EP2730702A1 - Method and device for the production of parallel ground bodies using jet nozzle tools - Google Patents

Method and device for the production of parallel ground bodies using jet nozzle tools Download PDF

Info

Publication number
EP2730702A1
EP2730702A1 EP12190925.3A EP12190925A EP2730702A1 EP 2730702 A1 EP2730702 A1 EP 2730702A1 EP 12190925 A EP12190925 A EP 12190925A EP 2730702 A1 EP2730702 A1 EP 2730702A1
Authority
EP
European Patent Office
Prior art keywords
jet
tools
tool
nozzle
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12190925.3A
Other languages
German (de)
French (fr)
Other versions
EP2730702B1 (en
Inventor
Wolfgang Wehr
Christian Sigmund
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keller Holding GmbH
Original Assignee
Keller Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keller Holding GmbH filed Critical Keller Holding GmbH
Priority to EP12190925.3A priority Critical patent/EP2730702B1/en
Publication of EP2730702A1 publication Critical patent/EP2730702A1/en
Application granted granted Critical
Publication of EP2730702B1 publication Critical patent/EP2730702B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • E02D3/126Consolidating by placing solidifying or pore-filling substances in the soil and mixing by rotating blades

Definitions

  • the invention relates to a method for soil improvement by means of jet-jet technology.
  • the pending in the field of the wellbore soil is cut or eroded using a jet of water or cement suspension, which can also be coated with air.
  • the eroded soil is rearranged and mixed with cement slurry.
  • With the nozzle jet process components of various geometric shapes can be produced.
  • the load-bearing capacity of the soil can be improved, settlements avoided or ground can be solidified, for example in underpinning; likewise, the method can be used for sealing, for example under dams or excavation pits.
  • a jet-blast method for soil improvement is known to increase its carrying capacity.
  • binder suspension is injected from a plurality of distributed over a soil surface on a surface grid arranged holes in the upcoming soil.
  • the injections are applied in the jet stream immediately after drilling from a suitably prepared drill string.
  • the so-called high-pressure injection process which is also known under company names such as Soilcrete or Jet Grouting process, represents a further development of the injection process.
  • a pipe is sunk under rinse aid. After reaching the final depth are located by located at the bottom of the tube side nozzles high-energy cutting jets from a suspension with high pressures pressed into the ground and pulled the tube with slow rotation or pivoting motion. This results in a columnar volume, which hardens by the introduced binder to a solid body.
  • various geometric elements can be produced, such as half-columns or lamellae.
  • a multiple nozzle jet method and apparatus is known.
  • a double-walled linkage is provided, is injected from the cement from several laterally arranged nozzles simultaneously in the ground.
  • several bodies are produced adjacent to one another in succession.
  • the present invention has for its object to provide a method for soil improvement, which provides a particularly high erosion performance in the production of the jet body or with the high tightness between two adjacent jet bodies can be achieved.
  • the object is further to propose a corresponding device, can be produced with the nozzle jet body assemblies efficiently or with high density between the individual bodies.
  • the advantage lies in the regulation of the angular position, which makes it possible for the outlet nozzles of two adjacent nozzle jet tools to interact in a targeted manner during the introduction of the injection medium into the soil.
  • the nozzle jets are preferably aligned against each other so that the pore water pressures of the individual jets add up, so that a base fracture of the soil occurs rather distant from the jet than when using only one jet or uncontrolled rotating jets. It can thus with a comparable center distance of the jet tools with the Invention, a higher degree of coverage of the column body can be achieved, or it can be set with a comparable degree of coverage of the column body to be produced, a greater distance of the jet stream tools.
  • adjusting and regulating the depth of two adjacent jet tools is such that, in a given depth position, a cutting jet of the first jet tool inserted into the ground has an at least partial overlap with a cutting jet of the second jet tool inserted into the ground in the longitudinal direction of the tool.
  • a maximum axial offset of the two opposite outlet nozzles there is still a partial overlapping and mixing of the injection medium injected by the two jet-jet tools into the bottom between them. This offset can be up to one meter, depending on the depth of the holes.
  • the injection medium can be matched to the background conditions and the desired work result or selected accordingly.
  • injection means for example, liquids, water, suspensions, cement paste, chemical agents in the form of solutions and / or emulsions can be used.
  • a suspension of water and binder is used for the solidification of the substrate.
  • a binder in particular mortar, cement, Utrafeinzemente, silicate gels or plastic solutions in question.
  • the jet can be encased via an annular nozzle in addition with compressed air.
  • the binder hardens, two semi-columnar, columnar, or lamellar floor improvement bodies are created which have an overlapping cut area. But it is also the use of pure water as injection conceivable.
  • the apparatus may also comprise three, four or more jet guns which simultaneously inject grout into the soil.
  • Each of the jet nozzles comprises at least one outlet nozzle, wherein two, three or more outlet nozzles per tool can be provided.
  • the arrangement or distribution of the outlet nozzles is preferably identical for all jet-blasting tools. This ensures that when using a plurality of superposed outlet nozzles of a tool these can be brought into a depth position with corresponding outlet nozzles of the adjacent tool and interact with them.
  • the tools to be used can be selected according to the ground properties, geometric shape and required quality of the column body.
  • the jet tools may have one or more injector jets alone. In particular, small to medium-sized column diameters can be produced with this method, which is also referred to as a single direct method. It is also possible to use tools for dispensing air-coated injection or suspension jets for cutting and mortaring the soil. To increase the erosion performance and thus the range, the injectant jet is additionally encased with compressed air via an annular nozzle. This process, also referred to as double direct method, is used in particular for lamellar walls, underpinsings and sealing soles. According to another option, tools for dispensing an additional water jet can also be used.
  • This process also known as the triple separation process, erodes the soil with an air-quenched high-speed water jet.
  • the cement suspension is added at the same time via an additional nozzle below the water nozzle.
  • a variant of the method can also work without air jacket.
  • Crucial in the use of the last method is that two identical tools are used, so that both the suspension jets and the water jets of the two tools are in each matching depths.
  • the injection agent is introduced into the soil while controlling the depth and the angular position of a first of the at least two jet tools depending on the depth and the angular position of a second of the at least two jet tools.
  • the method for regulating the depths of the two jet nozzles or the outlet nozzles preferably comprises the steps of: detecting a first depth size representing the depth position of the first jet tool by means of a first depth gauge; Detecting a second depth size representing the depth position of the second jet tool by means of a second depth gauge; Comparing the first and second depth sizes; and adjusting the drawing speed of the first jet tool to the drawing speed of the second jet tool.
  • the regulation of the angular position can preferably take place by the following method steps: detecting a first angular quantity representing the angular position of the first jet-jet tool by means of a first angle-detecting device; Detecting a second angular quantity representing the angular position of the second jet tool by means of a second angle detection device; Comparing the first and second angular sizes; and adjusting the angular position of the first jet tool to the angular position of the second jet tool.
  • the depth or the angular position of a tool can be quickly tracked in occurring deviation from the depth or angular position of the other tool.
  • the nozzle jets face each other simultaneously when passing through a full revolution (360 °) in a certain angular range, so that the pore water pressures of the individual jets add up and the injection medium can penetrate deeper into the soil.
  • the method can be used as needed for the production of any cubes.
  • the jet nozzles are continuously rotated about their respective axis of rotation.
  • semi-columnar bodies can be created by pivoting the jet tools about their axis of rotation during drilling or pulling.
  • Slats can be produced by partial introduction of injection medium or suspension by means of the jet-jet tool at different depths.
  • the first jet tool and the second jet tool are driven so that they rotate at the same angular speed and / or that they are driven synchronously and / or that the first jet tool and the second jet tool are driven so that they turn in opposite directions of rotation.
  • the ejection of the injection medium is preferably carried out by drawing the nozzle jet tools so that columnar cubatures are produced, or stepwise so that column sections are produced, or even only in a depth position in a predetermined grid, to produce a sealing sole. During the drawing, the depths and the angular positions of the at least two jet nozzles are continuously detected and controlled.
  • the control of the angular position of the at least two jet tools is such that the outlet nozzle of the first jet tool and the outlet nozzle of the second jet nozzle viewed in a cross-sectional plane through the tools, at least about mirror symmetry in each rotational position during the injection of injection agent into the ground are aligned to a running between the two tools center plane.
  • the rotational movement of the first jet tool may be defined by a first phase angle ( ⁇ 1) over time (t) and the rotational movement of the second jet tool may be defined by a second phase angle ( ⁇ 2) over time (t).
  • the angular position of the at least two jet guns is controlled such that the sine of the first and second phase angles ( ⁇ 1, ( ⁇ 2) is in phase (phase offset of 0 °) and the cosine of the first and second phase angles ( ⁇ 1, ( ⁇ 2) is a phase offset of
  • a tolerance-related offset for the sine and the cosine deviating from these phases is preferably within a range of at most ⁇ 10 °, in particular at most ⁇ 5 °, or even at most ⁇ 2.5 °.
  • the solution of the above-mentioned object further consists in an apparatus for the production of floor elements, comprising: at least two nozzle jet tools, which are rotationally drivable by a drive unit; each jet tool a depth gauge for determining the depth of the jet tool; each nozzle jet tool an angle detection device for determining an angular size representing the angular position of the jet tool; and an actuator, with the depth and angular position of at least one of the two jet tools being adjustable such that an exit nozzle of the first jet tool and an exit nozzle of the second jet tool are at least approximately in a plane perpendicular to the axes of rotation of the jet tools and simultaneously to one between the two Jet jet tools are directed lying floor area.
  • the device advantageously allows a targeted interaction of the nozzle jets of the two adjacent tools in a floor area, so that in this area a stronger water saturation and thus a higher erosion performance is given.
  • a control unit which independently regulates the depth and the angular position of a first jet tool in dependence on the depth and the angular position of a second of the at least two jet guns.
  • a single drive unit is provided for rotationally driving the at least two jet stream tools.
  • a distributor unit is arranged in the drive train between the drive unit and the at least two nozzle jet tools, which distributes an initiated drive torque to the at least two nozzle jet tools and which can drive at least two nozzle jet rods or tools in opposite directions of rotation.
  • This provides a simple and inexpensive solution for driving both jet stream tools. It is particularly favorable if the setting unit is arranged in the drive train between the drive unit and the at least two jet-jet tools, with which the angular position of at least one of the jet-jet tools can be individually changed.
  • the detection of the angular position of the two jet stream tools by means of a corresponding angle detection device.
  • This can have a rotation angle sensor per jet tool, which cooperates with a magnet on the other jet tool.
  • the magnet generates a magnetic moment perpendicular to the longitudinal axis of the tool, which is detected by the rotation angle sensor of the parallel jet tool.
  • the rotation angle sensor has a receiver which can detect three time-dependent magnetic field components Hx (t), Hy (t) and Hz (t).
  • the Figures 1 and 2 which will be described together below, show a drill 2 with a device 11 according to the invention in a first embodiment.
  • the drill 2 stands on a floor surface 3 and faces the viewer.
  • Attached to the drilling apparatus 2 is a Gurklermast 4, which vertically movable support means 5 for supporting two nozzle beam linkages 6, 7 for each jet nozzle 8, 9.
  • the jet tools 8, 9 each comprise one or more outlet nozzles 15, 16 via an injection means, as a suspension, and / or water and / or compressed air can be discharged through the nozzle jet linkage 6, 7 in the upcoming soil, and a drill bit 12, 13 which is arranged at the end of the respective jet beam linkage 6, 7.
  • the jet nozzles 8, 9 are each guided by a through-boring turret 23, by means of which the respective nozzle jet linkage 6, 7 about a rotational axis A1, A2 is rotationally driven.
  • the jet nozzles 8, 9 are parts of the device 11 according to the invention for the production of soil elements for ground improvement in the ground.
  • the nozzle beam linkage 6, 7 are connected via corresponding brackets or carriage with the broker 4 and movable relative to this.
  • a rotary drive 14 and a flushing head 22 are provided, which can both be moved vertically on the broker 4.
  • the rotary drive 14 is used for rotatable, respectively pivotable driving of the nozzle beam linkage 6, 7.
  • the flushing head 22, which is also referred to as a swivel, is used to connect lines for introducing suspension or water, possibly also air, the lines are not shown.
  • the respective rotary head 14 is lowered with the nozzle jet linkage 6, 7.
  • nozzle beam linkages 6, 7 provided with rotary actuators 14 for corresponding jet tools 8, 9.
  • the two jet stream tools 8, 9 are lowered together via the respective drill pipes 6, 7 and the associated rotary drives 14 in order to call off two boreholes 20, 21 which are parallel to one another.
  • the advantage of the present device 11 with two nozzle jet tools 8, 9 is that two bottom bodies 29, 30 can be produced simultaneously.
  • FIG. 1 shows the drill 2 in the starting position. It can be seen that the bottom layers 26, 27 below the railing top edge 3 have a different nature.
  • the condition is such that the upper bottom layer 26 is softer and should be improved by the addition of a binder, such as cement or Betonit, by means of jet-blasting.
  • the underlying lower soil layer 27 is a load-bearing or water-impermeable bottom, which is to serve as a lower edge for the soil element to be created.
  • the two juxtaposed jet stream tools 8, 9 are respectively sunk by their respective axis A1, A2 through the upper bottom layer 26, namely up to the intended final depth T, in the present case approximately through the boundary the adjacent layers 26, 27 is defined.
  • FIG. 2 shows the production of the two bottom bodies 29, 30, which may also be referred to as jet blasting bodies or cubatures.
  • the production of the two bottom bodies 29, 30, which may also be referred to as jet blasting bodies or cubatures, are accomplished by pulling the jet blasting tools 8, 9 upwards while rotating, or using one or more nozzles 15, 16 water or suspension escapes under high pressure and erodes the pending soil. Simultaneously with the erosion or cutting of the soil cement suspension is supplied under pressure and mixed by the process-related turbulence.
  • FIG. 2 are schematically the nozzle jets S1, S2 and lower parts of the already produced cubature recognizable.
  • This consists of two mutually centrally intersecting column bodies 29, 30.
  • the process is carried out from bottom to top through the upper bottom layer 26, starting from a lying slightly below the depth T depth until reaching the desired height of the jet body 29, 30th
  • the nozzle jet tools 6, 7 pulled upwards.
  • the peculiarity of the present method and the device is that in addition to the adjustment and control of the depth of the nozzle jet tools 8, 9 and the outlet nozzles 15, 16 and a regulation of the angular position of the jet tools is done, in such a way that the outlet nozzle 15 of the a nozzle jet tool 8 and the outlet nozzle 16 of the other jet tool 9 are simultaneously directed to a lying between these area of the soil.
  • This adjustment or regulation of the angular positions of the jet nozzles 8, 9 is in the FIGS. 3a to 3d which will be described together below.
  • the two nozzle jet tools 8, 9 are brought at least approximately into an angular position, such that the radial orientation of the outlet nozzle 15 of one nozzle jet tool 8 with respect to a center plane EM lying between the two tools is mirror-symmetrical to the radial orientation of the outlet nozzle 16 the other nozzle jet tool 9 is located.
  • the two outlet nozzles 15, 16 are aligned in the same direction.
  • the drive of the two jet stream tools 8, 9 takes place synchronously with the same angular velocity. In this case, the two jet stream tools are driven in opposite directions of rotation, that is, one of the two tools is rotated in the one and the other counterclockwise.
  • the angular position of the two jet-blasting tools 8, 9 is continuously controlled so as to ensure that the jet streams S1, S2 are simultaneously directed to the ground between the two tools and in the injection means, such as a suspension or water.
  • the rotational movement of the first jet tool can be defined by a first phase angle ⁇ 1 over time t and the rotational movement of the second jet tool can be defined by a second phase angle ⁇ 2 over time t.
  • the angular position of the jet nozzles 8, 9 is controlled so that the sine of the first and second phase angles ⁇ 1, ⁇ 2 is in phase and the cosine of the first and second phase angles ⁇ 1, ⁇ 2 has a phase offset of 180 °.
  • a tolerance-related offset for the sine and the cosine deviating from these phases is preferably within a range of at most ⁇ 10 °, in particular at most ⁇ 5 °, or even at most ⁇ 2.5 °.
  • FIG. 3a shows the outlet nozzles 15, 16 and the nozzle jets S1, S2 of the first and second jet tool 8, 9, which are rotated from a starting position (0 °) by a phase angle ⁇ 1, ⁇ 2 of magnitude about 115 °. Furthermore, the radius R1, R2 of the nozzle jets S1, S2 can be seen. Radially outside the jet zone ZS detected by the jet front, whose boundary is represented by the radius R, there is an adjacent water saturation zone. The water contained in the water saturation zone can be contained in the soil from the outset, for example, by a layer below the groundwater level, or it is introduced by the jet itself into the soil. In the latter case, the water saturation zone precedes the nozzle jet or the nozzle jet front.
  • both jet streams S1, S2 jointly act on the ground area 24 lying outside the jet zone ZS in the region of the center plane EM.
  • this floor area 24 which in FIG. 3a hatched, the pore water overpressures of the two jet streams S1 and S2 add up, since these act simultaneously, which leads to a particularly high erosion performance.
  • the erosion effects associated with pore water overpressures in the water saturation zone will be discussed in greater detail below.
  • FIG. 3b are the outlet nozzles 15, 16 and the nozzle jets S1, S2 of the first and second jet tool 8, 9 further rotated, by a phase angle ⁇ 1, ⁇ 2 of about 155 ° from the starting position (0 °).
  • the two jet streams S1, S2 lie approximately in a plane defined by the longitudinal axes of the tools plane EW.
  • the two cutting beams S1, S2 of the two jet nozzles 8, 9 meet each other; It comes to the so-called "bullet" through the soil between the two rays, and to the connection of the two cubatures together to a cubature.
  • Figure 3c shows the nozzle jet tools in a further rotated position in which the two jet streams S1, S2 just meet to produce a common cubature in the center plane EM.
  • the tools or the nozzle jets S1, S2 are rotated by phase angles ⁇ 1, ⁇ 2 of approximately 190 °, which corresponds to a rotation relative to the tool plane EW of approximately 210 °.
  • both jets S1 act , S2 in the region of the center plane EM to the outside of the jet zone ZS lying water saturation zone 25, which in Figure 3c hatched.
  • the pore water overpressures add up due to the joint action of the two jet streams S1 and S2, which leads to a particularly high erosion performance.
  • the nozzle jet tools 8, 9 are shown schematically after again reaching the starting position of the nozzle jets S1, S2, that is, after exactly one complete revolution (360 °). It can be seen the two cubatures 29, 30, which are connected to one another in the region of the median plane EM with the formation of constrictions 28 to one another. These constrictions 28 in the transition region of the two cubatures are also referred to as gussets.
  • the inventive method or device with synchronously rotating in a common depth and oppositely directed outlet nozzles 15, 16 is achieved in an advantageous manner that the constrictions 28 are particularly small or that the connection area between the two cubatures 29, 30 is particularly large.
  • FIGS. 4a, 4b . 5a and 5b The preferred regulatory steps for carrying out the method are in the FIGS. 4a, 4b . 5a and 5b and are described below.
  • step V1 the depths of the two jet tools 8, 9 are first determined in step V1, which can be done by measuring the insertion of the linkage 6, 7. Subsequently, the determined depth of the two jet stream tools 8, 9 are compared with each other (step V2). If the two nozzle jet tools 8, 9 or the outlet nozzles 15, 16, taking into account tolerances of up to a maximum of one meter, are at the same depth (step V3: position equal), the release for the production of the cubatures takes place in step V4. If, however, it is determined that the tools are not at a depth (step V5: position different), the lower nozzle jet linkage in step V6 is subtracted by the determined difference, and the depth position is determined again (step V1).
  • FIG. 5 The regulation of the depth position during the production of a cubature is in FIG. 5 shown. This takes place analogously to the depth control before the start of production, so that with regard to the common steps to the above description FIG. 4 Reference is made.
  • the same steps are provided with the same reference numerals as in FIG. 4 ,
  • One difference is that when a different position is detected (step V5) in the subsequent method step V6 ', an adjustment of the drawing speeds of the two jet-blasting tools is carried out. This can be done, as shown, by reducing the pull rate of the higher boom for a certain period of time, but also by increasing the pull rate of the lower boom.
  • FIG. 5a is shown a flow chart for the alignment of the jets before production of the cubature. This is similar to the setting of the depth before the start of production, so in this regard to the description figure 4a Reference is made.
  • step V1 the angular positions of the two jet tools are first determined in step V1, which can be done by appropriate markings on the linkage or angular position sensors. Subsequently, the determined angular positions of the two jet stream tools are compared with each other (step V2).
  • step V3 position OK
  • step V5 alignment not OK
  • step V6 orientation not OK
  • FIG. 5b The regulation of the angular position during the production of a cubature is in FIG. 5b shown. This takes place analogously to the angle adjustment before production, so that reference is made to the above description with regard to the common steps.
  • the same or corresponding steps are provided with the same reference numerals, as in FIG. 5a ,
  • One difference is that upon detection of a different angular position (step V5) in the subsequent method step V6, an adjustment of the rotational speeds of the two jet stream tools is carried out. This can, as shown, by reducing the rotational speed of the leading tool for a certain period of time, but also by increasing the rotational speed of the trailing tool.
  • the nozzle jet process begins only when both a matching depth (loop according to FIG. 4a ) as well as the desired angular position (loop according to FIG. 5a ) of the two jet tools abuts.
  • the regulation of the depth and angular position during the production of the cubature, that is during the introduction of the injection agent in the soil, is carried out continuously over time or at defined intervals until reaching the desired end position.
  • the nozzle jet S of a nozzle jet tool is shown schematically as an arrow, wherein the arrowhead represents the nozzle jet front or the radius to which the injection medium penetrates into the soil. Adjacent thereto radially outside is a water-saturated zone, which is in direct communication with the jet.
  • the pressure level of the water contained in the pores between individual grains extends from a maximum value directly at the nozzle jet front to about zero at the edge between the water saturation zone and the upcoming dry soil. This pore water pressure in the water saturation zone is therefore higher, the smaller the distance to the jet S is.
  • FIG. 6 shows qualitatively the course of the pore water pressure P at a nozzle jet S over the distance A to the nozzle jet front.
  • the distance A to the nozzle jet front is plotted on the X axis, while the Y axis indicates the pore water overpressure P.
  • the pore water pressures P1, P2 of the nozzle jets S1, S2 facing each other are added, so that an erosion of the ground is rather distant from the respective jet S1, S2 occurs, as when using only one jet or time-shifted action of two jets.
  • FIG. 7 qualitatively shows the course of the pore water overpressure P (Y axis) over the distance A to the nozzle jet front (X axis).
  • a nozzle jet S1 acting from the left is shown schematically with a first arrow, a nozzle jet S2 acting from the right with a second arrow.
  • a first solid curve shows the pore water pressure P1 (A) caused by the first jet S1.
  • a second solid curve shows the pore water pressure P2 (A), which is caused by the oppositely directed second jet S2.
  • the pore water pressures P1 (A), P2 (A) in the soil add up to a resulting pore water pressure Pges (A), which is shown by a dashed line.
  • the two jet streams S1, S2 are directed exactly opposite. It is understood, however, that these can also run at an angle to each other.
  • the two jet streams S1, S2 do not have to touch each other directly to achieve a higher separation efficiency. Rather, the addition of the pore water overpressures P1, P2 in the area adjoining the nozzle jet zone bottom area here causes an increased soil discharge by reducing the shear strength between the soil grains. This effect occurs by the method or device according to the invention, in particular in the so-called gusset area between two full columns simultaneously produced in overcut.
  • the gusset area is the area of constriction between the two overlapping bodies.
  • FIG. 8 shows an example of a jet stream grid for a produced from individual cubes seal bottom of a pit.

