 O 3
  • group 4 eg TiO 2 , ZrO 2 , HfO 2
  • 5 eg V 2 O 5 , Nb 2 O 5 , Ta 2 O 5
  • Group 6 e.g., Cr 2 O 3 , MoO 3 , WO 3
  • Group 7 e.g., MnO 2
  • Group 8 e.
  • Group 9 e.g., CoO, Co 3 O 4
  • Group 10 e.g., NiO
  • Group 11 e.g., CuO , Cu 2 O
  • group 12 eg ZnO, CdO
  • group 13 B 2 O 3 , Al 2 O 3 , Ga 2 O 3 , In 2 O 3
  • group 14 SiO 2 , GeO 2 , SnO 2 ,, PbO, Pb 3 O 4
  • group 15 eg Sb 2 O 3 , Bi 2 O 3 , Bi 2 O 3 * Bi 2 O 5 ) of the lanthanides (La 2 O 3 , CeO 2 )
  • oxides may contain additional doping elements (eg Sn, Ge, Mo, F, Ti, Zr, Hf, Nb, Ta, W Te-doped In 2 O 3 , Sb, F, As, Nb, Ta doped
  • mixtures of metal oxides or ternary systems eg Zn 2 SnO 4 , ZnSnO 3 , Zn 2 In 2 O 5 , Zn 3 In 2 O 6 , In 4 Sn 3 O 2 , CdIn 2 O 4 , MgIn 2 O 4 , GaInO 3 , CaTiO 3 , BaTiO 3 , MnFe 2 O 4
  • quaternary systems eg Zn-In-Sn-O, Zn-In-Li-O, In-Ga-Zn-O
  • Preferred metal oxides for depositing semiconducting layers are, for example, ZnO, Ga 2 O 3 , GeO 2 , CdO, In 2 O 3 , SnO 2 , their mixtures or reaction products (ternary - Zn-Sn-O, Zn-In-O, quaternary systems). Ga-In-Zn-O, Zn-In-Sn-O).
  • Particularly preferred metal oxides for depositing semiconducting layers are ZnO and In 2 O 3 .
  • n-type mobility In the case of semiconducting compounds, increasing the n-type mobility frequently involves In, Al, Ga, OH, H doping or intrinsic defects (O vacancies or Zn atoms).
  • Intercalation at interstitial sites used.
  • the increase of the p-type mobility takes place, for example, by doping with Li, N.
  • metal oxides for depositing semiconductive layers are Al- or Mg-doped ZnO, Ga-doped ZnO, Al-doped MgO, Sn-doped ZnO, Bidoped ZnO, and Sn-doped In 2 O 3
  • metallic particles can be used.
  • Suitable metal particles are selected from Ag, Cu, Au and their alloys with other metals.
  • the mean diameter of the particles used is 1 to 500 nm, preferably 2 to 200 nm, more preferably 5 to 100 nm, particularly preferably 10 to 50 nm.
  • the particle size distribution may be unimodal, bimodal or multimodal.
  • the particles can be spherical or also have a platelet-shaped or rod-shaped morphology. Particularly preferred is the rod-shaped morphology.
  • Another object of the present invention are dispersions containing
  • a dispersant in principle, all fluids are suitable in which the particles can be dispersed under the processing conditions.
  • an organic compound is used which is liquid at room temperature and normal pressure.
  • aprotic polar organic liquids Preference is given to using aprotic polar organic liquids.
  • the dipole moment of the dispersant is preferably 3 to 10 m 10 30 C 10 "C 30 m.
  • organic liquids as dispersants, their mixtures with water can be used.
  • the modifier serves to nanoscale stabilize the particles, preferably metal oxide particles. Since one application is the preparation of thin films from these dispersions (e.g., via spin coating, printing, etc.), it makes sense to use as little modifier as possible because the modifier usually needs to be removed after application of the coatings. On the other hand, sufficient stabilizer must be used to permanently stabilize the dispersions.
  • the molar ratio of modifier to metal oxide can vary between 2: 1 and 1:60. Preference is given to a molar ratio of from 1: 1 to 1: 30, more preferably from 1: 5 to 1:25.
  • the content of particles in the dispersion may be from 0.01 to 30% by weight, preferably from 0.1 to 10% by weight, in particular from 1 to 5% by weight.
  • Substrates for the purposes of the present invention may be any conductive, semiconductive or non-conductive substance. The choice of the electrical, mechanical and chemical properties of the substrate depend essentially on the application. Suitable substrates for depositing conductive, semiconductive or non-conductive layers are well known to those skilled in the art.
  • the dispersions according to the invention are particularly suitable for applying layers to polymer substrates, which in turn may be conductive, semiconductive or non-conductive
  • Particularly suitable polymeric substrates are polyimides (PI, available, for example, under the trade name KAPTON), polyester naphthalate (PEN, available, for example, under the trade name TEONEX Q 51) and polyethylene terephthalate (PET, available, for example, under the trade name Hostaphan ).
  • PI polyimides
  • PEN polyester naphthalate
  • PET polyethylene terephthalate
  • the modified particles can be prepared by
  • the dispersions thus obtained may be used directly or may be concentrated to dryness to recover the modified particles. These can be sold directly or subsequently redispersed in another dispersant.
  • a Zn salt e.g. zinc chloride or Zn (CH 3 COO) 2 -2H 2 O
  • a base e.g, KOH or NaOH
  • a dispersing agent e.g. in an alcohol such as methanol, ethanol, isopropanol
  • Doped ZnO particles are obtained, for example, by reacting a mixture of a Zn salt and a corresponding metal salt (eg AICb, Al (OiPr) 3, Al acetylacetonate in the case of an Al doping) with a base in a dispersion medium implemented.
  • the separation of the precipitated particles from by-products can be carried out in a manner known per se, for example by filtration or centrifugation. If necessary, the ZnO dispers ion may be concentrated prior to isolation of the precipitated particles by a membrane technique such as nano, ultra, micro or crossflow filtration. After the fall and before the functionalization, it is also possible to carry out a solvent exchange (for example by means of crossflow filtration).
  • the corresponding modifier is added in the predetermined ratio, so that a transparent dispersion of metal oxide particles is formed.
  • the functionalization takes place at temperatures from room temperature to boiling points of the dispersants used.
  • the pressure is usually from 1 mbar to 50 bar, preferably atmospheric pressure (about 1, 013 bar).
  • the stable dispersion obtained in this way can be applied to the substrate by means of all common, liquid-based deposition methods. Suitable methods for deposition are, in particular, dip coating or spin coating or a printing process (screen printing, flexographic printing, gravure printing, inkjet printing), without being limited thereto.
  • the deposited layer thicknesses are usually between 10 nm and 10 .mu.m, preferably 10 nm to 2 .mu.m, particularly preferably 20 nm to 200 nm.)
  • the layer is at a temperature of between about 50 0 C and 500 0 C, preferably between 75 0 C and 300 0 C, more preferably between 100 0 C and 200 0 C thermally treated.
  • the maximum temperature and duration of treatment depend on the thermal stability of the substrate, the decomposition temperature of the modifier and the purity of the layer to be deposited.
  • the modifier is decomposed and stored in the form of volatile substances, i. Substances that are gaseous in the treatment, removed from the deposited layer.
  • the decomposition into volatile substances should be as complete as possible, but at least 60% by weight, preferably 75% by weight, more preferably 85% by weight, particularly preferably 90% by weight.
  • the thermal treatment can be carried out in air, in oxygen, nitrogen, argon, hydrogen, in steam, or mixtures, etc.
  • the duration of the thermal treatment is usually from about 1 minute to about 30 hours, preferably 30 minutes to 12 hours. Treatment in several steps with different gases is also possible.
  • the energy supply for the decomposition of the modifier by entry by means of a lamp or a laser of a certain wavelength can be carried out.
  • the possible wavelength range is between UV and IR (150nm to 2500nm).
  • a lamp eg. As a mercury lamp or an excimer lamp is either continuously for a period of 1 s to 24 h, preferably 1 min to 1 h and an effective power density of 1 mW / cm 2 to 300 kW / cm 2 or pulsating with one Radiation flash duration of 10 ns to 10 s and an effective power density of 0.02 KW / cm 2 to 300 kW / cm 2 irradiated.
  • a laser When using a laser is preferably irradiated with a duration of the radiation flash of 10 ns to 10 s and an effective power density of 0.02 kW / cm 2 to 300 kW / cm 2 .
  • Another optional alternative is to steam the layer with an acidic, basic or pH neutral chemical (e.g., SO 2, N 2 O, N 2 H 4, NH 3, H 2 O) in addition to a certain energy input to completely remove the corresponding metal oxide surface modification.
  • an acidic, basic or pH neutral chemical e.g., SO 2, N 2 O, N 2 H 4, NH 3, H 2 O
  • the decomposition products were investigated using the example of Malonkladoethylesters.
  • the decomposition of the preferred molecules are temperatures of max. 200 0 C necessary; the decomposition can be carried out under an inert atmosphere (Ar, N2) or under air.
  • Another object of the present invention is the use of the dispersion according to the invention for the production of conductive layers, dielectric layers and / or semiconducting layers.
  • conductive layers a dispersion of electrically conductive particles, in particular metals, prepared and applied to a suitable substrate.
  • Dielectric layers use metal oxide particles, semiconducting layers doped or undoped metal oxide, metal chalcogenide, metal nitride, metal phosphide, metal halide, metal boride or metal phosphate particles.
  • Another object of the present invention is a method for producing a semiconductor device, for. B. a TFTs:
  • Doped or undoped metal oxide particles are used as the semiconductor layer of a TFT.
  • the particles can be made of dispersion z. B. by dip coating, spin coating or printing process to build the TFTs and (if necessary) baked (annealed).
  • TFT architectures such as bottom gate, top gate, top contact, bottom contact, etc.
  • Dielectrics may be any possible organic, inorganic or organic-inorganic hybrid materials gate, source and drain contact materials are conductive materials (eg Al, Au, Ag, Ti / Au, Cr / Au, ITO, Si, PEDOT / PSS etc.).
  • Suitable substrates are in particular also polymeric and flexible materials with low decomposition temperature, as well as other temperature-labile substrates, without being limited thereto.
  • Substrate, gate, source and drain contact materials as well as dielectrics are not subject to any primary restrictions and may vary according to the chemical / physical compatibility, the processing process as well as the desired application.
  • the metal, metal oxide, metal nitride, metal phosphide, metal halide, metal boride or metal phosphate particles and dispersions of the invention are also suitable for these TFT components.
  • the particles and dispersions according to the invention can be used for the deposition of transparent conductive layers, which can be used in a large number of electronic components and can replace the layers used hitherto.
  • Transparent in the sense of the present application meant a transmission of electromagnetic radiation in the range of 400 nm to 800 nm of more than 80%.
  • Moist zinc oxide from example 1 was filled up with 1 l of chloroform. 200 g of a ZnO suspension in chloroform having a ZnO content of 1.6 g (19.66 mmol) were admixed at room temperature with 3.93 mmol of ethyltrimethylsilylmalonate (from Fluka). A few seconds after the addition, the solution cleared. The mixture was stirred for a further 15 minutes at room temperature and then the proportion of ZnO in the dispersion to 4 wt .-% concentrated.
  • FIG. 1 particle size distribution
  • FIG. 2 TEM analysis
  • Example 4 Modification of ZnO with the 3-oxoglutaric acid monoethyl ester (molar ratio of ZnO to modifier equal to 3: 1)
  • Moist zinc oxide from Example 1 was made up with 1 l of methylene chloride. 200 g of a ZnO suspension in methylene chloride with a ZnO content of 1.6 g (19.66 mmol) at room temperature with 1.14 g of 3-Oxoglutar Acidethyl mono-ethyl ester (6.55 mmol) from Example 3 were added; the dispersion cleared up immediately. Subsequently, methylene chloride was distilled off on a rotary evaporator at 40 0 C and the residue dried for a further 4 hours under vacuum.
  • Example 5 Modification of ZnO with the 3-oxoglutaric acid ethyl monoester (molar ratio of ZnO to modifier equal to 5: 1)
  • Example 6 Modification of ZnO with the 3-oxoglutaric acid monoethyl ester (molar ratio of ZnO to modifier equal to 29: 1)
  • Moist zinc oxide from Example 1 was made up with 1 l of methylene chloride. 200 g of a ZnO suspension in methylene chloride with a ZnO content of 1.6 g (19.66 mmol) were added at room temperature with 0.12 g of the 3-Oxoglutar Tarklamono- ethylester (0.67 mmol); the dispersion cleared up immediately. Subsequently, methylene chloride was distilled off on a rotary evaporator at 40 ° C. and the residue was dried under vacuum for a further 4 hours.
  • Moist zinc oxide from Example 1 was made up with 1 l of THF. To this suspension is added 3.5 g of 2- [2- (2-methoxyethoxy) -ethoxy] -acetic acid (Fluka). The resulting mixture was heated to boiling with stirring and held at this temperature for 30 minutes. The suspension cleared. Subsequently, THF was distilled off on a rotary evaporator at 60 0 C and the residue dried for a further 4 hours under vacuum.
  • Moist zinc oxide from Example 1 was made up with 1 l of THF. To this suspension was added 5 g of ethoxyacetic acid (Fluka). The resulting mixture was heated to boiling with stirring and held at this temperature for 30 minutes. The suspension cleared. Subsequently, THF was distilled off on a rotary evaporator at 60 0 C and the residue dried for a further 4 hours under vacuum. According to the TG analysis of the resultant functionalized ZnO powder (. Heating rate 5 ° C / min to 200 0 C, 60 min at 200 0 C, then 5 ° C / min to 500 0 C;..
  • top contact source / drain structures were created by thermal vapor deposition of aluminum.
  • Representative output curves (AK) and transfer curves (TK) of a corresponding transistor are shown in FIGS. 7 and 8 (VD: voltage between source and drain, VG: voltage between source and gate, ID: current between source and drain).
  • Mobility ⁇ 3 * 10 " 3 cm 2 / (V * s), on / off ratio: 10 5 , Vthreshold voltage: 12 V.