Abstract

The method involves adjusting depth (T) of jet tools (8, 9) such that exhaust nozzles of the respective jet tools lie in a plane that is perpendicular to longitudinal axes of the jet tools. The jet tools are rotated around the respective longitudinal axes for applying injection medium into ground based on the depth of the jet tools. Angle position of one of the jet tools is controlled such that the exhaust nozzles of the respective jet tools are aligned simultaneously on an area of the ground, where the area lies between the jet tools. An independent claim is also included for a device for producing parallel ground bodies.

Description

Die Erfindung betrifft ein Verfahren zur Bodenverbesserung mittels Düsenstrahltechnik. Hierfür wird der im Bereich des Bohrlochs anstehende Boden mit Hilfe eines Düsenstrahles aus Wasser oder Zementsuspension, der auch mit Luft ummantelt werden kann, aufgeschnitten bzw. erodiert. Der erodierte Boden wird umgelagert und mit Zementsuspension vermischt. Mit dem Düsenstrahlverfahren können Bauelemente verschiedenster geometrischer Formen hergestellt werden. Mit den hergestellten Bauelementen kann die Tragfähigkeit des Bodens verbessert, Setzungen vermieden bzw. Untergrund verfestigt werden, beispielsweise bei Unterfangungen; ebenso kann das Verfahren zur Abdichtung, beispielsweise unter Staudämmen oder von Baugrubensohlen, verwendet werden.The invention relates to a method for soil improvement by means of jet-jet technology. For this purpose, the pending in the field of the wellbore soil is cut or eroded using a jet of water or cement suspension, which can also be coated with air. The eroded soil is rearranged and mixed with cement slurry. With the nozzle jet process components of various geometric shapes can be produced. With the manufactured components, the load-bearing capacity of the soil can be improved, settlements avoided or ground can be solidified, for example in underpinning; likewise, the method can be used for sealing, for example under dams or excavation pits.

Aus der DE 199 60 023 A1 ist ein Düsenstrahlverfahren zur Bodenverbesserung bekannt, um dessen Tragfähigkeit zu erhöhen. Hierfür wird Bindemittelsuspension aus einer Vielzahl von über eine Bodenoberfläche nach einem Flächenraster verteilt angeordneten Bohrlöchern in den anstehenden Boden injiziert. Die Injektionen werden im Düsenstrahl unmittelbar nach dem Bohren aus einem entsprechend hergerichteten Bohrgestänge ausgebracht.From the DE 199 60 023 A1 For example, a jet-blast method for soil improvement is known to increase its carrying capacity. For this purpose, binder suspension is injected from a plurality of distributed over a soil surface on a surface grid arranged holes in the upcoming soil. The injections are applied in the jet stream immediately after drilling from a suitably prepared drill string.

Das sogenannte Hochdruckinjektionsverfahren, das auch unter Firmenbezeichnungen wie Soilcrete- oder Jet-Grouting-Verfahren bekannt ist, stellt eine Weiterentwicklung des Injektionsverfahrens dar. Hierfür wird ein Rohr unter Spülhilfe abgeteuft. Nach Erreichen der Endteufe werden durch am unteren Ende des Rohres befindliche seitliche Düsen energiereiche Schneidstrahlen aus einer Suspension mit hohen Drücken in den Boden gepresst und das Rohr mit langsamer Rotation oder Schwenkbewegung gezogen. Dabei entsteht eine säulenförmige Kubatur, die durch das eingebrachte Bindemittel zu einem festen Körper aushärtet. Durch verschiedene Anordnung von Düsen oder unterschiedliche Bewegungsmuster des Bohrwerkzeuges lassen sich diverse geometrische Elemente herstellen, wie Halbsäulen oder Lamellen.The so-called high-pressure injection process, which is also known under company names such as Soilcrete or Jet Grouting process, represents a further development of the injection process. For this purpose, a pipe is sunk under rinse aid. After reaching the final depth are located by located at the bottom of the tube side nozzles high-energy cutting jets from a suspension with high pressures pressed into the ground and pulled the tube with slow rotation or pivoting motion. This results in a columnar volume, which hardens by the introduced binder to a solid body. By different arrangement of nozzles or different movement patterns of the drilling tool, various geometric elements can be produced, such as half-columns or lamellae.

Aus der KR 10 2005 003 7911 A ist ein Verfahren und eine Vorrichtung mit Mehrfachdüsenstrahl bekannt. Hierfür ist ein doppelwandiges Gestänge vorgesehen, aus dem Zement aus mehreren seitlich angeordneten Düsen gleichzeitig in den Boden injiziert wird. Zur Herstellung einer wasserdichten Wand werden mehrere Körper benachbart zueinander nacheinander hergestellt.From the KR 10 2005 003 7911 A For example, a multiple nozzle jet method and apparatus is known. For this purpose, a double-walled linkage is provided, is injected from the cement from several laterally arranged nozzles simultaneously in the ground. To produce a watertight wall, several bodies are produced adjacent to one another in succession.

Eine bekannte Weiterentwicklung ist das Einsetzen von zwei parallelen Bohrwerkzeugen auf einem Trägergerät. Diese haben einen definierten Abstand zueinander und werden gleichzeitig angetrieben und abgeteuft. Dadurch lassen sich zwei Körper herstellen. In der Veröffentlichung "Jet grouting to construct a soilcrete wall using a twin stem system" von K. Andromalos und H. Gazaway auf dem Jahre 1989 ist diese Technologie als "Double Stem Method" beschrieben.A known further development is the insertion of two parallel drilling tools on a carrier device. These have a defined distance from each other and are simultaneously driven and sunk. As a result, two bodies can be produced. In the paper "Jet grouting to construct a soilcrete wall" by K. Andromalos and H. Gazaway in 1989, this technology is described as a "Double Stem Method".

Aus der US 5 589 775 ist ein Verfahren zum Ermitteln des Abstandes und der Ausrichtung eines ersten Bohrlochs von einem zweiten Bohrloch bekannt. Hierfür wird ein drehendes Magnetfeld erzeugt, dessen Amplitude und Phase mittels Sensoren ermittelt wird. Eine ähnliche Vorrichtung ist aus der DE 102 25 518 B3 bekannt.From the U.S. 5,589,775 For example, there is known a method for determining the distance and orientation of a first wellbore from a second wellbore. For this purpose, a rotating magnetic field is generated whose amplitude and phase is determined by means of sensors. A similar device is from the DE 102 25 518 B3 known.

Generell besteht bei der Herstellung von Dichtwänden oder Dichtsohlen mittels Düsenstrahlverfahren das Problem, dass zwischen zwei Düsenstrahlkörpern Bereiche des Bodens ungestrahlt bleiben. Diese sogenannten "Zwickel" können den Verbund zwischen zwei benachbarten Düsenstrahlkörpern reduzieren und haben damit einen Einfluss auf die Dichtigkeit, was von besonderer Wichtigkeit ist, wenn die Düsenstrahlkubatur abdichtend gegen drückendes Grundwasser wirken soll. Es besteht folglich ein Interesse daran, diesen Zwickel möglichst klein zu halten.In general, in the production of sealing walls or sealing soles by means of jet-jet processes, there is the problem that areas of the bottom remain unexposed between two jet-body radiators. These so-called "gussets" can reduce the bond between two adjacent jet streams and thus have an effect on the tightness, which is of particular importance when the Düsenstrahlkubatur is to act sealing against oppressive groundwater. There is therefore an interest in keeping this gusset as small as possible.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bodenverbesserung bereitzustellen, das eine besonders hohe Erosionsleistung bei der Herstellung der Düsenstrahlkörper bietet bzw. mit dem eine hohe Dichtigkeit zwischen zwei benachbarten Düsenstrahlkörpern erreicht werden kann. Die Aufgabe besteht weiter darin, eine entsprechende Vorrichtung vorzuschlagen, mit der sich Düsenstrahlkörperanordnungen effizient bzw. mit hoher Dichtigkeit zwischen den einzelnen Körpern herstellen lassen.The present invention has for its object to provide a method for soil improvement, which provides a particularly high erosion performance in the production of the jet body or with the high tightness between two adjacent jet bodies can be achieved. The object is further to propose a corresponding device, can be produced with the nozzle jet body assemblies efficiently or with high density between the individual bodies.

Die Lösung besteht in einem Verfahren zur Herstellung von Bodenelementen mittels zumindest zwei Düsenstrahlwerkzeugen, mit den Verfahrensschritten:

  • Abteufen und Einstellen der Tiefe der zumindest zwei Düsenstrahlwerkzeuge derart, dass eine Austrittsdüse eines ersten Düsenstrahlwerkzeugs und eine Austrittsdüse eines zweiten Düsenstrahlwerkzeugs zumindest etwa in einer zu den Düsenstrahlwerkzeugen senkrechten Ebene (E) liegen; und Drehen der zumindest zwei Düsenstrahlwerkzeuge um ihre jeweiligen Längsachse zum Einbringen von Injektionsmittel,
  • wie Wasser bzw. einer Suspension, in den Boden, wobei die Winkelstellung zumindest eines der Düsenstrahlwerkzeuge derart geregelt wird, dass die Austrittsdüse des ersten Düsenstrahlwerkzeuges und die Austrittsdüse des zweiten Düsenstrahlwerkzeuges gleichzeitig auf einen zwischen den beiden Düsenstrahlwerkzeugen liegenden Bereich des Bodens gerichtet sind.
The solution consists in a method for the production of floor elements by means of at least two nozzle jet tools, with the method steps:
  • Dumping and adjusting the depth of the at least two jet tools such that an exit nozzle of a first jet tool and an exit nozzle of a second jet tool are at least approximately in a plane (E) perpendicular to the jet tools; and rotating the at least two jet guns about their respective longitudinal axis for introduction of grout,
  • such as water or a suspension, in the ground, wherein the angular position of at least one of the jet tools is controlled so that the outlet nozzle of the first jet nozzle and the outlet nozzle of the second jet tool are simultaneously directed to a lying between the two nozzle jet tools area of the soil.

Der Vorteil liegt in der Regelung der Winkelstellung, welche ermöglicht, dass die Austrittsdüsen zweier benachbarter Düsenstrahlwerkzeuge beim Einbringen des Injektionsmittels in den Boden gezielt zusammenwirken. Durch das gleichzeitige Injizieren des Injektionsmittels in den zwischen den beiden Düsenwerkzeugen liegenden Bodenbereich werden hier höhere Porenwasserüberdrücke und eine stärkere Wassersättigung erreicht, was wiederum zu einer höheren Erosionsleistung im Zwickelbereich führt. Die Düsenstrahlen werden vorzugsweise so gegeneinander ausgerichtet, dass sich die Porenwasserdrücke der einzelnen Düsenstrahlen addieren, so dass ein Grundbruch des Bodens eher bzw. weiter entfernt vom Düsenstrahl auftritt, als bei Verwendung nur eines Strahls bzw. bei ungeregelt drehenden Düsenstrahlen. Es kann somit bei vergleichbarem Achsabstand der Düsenstrahlwerkzeuge mit der Erfindung ein höherer Überdeckungsgrad der Säulenkörper erreicht werden, oder es kann bei vergleichbarem Überdeckungsgrad der herzustellenden Säulenkörper ein größerer Abstand der Düsenstrahlwerkzeuge eingestellt werden.The advantage lies in the regulation of the angular position, which makes it possible for the outlet nozzles of two adjacent nozzle jet tools to interact in a targeted manner during the introduction of the injection medium into the soil. By simultaneously injecting the injection agent into the bottom area located between the two nozzle tools, higher pore water overpressures and a greater water saturation are achieved here, which in turn leads to a higher erosion performance in the gusset area. The nozzle jets are preferably aligned against each other so that the pore water pressures of the individual jets add up, so that a base fracture of the soil occurs rather distant from the jet than when using only one jet or uncontrolled rotating jets. It can thus with a comparable center distance of the jet tools with the Invention, a higher degree of coverage of the column body can be achieved, or it can be set with a comparable degree of coverage of the column body to be produced, a greater distance of the jet stream tools.

Mit "zumindest etwa in einer Ebene" in Bezug auf das Einstellen und Regeln einer einheitlichen Tiefe der zusammenwirkenden Austrittsdüsen zweier Düsenstrahlwerkzeuge ist gemeint, dass hiermit Mess- beziehungsweise Verfahrenstoleranzen mit berücksichtigt werden. Vorzugsweise erfolgt das Einstellen und Regeln der Tiefenlage zweier benachbarter Düsenstrahlwerkzeuge derart, dass, in einer gegebenen Tiefenposition, ein in den Boden eingebrachter Schneidstrahl des ersten Düsenstrahlwerkzeuges in Längsrichtung des Werkzeugs eine zumindest teilweise Überdeckung mit einem in den Boden eingebrachten Schneidstrahl des zweiten Düsenstrahlwerkzeuges hat. Mit anderen Worten soll auch bei einem maximalen axialen Versatz der beiden gegenüberliegenden Austrittsdüsen noch eine bereichsweise Überdeckung und Vermischung der von den beiden Düsenstrahlwerkzeugen in den dazwischen liegenden Boden injizierten Injektionsmittel erfolgen. Dieser Versatz kann je nach Tiefe der Bohrungen bis zu einem Meter betragen.By "at least approximately in one plane" with respect to the setting and regulation of a uniform depth of the cooperating exit nozzles of two jet tools, it is meant that measurement or process tolerances are taken into account. Preferably, adjusting and regulating the depth of two adjacent jet tools is such that, in a given depth position, a cutting jet of the first jet tool inserted into the ground has an at least partial overlap with a cutting jet of the second jet tool inserted into the ground in the longitudinal direction of the tool. In other words, even in the case of a maximum axial offset of the two opposite outlet nozzles, there is still a partial overlapping and mixing of the injection medium injected by the two jet-jet tools into the bottom between them. This offset can be up to one meter, depending on the depth of the holes.

Das Injektionsmittel kann auf die Untergrundverhältnisse und das gewünschte Arbeitsergebnis abgestimmt beziehungsweise danach ausgewählt werden. Als Injektionsmittel können beispielsweise Flüssigkeiten, Wasser, Suspensionen, Zementleim, chemische Mittel in Form von Lösungen und/oder Emulsionen verwendet werden. Für die Verfestigung des Untergrundes, beispielsweise bei Unterfangungen oder Abdichtungen, wird insbesondere eine Suspension aus Wasser und Bindemittel verwendet. Als Bindemittel kommen insbesondere Mörtel, Zement, Utrafeinzemente, Silikatgele oder auch Kunststofflösungen in Frage. Zur Erhöhung der Erosionsleistung und damit der Reichweite kann der Düsenstrahl über eine Ringdüse zusätzlich mit Druckluft ummantelt werden. Mit dem Aushärten des Bindemittels entstehen zwei halbsäulen-, säulen- oder lamellenförmige Bodenverbesserungskörper, welche einen sich überdeckenden Schnittbereich haben. Es ist aber auch die Verwendung von reinem Wasser als Injektionsmittel denkbar.The injection medium can be matched to the background conditions and the desired work result or selected accordingly. As injection means, for example, liquids, water, suspensions, cement paste, chemical agents in the form of solutions and / or emulsions can be used. For the solidification of the substrate, for example in underpinning or waterproofing, in particular a suspension of water and binder is used. As a binder, in particular mortar, cement, Utrafeinzemente, silicate gels or plastic solutions in question. To increase the erosion performance and thus the range of the jet can be encased via an annular nozzle in addition with compressed air. As the binder hardens, two semi-columnar, columnar, or lamellar floor improvement bodies are created which have an overlapping cut area. But it is also the use of pure water as injection conceivable.