Abstract

The present invention relates to particles modified using a modifier, and a dispersing means comprising said modified particles. The surface-modified metal, metal halogenide, metal chalcogenide, metal nitride, metal phosphide, metal boride, or metal phosphate particles or mixtures thereof have an average particle diameter of 1 to 500 nm and the surface thereof was modified using one or more modifiers of the formula (I), (II), and (III).

Description

Modifizierte Partikel und diese enthaltende Dispersionen Modified particles and dispersions containing them
Beschreibungdescription
Die vorliegende Erfindung betrifft Partikel, die mit einem Modifikator modifiziert wurden und ein Dispersionsmittel enthaltend die modifizierten Partikel.The present invention relates to particles modified with a modifier and a dispersant containing the modified particles.
Zinkoxid ist ein Erfolg versprechender Halbleiter in Dünnschichttransistoren (TFTs), um günstige TFT-Schaltungen in großen Displays oder andere elektronische Schaltungen herzustellen.Zinc oxide is a promising semiconductor in thin film transistors (TFTs) to produce cheap TFT circuits in large displays or other electronic circuits.
Ein entscheidender Schritt bei der Herstellung dieser Metalloxidhalbleiter FETs (MOS- FETs) ist die Abscheidung des Zinkoxids oder anderer Halbleiter auf dem jeweiligen Substrat.A crucial step in the production of these metal oxide semiconductor FETs (MOSFETs) is the deposition of the zinc oxide or other semiconductors on the respective substrate.
Es besteht großes Interesse, Halbleiter auf polymeren oder anderen flexiblen Substraten abzuscheiden, da sich diese neben ihres geringeren Gewichts und ihrer mechanischen Stabilität durch wesentlich günstigere Abscheidung aus Dispersionen wie Spin- coating, Dip-coating oder Drucktechniken prozessieren lassen. Polymere Substrate limitieren allerdings das Prozessfenster auf unter 200 0C.There is great interest in depositing semiconductors on polymeric or other flexible substrates since, in addition to their lower weight and their mechanical stability, they can be processed by much more favorable deposition from dispersions such as spin coating, dipcoating or printing techniques. However, polymeric substrates limit the process window below 200 ° C.
Wesentlich für die Abscheidung ist eine kolloidal stabile Dispersion, um den Aufbau einer homogenen Schicht aus fein verteilten nanoskaligen Teilchen zu ermöglichen. Hierzu werden Additive (Modifikatoren) benötigt, die die Agglomeration der Primärpar- tikel wirksam verhindern. Die Verwendung solcher Additive im Allgemeinen ist seit langem auch aus anderen Anwendungen bekannt.Essential for the deposition is a colloidally stable dispersion to allow the construction of a homogeneous layer of finely divided nanoscale particles. For this purpose, additives (modifiers) are needed that effectively prevent the agglomeration of the primary particles. The use of such additives in general has long been known from other applications.
Die WO 2006/138071 und WO 2006/138072 offenbaren jeweils ein Verfahren zur Abscheidung einer Halbleitenden Zinkoxidschicht auf einem Substrat aus einer kolloidalen Dispersion. Die Dispersion wird dabei bevorzugt bei Zimmertemperatur aufgebracht und anschließend bei Temperaturen unter 300 0C gebacken (annealing). Die verwendeten Dispersionen sind stabilisiert, allerdings werden keine Aussagen über irgendwelche Stabilisatoren oder Modifikatoren gemacht.WO 2006/138071 and WO 2006/138072 each disclose a method for depositing a semiconducting zinc oxide layer on a substrate from a colloidal dispersion. The dispersion is preferably applied at room temperature and then baked at temperatures below 300 0 C (annealing). The dispersions used are stabilized, but no statements are made about any stabilizers or modifiers.
In der DE 102 57 388 A1 ist ein oberflächenmodifiziertes nanopartikuläres Zinkoxid für den Einsatz in kosmetischen Rezepturen beschrieben, bei dem die Oberflächenmodifikation eine Beschichtung mit einer organischen Säure der allgemeinen Formel HOOC-R1-(CH2)n-R2-CH3 umfasst, mit R1 = CH2-(O-CH2-CH2)m; mit m = 0 bis 11 , n = 0 bis 30, wobei, wenn m = 0 ist, n größer als 11 ist; und R2 = CH2, CHCH2, C(CH3)2, Phenylen, O, S. Als bevorzugte Modifikatoren sind Laurylether-11- polyethylenglykolsäure, Caprylether-6-polyethylenglykolsäure, Laurylether-4- polyethylenglykolsäure, Laurylether-6-polyethylenglykolsäure und/ oder Laurylether-8- polyethylenglykolsäure genannt.DE 102 57 388 A1 describes a surface-modified nanoparticulate zinc oxide for use in cosmetic formulations, in which the surface modification comprises a coating with an organic acid of the general formula HOOC-R 1 - (CH 2 ) n -R 2 -CH 3 with R 1 = CH 2 - (O-CH 2 -CH 2 ) m; with m = 0 to 11, n = 0 to 30, where, when m = 0, n is greater than 11; and R 2 = CH 2 , CHCH 2, C (CH 3) 2, phenylene, O, S. Preferred modifiers are lauryl ether-11-polyethylene glycol acid, capryl ether-6-polyethylene glycol acid, lauryl ether-4 polyethyleneglycolic acid, lauryl ether-6-polyethyleneglycolic acid and / or lauryl ether-8-polyethyleneglycolic acid.
Die DE 10 2005 007 374 A1 offenbart Nanopartikel, die mit einem bioabbaubaren Po- lymer, insbesondere aus Polyester, Polycyanacrylaten, Polyacrylaten, Polymethyl- acrylaten, Polyepoxiden, Polyurethanen und Polystyrolen modifiziert wurden. Die EP 1630136 A1 offenbart Titandioxidpartikel, die mit einem hydrophilen Polymer, insbesondere Polycarbonsäuren, modifiziert wurden. Die Carboxylgruppe des Modifikators ist dabei über eine Esterbindung an das Titandioxid gebunden. Weitere Modifikatoren sind in der DE 10 2005 047 807 A1 beschrieben.DE 10 2005 007 374 A1 discloses nanoparticles which have been modified with a biodegradable polymer, in particular from polyesters, polycyanoacrylates, polyacrylates, polymethyl acrylates, polyepoxides, polyurethanes and polystyrenes. EP 1630136 A1 discloses titanium dioxide particles which have been modified with a hydrophilic polymer, in particular polycarboxylic acids. The carboxyl group of the modifier is bound via an ester bond to the titanium dioxide. Further modifiers are described in DE 10 2005 047 807 A1.
Nachteilig an den bisher verwendeten modifizierten Partikeln bzw. Dispersionen ist, dass diese bei der Abscheidung von leitenden, halbleitenden oder dielektrischen Schichten die Leistungsfähigkeit der Halbleiterbauteile erheblich verschlechtern oder eine thermische Behandlung bei Temperaturen nötig ist, bei denen die Substrate, in Mitleidenschaft gezogen werden, um die Leistungsfähigkeit zu verbessern. Dies gilt insbesondere bei der Verwendung von Polymersubstraten, deren thermische Stabilität im Allgemeinen geringer ist als die anorganischer Substrate.A disadvantage of the modified particles or dispersions used hitherto is that they significantly impair the performance of the semiconductor components in the deposition of conductive, semiconductive or dielectric layers, or thermal treatment at temperatures at which the substrates are affected is required to improve the performance. This is especially true when using polymer substrates whose thermal stability is generally lower than the inorganic substrates.
Aufgabe der vorliegenden Erfindung ist es daher, Partikel zur Verfügung zu stellen, aus denen sich eine Dispersion herstellen lässt, die stabil ist, sich gut verarbeiten lässt und mit deren Hilfe sich leitende, dielektrische oder halbleitende Schichten in Halbleiterbauteilen herstellen lassen, die nur geringe Verunreinigungen, insbesondere solche durch Modifikatoren, aufweisen.It is therefore an object of the present invention to provide particles from which it is possible to produce a dispersion which is stable, can be processed well and with the aid of which conductive, dielectric or semiconductive layers can be produced in semiconductor components which only have small impurities , in particular those by modifiers have.
Die Aufgabe wird erfindungsgemäß gelöst durch oberflächenmodifizierte Metall-, Me- tallhalogenid-, Metallchalkogenid-, Metallnitrid-, Metallphosphid-, Metallborid- oder Metallphosphatpartikel oder Mischungen derselben, wobei die Partikel einen mittleren Partikeldurchmesser von 1 bis 500 nm aufweisen und deren Oberfläche mit einem o- der mehreren Modifikatoren ausgewählt aus den Formel (I) (II) undThe object is achieved according to the invention by surface-modified metal, metal halide, metal chalcogenide, metal nitride, metal phosphide, metal boride or metal phosphate particles or mixtures thereof, wherein the particles have an average particle diameter of 1 to 500 nm and whose surface is coated with an o - The plurality of modifiers selected from the formula (I) (II) and
χ6/ .X 7-{/0\^ RD (H) χ 6 / .X 7 - {/ 0 \ ^ R D (H)
modifiziert wurde, wobei X1 ausgewählt ist aus O, S und Se,was modified, wherein X 1 is selected from O, S and Se,
X2 ausgewählt ist aus OH, OCH3, OC2H5, CO2H, OSi(R1)3-x-y(R2)y(R3)x x, y unabhängig voneinander gleich 0, 1 , 2 oder 3 sind und die Summe aus x und y maximal 3 ist, R1, R2, R3, R4 unabhängig voneinander ausgewählt sind aus H, Ci bis C10 Alkyl, X3 ausgewählt ist aus O, S, Se und CH2, n, m, p unabhängig voneinander gleich 0, 1 , 2 oder 3 sind, bevorzugt 0, 1 , 2 und besonders bevorzugt 1 sindX 2 is selected from OH, OCH 3 , OC 2 H 5 , CO 2 H, OSi (R 1 ) 3 -x- y (R 2 ) y (R 3 ) xx, y independently of one another equal to 0, 1, 2 or 3 and the sum of x and y is at most 3, R 1 , R 2 , R 3 , R 4 are independently selected from H, C 1 to C 10 alkyl, X 3 is selected from O, S, Se and CH 2 , n, m, p are independently 0, 1, 2 or 3, preferably 0, 1, 2 and more preferably 1
X4 ausgewählt ist aus O, S, Se, C=O, -R4C=CH-, OCH2, X5 ausgewählt aus H1 OH, OCH3, OC2H5, OSi(R1)(3-χ-y)(R2)χ(R3)y, CO2R5,X 4 is selected from O, S, Se, C =O, -R 4 C =CH-, OCH 2 , X 5 selected from H 1 OH, OCH 3 , OC 2 H 5 , OSi (R 1 ) ( 3 ) χ- y) (R 2 ) χ (R 3 ) y, CO 2 R 5 ,
OCO2R5 OCO 2 R 5
R5 ausgewählt aus Ci bis C4 Alkyl ,R 5 is selected from C 1 to C 4 alkyl,
X6 ausgewählt aus SH, NH2, Si(R1 3-χ-y)(R2)y(R3X 6 selected from SH, NH 2 , Si (R 1 3 -χ- y ) (R 2 ) y (R 3 ) χ
X7 ausgewählt ist aus Ci bis C10 Alkylen , O, S. Se, Te, r ein ganzzahliger Wert von 1 bis 1000,X 7 is selected from C 1 to C 10 alkylene, O, S. Se, Te, r is an integer value from 1 to 1000,
R6 ausgewählt ist aus H, Ci bis C10 Alkyl und Halogen.R 6 is selected from H, C 1 to C 10 alkyl and halogen.
Die Modifikatoren weisen eine Zersetzungstemperatur auf, bei der eine Verformung, ein Verzug, eine Zersetzung oder andere thermische Veränderungen des Substrates nicht zu beobachten sind, insbesondere dann, wenn die modifizierten Partikel auf das Polymersubstrat aufgebracht werden. Hierdurch lassen sich die Modifikatoren aus der auf einem Polymersubstrat aufgebrachten Schicht entfernen, ohne die Struktur des Substrats zu beeinträchtigen.The modifiers have a decomposition temperature at which deformation, warpage, decomposition or other thermal changes of the substrate are not observed, especially when the modified particles are applied to the polymer substrate. This allows the modifiers to be removed from the layer applied to a polymer substrate without affecting the structure of the substrate.
Die Zersetzungstemperatur des oder der verwendeten Modifikatoren liegt bevorzugt unter 250 0C. Die Zersetzungstemperatur sollte weiterhin über 50 0C, bevorzugt über 75 0C, weiterhin bevorzugt über 100 0C liegen, um eine vorzeitige Zersetzung zu vermeiden. Bevorzugt liegt die Zersetzungstemperatur unter 200 0C, besonders bevorzugt unter 150 0C. Zersetzungstemperatur im Sinne der vorliegenden Anmeldung ist die Temperatur, bei der der organische Modifikator seine ursprüngliche Struktur verliert und in kleinere Moleküle (z. B. CO2) zersetzt wird.The decomposition temperature of the modifier (s) used is preferably below 250 ° C. The decomposition temperature should furthermore be above 50 ° C., preferably above 75 ° C., more preferably above 100 ° C., in order to avoid premature decomposition. The decomposition temperature is preferably below 200 ° C., more preferably below 150 ° C. In the context of the present application, the decomposition temperature is the temperature at which the organic modifier loses its original structure and is decomposed into smaller molecules (eg CO 2 ).