Mit zumindest zwei Düsenstrahlwerkzeugen ist gemeint, dass die Vorrichtung auch drei, vier oder mehr Düsenstrahlwerkzeuge aufweisen kann, welche gleichzeitig Injektionsmittel in den Boden einbringen. Jedes der Düsenstrahlwerkzeuge umfasst zumindest eine Austrittsdüse, wobei auch zwei, drei oder mehr Austrittsdüsen je Werkzeug vorgesehen sein können. Die Anordnung bzw. Verteilung der Austrittsdüsen ist für alle Düsenstrahlwerkzeuge vorzugsweise identisch. So wird gewährleistet, dass bei Verwendung mehrerer übereinander angeordneter Austrittsdüsen des einen Werkzeuges diese in eine Tiefenposition mit entsprechenden Austrittsdüsen des benachbarten Werkzeuges gebracht und mit diesen zusammenwirken können.By at least two jet tools it is meant that the apparatus may also comprise three, four or more jet guns which simultaneously inject grout into the soil. Each of the jet nozzles comprises at least one outlet nozzle, wherein two, three or more outlet nozzles per tool can be provided. The arrangement or distribution of the outlet nozzles is preferably identical for all jet-blasting tools. This ensures that when using a plurality of superposed outlet nozzles of a tool these can be brought into a depth position with corresponding outlet nozzles of the adjacent tool and interact with them.

Die zu verwendenden Werkzeuge können je nach Baugrundeigenschaften, geometrischer Form und erforderlicher Qualität der Säulenkörper ausgewählt werden. Die Düsenstrahlwerkzeuge können einen oder mehrere Injektionsmittelstrahlen allein aufweisen. Mit diesem auch als Single-Direktverfahren bezeichneten Verfahren lassen sich insbesondere kleine bis mittlere Säulendurchmesser herstellen. Es können auch Werkzeuge zum Ausbringen von luftummantelten Injektionsmittel- beziehungsweise Suspensionsstrahlen zum Schneiden und Vermörteln des Bodens verwendet werden. Zur Erhöhung der Erosionsleistung und damit der Reichweite wird der Injektionsmittelstrahl über eine Ringdüse zusätzlich mit Druckluft ummantelt. Dieses auch als Double-Direktverfahren bezeichnete Verfahren wird insbesondere für Lamellenwände, Unterfangungen und Dichtsohlen eingesetzt. Nach einer weiteren Möglichkeit können auch Werkzeuge zum Ausbringen eines zusätzlichen Wasserstrahls eingesetzt werden. Mit diesem auch als Triple-Trennverfahren bezeichneten Verfahren wird der Boden mit einem luftummantelten Wasserstrahl mit hoher Austrittsgeschwindigkeit erodiert. Über eine zusätzliche Düse unterhalb der Wasserdüse wird die Zementsuspension zeitgleich zugegeben. Eine Variante des Verfahrens kann auch ohne Luftummantelung arbeiten. Entscheidend beim Einsatz des letzten Verfahrens ist, dass zwei gleiche Werkzeuge verwendet werden, so dass sowohl die Suspensionsstrahlen als auch die Wasserstrahlen der beiden Werkzeuge in jeweils übereinstimmenden Tiefen liegen.The tools to be used can be selected according to the ground properties, geometric shape and required quality of the column body. The jet tools may have one or more injector jets alone. In particular, small to medium-sized column diameters can be produced with this method, which is also referred to as a single direct method. It is also possible to use tools for dispensing air-coated injection or suspension jets for cutting and mortaring the soil. To increase the erosion performance and thus the range, the injectant jet is additionally encased with compressed air via an annular nozzle. This process, also referred to as double direct method, is used in particular for lamellar walls, underpinsings and sealing soles. According to another option, tools for dispensing an additional water jet can also be used. This process, also known as the triple separation process, erodes the soil with an air-quenched high-speed water jet. The cement suspension is added at the same time via an additional nozzle below the water nozzle. A variant of the method can also work without air jacket. Crucial in the use of the last method is that two identical tools are used, so that both the suspension jets and the water jets of the two tools are in each matching depths.

Nach einer bevorzugten Verfahrensführung wird das Injektionsmittel in den Boden unter Regelung der Tiefe und der Winkelstellung eines ersten der zumindest zwei Düsenstrahlwerkzeuge in Abhängigkeit von der Tiefe und der Winkelstellung eines zweiten der zumindest zwei Düsenstrahlwerkzeuge eingebracht.According to a preferred process control, the injection agent is introduced into the soil while controlling the depth and the angular position of a first of the at least two jet tools depending on the depth and the angular position of a second of the at least two jet tools.

Das Verfahren zur Regelung der Tiefen der beiden Düsenstrahlwerkzeuge bzw. der Austrittsdüsen umfasst vorzugsweise die Schritte: Erfassen einer die Tiefenlage des ersten Düsenstrahlwerkzeuges repräsentierenden ersten Tiefengröße mittels einer ersten Tiefenmesseinrichtung; Erfassen einer die Tiefenlage des zweiten Düsenstrahlwerkzeuges repräsentierenden zweiten Tiefengröße mittels einer zweiten Tiefenmesseinrichtung; Vergleichen der ersten und zweiten Tiefengröße; und Anpassen der Abteuf- bzw. Ziehgeschwindigkeit des ersten Düsenstrahlwerkzeuges an die Abteuf- bzw. Ziehgeschwindigkeit des zweiten Düsenstrahlwerkzeuges.The method for regulating the depths of the two jet nozzles or the outlet nozzles preferably comprises the steps of: detecting a first depth size representing the depth position of the first jet tool by means of a first depth gauge; Detecting a second depth size representing the depth position of the second jet tool by means of a second depth gauge; Comparing the first and second depth sizes; and adjusting the drawing speed of the first jet tool to the drawing speed of the second jet tool.

Die Regelung der Winkelstellung kann vorzugsweise durch folgende Verfahrensschritte erfolgen: Erfassen einer die Winkelposition des ersten Düsenstrahlwerkzeuges repräsentierenden ersten Winkelgröße mittels einer ersten Winkelerfassungseinrichtung; Erfassen einer die Winkelposition des zweiten Düsenstrahlwerkzeuges repräsentierenden zweiten Winkelgröße mittels einer zweiten Winkelerfassungseinrichtung; Vergleichen der ersten und zweiten Winkelgrößen; und Anpassen der Winkelposition des ersten Düsenstrahlwerkzeuges an die Winkelposition des zweiten Düsenstrahlwerkzeuges.The regulation of the angular position can preferably take place by the following method steps: detecting a first angular quantity representing the angular position of the first jet-jet tool by means of a first angle-detecting device; Detecting a second angular quantity representing the angular position of the second jet tool by means of a second angle detection device; Comparing the first and second angular sizes; and adjusting the angular position of the first jet tool to the angular position of the second jet tool.

Durch entsprechende Regelkreise können die Tiefe bzw. die Winkelstellung des einen Werkzeuges bei auftretender Abweichung von der Tiefe bzw. Winkelstellung des anderen Werkzeuges schnell nachgeführt werden. Auf diese Weise wird in vorteilhafter Weise sichergestellt, dass die Injektionsmittel in der gleichen Tiefe und in synchronisierter Winkelstellung der beiden Düsenstrahlwerkzeuge in den Boden injiziert wird. Die Düsenstrahlen weisen beim Durchlaufen einer vollen Umdrehung (360°) in einem bestimmten Winkelbereich gleichzeitig aufeinander zu, so dass sich die Porenwasserdrücke der einzelnen Düsenstrahlen addieren und das Injektionsmittel tiefer in den Boden eindringen kann.By appropriate control loops, the depth or the angular position of a tool can be quickly tracked in occurring deviation from the depth or angular position of the other tool. In this way, it is advantageously ensured that the injection medium is injected into the ground at the same depth and in synchronized angular position of the two jet stream tools. The nozzle jets face each other simultaneously when passing through a full revolution (360 °) in a certain angular range, so that the pore water pressures of the individual jets add up and the injection medium can penetrate deeper into the soil.

Es versteht sich, dass das Verfahren je nach Bedarf für die Herstellung beliebiger Kubaturen verwendet werden kann. Zur Erzeugung von Säulen beziehungsweise Zylindern werden die Düsenstrahlwerkzeuge fortlaufend um ihre jeweilige Drehachse gedreht. Entsprechend können halbsäulenartige Körper durch Hin- und Herschwenken der Düsenstrahlwerkzeuge um ihre Drehachse während des Abteufens bzw. während des Ziehens erzeugt werden. Lamellen lassen sich durch partielles Einbringen von Injektionsmittel beziehungsweise Suspension mittels des Düsenstrahlwerkzeugs in verschiedenen Tiefen herstellen.It is understood that the method can be used as needed for the production of any cubes. For generating columns or cylinders, the jet nozzles are continuously rotated about their respective axis of rotation. Similarly, semi-columnar bodies can be created by pivoting the jet tools about their axis of rotation during drilling or pulling. Slats can be produced by partial introduction of injection medium or suspension by means of the jet-jet tool at different depths.

Nach einer günstigen Verfahrensführung ist vorgesehen, dass das erste Düsenstrahlwerkzeug und das zweite Düsenstrahlwerkzeug derart angetrieben werden, dass sie mit derselben Winkelgeschwindigkeit drehen und/oder dass sie synchron angetrieben werden und/oder dass das erste Düsenstrahlwerkzeug und das zweite Düsenstrahlwerkzeug derart angetrieben werden, dass sie in entgegengesetzte Drehrichtungen drehen.According to a favorable procedure, it is provided that the first jet tool and the second jet tool are driven so that they rotate at the same angular speed and / or that they are driven synchronously and / or that the first jet tool and the second jet tool are driven so that they turn in opposite directions of rotation.

Das Ausbringen des Injektionsmittels erfolgt vorzugsweise beim Ziehen der Düsenstrahlwerkzeuge, so dass säulenförmige Kubaturen hergestellt werden, oder schrittweise, so dass Säulenabschnitte hergestellt werden, oder auch nur in einer Tiefenlage in einem vorgegebenen Raster, um eine abdichtende Sohle herzustellen. Während des Ziehens werden die Tiefen und die Winkelstellungen der zumindest zwei Düsenstrahlwerkzeuge kontinuierlich erfasst und geregelt.The ejection of the injection medium is preferably carried out by drawing the nozzle jet tools so that columnar cubatures are produced, or stepwise so that column sections are produced, or even only in a depth position in a predetermined grid, to produce a sealing sole. During the drawing, the depths and the angular positions of the at least two jet nozzles are continuously detected and controlled.

Nach einer bevorzugten Verfahrensführung erfolgt das Regeln der Winkelstellung der zumindest zwei Düsenstrahlwerkzeuge derart, dass die Austrittsdüse des ersten Düsenstrahlwerkzeuges und die Austrittsdüse des zweiten Düsenstrahlwerkzeuges, in einer Querschnittsebene durch die Werkzeuge betrachtet, in jeder Drehstellung während des Einbringens von Injektionsmittel in den Boden zumindest etwa spiegelsymmetrisch zu einer zwischen den beiden Werkzeugen verlaufenden Mittelebene ausgerichtet sind.According to a preferred method, the control of the angular position of the at least two jet tools is such that the outlet nozzle of the first jet tool and the outlet nozzle of the second jet nozzle viewed in a cross-sectional plane through the tools, at least about mirror symmetry in each rotational position during the injection of injection agent into the ground are aligned to a running between the two tools center plane.

Die Drehbewegung des ersten Düsenstrahlwerkzeuges kann durch einen ersten Phasenwinkel (ϕ1) über der Zeit (t) und die Drehbewegung des zweiten Düsenstrahlwerkzeuges kann durch einen zweiten Phasenwinkel (ϕ2) über der Zeit (t) definiert werden. Vorzugsweise wird die Winkelstellung der zumindest zwei Düsenstrahlwerkzeuge derart geregelt, dass der Sinus der ersten und zweiten Phasenwinkel (ϕ1, (ϕ2) phasengleich ist (Phasenversatz von 0°) und der Kosinus der ersten und zweiten Phasenwinkel (ϕ1, (ϕ2) einen Phasenversatz von 180° aufweist. Ein von diesen Phasen abweichender toleranzbedingter Versatz für den Sinus und den Kosinus liegt vorzugsweise innerhalb eines Bereichs von jeweils höchstens ± 10°, insbesondere von höchstens ± 5°, oder sogar von höchstens ± 2,5°.The rotational movement of the first jet tool may be defined by a first phase angle (φ1) over time (t) and the rotational movement of the second jet tool may be defined by a second phase angle (φ2) over time (t). Preferably, the angular position of the at least two jet guns is controlled such that the sine of the first and second phase angles (φ1, (φ2) is in phase (phase offset of 0 °) and the cosine of the first and second phase angles (φ1, (φ2) is a phase offset of A tolerance-related offset for the sine and the cosine deviating from these phases is preferably within a range of at most ± 10 °, in particular at most ± 5 °, or even at most ± 2.5 °.

Die Lösung der obengenannten Aufgabe besteht weiter in einer Vorrichtung zur Herstellung von Bodenelementen, umfassend: zumindest zwei Düsenstrahlwerkzeuge, die von einer Antriebseinheit drehend antreibbar sind; je Düsenstrahlwerkzeug einen Tiefenmesser zur Ermittlung der Tiefe des Düsenstrahlwerkzeuges; je Düsenstrahlwerkzeug einen Winkelerfassungseinrichtung zur Ermittlung einer die Winkelstellung des Düsenstrahlwerkzeuges repräsentierenden Winkelgröße; und eine Stelleinheit, mit der Tiefe und die Winkelstellung zumindest eines der beiden Düsenstrahlwerkzeuge derart einstellbar ist, dass eine Austrittsdüse des ersten Düsenstrahlwerkzeugs und eine Austrittsdüse des zweiten Düsenstrahlwerkzeugs zumindest etwa in einer zu den Drehachsen der Düsenstrahlwerkzeuge senkrechten Ebene liegen und gleichzeitig auf einen zwischen den beiden Düsenstrahlwerkzeugen liegenden Bodenbereich gerichtet sind.The solution of the above-mentioned object further consists in an apparatus for the production of floor elements, comprising: at least two nozzle jet tools, which are rotationally drivable by a drive unit; each jet tool a depth gauge for determining the depth of the jet tool; each nozzle jet tool an angle detection device for determining an angular size representing the angular position of the jet tool; and an actuator, with the depth and angular position of at least one of the two jet tools being adjustable such that an exit nozzle of the first jet tool and an exit nozzle of the second jet tool are at least approximately in a plane perpendicular to the axes of rotation of the jet tools and simultaneously to one between the two Jet jet tools are directed lying floor area.

Mit der erfindungsgemäßen Vorrichtung mit Tiefenmessern, Winkelmessern und Stelleinheit zur Regelung bzw. Anpassung der Tiefe und Winkelstellung der beiden Werkzeuge ergeben sich die im Zusammenhang mit dem vorgeschlagenen Verfahren obengenannten Vorteile, auf die insofern Bezug genommen wird. Im Ergebnis ermöglicht die Vorrichtung in vorteilhafter Weise ein gezieltes Zusammenwirken der Düsenstrahlen der beiden benachbarten Werkzeuge in einem Bodenbereich, so dass in diesem Bereich eine stärkere Wassersättigung und damit eine höhere Erosionsleistung gegeben ist. Für einen automatisierten Prozess ist es besonders günstig, wenn eine Regeleinheit vorgesehen ist, welche die Tiefe und die Winkelstellung eines ersten Düsenstrahlwerkzeugs in Abhängigkeit von der Tiefe und der Winkelstellung eines zweiten der zumindest zwei Düsenstrahlwerkzeuge selbstständig regelt.With the device according to the invention with depth gauges, angle gauges and adjusting unit for regulating or adjusting the depth and angular position of the two tools, the advantages mentioned above in connection with the proposed method result, to which reference is made in this respect. As a result, the device advantageously allows a targeted interaction of the nozzle jets of the two adjacent tools in a floor area, so that in this area a stronger water saturation and thus a higher erosion performance is given. For an automated process it is particularly favorable when a control unit is provided, which independently regulates the depth and the angular position of a first jet tool in dependence on the depth and the angular position of a second of the at least two jet guns.

Nach einer bevorzugten Ausgestaltung ist eine einzige Antriebseinheit zum drehenden Antreiben der zumindest zwei Düsenstrahlwerkzeuge vorgesehen. Vorzugsweise ist im Antriebsstrang zwischen der Antriebseinheit und den zumindest zwei Düsenstrahlwerkzeugen eine Verteilereinheit angeordnet, welche ein eingeleitetes Antriebsmoment auf die zumindest zwei Düsenstrahlwerkzeuge aufteilt und die zumindest zwei Düsenstrahlgestänge bzw. -werkzeuge in entgegengesetzte Drehrichtungen antreiben kann. Hiermit wird eine einfache und kostengünstige Lösung zum Antreiben beider Düsenstrahlwerkzeuge zur Verfügung gestellt. Besonders günstig ist es, wenn die Stelleinheit im Antriebsstrang zwischen der Antriebseinheit und den zumindest zwei Düsenstrahlwerkzeugen angeordnet ist, mit der die Winkelstellung zumindest eines der Düsenstrahlwerkzeuge individuell änderbar ist.According to a preferred embodiment, a single drive unit is provided for rotationally driving the at least two jet stream tools. Preferably, a distributor unit is arranged in the drive train between the drive unit and the at least two nozzle jet tools, which distributes an initiated drive torque to the at least two nozzle jet tools and which can drive at least two nozzle jet rods or tools in opposite directions of rotation. This provides a simple and inexpensive solution for driving both jet stream tools. It is particularly favorable if the setting unit is arranged in the drive train between the drive unit and the at least two jet-jet tools, with which the angular position of at least one of the jet-jet tools can be individually changed.

Die Erfassung der Winkelstellung der beiden Düsenstrahlwerkzeuge erfolgt mittels einer entsprechenden Winkelerfassungseinrichtung. Diese kann je Düsenstrahlwerkzeug einen Drehwinkelsensor aufweisen, welcher mit einem Magneten auf dem anderen Düsenstrahlwerkzeug zusammenwirkt. Der Magnet erzeugt ein senkrecht auf der Längsachse des Werkzeugs stehendes magnetisches Moment, welches von dem Drehwinkelsensor des parallelen Düsenstrahlwerkzeugs erfasst wird. Hierfür weist der Drehwinkelsensor einen Empfänger auf, der drei zeitabhängige Magnetfeldkomponenten Hx(t), Hy(t) und Hz(t) erkennen kann.The detection of the angular position of the two jet stream tools by means of a corresponding angle detection device. This can have a rotation angle sensor per jet tool, which cooperates with a magnet on the other jet tool. The magnet generates a magnetic moment perpendicular to the longitudinal axis of the tool, which is detected by the rotation angle sensor of the parallel jet tool. For this purpose, the rotation angle sensor has a receiver which can detect three time-dependent magnetic field components Hx (t), Hy (t) and Hz (t).

Bevorzugte Ausführungsbeispiele der Erfindung werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:

Figur 1
ein Bohrgerät mit einer erfindungsgemäßen Vorrichtung zur Herstellung von Bodenelementen zur Baugrundverbesserung in Frontalansicht vor dem Abteufen;
Figur 2
das Bohrgerät nach Figur 1 während des Ziehens der Düsenstrahlwerkzeuge und unter gleichzeitigem Einbringen eines Injektionsmittels in den Boden;
Figur 3
die erfindungsgemäße Vorrichtung nach Figur 2 im Querschnitt durch die Düsenstrahlwerkzeuge während der Durchführung des erfindungsgemäßen Verfahrens
  • a) zu einem ersten Zeitpunkt (t1) mit ersten Winkelstellungen der Düsenstrahlwerkzeuge;
  • b) zu einem zweiten Zeitpunkt (t2) mit zweiten Winkelstellungen der Düsenstrahlwerkzeuge;
  • c) zu einem dritten Zeitpunkt (t3) mit dritten Winkelstellungen der Düsenstrahlwerkzeuge;
  • d) zu einem vierten Zeitpunkt (t4) mit vierten Winkelstellungen der Düsenstrahlwerkzeuge;
Figur 4
ein Ablaufschema zur Tiefenregelung
  • a) vor Herstellungsbeginn einer Kubatur;
  • b) während der Herstellung einer Kubatur;
Figur 5
ein Ablaufschema zur Winkelstellungsregelung
  • a) vor Herstellungsbeginn einer Kubatur;
  • b) während der Herstellung einer Kubatur;
Figur 6
schematisch den Verlauf des Porenwasserüberdrucks bei einem Düsenstrahl eines Düsenstrahlwerkzeugs;
Figur 7
schematisch den Verlauf der Porenwasserüberdrücke bei gegengleich ausgerichteten Düsenstrahlen gemäß dem erfindungsgemäßen Verfahren; und
Figur 8
ein Düsenstrahlraster für eine Dichtsohle einer Baugrube hergestellt nach dem erfindungsgemäßen Verfahren in Draufsicht.
Preferred embodiments of the invention are explained below with reference to the drawing figures. Hereby shows:
FIG. 1
a drill with a device according to the invention for the production of soil elements for ground improvement in frontal view before the sinking;
FIG. 2
the drill after FIG. 1 during the pulling of the jet stream tools while simultaneously injecting an injection agent into the soil;
FIG. 3
the device according to the invention FIG. 2 in cross-section through the nozzle jet tools during the implementation of the method according to the invention
  • a) at a first time (t1) with first angular positions of the jet nozzles;
  • b) at a second time (t2) with second angular positions of the jet nozzles;
  • c) at a third time (t3) with third angular positions of the jet nozzles;
  • d) at a fourth time (t4) with fourth angular positions of the jet nozzles;
FIG. 4
a flow chart for depth control
  • a) before the start of production of a volume;
  • b) during the production of a cubature;
FIG. 5
a flow chart for angular position control
  • a) before the start of production of a volume;
  • b) during the production of a cubature;
FIG. 6
schematically the course of the pore water overpressure in a jet of a jet tool;
FIG. 7
schematically the course of the pore water overpressures with counter-aligned nozzle jets according to the method of the invention; and
FIG. 8
a nozzle jet grid for a sealing sole of a pit produced by the inventive method in plan view.

Die Figuren 1 und 2, welche im folgenden gemeinsam beschrieben werden, zeigen ein Bohrgerät 2 mit einer erfindungsgemäßen Vorrichtung 11 in einer ersten Ausführungsform. Das Bohrgerät 2 steht auf einer Bodenoberfläche 3 und ist dem Betrachter zugewandt. An dem Bohrgerät 2 ist ein Mäklermast 4 befestigt, welcher vertikal verfahrbare Tragvorrichtungen 5 zum Tragen von zwei Düsenstrahlgestängen 6, 7 für jeweils ein Düsenstrahlwerkzeug 8, 9. Die Düsenstrahlwerkzeuge 8, 9 umfassen jeweils ein oder mehrere Austrittsdüsen 15, 16 über die ein Injektionsmittel, wie eine Suspension, und/oder Wasser und/oder Druckluft durch das Düsenstrahlgestänge 6, 7 in den anstehenden Boden ausgebracht werden kann, sowie eine Bohrkrone 12, 13 die am Ende des jeweiligen Düsenstrahlgestänges 6, 7 angeordnet ist. Die Düsenstrahlwerkzeuge 8, 9 sind jeweils durch einen Durchsteckdrehkopf 23 geführt, mittels dem das jeweilige Düsenstrahlgestänge 6, 7 um eine Drehachse A1, A2 drehend antreibbar ist. Die Düsenstrahlwerkzeuge 8, 9 sind Teile der erfindungsgemäßen Vorrichtung 11 zur Herstellung von Bodenelementen zur Baugrundverbesserung im Boden.The Figures 1 and 2 , which will be described together below, show a drill 2 with a device 11 according to the invention in a first embodiment. The drill 2 stands on a floor surface 3 and faces the viewer. Attached to the drilling apparatus 2 is a Mäklermast 4, which vertically movable support means 5 for supporting two nozzle beam linkages 6, 7 for each jet nozzle 8, 9. The jet tools 8, 9 each comprise one or more outlet nozzles 15, 16 via an injection means, as a suspension, and / or water and / or compressed air can be discharged through the nozzle jet linkage 6, 7 in the upcoming soil, and a drill bit 12, 13 which is arranged at the end of the respective jet beam linkage 6, 7. The jet nozzles 8, 9 are each guided by a through-boring turret 23, by means of which the respective nozzle jet linkage 6, 7 about a rotational axis A1, A2 is rotationally driven. The jet nozzles 8, 9 are parts of the device 11 according to the invention for the production of soil elements for ground improvement in the ground.