Die Modifikatoren zersetzten sich bei niedrigen Temperaturen, die auch bei der Be- schichtung von Polymersubstraten keine Verformung verursachen, wobei leicht flüchti- ge Verbindungen entstehen. Am Beispiel von Malonsäuremonoethylester sei der thermische Zerfall wie folgt beschrieben ohne die Erfindung hierauf zu beschränken:The modifiers decomposed at low temperatures, which also do not cause any deformation in the coating of polymer substrates, resulting in highly volatile compounds. The example of Malonsäuremonoethylester the thermal decomposition is described as follows without the invention to be limited thereto:
0 0 . O0 0. O
HO ^^ O ^ ' OHO ^^ O ^ 'O
Die Detektion des gasförmigen CO2 sowie des flüchtigen Essigsäureethylesters kann dabei besonders leicht mittels IR-, 1H- und 13C{1H}-NMR verifiziert werden. Bei den Modifikatoren der Formel (I) sind solche bevorzugt, bei denen X1 gleich O oder S, besonders bevorzugt O ist.The detection of the gaseous CO 2 and of the volatile ethyl acetate can be verified particularly easily by means of IR, 1 H and 13 C { 1 H} NMR. In the case of the modifiers of the formula (I), those in which X 1 is O or S, particularly preferably O, are preferred.
Bevorzugt ist X2 ausgewählt aus OH, OCH3, COOH , OSi(R1)3-x-y(R2)y(R3)χ., besonders bevorzugt ausgewählt aus OH oder OSi(R1)3-x-y(R2)y(R3)χ.X 2 is preferably selected from OH, OCH 3 , COOH, OSi (R 1 ) 3 -x- y (R 2 ) y (R 3 ) χ, particularly preferably selected from OH or OSi (R 1 ) 3-x- y (R 2 ) y (R 3 ) χ.
Weiterhin bevorzugt ist X3 ausgewählt aus O, S, CH2, insbesondere ausgewählt aus O und CH2. Besonders bevorzugt ist X3 gleich CH2.Further preferably, X 3 is selected from O, S, CH 2, in particular selected from O and CH 2. Particularly preferably, X 3 is CH 2.
Weiterhin bevorzugt sind x und y unabhängig voneinander gleich O, 1 oder 2, besonders bevorzugt O oder 1.Further preferably, x and y are independently of one another equal to 0, 1 or 2, particularly preferably 0 or 1.
Weiterhin bevorzugt sind R1, R2, R3 und R4 unabhängig voneinander ausgewählt aus H und Ci bis C4 Alkyl, besonders bevorzugt H, Methyl und Ethyl.Further preferably, R 1 , R 2 , R 3 and R 4 are independently selected from H and Ci to C 4 alkyl, more preferably H, methyl and ethyl.
Weiterhin bevorzugt sind n, m, p unabhängig voneinander gleich O, 1 , 2, besonders bevorzugt 0 oder 1. Weiterhin besonders bevorzugt ist, wenn mindestens einer von m, n oder p gleich 0 ist.Further preferably, n, m, p are each independently equal to O, 1, 2, more preferably 0 or 1. Furthermore, it is particularly preferred if at least one of m, n or p is 0.
Weiterhin bevorzugt ist X4 ausgewählt ist aus O, S, C=O, -R4C=CH- und OCH2, Weiterhin bevorzugt enthält mindestens eine der Gruppen X3, X4 oder X5 C=O.Further preferably, X 4 is selected from O, S, C = O, -R 4 C = CH- and OCH 2 , Further preferably, at least one of the groups X 3 , X 4 or X 5 contains C = O.
Weiterhin bevorzugt ist X5 ausgewählt aus H, OH, OSi(R1)(3-x-y)(R2)x(R3)y, CO2R5, OCO2R5, besonders bevorzugt aus CO2R5.Further preferably, X 5 is selected from H, OH, OSi (R 1) (3 -x- y) (R 2) x (R 3) y, CO 2 R 5, OCO 2 R 5, more preferably from CO 2 R 5 .
Weiterhin bevorzugt ist R5 ausgewählt aus Methyl, Ethyl oder t-Butyl, ganz besonders bevorzugt aus Ethyl oder t-Butyl.Furthermore, R 5 is preferably selected from methyl, ethyl or tert-butyl, very particularly preferably from ethyl or tert-butyl.
Halogene im Sinne der vorliegenden Erfindung sind F, Cl, Br und I. Bevorzugt ist X6 ausgewählt aus SH, OSi(R1 3-x-y)(R2)y(R3)x, besonders bevorzugt OSi(R1 3-x-y)(R2)y(R3)x Halogens for the purposes of the present invention are F, Cl, Br and I. X 6 is preferably selected from SH, OSi (R 1 3 -x- y ) (R 2 ) y (R 3 ) x, particularly preferably OSi (R 1 3 - x - y ) (R 2 ) y (R 3 ) x
Weiterhin bevorzugt ist X7 ausgewählt ist aus Ci bis C4 Alkylen, besonders bevorzugt ausgewählt aus -CH2- und -C2H4-.Further preferably, X 7 is selected from C 1 to C 4 alkylene, more preferably selected from -CH 2 - and -C 2 H 4 -.
Weiterhin bevorzugt ist r ein ganzzahliger Wert von 1 bis 100, besonders bevorzugt von 1 bis 10.Further preferably, r is an integer value of 1 to 100, more preferably from 1 to 10.
Weiterhin bevorzugt ist R6 ausgewählt aus H und Ci bis C4 Alkyl, besonders bevorzugt ausgewählt aus Methyl oder Ethyl.Furthermore, R 6 is preferably selected from H and C 1 to C 4 alkyl, particularly preferably selected from methyl or ethyl.
Bevorzugte Modifikatoren sind weiterhin solche der Formeln Ia bis Ih. Preferred modifiers are furthermore those of the formulas Ia to Ih.
O OO O
(1 d)(1 d)
X' ;^^xX ' ; ^^ x
wobei n, p, X1, X2, X4 und X5 die oben genannten Bedeutungen haben und R1, R2, R3 ausgewählt sind aus Ci - doAlkyl, besonders bevorzugt Methyl, Ethyl oder t-Butyl.where n, p, X 1 , X 2 , X 4 and X 5 have the abovementioned meanings and R 1 , R 2 , R 3 are selected from C 1 --dAlkyl, more preferably methyl, ethyl or t-butyl.
Weiterhin bevorzugte Ausführungsformen der Modifikatoren gemäß Formel (I) sind solche bei denen n gleich 0 ist, oder n gleich 1 ist und X3 ausgewählt ist aus O, S, Se, C=O,Further preferred embodiments of the modifiers according to formula (I) are those in which n is 0, or n is 1 and X 3 is selected from O, S, Se, C = O,
-HC=CH-, CH2. m gleich 0 ist oder m=1 und X4 ausgewählt ist aus ausgewählt ist aus O, S, C=O und OCH2, p gleich O oder 1 ist und-HC = CH-, CH 2 . m is 0 or m = 1 and X 4 is selected from selected from O, S, C = O and OCH 2 , p is O or 1 and
X5 ausgewählt ist aus OCH3, OC2H5, CO2R5 und OCO2R5. Besonders bevorzugte Modifikatoren sind Verbindungen der folgenden Strukturen IV bis IX:X 5 is selected from OCH 3 , OC 2 H 5 , CO 2 R 5 and OCO 2 R 5 . Particularly preferred modifiers are compounds of the following structures IV to IX:
Ganz besonders bevorzugt ist ein Modifikator der Struktur (VI).Very particular preference is given to a modifier of structure (VI).
Bei den Partikeln kann es sich um Metall-, Metallchalkogenid-, Metallphosphid-, Metall- borid-, Metallnitrid- oder Metallphosphatpartikel oder Mischungen derselben handeln. Die Metallchalkogenid-, Metallphosphid-, Metallborid-, Metallphosphat und/oder Metallnitridpartikel, insbesondere Metalloxidpartikel, können hierbei dotiert oder undotiert sein.The particles may be metal, metal chalcogenide, metal phosphide, metal boride, metal nitride or metal phosphate particles or mixtures thereof. The metal chalcogenide, metal phosphide, metal boride, metal phosphate and / or metal nitride particles, in particular metal oxide particles, may here be doped or undoped.
Geeignete Metallhalogenide im Sinne der vorliegenden Erfindung sind Metallfluoride, Metallchloride, Metallbromide und Metalliodide, bevorzugt Fluoride und Chloride. Besonders bevorzugt handelt es sich um Metallchloride.Suitable metal halides in the context of the present invention are metal fluorides, metal chlorides, metal bromides and metal iodides, preferably fluorides and chlorides. Particularly preferred are metal chlorides.
Geeignete Metallchalkogenide im Sinne der vorliegenden Erfindung sind Oxide, Sulfide, Selenide und Telluride, bevorzugt Oxide und Sulfide. Geeignete Metallchalkoge- nidverbindungen zur Abscheidung halbleitender Schichten sind neben den Oxiden beispielsweise CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, Cu-In-Ga-Se. Besonders bevorzugt handelt es sich um Metalloxidpartikel. Bevorzugte Metallnitride sind AIN, GaN, InN, Al-Ga-N, In-Ga-N, Al-Ga-In-N. Bevorzugte Metallphosphide sind GaP, InP, Al-Ga-P, Ga-As-P, Al-Ga-In-P. Bevorzugte Metallphosphate sind Phosphate der Seltenen Erden (Lanthan, Cer, Terbium).Suitable metal chalcogenides in the context of the present invention are oxides, sulfides, selenides and tellurides, preferably oxides and sulfides. Suitable metal chalcogenide compounds for depositing semiconductive layers are, in addition to the oxides, for example CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, Cu-In-Ga-Se. Particularly preferred are metal oxide particles. Preferred metal nitrides are AIN, GaN, InN, Al-Ga-N, In-Ga-N, Al-Ga-In-N. Preferred metal phosphides are GaP, InP, Al-Ga-P, Ga-As-P, Al-Ga-In-P. Preferred metal phosphates are rare earth phosphates (lanthanum, cerium, terbium).
Bei den Partikeln, insbesondere Metalloxidpartikeln, kann es sich um dielektrische, halbleitende oder leitfähige Verbindungen handeln. Beispiele für binäre Systeme sind Metalloxide der Gruppe 2 (z. B. MgO), Gruppe 3 (z. B. Y2O3), Gruppe 4 (z. B. TiO2, ZrO2, HfO2), 5 (z.B. V2O5, Nb2O5, Ta2O5), Gruppe 6 (z. B. Cr2O3, MoO3, WO3), Gruppe 7 (z. B. MnO2), Gruppe 8 (z. B. Fe2O3, Fe3O4, RuO2), Gruppe 9 (z. B. CoO, Co3O4), Gruppe 10 (z. B. NiO), Gruppe 11 (z. B. CuO, Cu2O), Gruppe 12 (z. B. ZnO, CdO), Gruppe 13 (B2O3, AI2O3, Ga2O3, In2O3) Gruppe 14 (SiO2, GeO2, SnO2,, PbO, Pb3O4), Gruppe 15 (z. B. Sb2O3, Bi2O3, Bi2O3 *Bi2O5) der Lanthanide (La2O3, CeO2). Selbstverständlich können solche Oxide zur Verbesserung elektronischer, thermischer, magnetischer und weiteren Eigenschaften zusätzliche Dotierungselemente enthalten (z. B. Sn-, Ge-, Mo-, F-, Ti-, Zr-, Hf-, Nb-, Ta-, W-, Te-dotiertes In2O3, Sb-, F-, As-, Nb-, Ta- dotiertes SnO2, AI-, Ga-, B-, In-, Y-, Sc-, F-, V-, Si-, Ge-, Ti-, Zr-, Hf-dotiertes ZnO, In-, Sn-dotiertes CdO). Auch Mischungen von Metalloxiden oder ternäre Systeme (z. B. Zn2SnO4, ZnSnO3, Zn2In2O5, Zn3In2O6, In4Sn3Oi2, CdIn2O4, MgIn2O4, GaInO3, CaTiO3, BaTiO3, MnFe2O4) bzw. quaternäre Systeme (z. B. Zn-In-Sn-O, Zn-In-Li-O, In-Ga-Zn- O) können beim Bedarf eingesetzt werden.The particles, in particular metal oxide particles, may be dielectric, semiconductive or conductive compounds. Examples of binary systems are metal oxides of group 2 (eg MgO), group 3 (eg Y 2 O 3 ), group 4 (eg TiO 2 , ZrO 2 , HfO 2 ), 5 (eg V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 ), Group 6 (e.g., Cr 2 O 3 , MoO 3 , WO 3 ), Group 7 (e.g., MnO 2 ), Group 8 (e.g. B. Fe 2 O 3 , Fe 3 O 4 , RuO 2 ), Group 9 (e.g., CoO, Co 3 O 4 ), Group 10 (e.g., NiO), Group 11 (e.g., CuO , Cu 2 O), group 12 (eg ZnO, CdO), group 13 (B 2 O 3 , Al 2 O 3 , Ga 2 O 3 , In 2 O 3 ) group 14 (SiO 2 , GeO 2 , SnO 2 ,, PbO, Pb 3 O 4 ), group 15 (eg Sb 2 O 3 , Bi 2 O 3 , Bi 2 O 3 * Bi 2 O 5 ) of the lanthanides (La 2 O 3 , CeO 2 ) , Of course, to improve electronic, thermal, magnetic and other properties, such oxides may contain additional doping elements (eg Sn, Ge, Mo, F, Ti, Zr, Hf, Nb, Ta, W Te-doped In 2 O 3 , Sb, F, As, Nb, Ta doped SnO 2 , Al, Ga, B, In, Y, Sc, F, V , Si, Ge, Ti, Zr, Hf doped ZnO, In, Sn doped CdO). Also, mixtures of metal oxides or ternary systems (eg Zn 2 SnO 4 , ZnSnO 3 , Zn 2 In 2 O 5 , Zn 3 In 2 O 6 , In 4 Sn 3 O 2 , CdIn 2 O 4 , MgIn 2 O 4 , GaInO 3 , CaTiO 3 , BaTiO 3 , MnFe 2 O 4 ) or quaternary systems (eg Zn-In-Sn-O, Zn-In-Li-O, In-Ga-Zn-O) can be used in Need to be used.
Bevorzugte Metalloxide zur Abscheidung halbleitender Schichten sind beispielsweise ZnO, Ga2O3, GeO2, CdO, In2O3, SnO2, ihre Abmischungen oder Reaktionsprodukte (ternäre - Zn-Sn-O, Zn-In-O; quaternäre Systeme - Ga-In-Zn-O, Zn-In-Sn-O).Preferred metal oxides for depositing semiconducting layers are, for example, ZnO, Ga 2 O 3 , GeO 2 , CdO, In 2 O 3 , SnO 2 , their mixtures or reaction products (ternary - Zn-Sn-O, Zn-In-O, quaternary systems). Ga-In-Zn-O, Zn-In-Sn-O).
Besonders bevorzugte Metalloxide zur Abscheidung halbleitender Schichten sind ZnO und In2O3.Particularly preferred metal oxides for depositing semiconducting layers are ZnO and In 2 O 3 .
Bei halbleitenden Verbindungen werden zur Erhöhung der n-Typ Mobilität häufig In-, AI-, Ga-, OH-, H-Dotierungen bzw. intrinsische Defekte (O-Leerstellen bzw. Zn-In the case of semiconducting compounds, increasing the n-type mobility frequently involves In, Al, Ga, OH, H doping or intrinsic defects (O vacancies or Zn atoms).
Einlagerungen an Zwischengitterplätzen) verwendet. Die Erhöhung der p-Typ Mobilität erfolgt beispielsweise durch Dotierung mit Li, N.Intercalation at interstitial sites) used. The increase of the p-type mobility takes place, for example, by doping with Li, N.
Besonders bevorzugte Metalloxide zur Abscheidung halbleitender Schichten sind Al- oder Mg-dotiertes ZnO, Ga-dotiertes ZnO, AI-dotiertes MgO, Sn-dotiertes ZnO, Bidotiertes ZnO und Sn-dotiertes In2O3 Particularly preferred metal oxides for depositing semiconductive layers are Al- or Mg-doped ZnO, Ga-doped ZnO, Al-doped MgO, Sn-doped ZnO, Bidoped ZnO, and Sn-doped In 2 O 3