Das Düsenstrahlgestänge 6, 7 sind über entsprechende Halterungen bzw. Schlitten mit dem Mäkler 4 verbunden und gegenüber diesem verfahrbar. Am oberen Ende der Düsenstrahlgestänge 6, 7 sind ein Drehantrieb 14 und ein Spülkopf 22 vorgesehen, welche sich beide vertikal am Mäkler 4 verfahren lassen. Der Drehantrieb 14 dient zum drehbaren, respektive schwenkbaren Antreiben des Düsenstrahlgestänges 6, 7. Der Spülkopf 22, der auch als Swivel bezeichnet wird, dient zum Anschließen von Leitungen zum Einleiten von Suspension beziehungsweise Wasser, gegebenenfalls auch Luft, wobei die Leitungen nicht dargestellt sind. Zum Abteufen eines Bohrlochs in einen Baugrund werden der jeweilige Drehkopf 14 mit dem Düsenstrahlgestänge 6, 7 abgesenkt.The nozzle beam linkage 6, 7 are connected via corresponding brackets or carriage with the broker 4 and movable relative to this. At the upper end of the nozzle jet linkage 6, 7, a rotary drive 14 and a flushing head 22 are provided, which can both be moved vertically on the broker 4. The rotary drive 14 is used for rotatable, respectively pivotable driving of the nozzle beam linkage 6, 7. The flushing head 22, which is also referred to as a swivel, is used to connect lines for introducing suspension or water, possibly also air, the lines are not shown. To sink a borehole into a subsoil, the respective rotary head 14 is lowered with the nozzle jet linkage 6, 7.

Es sind zwei Düsenstrahlgestänge 6, 7 mit Drehantrieben 14 für entsprechende Düsenstrahlwerkzeuge 8, 9 vorgesehen. Die zwei Düsenstrahlwerkzeuge 8, 9 werden über die jeweiligen Bohrgestänge 6, 7 und die zugehörigen Drehantriebe 14 gemeinsam abgesenkt, um zwei zueinander parallele Bohrlöcher 20, 21 abzuteufen. Der Vorteil der vorliegenden Vorrichtung 11 mit zwei Düsenstrahlwerkzeugen 8, 9 besteht darin, dass zwei Bodenkörper 29, 30 gleichzeitig hergestellt werden können.There are two nozzle beam linkages 6, 7 provided with rotary actuators 14 for corresponding jet tools 8, 9. The two jet stream tools 8, 9 are lowered together via the respective drill pipes 6, 7 and the associated rotary drives 14 in order to call off two boreholes 20, 21 which are parallel to one another. The advantage of the present device 11 with two nozzle jet tools 8, 9 is that two bottom bodies 29, 30 can be produced simultaneously.

Im Folgenden wird das erfindungsgemäße Verfahren anhand der Figuren 1, 2 und 3a bis 3d erläutert. Figur 1 zeigt das Bohrgerät 2 in der Ausgangsstellung. Es ist erkennbar, dass die unter der Geländeroberkante 3 liegenden Bodenschichten 26, 27 eine unterschiedliche Beschaffenheit aufweisen. Beispielhaft ist die Beschaffenheit vorliegend so, dass die obere Bodenschicht 26 weicher ist und unter Zugabe von Bindemittel, beispielsweise Zement oder Betonit, mittels Düsenstrahlverfahren verbessert werden soll. Die darunter liegende untere Bodenschicht 27 stellt einen tragfähigen oder wasserundurchlässigen Boden dar, der als Unterkante für das zu erstellende Bodenelement dienen soll.In the following, the inventive method is based on the FIGS. 1, 2 and 3a to 3d explained. FIG. 1 shows the drill 2 in the starting position. It can be seen that the bottom layers 26, 27 below the railing top edge 3 have a different nature. By way of example, the condition is such that the upper bottom layer 26 is softer and should be improved by the addition of a binder, such as cement or Betonit, by means of jet-blasting. The underlying lower soil layer 27 is a load-bearing or water-impermeable bottom, which is to serve as a lower edge for the soil element to be created.

Im ersten Schritt, welcher nicht gesondert dargestellt ist, werden die zwei nebeneinander befindlichen Düsenstrahlwerkzeuge 8, 9 jeweils unter Drehbewegung um ihre jeweilige Achse A1, A2 durch die obere Bodenschicht 26 abgeteuft, und zwar bis zur vorgesehenen Endtiefe T, die vorliegend etwa durch die Grenze der aneinander liegenden Schichten 26, 27 definiert ist.In the first step, which is not shown separately, the two juxtaposed jet stream tools 8, 9 are respectively sunk by their respective axis A1, A2 through the upper bottom layer 26, namely up to the intended final depth T, in the present case approximately through the boundary the adjacent layers 26, 27 is defined.

Nachdem die Düsenstrahlwerkzeuge 8, 9 die gewünschte Endtiefe T erreicht haben und die Bohrungen 20, 21 bis zur untersten Bodenschicht 27 abgeteuft worden sind, werden mittels der Düsenstrahlwerkzeuge 8, 9 zwei Bodenkörper 29, 30 gleichzeitig hergestellt. Dieser zweite Verfahrensschritt ist in Figur 2 gezeigt. Das Herstellen der zwei Bodenkörper 29, 30, die auch als Düsenstrahlkörper oder Kubaturen bezeichnet werden können, werden dadurch bewerkstelligt, dass die Düsenstrahlwerkzeuge 8, 9 unter Drehung, bzw. unter Durchführung von Schwenkbewegungen, nach oben gezogen werden, wobei aus ein oder mehreren Düsen 15, 16 Wasser beziehungsweise Suspension unter hohem Druck austritt und den anstehenden Boden erodiert. Gleichzeitig mit dem Erodieren bzw. Aufschneiden des Bodens wird Zementsuspension unter Druck zugeführt und durch die verfahrensbedingten Turbulenzen eingemischt. In Figur 2 sind schematisch die Düsenstrahlen S1, S2 sowie untere Teile der bereits hergestellten Kubatur erkennbar. Diese besteht aus zwei einander sich mittig überschneidenden Säulenkörpern 29, 30. Die Verfahrensführung erfolgt von unten nach oben durch die obere Bodenschicht 26, und zwar von einer etwas unterhalb der Tiefe T liegenden Tiefe ausgehend bis zum Erreichen der gewünschten Höhe der Düsenstrahlkörper 29, 30. Nach der Herstellung der Düsenstrahlkörper 29, 30 werden im anschließenden Schritt, welcher nicht gesondert dargestellt ist, die Düsenstrahlwerkzeuge 6, 7 nach oben gezogen.After the nozzle jet tools 8, 9 have reached the desired final depth T and the bores 20, 21 have been sunk down to the lowest soil layer 27, two bottom bodies 29, 30 are produced simultaneously by means of the jet nozzles 8, 9. This second process step is in FIG. 2 shown. The production of the two bottom bodies 29, 30, which may also be referred to as jet blasting bodies or cubatures, are accomplished by pulling the jet blasting tools 8, 9 upwards while rotating, or using one or more nozzles 15, 16 water or suspension escapes under high pressure and erodes the pending soil. Simultaneously with the erosion or cutting of the soil cement suspension is supplied under pressure and mixed by the process-related turbulence. In FIG. 2 are schematically the nozzle jets S1, S2 and lower parts of the already produced cubature recognizable. This consists of two mutually centrally intersecting column bodies 29, 30. The process is carried out from bottom to top through the upper bottom layer 26, starting from a lying slightly below the depth T depth until reaching the desired height of the jet body 29, 30th After the preparation of the jet body 29, 30 are in the subsequent step, which is not shown separately, the nozzle jet tools 6, 7 pulled upwards.

Die Besonderheit des vorliegenden Verfahrens bzw. der Vorrichtung liegt darin, dass neben der Einstellung und Regelung der Tiefenlage der Düsenstrahlwerkzeuge 8, 9 bzw. der Austrittsdüsen 15, 16 auch eine Regelung der Winkelstellung der Düsenstrahlwerkzeuge erfolgt, und zwar derart, dass die Austrittsdüse 15 des einen Düsenstrahlwerkzeugs 8 und die Austrittsdüse 16 des anderen Düsenstrahlwerkzeugs 9 gleichzeitig auf einen zwischen diesen liegenden Bereich des Bodens gerichtet sind. Diese Einstellung bzw. Regelung der Winkelpositionen der Düsenstrahlwerkzeuge 8, 9 ist in den Figuren 3a bis 3d gezeigt, welche nachstehend gemeinsam beschrieben werden.The peculiarity of the present method and the device is that in addition to the adjustment and control of the depth of the nozzle jet tools 8, 9 and the outlet nozzles 15, 16 and a regulation of the angular position of the jet tools is done, in such a way that the outlet nozzle 15 of the a nozzle jet tool 8 and the outlet nozzle 16 of the other jet tool 9 are simultaneously directed to a lying between these area of the soil. This adjustment or regulation of the angular positions of the jet nozzles 8, 9 is in the FIGS. 3a to 3d which will be described together below.

Es ist erkennbar, dass die beiden Düsenstrahlwerkzeuge 8, 9 zumindest etwa in eine Winkelstellung gebracht werden, derart, dass die radiale Ausrichtung der Austrittsdüse 15 des einen Düsenstrahlwerkzeugs 8 in Bezug auf eine zwischen den beiden Werkzeugen liegende Mittelebene EM spiegelsymmetrisch zur radialen Ausrichtung der Austrittsdüse 16 des anderen Düsenstrahlwerkzeugs 9 liegt. Vor Beginn des Düsenstrahlverfahrens werden die beiden Austrittsdüsen 15, 16 entsprechend gegengleich ausgerichtet. Der Antrieb der beiden Düsenstrahlwerkzeuge 8, 9 erfolgt synchron mit derselben Winkelgeschwindigkeit. Dabei werden die beiden Düsenstrahlwerkzeuge in entgegengesetzte Drehrichtungen angetrieben, das heißt eines der beiden Werkzeuge wird im und das andere gegen den Uhrzeigersinn gedreht. Während der Durchführung des Düsenstrahlverfahrens wird die Winkelstellung der zwei Düsenstrahlwerkzeuge 8, 9 kontinuierlich geregelt, um beim Herstellen der Kubatur zu gewährleisten, dass die Düsenstrahlen S1, S2 gleichzeitig auf den zwischen den beiden Werkzeugen liegenden Boden gerichtet sind und in diesen Injektionsmittel, wie eine Suspension oder Wasser, einbringen. Die Drehbewegung des ersten Düsenstrahlwerkzeuges kann durch einen ersten Phasenwinkel ϕ1 über der Zeit t und die Drehbewegung des zweiten Düsenstrahlwerkzeuges kann durch einen zweiten Phasenwinkel ϕ2 über der Zeit t definiert werden. Die Winkelstellung der Düsenstrahlwerkzeuge 8, 9 wird so geregelt, dass der Sinus der ersten und zweiten Phasenwinkel ϕ1, ϕ2 gleichphasig ist und der Kosinus der ersten und zweiten Phasenwinkel ϕ1, ϕ2 einen Phasenversatz von 180° aufweist. Ein von diesen Phasen abweichender toleranzbedingter Versatz für den Sinus und den Kosinus liegt vorzugsweise innerhalb eines Bereichs von höchstens ± 10°, insbesondere höchstens ± 5°, oder sogar höchstens ± 2,5°.It can be seen that the two nozzle jet tools 8, 9 are brought at least approximately into an angular position, such that the radial orientation of the outlet nozzle 15 of one nozzle jet tool 8 with respect to a center plane EM lying between the two tools is mirror-symmetrical to the radial orientation of the outlet nozzle 16 the other nozzle jet tool 9 is located. Before the start of the jet-blasting process, the two outlet nozzles 15, 16 are aligned in the same direction. The drive of the two jet stream tools 8, 9 takes place synchronously with the same angular velocity. In this case, the two jet stream tools are driven in opposite directions of rotation, that is, one of the two tools is rotated in the one and the other counterclockwise. During the execution of the jet-blasting process, the angular position of the two jet-blasting tools 8, 9 is continuously controlled so as to ensure that the jet streams S1, S2 are simultaneously directed to the ground between the two tools and in the injection means, such as a suspension or water. The rotational movement of the first jet tool can be defined by a first phase angle φ1 over time t and the rotational movement of the second jet tool can be defined by a second phase angle φ2 over time t. The angular position of the jet nozzles 8, 9 is controlled so that the sine of the first and second phase angles φ1, φ2 is in phase and the cosine of the first and second phase angles φ1, φ2 has a phase offset of 180 °. A tolerance-related offset for the sine and the cosine deviating from these phases is preferably within a range of at most ± 10 °, in particular at most ± 5 °, or even at most ± 2.5 °.

Figur 3a zeigt die Austrittsdüsen 15, 16 bzw. die Düsenstrahlen S1, S2 des ersten und zweiten Düsenstrahlwerkzeugs 8, 9, die ausgehend von einer Ausgangsstellung (0°), um einen Phasenwinkel ϕ1, ϕ2 von betragsmäßig etwa 115° verdreht sind. Es ist ferner der Radius R1, R2 der Düsenstrahlen S1, S2 erkennbar. Radial außerhalb der von der Düsenstrahlfront erfassten Strahlzone ZS, deren Grenze durch den Radius R dargestellt ist, befindet sich eine angrenzende Wassersättigungszone. Das in der Wassersättigungszone enthaltene Wasser kann von vornherein im Boden enthalten sein, beispielsweise durch eine Lage unterhalb des Grundwasserspiegels, oder es wird durch den Düsenstrahl selbst in das Erdreich eingebracht. Bei letzterem eilt die Wassersättigungszone dem Düsenstrahl bzw. der Düsenstrahlfront voraus. In der gezeigten Drehstellung wirken beide Düsenstrahlen S1, S2 gemeinsam auf den außerhalb der Strahlzone ZS im Bereich der Mittelebene EM liegenden Bodenbereich 24 ein. In diesem Bodenbereich 24, welcher in Figur 3a schraffiert dargestellt ist, addieren sich die Porenwasserüberdrücke der beiden Düsenstrahlen S1 und S2, da diese gleichzeitig einwirken, was zu einer besonders hohen Erosionsleistung führt. Auf die im Zusammenhang mit den Porenwasserüberdrücken in der Wassersättigungszone stehenden Erosionseffekte wird weiter unten noch näher eingegangen. FIG. 3a shows the outlet nozzles 15, 16 and the nozzle jets S1, S2 of the first and second jet tool 8, 9, which are rotated from a starting position (0 °) by a phase angle φ1, φ2 of magnitude about 115 °. Furthermore, the radius R1, R2 of the nozzle jets S1, S2 can be seen. Radially outside the jet zone ZS detected by the jet front, whose boundary is represented by the radius R, there is an adjacent water saturation zone. The water contained in the water saturation zone can be contained in the soil from the outset, for example, by a layer below the groundwater level, or it is introduced by the jet itself into the soil. In the latter case, the water saturation zone precedes the nozzle jet or the nozzle jet front. In the rotational position shown, both jet streams S1, S2 jointly act on the ground area 24 lying outside the jet zone ZS in the region of the center plane EM. In this floor area 24, which in FIG. 3a hatched, the pore water overpressures of the two jet streams S1 and S2 add up, since these act simultaneously, which leads to a particularly high erosion performance. The erosion effects associated with pore water overpressures in the water saturation zone will be discussed in greater detail below.

In Figur 3b sind die Austrittsdüsen 15, 16 bzw. die Düsenstrahlen S1, S2 des ersten und zweiten Düsenstrahlwerkzeugs 8, 9 weiter verdreht, und zwar um einen Phasenwinkel ϕ1, ϕ2 von etwa 155° ausgehend von der Ausgangsstellung (0°). In dieser Winkelstellung liegen die beiden Düsenstrahlen S1, S2 annähernd in einer von den Längsachsen der Werkzeuge aufgespannten Ebene EW. Die beiden Schneidstrahlen S1, S2 der beiden Düsenstrahlwerkzeuge 8, 9 treffen aufeinander; es kommt zum sogenannten "Durchschuss" durch das zwischen den beiden Strahlen liegende Erdreich, und zur Verbindung der beiden Kubaturen miteinander zu einer Kubatur.In FIG. 3b are the outlet nozzles 15, 16 and the nozzle jets S1, S2 of the first and second jet tool 8, 9 further rotated, by a phase angle φ1, φ2 of about 155 ° from the starting position (0 °). In this angular position, the two jet streams S1, S2 lie approximately in a plane defined by the longitudinal axes of the tools plane EW. The two cutting beams S1, S2 of the two jet nozzles 8, 9 meet each other; It comes to the so-called "bullet" through the soil between the two rays, and to the connection of the two cubatures together to a cubature.

Figur 3c zeigt die Düsenstrahlwerkzeuge in einer weiter verdrehten Stellung, in der die beiden Düsenstrahlen S1, S2 gerade noch zur Erzeugung einer gemeinsamen Kubatur in der Mittelebene EM aufeinandertreffen. Ausgehend von der 0°-Ausgangsstellung sind die Werkzeuge bzw. die Düsenstrahlen S1, S2 um Phasenwinkel ϕ1, ϕ2 von betragsmäßig etwa 190° verdreht, was einer Verdrehung relativ zur Werkzeugebene EW von etwa 210° entspricht, In der gezeigten Drehstellung wirken beide Düsenstrahlen S1, S2 im Bereich der Mittelebene EM auf die außerhalb der Strahlzone ZS liegende Wassersättigungszone 25 ein, welche in Figur 3c schraffiert dargestellt ist. Hier addieren sich die Porenwasserüberdrücke aufgrund des gemeinsamen Einwirkens der beiden Düsenstrahlen S1 und S2 auf, was zu einer besonders hohen Erosionsleistung führt. Figure 3c shows the nozzle jet tools in a further rotated position in which the two jet streams S1, S2 just meet to produce a common cubature in the center plane EM. Starting from the 0 ° output position, the tools or the nozzle jets S1, S2 are rotated by phase angles φ1, φ2 of approximately 190 °, which corresponds to a rotation relative to the tool plane EW of approximately 210 °. In the rotational position shown, both jets S1 act , S2 in the region of the center plane EM to the outside of the jet zone ZS lying water saturation zone 25, which in Figure 3c hatched. Here, the pore water overpressures add up due to the joint action of the two jet streams S1 and S2, which leads to a particularly high erosion performance.

In Figur 3d sind die Düsenstrahlwerkzeuge 8, 9 schematisch nach erneutem Erreichen der Ausgangsposition der Düsenstrahlen S1, S2 gezeigt, das heißt nach genau einer vollen Umdrehung (360°). Es sind die beiden Kubaturen 29, 30 erkennbar, welche im Bereich der Mittelebene EM unter Ausbildung von Einschnürungen 28 miteinander zu einem Körper verbunden sind. Diese Einschnürungen 28 im Übergangsbereich der beiden Kubaturen werden auch als Zwickel bezeichnet. Durch das erfindungsgemäße Verfahren bzw. Vorrichtung mit in einer gemeinsamen Tiefe synchron rotierenden und gegengleich ausgerichteten Austrittsdüsen 15, 16 wird in vorteilhafter Weise erreicht, dass die Einschnürungen 28 besonders klein sind bzw. dass der Verbindungsbereich zwischen den beiden Kubaturen 29, 30 besonders groß ist.In 3d figure the nozzle jet tools 8, 9 are shown schematically after again reaching the starting position of the nozzle jets S1, S2, that is, after exactly one complete revolution (360 °). It can be seen the two cubatures 29, 30, which are connected to one another in the region of the median plane EM with the formation of constrictions 28 to one another. These constrictions 28 in the transition region of the two cubatures are also referred to as gussets. The inventive method or device with synchronously rotating in a common depth and oppositely directed outlet nozzles 15, 16 is achieved in an advantageous manner that the constrictions 28 are particularly small or that the connection area between the two cubatures 29, 30 is particularly large.

Die zur Durchführung des Verfahrens bevorzugten Regelungsschritte sind in den Figuren 4a, 4b, 5a und 5b gezeigt und werden nachstehend beschrieben.The preferred regulatory steps for carrying out the method are in the FIGS. 4a, 4b . 5a and 5b and are described below.

In Figur 4a ist ein Regelungsschema für die Tiefenregelung vor Herstellungsbeginn der Kubaturen gezeigt. Zur Einstellung einer einheitlichen Tiefenlage von mehreren Düsenstrahlwerkzeugen werden im Schritt V1 zunächst die Tiefen der beiden Düsenstrahlwerkzeuge 8, 9 festgestellt, was durch Abmessen beim Einführen der Gestänge 6, 7 erfolgen kann. Anschließend werden die ermittelten Tiefe der beiden Düsenstrahlwerkzeuge 8, 9 miteinander verglichen (Schritt V2). Befinden sich die beiden Düsenstrahlwerkzeuge 8, 9 bzw. die Austrittsdüsen 15, 16 unter Berücksichtigung von Toleranzen von bis zu maximal einem Meter in derselben Tiefe (Schritt V3: Lage gleich) erfolgt im Schritt V4 die Freigabe für die Herstellung der Kubaturen. Wird allerdings festgestellt, dass die Werkzeuge nicht in einer Tiefe liegen (Schritt V5: Lage unterschiedlich), wird das tiefer liegende Düsenstrahlgestänge im Verfahrensschritt V6 um den ermittelten Differenzbetrag gezogen, und es erfolgt eine erneute Feststellung der Tiefenlage (Schritt V1).In FIG. 4a is shown a control scheme for the depth control before production of cubatures. To set a uniform depth of several jet tools, the depths of the two jet tools 8, 9 are first determined in step V1, which can be done by measuring the insertion of the linkage 6, 7. Subsequently, the determined depth of the two jet stream tools 8, 9 are compared with each other (step V2). If the two nozzle jet tools 8, 9 or the outlet nozzles 15, 16, taking into account tolerances of up to a maximum of one meter, are at the same depth (step V3: position equal), the release for the production of the cubatures takes place in step V4. If, however, it is determined that the tools are not at a depth (step V5: position different), the lower nozzle jet linkage in step V6 is subtracted by the determined difference, and the depth position is determined again (step V1).

Die Regelung der Tiefenlage während der Herstellung einer Kubatur ist in Figur 5 gezeigt. Diese erfolgt analog zu der Tiefenregelung vor Herstellungsbeginn, so dass hinsichtlich der gemeinsamen Schritte auf obige Beschreibung zu Figur 4 Bezug genommen wird. Dabei sind gleiche Schritte mit gleichen Bezugszeichen versehen, wie in Figur 4. Ein Unterschied besteht darin, dass bei Feststellung einer unterschiedlichen Lage (Schritt V5) im nachfolgenden Verfahrensschritt V6' ein Angleichen der Ziehgeschwindigkeiten der beiden Düsenstrahlwerkzeuge vorgenommen wird. Dies kann, wie abgebildet, durch eine Reduzierung der Ziehgeschwindigkeit des höherliegenden Gestänges für eine bestimmte Zeitdauer erfolgen, aber auch durch eine Erhöhung der Ziehgeschwindigkeit des tiefer liegenden Gestänges.The regulation of the depth position during the production of a cubature is in FIG. 5 shown. This takes place analogously to the depth control before the start of production, so that with regard to the common steps to the above description FIG. 4 Reference is made. The same steps are provided with the same reference numerals as in FIG. 4 , One difference is that when a different position is detected (step V5) in the subsequent method step V6 ', an adjustment of the drawing speeds of the two jet-blasting tools is carried out. This can be done, as shown, by reducing the pull rate of the higher boom for a certain period of time, but also by increasing the pull rate of the lower boom.

In Figur 5a ist ein Ablaufschema für die Ausrichtung der Düsenstrahlen vor Herstellungsbeginn der Kubaturen gezeigt. Dieses erfolgt ähnlich wie die Einstellung der Tiefe vor Herstellungsbeginn, so dass diesbezüglich auf die Beschreibung zu Figur 4a Bezug genommen wird. Zur Einstellung der gewünschten spiegelsymmetrischen Ausrichtung der Düsenstrahlwerkzeuge 8, 9 werden im Schritt V1 zunächst die Winkelpositionen der beiden Düsenstrahlwerkzeuge festgestellt, was durch entsprechende Kennzeichnungen am Gestänge oder Winkelstellungssensoren erfolgen kann. Anschließend werden die ermittelten Winkelstellungen der beiden Düsenstrahlwerkzeuge miteinander verglichen (Schritt V2). Befinden sich die beiden Düsenstrahlwerkzeuge bzw. die Austrittsdüsen unter Berücksichtigung von Toleranzen von bis zu maximal ± 5° in spiegelsymmetrischer Ausrichtung zueinander (Schritt V3: Lage OK), erfolgt im Schritt V4 die Freigabe für die Herstellung der Kubatur. Wird allerdings festgestellt, dass die Werkzeuge nicht in der gewünschten Winkelposition liegen (Schritt V5: Ausrichtung nicht OK), wird eines der Düsenstrahlwerkzeuge im Verfahrensschritt V6 einen Betrag verdreht, und es erfolgt eine erneute Feststellung der Ausrichtung (Schritt V1), bis die Ausrichtung spiegelsymmetrisch zur Mittelebene EM ist. Dann kann die Herstellung der Kubaturen bei spiegelsymmetrischer Ausrichtung der Austrittsdüsen mit derselben Winkelgeschwindigkeit in entgegengesetzte Drehrichtungen beginnen.In FIG. 5a is shown a flow chart for the alignment of the jets before production of the cubature. This is similar to the setting of the depth before the start of production, so in this regard to the description figure 4a Reference is made. To set the desired mirror-symmetrical alignment of the jet tools 8, 9, the angular positions of the two jet tools are first determined in step V1, which can be done by appropriate markings on the linkage or angular position sensors. Subsequently, the determined angular positions of the two jet stream tools are compared with each other (step V2). If the two nozzle jet tools or the outlet nozzles are in mirror-symmetrical alignment with one another taking into account tolerances of up to ± 5 ° (step V3: position OK), the release for the production of the cubature takes place in step V4. However, if it is determined that the tools are not in the desired angular position (step V5: alignment not OK), one of the jet tools will be skewed in step V6 and the orientation will be reestablished (step V1) until the alignment is mirror symmetric to the median plane EM. Then the production of the cubatures can begin with mirror-symmetrical alignment of the outlet nozzles with the same angular velocity in opposite directions of rotation.