Neben Partikeln aus den genannten Metallverbindungen können auch metallische Partikel verwendet werden. Geeignete Metallpartikel sind ausgewählt aus Ag, Cu, Au und deren Legierungen mit anderen Metallen. Der mittlere Durchmesser der eingesetzten Partikel beträgt 1 bis 500 nm, bevorzugt 2 bis 200 nm, weiterhin bevorzugt 5 bis 100 nm, besonders bevorzugt 10 bis 50 nm. Die Partikelgrößenverteilung kann unimodal, bimodal oder multimodal sein. Die Partikel können sphärisch sein oder auch eine plättchenförmige oder stäbchenförmige Morpho- logie aufweisen. Besonders bevorzugt ist die stäbchenförmige Morphologie.In addition to particles from the metal compounds mentioned also metallic particles can be used. Suitable metal particles are selected from Ag, Cu, Au and their alloys with other metals. The mean diameter of the particles used is 1 to 500 nm, preferably 2 to 200 nm, more preferably 5 to 100 nm, particularly preferably 10 to 50 nm. The particle size distribution may be unimodal, bimodal or multimodal. The particles can be spherical or also have a platelet-shaped or rod-shaped morphology. Particularly preferred is the rod-shaped morphology.
Weiterer Gegenstand der vorliegenden Erfindung sind Dispersionen enthaltendAnother object of the present invention are dispersions containing
(a) Metall-, Metallchalkogenid-, Metallhalogenid-, Metallnitrid-, Metallphosphid-, Me- tallborid- oder Metallphosphatpartikel mit einem primären mittleren Partikeldurchmesser von 1 bis 500 nm(a) metal, metal chalcogenide, metal halide, metal nitride, metal phosphide, metal boride or metal phosphate particles having a primary mean particle diameter of 1 to 500 nm
(b) einen oder mehrere Modifikatoren ausgewählt aus Verbindungen gemäß der o- ben dargestellten Formeln, und(b) one or more modifiers selected from compounds according to the above formulas, and
(c) ein Dispersionsmittel.(c) a dispersant.
Als Dispersionsmittel sind grundsätzlich alle Fluide geeignet, in dem die Partikel unter den Verarbeitungsbedingungen dispergiert werden können. Vorzugsweise wird eine organische Verbindung verwendet, die bei Zimmertemperatur und Normaldruck flüssig ist. Bevorzugt werden aprotische polare organische Flüssigkeiten eingesetzt. Weiterhin bevorzugt sind organische Flüssigkeiten mit einem Siedepunkt unter 200 0C, besonders bevorzugt unter 100 0C. Das Dipolmoment des Dispersionsmittels ist bevorzugt 3 10-30 C m bis 10 10"30 C m.As a dispersant, in principle, all fluids are suitable in which the particles can be dispersed under the processing conditions. Preferably, an organic compound is used which is liquid at room temperature and normal pressure. Preference is given to using aprotic polar organic liquids. Further preferred are organic liquids with a boiling point below 200 0 C, more preferably below 100 0 C. The dipole moment of the dispersant is preferably 3 to 10 m 10 30 C 10 "C 30 m.
Besonders bevorzugt wird THF, Methylenchlorid und/oder Chloroform eingesetzt, ganz besonders bevorzugt Methylenchlorid.Particular preference is given to using THF, methylene chloride and / or chloroform, very particularly preferably methylene chloride.
Zusätzlich zu organischen Flüssigkeiten als Dispersionsmitteln können deren Mischungen mit Wasser eingesetzt werden.In addition to organic liquids as dispersants, their mixtures with water can be used.
Der Modifikator dient dazu, die Partikel, bevorzugt Metalloxidpartikel nanoskalig zu stabilisieren. Da eine Anwendung die Darstellung von dünnen Schichten ausgehend von diesen Dispersionen (z.B. über Spincoating, Printing, etc.) ist, ist es sinnvoll, so wenig Modifikator wie möglich einzusetzen, da der Modifikator nach Aufbringung der Schichten zumeist wieder entfernt werden muss. Andererseits muss ausreichend Sta- bilisator verwendet werden, um die Dispersionen dauerhaft zu stabilisieren. Das Molverhältnis von Modifikator zu Metalloxid kann zwischen 2 : 1 und 1 : 60 variieren. Bevorzugt ist ein Molverhältnis von 1 : 1 bis 1 : 30, weiterhin bevorzugt von 1 : 5 bis 1 : 25.The modifier serves to nanoscale stabilize the particles, preferably metal oxide particles. Since one application is the preparation of thin films from these dispersions (e.g., via spin coating, printing, etc.), it makes sense to use as little modifier as possible because the modifier usually needs to be removed after application of the coatings. On the other hand, sufficient stabilizer must be used to permanently stabilize the dispersions. The molar ratio of modifier to metal oxide can vary between 2: 1 and 1:60. Preference is given to a molar ratio of from 1: 1 to 1: 30, more preferably from 1: 5 to 1:25.
Der Gehalt an Partikeln in der Dispersion kann 0,01 bis 30 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-%, insbesondere 1 bis 5 Gew.-% betragen. Substrate im Sinne der vorliegenden Erfindung kann jede leitende, halbleitende oder nichtleitende Substanz sein. Die Wahl der elektrischen, mechanischen und chemischen Eigenschaften des Substrates richten sich im wesentlichen nach der Anwendung. Geeignete Substrate zur Abscheidung leitender, halbleitender oder nichtleitender Schichten sind dem Fachmann allgemein bekannt.The content of particles in the dispersion may be from 0.01 to 30% by weight, preferably from 0.1 to 10% by weight, in particular from 1 to 5% by weight. Substrates for the purposes of the present invention may be any conductive, semiconductive or non-conductive substance. The choice of the electrical, mechanical and chemical properties of the substrate depend essentially on the application. Suitable substrates for depositing conductive, semiconductive or non-conductive layers are well known to those skilled in the art.
Die erfindungsgemäßen Dispersionen eignen sich aufgrund ihrer Zersetzbarkeit bei relativ niedrigen Temperaturen insbesondere zur Aufbringung von Schichten auf Polymere Substraten, die wiederum leitend, halbleitend oder nichtleitend sein könnenDue to their decomposability at relatively low temperatures, the dispersions according to the invention are particularly suitable for applying layers to polymer substrates, which in turn may be conductive, semiconductive or non-conductive
Besonders geeignete polymere Substrate sind Polyimide (PI, z. B. erhältlich unter dem Handelsnamen KAPTON), Polyesternaphthalat (PEN, z. B. erhältlich unter dem Handelsnamen TEONEX Q 51 ) und Polyethylenterephthalat (PET, z. B. erhältlich unter dem Handelsnamen Hostaphan).Particularly suitable polymeric substrates are polyimides (PI, available, for example, under the trade name KAPTON), polyester naphthalate (PEN, available, for example, under the trade name TEONEX Q 51) and polyethylene terephthalate (PET, available, for example, under the trade name Hostaphan ).
Die modifizierten Partikel lassen sich herstellen, indemThe modified particles can be prepared by
a) unbehandelte Metall-, Metallchalkogenid-, Metallhalogenid-, Metallnitrid-, Metall- phosphid-, Metallborid- oder Metallphosphatpartikel in einem aprotischen Lö- sungsmittel suspendiert werden und b) anschließend mit einem oder mehreren Modifikatoren gemäß Formel (I) versetzt werden unter Bildung der modifizierten Partikel.a) suspending untreated metal, metal chalcogenide, metal halide, metal nitride, metal phosphide, metal boride or metal phosphate particles in an aprotic solvent; and b) subsequently adding one or more modifiers according to formula (I) to form the modified particle.
Die so erhaltenen Dispersionen lassen sich direkt verwenden oder können bis zur Trockne eingeengt werden, um die modifizierten Partikel zu gewinnen. Diese können direkt verkauft oder anschließend in einem anderen Dispersionsmittel redispergiert werden.The dispersions thus obtained may be used directly or may be concentrated to dryness to recover the modified particles. These can be sold directly or subsequently redispersed in another dispersant.
Am Beispiel einer bevorzugten Herstellung von ZnO Dispersionen wird das Verfahren näher beschrieben, ohne die Erfindung darauf zu beschränken.Using the example of a preferred preparation of ZnO dispersions, the process is described in detail, without limiting the invention thereto.
Zunächst wird frisch gefälltes ZnO bereitgestellt, z. B. durch die Umsetzung eines Zn- Salzes (z. B. von Zink-Chlorid oder Zn(CH3COO)2-2H2O) mit einer Base (z. B. KOH oder NaOH) in einem Dispersionsmittel (z. B. in einem Alkohol wie z. B. Methanol, E- thanol, Isopropanol). Dotierte ZnO-Partikel werden beispielsweise durch die Umsetzung einer Mischung aus einem Zn-SaIz und entsprechendem Metall-Salz (z. B. AICb, AI(OiPr)3, Al-Acetylacetonat im Falle einer AI-Dotierung) mit einer Base in einem Dispersionsmittel umgesetzt. Die Abtrennung der ausgefällten Teilchen von Nebenprodukten (z. B. von Kalium Acetat, Kalium Chlorid) kann in an sich bekannter Weise, bei- spielsweise durch Filtration oder Zentrifugation, erfolgen. Falls erforderlich kann die ZnO-Dispers-ion vor der Isolierung der ausgefällten Teilchen mittels eines Membranverfahrens wie Nano-, Ultra-, Mikro- oder Crossflowfiltration eingeengt. Nach der Fäl- lung und vor der Funktionalisierung kann auch ein Lösungsmittelaustausch (z. B. mittels Crossflowfiltration) durchgeführt werden.First, freshly precipitated ZnO is provided, e.g. By reacting a Zn salt (eg, zinc chloride or Zn (CH 3 COO) 2 -2H 2 O) with a base (eg, KOH or NaOH) in a dispersing agent (e.g. in an alcohol such as methanol, ethanol, isopropanol). Doped ZnO particles are obtained, for example, by reacting a mixture of a Zn salt and a corresponding metal salt (eg AICb, Al (OiPr) 3, Al acetylacetonate in the case of an Al doping) with a base in a dispersion medium implemented. The separation of the precipitated particles from by-products (for example potassium acetate, potassium chloride) can be carried out in a manner known per se, for example by filtration or centrifugation. If necessary, the ZnO dispers ion may be concentrated prior to isolation of the precipitated particles by a membrane technique such as nano, ultra, micro or crossflow filtration. After the fall and before the functionalization, it is also possible to carry out a solvent exchange (for example by means of crossflow filtration).
Anschließend wird der entsprechende Modifikator im vorgegebenen Verhältnis zuge- geben, so dass sich eine transparente Dispersion an Metalloxid-Partikeln bildet. Die Funktionalisierung erfolgt bei Temperaturen von Raumtemperatur bis zu Siedepunkten der verwendeten Dispergiermittel. Der Druck beträgt üblicherweise von 1 mbar bis 50 bar, bevorzugt Atmosphärendruck (ca. 1 ,013 bar).Subsequently, the corresponding modifier is added in the predetermined ratio, so that a transparent dispersion of metal oxide particles is formed. The functionalization takes place at temperatures from room temperature to boiling points of the dispersants used. The pressure is usually from 1 mbar to 50 bar, preferably atmospheric pressure (about 1, 013 bar).
Die so erhaltene stabile Dispersion kann mit Hilfe aller gängigen, flüssigkeitbasierten Abscheidungsmethoden auf das Substrat aufgebracht werden. Geeignete Verfahren zur Abscheidung sind insbesondere Dip-Coating oder Spin-Coating oder ein Druck- Verfahren (Screen printing, Flexo-Druck, Gravüre printing, InkJet printing), ohne darauf beschränkt zu sein. Die abgeschiedenen Schichtdicken liegen üblicherweise zwischen 10 nm und 10 μm, bevorzugt 10 nm bis 2 μm, besonders bevorzugt 20 nm bis 200 nm.)The stable dispersion obtained in this way can be applied to the substrate by means of all common, liquid-based deposition methods. Suitable methods for deposition are, in particular, dip coating or spin coating or a printing process (screen printing, flexographic printing, gravure printing, inkjet printing), without being limited thereto. The deposited layer thicknesses are usually between 10 nm and 10 .mu.m, preferably 10 nm to 2 .mu.m, particularly preferably 20 nm to 200 nm.)
Zur Herstellung der fertigen Schicht (leitend, halbleitend, dielektrisch) wird die Schicht auf eine Temperatur von zwischen etwa 50 0C und 500 0C, bevorzugt zwischen 75 0C und 300 0C, weiterhin bevorzugt zwischen 100 0C und 200 0C thermisch behandelt. Die Maximaltemperatur und Behandlungsdauer hängt von der Thermischen Stabilität des Substrats, von der Zersetzungstemperatur des Modifikators sowie der zu erzielenden Reinheit der abzuscheidenden Schicht ab.To produce the finished layer (conductive, semiconducting, dielectric), the layer is at a temperature of between about 50 0 C and 500 0 C, preferably between 75 0 C and 300 0 C, more preferably between 100 0 C and 200 0 C thermally treated. The maximum temperature and duration of treatment depend on the thermal stability of the substrate, the decomposition temperature of the modifier and the purity of the layer to be deposited.
Bei der thermischen Behandlung wird der Modifikator zersetzt und in Form von flüchti- gen Substanzen, d.h. Substanzen die bei der Behandlung gasförmig vorliegen, aus der abgeschiedenen Schicht entfernt. Die Zersetzung in flüchtige Substanzen sollte möglichst vollständig, mindestens jedoch 60 Gew.%, bevorzugt 75 Gew.%, weiterhin bevorzugt 85 Gew.-%, besonders bevorzugt 90 Gew.-% betragen. Die thermische Behandlung kann an Luft, in Sauerstoff, Stickstoff, Argon, Wasserstoff, im Wasserdampf, bzw. Mischungen usw. erfolgen. Die Dauer der thermischen Behandlung beträgt üblicherweise von etwa 1 min bis etwa 30 h, bevorzugt 30 min bis 12 h. Eine Behandlung in mehreren Schritten mit verschiedenen Gasen ist ebenfalls möglich.In the thermal treatment, the modifier is decomposed and stored in the form of volatile substances, i. Substances that are gaseous in the treatment, removed from the deposited layer. The decomposition into volatile substances should be as complete as possible, but at least 60% by weight, preferably 75% by weight, more preferably 85% by weight, particularly preferably 90% by weight. The thermal treatment can be carried out in air, in oxygen, nitrogen, argon, hydrogen, in steam, or mixtures, etc. The duration of the thermal treatment is usually from about 1 minute to about 30 hours, preferably 30 minutes to 12 hours. Treatment in several steps with different gases is also possible.
Alternativ oder zusätzlich kann die Energiezufuhr zur Zersetzung des Modifikators durch Eintrag mittels einer Lampe oder einen Laser einer bestimmten Wellenlänge erfolgen. Der mögliche Wellenlängenbereich liegt zwischen UV und IR (150nm bis 2500 nm).Alternatively or additionally, the energy supply for the decomposition of the modifier by entry by means of a lamp or a laser of a certain wavelength can be carried out. The possible wavelength range is between UV and IR (150nm to 2500nm).
Bei Verwendung einer Lampe, z. B. einer Hg-Lampe oder einer Excimer-Lampe, wird entweder kontinuierlich für eine Dauer von 1 s bis 24 h, bevorzugt 1 min bis 1 h und eine effektive Leistungsdichte von 1 mW/cm2 bis 300 kW/cm2 oder pulsierend mit einer Dauer des Strahlungsblitzes von 10 ns to 10 s und einer effektiven Leistungsdichte von 0,02 KW/cm2 bis 300 kW/cm2 bestrahlt.When using a lamp, eg. As a mercury lamp or an excimer lamp is either continuously for a period of 1 s to 24 h, preferably 1 min to 1 h and an effective power density of 1 mW / cm 2 to 300 kW / cm 2 or pulsating with one Radiation flash duration of 10 ns to 10 s and an effective power density of 0.02 KW / cm 2 to 300 kW / cm 2 irradiated.
Bei Verwendung eines Lasers wird vorzugsweise mit einer Dauer des Strahlungsblitzes von 10 ns bis 10 s und einer effektiven Leistungsdichte von 0,02 kW/cm2 bis 300 kW/cm2 bestrahlt.When using a laser is preferably irradiated with a duration of the radiation flash of 10 ns to 10 s and an effective power density of 0.02 kW / cm 2 to 300 kW / cm 2 .
Eine weitere optionale Alternative ist, zusätzlich zu einem bestimmten Energieeintrag die Schicht mit einer sauren, basischen oder pH-neutralen Chemikalie zu bedampfen (z.B. SO2, N2O, N2H4, NH3, H2O), um die entsprechende Modifizierung von Metalloxidoberfläche vollständig zu entfernen.Another optional alternative is to steam the layer with an acidic, basic or pH neutral chemical (e.g., SO 2, N 2 O, N 2 H 4, NH 3, H 2 O) in addition to a certain energy input to completely remove the corresponding metal oxide surface modification.
Die Zersetzungsprodukte wurden am Beispiel des Malonsäuremonoethylesters untersucht. Für die Zersetzung der bevorzugten Moleküle (Verbindungen (IV) bis (IX)) sind Temperaturen von max. 200 0C notwendig; die Zersetzung kann unter inerter Atmosphäre (Ar, N2) oder unter Luft erfolgen.The decomposition products were investigated using the example of Malonsäuremonoethylesters. For the decomposition of the preferred molecules (compounds (IV) to (IX)) are temperatures of max. 200 0 C necessary; the decomposition can be carried out under an inert atmosphere (Ar, N2) or under air.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Dispersion zur Herstellung von leitenden Schichten, dielektrischen Schichten und/oder halbleitenden Schichten. Bei leitenden Schichten wird eine Dispersion aus elektrisch leitenden Partikeln, insbesondere Metallen, hergestellt und auf ein geeignetes Substrat aufgebracht. Bei dielektrischen Schichten werden Metalloxidpartikel, bei halbleitenden Schichten dotierte oder undotierte Metalloxid-, Metallchalkoge- nid-, Metallnitrid-, Metallphosphid-, Metallhalogenid, Metallborid- oder Metallphosphat- partikel verwendet.Another object of the present invention is the use of the dispersion according to the invention for the production of conductive layers, dielectric layers and / or semiconducting layers. In conductive layers, a dispersion of electrically conductive particles, in particular metals, prepared and applied to a suitable substrate. Dielectric layers use metal oxide particles, semiconducting layers doped or undoped metal oxide, metal chalcogenide, metal nitride, metal phosphide, metal halide, metal boride or metal phosphate particles.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Halbleiterbauteiles, z. B. eines TFTs:Another object of the present invention is a method for producing a semiconductor device, for. B. a TFTs:
Dotierte oder undotierte Metalloxidpartikel werden als Halbleiterschicht eines TFTs verwendet. Die Partikel können dabei aus Dispersion z. B. durch Dip-coating, Spin- coating oder Druckverfahren zum Aufbau des TFTs verarbeitet und (sofern erforderlich) gebacken (annealed) werden. Bezüglich der TFT-Architekturen, wie bottom-gate, top-gate, top-contact, bottom-contact etc. liegen keine Einschränkungen vor. Dielektri- ka können alle möglichen organischen, anorganischen oder organisch-anorganischen Hybridmaterialien sein Gate-, Source- und Drain- Kontaktmaterialien sind leitfähige Materialien (z. B. AI, Au, Ag, Ti/Au, Cr/Au, ITO, Si, PEDOT/PSS etc.). Als Substrate eignen sich insbesondere auch polymere und flexible Materialien mit niedriger Zersetzungstemperatur, sowie andere temperaturlabile Substrate, ohne darauf beschränkt zu sein. Substrat, Gate-, Source- und Drain- Kontaktmaterialien sowie Dielektrika unterliegen keinen primären Einschränkungen und können entsprechend der chemischen/ physikalischen Kompatibilität, des Verarbeitungsprozesses sowie der gewünschten Anwendung gewählt werden. Die erfindungsgemäßen Metall-, Metalloxid-, Metallnitrid-, Metallphosphid-, Metallhalogenid, Metallborid- oder Metallphosphatpartikel und -Dispersionen kommen für diese TFT-Komponenten ebenfalls in Betracht.Doped or undoped metal oxide particles are used as the semiconductor layer of a TFT. The particles can be made of dispersion z. B. by dip coating, spin coating or printing process to build the TFTs and (if necessary) baked (annealed). With regard to the TFT architectures, such as bottom gate, top gate, top contact, bottom contact, etc., there are no restrictions. Dielectrics may be any possible organic, inorganic or organic-inorganic hybrid materials gate, source and drain contact materials are conductive materials (eg Al, Au, Ag, Ti / Au, Cr / Au, ITO, Si, PEDOT / PSS etc.). Suitable substrates are in particular also polymeric and flexible materials with low decomposition temperature, as well as other temperature-labile substrates, without being limited thereto. Substrate, gate, source and drain contact materials as well as dielectrics are not subject to any primary restrictions and may vary according to the chemical / physical compatibility, the processing process as well as the desired application. The metal, metal oxide, metal nitride, metal phosphide, metal halide, metal boride or metal phosphate particles and dispersions of the invention are also suitable for these TFT components.
Schließlich können die erfindungsgemäßen Partikel und Dispersionen zur Abscheidung transparenter leitfähiger Schichten verwendet werden, die in einer Vielzahl elektronischer Bauteile Verwendung finden können und die bisher verwendeten Schichten ersetzen können. Transparent im Sinne der vorliegenden Anmeldung bedeutete eine Durchlässigkeit für elektromagnetische Strahlung im Bereich von 400 nm bis 800 nm von über 80 %.Finally, the particles and dispersions according to the invention can be used for the deposition of transparent conductive layers, which can be used in a large number of electronic components and can replace the layers used hitherto. Transparent in the sense of the present application meant a transmission of electromagnetic radiation in the range of 400 nm to 800 nm of more than 80%.
BeispieleExamples
Beispiel 1 : Darstellung von ZnO aus Zn(OAc)2Example 1: Representation of ZnO from Zn (OAc) 2
Zuerst wurden 1 118 ml 2-Propanol und 36,81 g Zn(OAc)2*2H2θ in eine 2 I geschlossene Rührapparatur vorgelegt und auf 75 0C erhitzt. Parallel dazu wurden 16,38 g Kaliumhydroxid in 584 ml 2-Propanol auf 75 0C erwärmt. Die Kaliumhydroxid-2-Propanol- Lösung wurde anschließend zu der Zn(OAc)2-Suspension zugegeben. Das Gemisch wurde bei 75 0C unter Rühren von 425 U/min eine Stunde erhitzt. Nach Abkühlung auf Zimmertemperatur ließ man das entstandene Zinkoxid Übernacht absetzen. Das überstehende 2-Propanol wurde abgesaugt und anschließend das Zinkoxid zweimal mit jeweils 500 ml THF ausgewaschen. Das überstehende THF wurde abgesaugt.First, 1 118 ml of 2-propanol and 36.81 g of Zn (OAc) 2 * 2H2θ were placed in a 2 I stirred stirred apparatus and heated to 75 0 C. In parallel, 16.38 g of potassium hydroxide in 584 ml of 2-propanol were heated to 75 0 C. The potassium hydroxide 2-propanol solution was then added to the Zn (OAc) 2 suspension. The mixture was heated at 75 ° C. while stirring at 425 rpm for one hour. After cooling to room temperature, the resulting zinc oxide was allowed to settle overnight. The supernatant 2-propanol was filtered off with suction and then the zinc oxide was washed twice with 500 ml of THF each time. The supernatant THF was sucked off.
Beispiel 2: Funktionalisierung von ZnO mit Ethyltrimethylsilyl-malonsäureesterExample 2: Functionalization of ZnO with Ethyltrimethylsilyl-malonic acid ester
Feuchtes Zinkoxid aus dem Beispiel 1 wurde mit 1 I Chloroform aufgefüllt. 200 g einer ZnO-Suspension in Chloroform mit einem ZnO-Gehalt von 1 ,6 g (19.66 mmol) wurden bei Zimmertemperatur mit 3.93 mmol Ethyltrimethylsilylmalonat (Fa. Fluka) versetzt. Wenige Sekunden nach der Zugabe klärte sich die Lösung auf. Es wurden noch weitere 15 Minuten bei Zimmertemperatur gerührt und anschließend der Anteil von ZnO in der Dispersion auf 4 Gew.-% aufkonzentriert.Moist zinc oxide from example 1 was filled up with 1 l of chloroform. 200 g of a ZnO suspension in chloroform having a ZnO content of 1.6 g (19.66 mmol) were admixed at room temperature with 3.93 mmol of ethyltrimethylsilylmalonate (from Fluka). A few seconds after the addition, the solution cleared. The mixture was stirred for a further 15 minutes at room temperature and then the proportion of ZnO in the dispersion to 4 wt .-% concentrated.
Mittels Partikelgrößenverteilung (Fig. 1 ) und TEM-Analyse (Fig. 2) konnten ZnO- Partikel mit einem mittleren Durchmesser von ca. 10 nm detektiert werden.By means of particle size distribution (FIG. 1) and TEM analysis (FIG. 2) it was possible to detect ZnO particles having an average diameter of about 10 nm.
Beispiel 3: Synthese von 3-OxoglutarsäuremonoethylesterExample 3: Synthesis of 3-oxoglutaric acid monoethyl ester
(modifiziert nach R. Willstätter, A. Pfannenstiel „Über Succinyldiessigsäureester", Justus Liebigs Annalen der Chemie, 1921 , 422, 1 - 15) 14,45 g (0.099 mol) 3-Oxoglutarsäure (1 ,3-Acetondicarbonsäure) wurden in einem 100 ml Einhalskolben zu 10,2 g (0.10 mol) Acetanhydrid gegeben. Der entstehende Brei wurde heftig geschüttelt bis sich der Feststoff zu einem gelben Öl homogenisiert hat. Bei weiterem Schütteln erwärmte sich der Ansatz und es fiel spontan ein weißer Fest- stoff (3-Oxoglutarsäureanhydrid)aus. Es wurde noch weitere 5 min. geschüttelt und der Kolben bei RT 12 h stehen gelassen. Anschließend wurde filtriert und drei Mal mit je 5 ml Toluol und ein Mal mit 7 ml n-Hexan gewaschen. Anschließend wurde der Rückstand für 5 h im Vakuum-T rockenschrank verwahrt.(modified according to R. Willstätter, A. Pfannenstiel "On Succinyl Diacetic Ester", Justus Liebigs Annalen der Chemie, 1921, 422, 1 - 15) 14.45 g (0.099 mol) of 3-oxoglutaric acid (1,3-acetonedicarboxylic acid) were added in a 100 ml one-necked flask to 10.2 g (0.10 mol) of acetic anhydride. The resulting slurry was shaken vigorously until the solid homogenized to a yellow oil. Upon further shaking, the mixture warmed and spontaneously precipitated a white solid (3-oxoglutaric anhydride). It was still another 5 min. shaken and the flask allowed to stand at RT for 12 h. It was then filtered and washed three times with 5 ml of toluene and once with 7 ml of n-hexane. The residue was then stored for 5 h in a vacuum T rockenschrank.
Im zweiten Schritt wurden 1 ,84 g des entstandenen Anhydrids in 30 ml abs. Ethanol gelöst und die Lösung sofort am Rotationsverdampfer (2.10-3 mbar, RT) eingeengt. Es blieb ein hellgelbes Öl zurück, welches bei - 20 0C gelagert wurde und dabei erstarrte.In the second step, 1, 84 g of the resulting anhydride in 30 ml of abs. Dissolved ethanol and the solution immediately concentrated on a rotary evaporator (2.10-3 mbar, RT). It left a pale yellow oil, which was stored at - 20 0 C and solidified.
Beispiel 4: Modifikation von ZnO mit dem 3-Oxoglutarsäuremonoethylester (molares Verhältnis von ZnO zu Modifikator gleich 3 : 1 )Example 4: Modification of ZnO with the 3-oxoglutaric acid monoethyl ester (molar ratio of ZnO to modifier equal to 3: 1)
Feuchtes Zinkoxid aus dem Beispiel 1 wurde mit 1 I Methylenchlorid aufgefüllt. 200 g einer ZnO-Suspension in Methylenchlorid mit einem ZnO-Gehalt von 1 ,6 g (19.66 mmol) wurden bei Zimmertemperatur mit 1 ,14 g des 3-Oxoglutarsäureethyl- mono-ethylesters (6.55 mmol) aus Beispiel 3 versetzt; die Dispersion klärte sich sofort auf. Anschließend wurde Methylenchlorid am Rotationsverdampfer bei 40 0C abdestilliert und der Rückstand weitere 4 Stunden unter Vakuum getrocknet.Moist zinc oxide from Example 1 was made up with 1 l of methylene chloride. 200 g of a ZnO suspension in methylene chloride with a ZnO content of 1.6 g (19.66 mmol) at room temperature with 1.14 g of 3-Oxoglutarsäureethyl mono-ethyl ester (6.55 mmol) from Example 3 were added; the dispersion cleared up immediately. Subsequently, methylene chloride was distilled off on a rotary evaporator at 40 0 C and the residue dried for a further 4 hours under vacuum.
Laut der TG-Analyse des so getrockneten Rückstandes (Aufheizrate 3 °C/min. bis 200 0C, 10 min. bei 200 0C, dann 3 °C/min. bis 400 0C; unter Argon) wurden bereits 91 % des eingesetzten Modifikators bei Temperaturen unterhalb 200 0C entfernt. Der experimentell gemessener Masseverlust betrug 37,8 Gew.-%; das eingesetzte Mengenverhältnis Modifikator/(ZnO + Modifikator) betrug 41 ,6 Gew.-%.According to the TG analysis of the thus dried residue (heating rate 3 ° C / min to 200 0 C, 10 min at 200 0 C, then 3 ° C / min to 400 0 C;..., Under argon) was already 91% of the used modifier at temperatures below 200 0 C removed. The experimentally measured weight loss was 37.8% by weight; the quantity ratio modifier / (ZnO + modifier) used was 41.6% by weight.
Die entsprechende TG-Analyse ist in Fig. 3 dargestellt.The corresponding TG analysis is shown in FIG.
Beispiel 5: Modifikation von ZnO mit dem 3-Oxoglutarsäureethylmonoester (molares Verhältnis von ZnO zu Modifikator gleich 5:1 )Example 5: Modification of ZnO with the 3-oxoglutaric acid ethyl monoester (molar ratio of ZnO to modifier equal to 5: 1)
Unter Rühren wurden 100 g einer Dispersion Zinkoxid (0,80 g ZnO (9.83 mmol)) inWith stirring, 100 g of a dispersion of zinc oxide (0.80 g ZnO (9.83 mmol))
Methylenchlorid mit 0,34 g (1.97 mmol) 3-Oxoglutarsäuremonoethylester aus Beispiel 3 versetzt. Die Dispersion klärte sich sofort auf und wurde anschließend bis zur Trockne eingeengt. Anschließend wurde das entstandene hellgelbe Pulver noch 4 h im Vakuum getrocknet.Methylene chloride with 0.34 g (1.97 mmol) 3-Oxoglutarsäuremonoethylester added from Example 3. The dispersion immediately cleared and was then concentrated to dryness. Subsequently, the resulting pale yellow powder was dried for a further 4 hours in vacuo.
Laut der TG-Analyse des entsprechend getrockneten Pulvers (Aufheizrate 3 °C/min. bis 200 0C, 10 min. bei 200 0C, dann 3 °C/min. bis 400 0C; unter Argon) wurden bereits 88 % des eingesetzten Modifikators bei Temperaturen unterhalb 200 0C entfernt. Der experimentell gemessener Masseverlust betrug 26,6 Gew.-%; das eingesetzte Mengenverhältnis Modifikator/(ZnO + Modifikator) betrug 30,1 Gew.-%.According to the TG analysis of the corresponding dried powder (heating rate, 10 min 3 ° C / min to 200 0 C at 200 0 C, then 3 ° C / min to 400 0 C;..., Under argon) was already 88% of the modifier used at temperatures below 200 0 C removed. The experimentally measured mass loss was 26.6 wt .-%; the amount ratio modifier / (ZnO + modifier) used was 30.1% by weight.
Die entsprechende TG-Analyse ist in Fig. 4 dargestellt.The corresponding TG analysis is shown in FIG. 4.
Beispiel 6: Modifikation von ZnO mit dem 3-Oxoglutarsäuremonoethylester (molares Verhältnis von ZnO zu Modifikator gleich 29 : 1 )Example 6: Modification of ZnO with the 3-oxoglutaric acid monoethyl ester (molar ratio of ZnO to modifier equal to 29: 1)
Feuchtes Zinkoxid aus dem Beispiel 1 wurde mit 1 I Methylenchlorid aufgefüllt. 200 g einer ZnO-Suspension in Methylenchlorid mit einem ZnO-Gehalt von 1 ,6 g (19.66 mmol) wurden bei Zimmertemperatur mit 0,12 g des 3-Oxoglutarsäuremono- ethylester (0.67 mmol) versetzt; die Dispersion klärte sich sofort auf. Anschließend wurde Methylenchlorid am Rotationsverdampfer bei 40 0C abdestilliert und der Rück- stand weitere 4 Stunden unter Vakuum getrocknet.Moist zinc oxide from Example 1 was made up with 1 l of methylene chloride. 200 g of a ZnO suspension in methylene chloride with a ZnO content of 1.6 g (19.66 mmol) were added at room temperature with 0.12 g of the 3-Oxoglutarsäuremono- ethylester (0.67 mmol); the dispersion cleared up immediately. Subsequently, methylene chloride was distilled off on a rotary evaporator at 40 ° C. and the residue was dried under vacuum for a further 4 hours.
Vergleichsbeispiel A: Funktionalisierung von ZnO mit 2-[2-(2-Methoxyethoxy)-ethoxy]- essigsäureComparative Example A: Functionalization of ZnO with 2- [2- (2-methoxyethoxy) ethoxy] acetic acid
Feuchtes Zinkoxid aus dem Beispiel 1 wurde mit 1 I THF aufgefüllt. Zu dieser Suspension werden 3,5 g 2-[2-(2-Methoxyethoxy)-ethoxy]-essigsäure (Fluka) zugegeben. Das entstehende Gemisch wurde unter Rühren zum Sieden erhitzt und 30 Minuten bei dieser Temperatur gehalten. Die Suspension klärte sich auf. Anschließend wurde THF am Rotationsverdampfer bei 60 0C abdestilliert und der Rückstand weitere 4 Stunden unter Vakuum getrocknet.Moist zinc oxide from Example 1 was made up with 1 l of THF. To this suspension is added 3.5 g of 2- [2- (2-methoxyethoxy) -ethoxy] -acetic acid (Fluka). The resulting mixture was heated to boiling with stirring and held at this temperature for 30 minutes. The suspension cleared. Subsequently, THF was distilled off on a rotary evaporator at 60 0 C and the residue dried for a further 4 hours under vacuum.
Laut der TG-Analyse des erhaltenen funktionalisierten ZnO-Pulvers (Aufheizrate 5 °C/min. bis 200 0C, 60 min. bei 200 0C, dann 5 °C/min. bis 500 0C; an Luft) wurden lediglich 23 % des organischen Bestandteils bei Temperaturen unterhalb 200 0C ent- fernt. Der experimentell gemessener Masseverlust im Temperaturbereich Raumtemperatur - 200 0C = 5,8 Gew.-%; Gesamtverluste von Raumtemperatur bis 500 0C = 25,3 Gew.-%.According to the TG analysis of the resultant functionalized ZnO powder (heating rate, 60 min 5 ° C / min to 200 0 C at 200 0 C, then 5 ° C / min to 500 0 C;... In air) was only 23 % of the organic constituent at temperatures below 200 0 C removed. The experimentally measured loss of mass in the temperature range room temperature - 200 0 C = 5.8 wt .-%; Total losses from room temperature to 500 0 C = 25.3 wt .-%.
Die entsprechende TG-Analyse ist in Fig. 5 dargestellt.The corresponding TG analysis is shown in FIG.
Vergleichsbeispiel B: Funktionalisierung von ZnO mit EthoxyessigsäureComparative Example B: Functionalization of ZnO with ethoxyacetic acid
Feuchtes Zinkoxid aus dem Beispiel 1 wurde mit 1 I THF aufgefüllt. Zu dieser Suspension wurden 5 g Ethoxyessigsäure (Fluka) zugegeben. Das entstehende Gemisch wur- de unter Rühren zum Sieden erhitzt und 30 Minuten bei dieser Temperatur gehalten. Die Suspension klärte sich auf. Anschließend wurde THF am Rotationsverdampfer bei 60 0C abdestilliert und der Rückstand weitere 4 Stunden unter Vakuum getrocknet. Laut der TG-Analyse des erhaltenen funktionalisierten ZnO-Pulvers (Aufheizrate 5 °C/min. bis 200 0C, 60 min. bei 200 0C, dann 5 °C/min. bis 500 0C; an Luft) wurden lediglich 28 % des organischen Bestandteils bei Temperaturen unterhalb 200 0C ent- fernt (der experimentell gemessener Masseverlust im Temperaturbereich Raumtemperatur - 200 0C betrug 8,7 Gew.-%; der Gesamtverlust von Raumtemperatur bis 500 0C betrug 31 ,6 Gew.-%).Moist zinc oxide from Example 1 was made up with 1 l of THF. To this suspension was added 5 g of ethoxyacetic acid (Fluka). The resulting mixture was heated to boiling with stirring and held at this temperature for 30 minutes. The suspension cleared. Subsequently, THF was distilled off on a rotary evaporator at 60 0 C and the residue dried for a further 4 hours under vacuum. According to the TG analysis of the resultant functionalized ZnO powder (. Heating rate 5 ° C / min to 200 0 C, 60 min at 200 0 C, then 5 ° C / min to 500 0 C;.. In air) was only 28 % of the organic component at temperatures below 200 0 C corresponds removed (the experimentally measured mass loss in the temperature range room temperature - 200 0 C was 8.7 wt .-% and the total loss from room temperature to 500 0 C was 31, 6 wt .-% ).
Die entsprechende TG-Analyse ist in Fig. 6 dargestellt.The corresponding TG analysis is shown in FIG.
Beispiel 7: Herstellung eines TFTs (bottom-gate, top-contact Aufbau)Example 7: Production of a TFT (bottom-gate, top-contact structure)
3 Tropfen einer Dispersion in Methylenchlorid mit einem Gehalt von 4 Gew.-% ZnO gemäß Beispiel 6 wurden mit 5 Vol.-% Butylglycol gemischt und auf gereinigte Si(dotiert)-Substrate mit Siθ2-Dielektrikumsschicht (200 nm) aufgeschleudert (4000 pm, 30 s). Anschließend wurden die Proben auf 200 0C erhitzt und 1 h bei 200 0C gehalten.3 drops of a dispersion in methylene chloride containing 4% by weight of ZnO according to Example 6 were mixed with 5% by volume of butylglycol and spin-coated onto cleaned Si (doped) substrates with SiO 2 dielectric layer (200 nm) (4000 μm). 30 s). The samples were then heated to 200 0 C and kept at 200 0 C for 1 h.
Die Top-contact Source/drain-Strukturen wurden durch thermisches Aufdampfen von Aluminium erzeugt. Repräsentative Ausgangskurven (AK) und Transferkurven (TK) eines entsprechenden Transistors sind in Figur 7 und 8 abgebildet (VD: Spannung zwischen Source und Drain, VG: Spannung zwischen Source und gate, ID: Strom zwischen Source und Drain).The top contact source / drain structures were created by thermal vapor deposition of aluminum. Representative output curves (AK) and transfer curves (TK) of a corresponding transistor are shown in FIGS. 7 and 8 (VD: voltage between source and drain, VG: voltage between source and gate, ID: current between source and drain).
Die folgenden durchschnittl. Parameter wurden bestimmt : Mobilität μ: 3*10"3 cm2/(V*s), An/Aus-Verhältnis: 105, VτThreshold-Spannung: 12 V. The following avg. Parameters were determined: Mobility μ: 3 * 10 " 3 cm 2 / (V * s), on / off ratio: 10 5 , Vthreshold voltage: 12 V.

Claims

Patentansprüche claims
1. Partikel enthaltend Metalle, Metallhalogenide, Metallchalkogenide, Metallnitride,1. Particles containing metals, metal halides, metal chalcogenides, metal nitrides,
Metallphosphide, Metallphosphate, Metallboride oder Mischungen derselben, wo- bei die Partikel einen mittleren Partikeldurchmesser von 1 bis 500 nm aufweisen und die Oberfläche der Partikel mit einem oder mehreren Modifikatoren ausgewählt aus den Formeln (I) (II) undMetal phosphides, metal phosphates, metal borides or mixtures thereof, wherein the particles have an average particle diameter of 1 to 500 nm and the surface of the particles with one or more modifiers selected from the formulas (I) (II) and
6/ .x6 / .x
X' 7'^/°^R6 (H) X '7' ^ / ° ^ R6 (H)
modifiziert wurde, wobeiwas modified, wherein
X1 ausgewählt ist aus O, S und Se,X 1 is selected from O, S and Se,
X2 ausgewählt ist aus OH, OCH3, OC2H5, COOH,X 2 is selected from OH, OCH 3 , OC 2 H 5 , COOH,
OSi(R1)3-x-y(R2)y(R3)x x, y unabhängig voneinander gleich 0, 1 , 2 oder 3 sind und die Summe aus x und y maximal 3 ist, R1, R2, R3, R4 unabhängig voneinander ausgewählt sind aus H, Ci bis C10 Alkyl,OSi (R 1 ) 3 -xy (R 2 ) y (R 3 ) xx, y are independently 0, 1, 2 or 3 and the sum of x and y is 3 or less, R 1 , R 2 , R 3 , R 4 are independently selected from H, Ci to C10 alkyl,
X3 ausgewählt ist aus O, S, Se und CH2, n, m, p unabhängig voneinander gleich 0, 1 , 2 oder 3 sind, bevorzugt 0, 1 ,X 3 is selected from O, S, Se and CH 2 , n, m, p independently of one another are 0, 1, 2 or 3, preferably 0, 1,
2 und besonders bevorzugt 1 sind2 and more preferably 1
X4 ausgewählt ist aus O, S, Se, C=O, -R4C=CH-, OCH2, X5 ausgewählt aus H, OH, OCH3, OC2H5, OSi(R1)(3-x-y)(R2)x(R3)y,X 4 is selected from O, S, Se, C =O, -R 4 C =CH-, OCH 2 , X 5 selected from H, OH, OCH 3 , OC 2 H 5 , OSi (R 1 ) (3 ) xy) (R 2 ) x (R 3 ) y,
COOR5, OCOOR5 COOR 5 , OCOOR 5
R5 ausgewählt aus Ci bis C4 Alkyl ,R 5 is selected from C 1 to C 4 alkyl,
X6 ausgewählt aus SH, NH2, OSi(R1 3-χ-y)(R2)y(R3X 6 selected from SH, NH 2 , OSi (R 1 3 -χ- y ) (R 2 ) y (R 3 ) χ
X7 ausgewählt ist aus Ci bis C10 Alkylen, O, S, Se, Te, r ein ganzzahliger Wert von 1 bis 1000,X 7 is selected from C 1 to C 10 alkylene, O, S, Se, Te, r is an integer value from 1 to 1000,
R6 ausgewählt aus H, Ci bis C10 Alkyl und Halogen.R 6 is selected from H, C 1 to C 10 alkyl and halogen.
2. Partikel gemäß Anspruch 1 , wobei die Partikel Metalloxide sind.2. Particles according to claim 1, wherein the particles are metal oxides.
3. Partikel gemäß Anspruch 2, wobei die Metalloxide mindestens ein Metall ausgewählt aus der Gruppe Ti, Zr, Zn, Ga, In, Ge, Sn, Ce, Sb, Bi enthalten. 3. Particles according to claim 2, wherein the metal oxides contain at least one metal selected from the group Ti, Zr, Zn, Ga, In, Ge, Sn, Ce, Sb, Bi.
4. Partikel gemäß Anspruch 3, wobei die Metalloxide ausgewählt aus der Gruppe ZnO, In2O3, SnO2, Ga2O3, Zn2SnO4, ZnSnO3, Zn2In2O5, Zn3In2O6, In4Sn3Oi2, GaInO3, amorphes In-Ga-Zn-Oxid.4. Particles according to claim 3, wherein the metal oxides selected from the group ZnO, In 2 O 3 , SnO 2 , Ga 2 O 3 , Zn 2 SnO 4 , ZnSnO 3 , Zn 2 In 2 O 5 , Zn 3 In 2 O 6 , In 4 Sn 3 Oi 2 , GaInO 3 , In-Ga-Zn amorphous oxide.
5. Partikel gemäß einem der vorhergehenden Ansprüche, wobei die Partikel ausgewählt sind aus Sn-, AI-, Sb-, Ga-, Bi-, In-, Mg-, Li-, H-, OH-, N- dotiertem ZnO, AI- dotiertem MgO, und Sn-dotiertem In2O3 5. Particles according to one of the preceding claims, wherein the particles are selected from Sn, Al, Sb, Ga, Bi, In, Mg, Li, H, OH, N-doped ZnO, Al-doped MgO, and Sn-doped In 2 O 3
6. Partikel gemäß einem der vorhergehenden Ansprüche, wobei die Partikel einen mittleren Durchmesser von 5 bis 100 nm, insbesondere von 10 bis 50 nm aufweisen.6. Particles according to one of the preceding claims, wherein the particles have an average diameter of 5 to 100 nm, in particular from 10 to 50 nm.
7. Partikel gemäß einem der vorhergehenden Ansprüche, wobei der eine oder die mehreren Modifikatoren ausgewählt sind aus Verbindungen gemäßden Formeln Ia bis Ih.Particles according to any one of the preceding claims, wherein the one or more modifiers are selected from compounds according to formulas Ia to Ih.
wobei n, p, X1, X2, X4 und X5 die in Anspruch 1 genannten Bedeutungen haben und R1, R2 und R3 ausgewählt sind aus Ci - CioAlkyl, besonders bevorzugt Methyl, Ethyl oder t-Butyl. where n, p, X 1 , X 2 , X 4 and X 5 have the meanings mentioned in claim 1 and R 1 , R 2 and R 3 are selected from Ci - CioAlkyl, more preferably methyl, ethyl or t-butyl.
8. Partikel gemäß Anspruch 7, wobei der eine oder die mehreren Modifikatoren ausgewählt sind aus8. Particles according to claim 7, wherein the one or more modifiers are selected from
O O O O 0 0 0O O O O 0 0 0
I i /. ϊ ϊ A l lI i /. ϊ ϊ A l l
_ _
9. Partikel gemäß einem der vorhergehenden Ansprüche, wobei das Molverhältnis von Modifikator zu Partikel zwischen 2 : 1 und 1 : 60, insbesondere 1 : 1 bis 1 : 30, besonders bevorzugt 1 : 25 bis 1 : 5.9. Particles according to one of the preceding claims, wherein the molar ratio of modifier to particle between 2: 1 and 1: 60, in particular 1: 1 to 1: 30, particularly preferably 1: 25 to 1: 5.
10. Partikel gemäß einem der vorhergehenden Ansprüche, wobei die Zersetzungstemperatur der Modifikatoren unter 250 0C, insbesondere unter 200 0C liegt.10. Particles according to one of the preceding claims, wherein the decomposition temperature of the modifiers below 250 0 C, in particular below 200 0 C.
1 1. Verfahren zur Herstellung modifizierter Partikel gemäß einem der vorhergehenden Ansprüche, wobei1 1. A process for the preparation of modified particles according to any one of the preceding claims, wherein
a) die unbehandelten Partikel in einem aprotischen Lösungsmittel suspendiert werden und b) anschließend mit einem oder mehreren Modifikatoren gemäß Formel (I) wie in Anspruch 1 definiert versetzt wird unter Bildung der modifizierten Partikel.a) the untreated particles are suspended in an aprotic solvent and b) is then admixed with one or more modifiers according to formula (I) as defined in claim 1 to form the modified particles.
12. Dispersion enthaltend12. containing dispersion
(a) Metall-, Metallchalkogenid-, Metallhalogenid-, Metallnitrid-, Metallphosphid-, Metallborid-, Metallphosphatpartikel oder Mischungen derselben mit einem mittleren Partikeldurchmesser von 1 bis 500 nm,(a) metal, metal chalcogenide, metal halide, metal nitride, metal phosphide, metal boride, metal phosphate particles or mixtures thereof having an average particle diameter of 1 to 500 nm,
(b) einen oder mehrere Modifikatoren der Formeln (I), (II) oder (III)(b) one or more modifiers of the formulas (I), (II) or (III)
χ6/ (H) (IN) wobei χ 6 / (H) (IN) in which
X1 ausgewählt ist aus O, S und Se, X2 ausgewählt ist aus OH, OCH3, OC2H5, COOH,X 1 is selected from O, S and Se, X 2 is selected from OH, OCH 3 , OC 2 H 5 , COOH,
OSi(R1)3-x-y(R2)y(R3)x x, y unabhängig voneinander gleich 0, 1 , 2 oder 3 sind und dieOSi (R 1 ) 3 -xy (R 2 ) y (R 3 ) xx, y are independently 0, 1, 2 or 3 and the
Summe aus x und y maximal 3 ist,Sum of x and y is a maximum of 3,
R1, R2, R3, R4 unabhängig voneinander ausgewählt sind aus H, Ci bis C10 Alkyl,R 1 , R 2 , R 3 , R 4 are independently selected from H, Ci to C10 alkyl,
X3 ausgewählt ist aus O, S, Se und CH2, n, m, p unabhängig voneinander gleich O, 1 , 2 oder 3 sind, bevorzugtX 3 selected from O, S, Se and CH 2 , n, m, p independently of one another are O, 1, 2 or 3, are preferred
O, 1 , 2 und besonders bevorzugt 1 sindO, 1, 2, and more preferably 1
X4 ausgewählt ist aus O, S, Se, C=O, -R4C=CH-, OCH2, X5 ausgewählt aus H, OH, OCH3, OC2H5, OSi(R1)(3-x-y)(R2)x(R3)y,X 4 is selected from O, S, Se, C =O, -R 4 C =CH-, OCH 2 , X 5 selected from H, OH, OCH 3 , OC 2 H 5 , OSi (R 1 ) (3 ) xy) (R 2 ) x (R 3 ) y,
COOR5, OCOOR5 COOR 5 , OCOOR 5
R5 ausgewählt aus Ci bis C4 Alkyl ,R 5 is selected from C 1 to C 4 alkyl,
X6 ausgewählt aus SH, NH2, OSi(R1 3-χ-y)(R2)y(R3X 6 selected from SH, NH 2 , OSi (R 1 3 -χ- y ) (R 2 ) y (R 3 ) χ
X7 ausgewählt ist aus Ci bis C10 Alkylen, O, S. Se, Te, r ein ganzzahliger Wert von 1 bis 1000,X 7 is selected from C 1 to C 10 alkylene, O, S. Se, Te, r is an integer value from 1 to 1000,
R6 ausgewählt aus H, Ci bis C10 Alkyl und Halogen.R 6 is selected from H, C 1 to C 10 alkyl and halogen.
(c) ein Dispersionsmittel.(c) a dispersant.
13. Dispersion gemäß Anspruch 12, wobei das Dispersionsmittel ausgewählt ist aus organischen Flüssigkeiten mit einem Siedepunkt unter 100 0C.13. A dispersion according to claim 12, wherein the dispersing agent is selected from organic liquids having a boiling point below 100 0 C.
14. Dispersion gemäß Anspruch 12 oder 13, wobei das Dispersionsmittel ausgewählt ist aus organischen Flüssigkeiten mit einem Dipolmoment von 3 bis 10 10"30 C m14. A dispersion according to claim 12 or 13, wherein the dispersing agent is selected from organic liquids having a dipole moment of 3 to 10 10 " 30 C m
15. Dispersion gemäß einem der Ansprüche 12 bis 14, wobei die Dispersion einen Gehalt an dispergierten Partikeln von 0,1 bis 10 Gew.%, insbesondere 1 bis15. A dispersion according to any one of claims 12 to 14, wherein the dispersion has a content of dispersed particles of 0.1 to 10 wt.%, In particular 1 to
5 Gew.-% aufweist.5 wt .-% has.
16. Verfahren zur Abscheidung von Schichten auf Substraten enthaltend die Schritte16. A method of depositing layers on substrates comprising the steps
a) Herstellen einer Dispersion enthaltend oberflächenmodifizierte Partikel gemäß einem der Ansprüche 1 bis 1 1 und ein Dispersionsmittel, b) Aufbringen der Dispersion auf das Substrat, c) Entfernen des Dispersionsmittels, d) Umwandlung des Modifikators in flüchtige Substanzen durch thermische Behandlung bei 100 0C bis 500 0C oder Bestrahlung mit elektromagnetischer Strahlung.a) preparing a dispersion containing surface-modified particles according to one of claims 1 to 11 and a dispersant, b) applying the dispersion to the substrate, c) removing the dispersant, d) conversion of the modifier into volatile substances by thermal treatment at 100 0 C to 500 0 C or irradiation with electromagnetic radiation.
17. Verfahren nach Anspruch 16, wobei das Substrat ein Polymersubstrat ist.17. The method of claim 16, wherein the substrate is a polymer substrate.
18. Composit enthaltend ein Substrat und eine Schicht erhältlich nach dem Verfahren gemäß einem der Ansprüche 16 oder 17.18. Composite comprising a substrate and a layer obtainable by the process according to one of claims 16 or 17.
19. Composit gemäß Anspruch 18, wobei die Schicht leitfähig und transparent ist.19. A composite according to claim 18, wherein the layer is conductive and transparent.
20. Elektronisches Bauteil, insbesondere FET, enthaltend eine Schicht erhältlich nach dem Verfahren gemäß einem der Ansprüche 16 oder 17 oder ein Composit gemäß Anspruch 18 oder 19. 20. An electronic component, in particular FET, comprising a layer obtainable by the process according to claim 16 or 17 or a composite according to claim 18 or 19.
EP09782305A 2008-09-04 2009-08-28 Modified particles and dispersions comprising said particles Withdrawn EP2321373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09782305A EP2321373A1 (en) 2008-09-04 2009-08-28 Modified particles and dispersions comprising said particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08163703 2008-09-04
EP09782305A EP2321373A1 (en) 2008-09-04 2009-08-28 Modified particles and dispersions comprising said particles
PCT/EP2009/061103 WO2010026102A1 (en) 2008-09-04 2009-08-28 Modified particles and dispersions comprising said particles

Publications (1)

Publication Number Publication Date
EP2321373A1 true EP2321373A1 (en) 2011-05-18

Family

ID=41277503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782305A Withdrawn EP2321373A1 (en) 2008-09-04 2009-08-28 Modified particles and dispersions comprising said particles

Country Status (7)

Country Link
US (1) US8734899B2 (en)
EP (1) EP2321373A1 (en)
JP (1) JP5599797B2 (en)
KR (1) KR20110066162A (en)
CN (1) CN102144004B (en)
TW (1) TWI488815B (en)
WO (1) WO2010026102A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009324379A1 (en) 2008-12-11 2011-07-28 Basf Se Enrichment of valuable ores from mine waste (tailings)
US8940814B2 (en) * 2008-12-12 2015-01-27 Basf Se Dispersions comprising functionalized oxidic nanoparticles
EA022857B1 (en) 2009-03-04 2016-03-31 Басф Се Magnetic separation of nonferrous metal ores by means of multi-stage conditioning
CN102612406A (en) * 2009-11-20 2012-07-25 巴斯夫欧洲公司 Multilayer catalyst for producing carboxylic acids and/or carboxylic acid anhydrides with vanadium antimonate in at least one catalyst layer, and method for producing phthalic acid anhydride with a low hot-spot temperature
CN102668086B (en) 2009-12-18 2016-01-06 巴斯夫欧洲公司 Be positioned at that have can by the MOS (metal-oxide-semiconductor) memory in dielectric mechanical flexibility polymer substrate of solution low temperature process
US20110230668A1 (en) * 2010-03-19 2011-09-22 Basf Se Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide
TW201206896A (en) 2010-04-13 2012-02-16 Basf Se Process for controlling a gas phase oxidation reactor for preparation of phthalic anhydride
CN102947218B (en) 2010-04-23 2016-05-11 皮瑟莱根特科技有限责任公司 Synthetic, the block of nanocrystal and disperseing
JP2013525250A (en) 2010-04-28 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Method for preparing zinc complexes in solution
US8865000B2 (en) 2010-06-11 2014-10-21 Basf Se Utilization of the naturally occurring magnetic constituents of ores
US8859459B2 (en) 2010-06-30 2014-10-14 Basf Se Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride
US9212157B2 (en) 2010-07-30 2015-12-15 Basf Se Catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride
US9376457B2 (en) 2010-09-03 2016-06-28 Basf Se Hydrophobic, functionalized particles
JP2014503446A (en) 2010-10-27 2014-02-13 ピクセリジェント・テクノロジーズ,エルエルシー Nanocrystal synthesis, capping and dispersion
US9359689B2 (en) 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
KR101978835B1 (en) * 2012-03-16 2019-05-15 한국전자통신연구원 Thin film Transistor
WO2014119592A1 (en) * 2013-02-04 2014-08-07 独立行政法人産業技術総合研究所 Resistive element, inorganic-material paste for electronic component such as dielectric, and process for producing said inorganic-material paste
FI130559B (en) * 2021-06-23 2023-11-21 Turun Yliopisto Semiconductor structure, semiconductor device, and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006138071A1 (en) * 2005-06-16 2006-12-28 Eastman Kodak Company Thin film transistors comprising zinc-oxide-based semiconductor materials

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303330A (en) 1942-02-02 1942-12-01 New Jersey Zinc Co Zinc oxide
DE19907704A1 (en) * 1999-02-23 2000-08-24 Bayer Ag Nano-scale precipitating zinc oxide used e.g. for protecting UV-sensitive organic polymers consists of particles having an average specified primary particle diameter
DE10063092A1 (en) 2000-12-18 2002-06-20 Henkel Kgaa Nanoscale materials in hygiene products
JP2003073122A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Inorganic microparticle dispersion and composite material composition produced by using the same
US7553512B2 (en) 2001-11-02 2009-06-30 Cabot Corporation Method for fabricating an inorganic resistor
JP2004010807A (en) * 2002-06-10 2004-01-15 Toyo Ink Mfg Co Ltd Method for producing aqueous dispersion
US20050182153A1 (en) * 2002-06-12 2005-08-18 Koji Yokoi Porous metal oxide material in flake form, method for producing the same and cosmetic, coating material resin composition ink composition and paper comprising the same
JP2004182483A (en) * 2002-11-29 2004-07-02 Mitsubishi Chemicals Corp Manufacturing method of zinc oxide ultrafine particle
DE10257388A1 (en) 2002-12-06 2004-06-24 Sustech Gmbh & Co. Kg Nanoparticulate zinc oxide surface-modified with a carboxylic acid, useful as an ultraviolet filter or antimicrobial agent in cosmetic or pharmaceutical compositions
DE10304849A1 (en) 2003-02-06 2004-08-19 Institut für Neue Materialien gemeinnützige Gesellschaft mit beschränkter Haftung Chemomechanical production of functional colloids
WO2004087577A1 (en) 2003-03-31 2004-10-14 Toto Ltd. Surface-modified titanium dioxide fine particles and dispersion comprising the same, and method for producing the same
JP5014796B2 (en) * 2004-09-30 2012-08-29 株式会社カネカ Method for producing polymer-modified metal chalcogenide nanoparticles
DE102004048230A1 (en) 2004-10-04 2006-04-06 Institut für Neue Materialien Gemeinnützige GmbH Process for the preparation of nanoparticles with customized surface chemistry and corresponding colloids
DE102005007374A1 (en) 2005-02-17 2006-08-24 Universität Ulm Nano-particle, useful e.g. as carriers for transport of active substances, comprises hydrophobic and biocompatible functionalized polymer, active material and/or marker
JP4918994B2 (en) * 2005-05-30 2012-04-18 住友電気工業株式会社 Method for forming metal coating and metal wiring
DE102005047807A1 (en) 2005-06-04 2006-12-07 Solvay Infra Bad Hönningen GmbH Modified nanoparticles
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
JP4738931B2 (en) * 2005-07-29 2011-08-03 富士フイルム株式会社 Nanoparticle dispersion, semiconductor device manufacturing method using the same, and semiconductor device
KR100768632B1 (en) * 2006-10-30 2007-10-18 삼성전자주식회사 Method for dispersing nanoparticles and method for producing nanoparticles thin film using the same
KR20080108767A (en) * 2007-06-11 2008-12-16 삼성에스디아이 주식회사 Composition for coating interconnection part of electrode and plasma display panel comprsing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006138071A1 (en) * 2005-06-16 2006-12-28 Eastman Kodak Company Thin film transistors comprising zinc-oxide-based semiconductor materials

Also Published As

Publication number Publication date
JP2012501941A (en) 2012-01-26
CN102144004B (en) 2014-11-26
JP5599797B2 (en) 2014-10-01
TWI488815B (en) 2015-06-21
US20110163278A1 (en) 2011-07-07
TW201016614A (en) 2010-05-01
US8734899B2 (en) 2014-05-27
KR20110066162A (en) 2011-06-16
WO2010026102A1 (en) 2010-03-11
CN102144004A (en) 2011-08-03

Similar Documents

Publication Publication Date Title
EP2321373A1 (en) Modified particles and dispersions comprising said particles
DE112010004154B4 (en) A method of manufacturing a semiconductor thin film and a photovoltaic device containing the thin film
EP2398935B1 (en) Composition containing indium alkoxide, process for it's preparation and use of such compositions
US8470636B2 (en) Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles
DE102009054997B3 (en) Process for producing indium oxide-containing layers, indium oxide-containing layers produced by the process and their use
EP2638183B1 (en) Process for preparing coatings containing indium oxide
EP2443650A1 (en) Thermolabile precursor compounds for improving the interparticulate contact points and for filling the interspaces in semiconductive metal oxide particle layers
AT508283A1 (en) COMPOSITE MATERIAL COMPRISING NANOPARTICLES AND MANUFACTURING PHOTOACTIVE LAYERS CONTAINING QUATERNARY, PENTANIC AND HIGHER ASSEMBLED SEMICONDUCTOR APPLICATIONS
WO2013050221A1 (en) Method for producing high-performing and electrically stable semi-conductive metal oxide layers, layers produced according to the method and use thereof
DE102007018431A1 (en) Pyrogenic zinc oxide containing composite of layers and field effect transistor having this composite
WO2013110434A1 (en) Method for producing electrically semiconductive or conductive layers with improved conductivity
EP3013837B1 (en) Formulations for producing indium oxide-containing layers, methods for producing said layers and the use thereof
KR101165717B1 (en) Inorganic semiconductor ink composition and the inorganic semiconductor thin film same
EP2839504A1 (en) Formulations comprising ammoniacal hydroxo-zinc compounds
DE102010006269B4 (en) Process for producing conductive or semiconducting metal oxide layers on substrates, substrates produced in this way and their use
KR102639310B1 (en) Semiconductor device including iodine-doped CuO film and manufacturing method thereof
Elafandi Nonequilibrium Laser-Based Synthesis of Nanoparticle Ensembles
Paik Novel Photovoltaic Devices using Ferroelectric Material and Colloidal Quantum Dots
DE102012006045A1 (en) Production of electroconductive or semiconductive multilayer film used for manufacture of e.g. field effect transistor, involves coating precursor solution or dispersion containing organometallic compound(s) on substrate, and drying
Pham et al. Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals
DE102012001508A1 (en) Producing electrically conductive or semi-conductive metal oxide, comprises applying metal oxide precursor-solution or -dispersion on substrate, optionally drying the precursor layer, thermally transferring layer, and optionally cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130319

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161019