Die Regelung der Winkellage während der Herstellung einer Kubatur ist in Figur 5b gezeigt. Diese erfolgt analog zur Winkeleinstellung vor der Herstellung, so dass hinsichtlich der gemeinsamen Schritte auf obige Beschreibung Bezug genommen wird. Dabei sind gleiche bzw. einander entsprechende Schritte mit gleichen Bezugszeichen versehen, wie in Figur 5a. Ein Unterschied besteht darin, dass bei Feststellung einer unterschiedlichen Winkellage (Schritt V5) im nachfolgenden Verfahrensschritt V6 ein Angleichen der Drehgeschwindigkeiten der beiden Düsenstrahlwerkzeuge vorgenommen wird. Dies kann, wie abgebildet, durch Reduzierung der Drehgeschwindigkeit des vorlaufenden Werkzeuges für eine bestimmte Zeitdauer sein, aber auch durch Erhöhung der Drehgeschwindigkeit des nachlaufenden Werkzeuges.The regulation of the angular position during the production of a cubature is in FIG. 5b shown. This takes place analogously to the angle adjustment before production, so that reference is made to the above description with regard to the common steps. The same or corresponding steps are provided with the same reference numerals, as in FIG. 5a , One difference is that upon detection of a different angular position (step V5) in the subsequent method step V6, an adjustment of the rotational speeds of the two jet stream tools is carried out. This can, as shown, by reducing the rotational speed of the leading tool for a certain period of time, but also by increasing the rotational speed of the trailing tool.

Das Düsenstrahlverfahren beginnt erst dann, wenn sowohl eine übereinstimmende Tiefe (Regelkreis gemäß Figur 4a) als auch die gewünschte Winkelstellung (Regelkreis gemäß Figur 5a) der beiden Düsenstrahlwerkzeuge anliegt. Die Regelung der Tiefe und Winkelstellung während der Herstellung der Kubatur, das heißt während des Einbringens des Injektionsmittels in den Boden, erfolgt fortlaufend über der Zeit beziehungsweise in definierten Intervallen bis zum Erreichen der gewünschten Endlage.The nozzle jet process begins only when both a matching depth (loop according to FIG. 4a ) as well as the desired angular position (loop according to FIG. 5a ) of the two jet tools abuts. The regulation of the depth and angular position during the production of the cubature, that is during the introduction of the injection agent in the soil, is carried out continuously over time or at defined intervals until reaching the desired end position.

Nachstehend wird die Besonderheit und der Vorteil des erfindungsgemäßen Verfahrens bzw. Vorrichtung anhand der Figuren 6 und 7 erläutert.Hereinafter, the peculiarity and the advantage of the method or device according to the invention with reference to FIGS. 6 and 7 explained.

Der Düsenstrahl S eines Düsenstrahlwerkzeugs ist schematisch als Pfeil gezeigt, wobei die Pfeilspitze die Düsenstrahlfront bzw. den Radius darstellt, bis zu der das Injektionsmittel in den Boden eindringt. Hieran radial außen angrenzend befindet sich eine wassergesättigte Zone, welche in direkter Kommunikation mit dem Düsenstrahl steht. Das Druckniveau des in den Poren zwischen einzelnen Körnern enthaltenen Wassers verläuft von einem Maximalwert direkt an der Düsenstrahlfront bis auf etwa Null am Rand zwischen der Wassersättigungszone und dem anstehenden trockenen Boden. Dieser Porenwasserdruck in der Wassersättigungszone ist also umso höher, je kleiner die Entfernung zum Düsenstrahl S ist. Durch den lokal begrenzten Energieeintrag des Düsenstrahls S entsteht im Nahbereich der Strahlspitze eine überproportionale Druckerhöhung im Wasser, die auch als Porenwasserüberdruck P bezeichnet werden kann. Dabei verlieren Bodenkörner im Nahbereich den Kontakt untereinander, wodurch die Scherfestigkeit herabgesetzt und der Boden erodiert wird. Insofern ist dieser beschriebene Effekt der Reibungsreduzierung im Boden durch Druckerhöhung des Porenwassers in der Nähe der Düsenstrahlspitze für die Erosionsleistung eines Düsenstrahls von wesentlicher Bedeutung.The nozzle jet S of a nozzle jet tool is shown schematically as an arrow, wherein the arrowhead represents the nozzle jet front or the radius to which the injection medium penetrates into the soil. Adjacent thereto radially outside is a water-saturated zone, which is in direct communication with the jet. The pressure level of the water contained in the pores between individual grains extends from a maximum value directly at the nozzle jet front to about zero at the edge between the water saturation zone and the upcoming dry soil. This pore water pressure in the water saturation zone is therefore higher, the smaller the distance to the jet S is. Due to the localized energy input of the nozzle jet S, a disproportionate pressure increase in the water, which can also be referred to as pore water overpressure P, arises in the vicinity of the jet tip. Soil grains in close proximity lose contact with each other, which reduces the shear strength and erodes the soil. In this respect, this described effect of friction reduction in the soil by increasing the pressure of the pore water in the vicinity of the nozzle jet tip for the erosion performance of a jet is essential.

Figur 6 zeigt qualitativ den Verlauf des Porenwasserüberdrucks P bei einem Düsenstrahl S über dem Abstand A zur Düsenstrahlfront. Dabei ist auf der X-Achse der Abstand A zur Düsenstrahlfront angetragen, während die Y-Achse den Porenwasserüberdruck P angibt. Der Düsenstrahl S ist schematisch als Pfeil dargestellt. Es ist erkennbar, dass der Porenwasserüberdruck P im Bereich der Düsenstrahlspitze (X = 0) maximal ist und mit zunehmendem Abstand von der Düsenstrahlspitze (X > 0) exponentiell abnimmt. FIG. 6 shows qualitatively the course of the pore water pressure P at a nozzle jet S over the distance A to the nozzle jet front. In this case, the distance A to the nozzle jet front is plotted on the X axis, while the Y axis indicates the pore water overpressure P. The nozzle jet S is shown schematically as an arrow. It can be seen that the pore water overpressure P in the region of the nozzle jet tip (X = 0) is maximum and decreases exponentially with increasing distance from the nozzle jet tip (X> 0).

Durch das symmetrische Ausrichten der Düsenstrahlen gegeneinander und die synchrone Drehbewegung der beiden Düsenstrahlen in entgegengesetzte Drehrichtung, addieren sich die Porenwasserdrücke P1, P2 der aufeinander zu gerichteten Düsenstrahlen S1, S2, so dass eine Erosion des Bodens eher bzw. weiter entfernt vom jeweiligen Düsenstrahl S1, S2 eintritt, als bei Verwendung nur eines Strahls bzw. zeitlich versetztem Einwirken zweier Düsenstrahlen.Due to the symmetrical alignment of the nozzle jets against each other and the synchronous rotational movement of the two jets in the opposite direction of rotation, the pore water pressures P1, P2 of the nozzle jets S1, S2 facing each other are added, so that an erosion of the ground is rather distant from the respective jet S1, S2 occurs, as when using only one jet or time-shifted action of two jets.

Dieser Sachverhalt ist in Figur 7 dargestellt, welche qualitativ den Verlauf des Porenwasserüberdrucks P (Y-Achse) über dem Abstand A zur Düsenstrahlfront (X-Achse) zeigt. Ein von links wirkender Düsenstrahl S1 ist mit einem ersten Pfeil, ein von rechts wirkender Düsenstrahl S2 mit einem zweiten Pfeil schematisch dargestellt. Eine erste durchgezogene Kurve zeigt den Porenwasserüberdruck P1(A), welcher durch den ersten Düsenstrahl S1 bewirkt wird. Eine zweite durchgezogene Kurve zeigt den Porenwasserüberdruck P2(A), welcher durch den entgegengesetzt gerichteten zweiten Düsenstrahl S2 bewirkt wird.This situation is in FIG. 7 which qualitatively shows the course of the pore water overpressure P (Y axis) over the distance A to the nozzle jet front (X axis). A nozzle jet S1 acting from the left is shown schematically with a first arrow, a nozzle jet S2 acting from the right with a second arrow. A first solid curve shows the pore water pressure P1 (A) caused by the first jet S1. A second solid curve shows the pore water pressure P2 (A), which is caused by the oppositely directed second jet S2.

Es ist erkennbar, dass sich die Porenwasserüberdrücke P1(A), P2(A) im Boden zu einem resultierende Porenwasserüberdruck Pges(A) aufaddieren, welcher mit einer gestrichelten Linie dargestellt ist. Vorliegend sind die beiden Düsenstrahlen S1, S2 genau entgegengesetzt gerichtet. Es versteht sich jedoch, dass diese auch winklig zueinander verlaufen können. Die zwei Düsenstrahlen S1, S2 müssen sich nicht direkt berühren, um eine höhere Scheidleistung zu erreichen. Vielmehr bewirkt schon die Addition der Porenwasserüberdrücke P1, P2 im an die Düsenstrahlzone angrenzenden Bodenbereich hier einen verstärkten Bodenaustrag durch Herabsetzung der Scherfestigkeit zwischen den Bodenkörnern. Dieser Effekt tritt durch das erfindungsgemäße Verfahren bzw. Vorrichtung insbesondere im sogenannten Zwickelbereich zwischen zwei gleichzeitig im Überschnitt hergestellten Vollsäulen auf. Der Zwickelbereich ist der Bereich der Einschnürung zwischen den beiden sich überschneidenden Körpern.It can be seen that the pore water pressures P1 (A), P2 (A) in the soil add up to a resulting pore water pressure Pges (A), which is shown by a dashed line. In the present case, the two jet streams S1, S2 are directed exactly opposite. It is understood, however, that these can also run at an angle to each other. The two jet streams S1, S2 do not have to touch each other directly to achieve a higher separation efficiency. Rather, the addition of the pore water overpressures P1, P2 in the area adjoining the nozzle jet zone bottom area here causes an increased soil discharge by reducing the shear strength between the soil grains. This effect occurs by the method or device according to the invention, in particular in the so-called gusset area between two full columns simultaneously produced in overcut. The gusset area is the area of constriction between the two overlapping bodies.

Figur 8 zeigt beispielhaft ein Düsenstrahlraster für eine aus einzelnen Kubaturen hergestellten Dichtsohle einer Baugrube. FIG. 8 shows an example of a jet stream grid for a produced from individual cubes seal bottom of a pit.

Durch den oben beschriebenen Effekt der Reichweitenvergrößerung durch Addition der Porenwasserüberdrücke P1, P2 zweier Düsenstrahlen S1, S2 und der damit verbundenen größeren Scheidleistung im Zwickelbereich zweier Düsenstrahlkörper 29, 30, wird im Zwickelbereich eine größere Schneidleistung gegenüber der Herstellung mit nur einem Düsenstrahl oder zwei willkürlich drehenden Düsenstrahlen erreicht. Bei gleichen Herstellparametern wie Düsendruck, Umdrehungsgeschwindigkeit und Ziehgeschwindigkeit kann beim erfindungsgemäßen Doppelverfahren der Achsabstand eines gleichzeitig hergestellten Düsenstrahlkörperpaares 29, 30 vergrößert werden, ohne die Dichtigkeit der Düsenstrahlsohle zu gefährden. Denn gerade in den Zwickelbereichen ist die Schneidleistung erhöht, so dass trotz größeren Achsabstandes der Körper die gleiche Zwickelüberdeckung, wie beim herkömmlichen Verfahren erreicht wird. Dadurch werden in Summe über die gesamte Dichtsohle weniger Düsenstrahlkörper benötigt, so dass die Kosten der gesamten Herstellung reduziert sind.By the above-described effect of increasing the range by adding the pore water pressures P1, P2 of two jets S1, S2 and the associated greater separation power in the gusset region of two jet bodies 29, 30, in the gusset area a larger cutting performance compared to the production with only one jet or two arbitrarily rotating Jet jets reached. In the same manufacturing parameters such as nozzle pressure, rotational speed and pulling speed can be increased in the double process according to the invention, the axial distance of a nozzle jet body 29, 30 simultaneously produced without jeopardizing the tightness of the nozzle jet. Because especially in the gusset areas, the cutting performance is increased, so that despite larger center distance of the body, the same gusset coverage, as in the conventional method is achieved. As a result, in total over the entire sealing sole less jet blast bodies are needed, so that the costs of the entire production are reduced.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
Bohrgerätdrill
33
Bodenoberflächeground surface
44
MäklermastMäklermast
55
Tragvorrichtungcarrying device
66
DüsenstrahlgestängeJet linkage
77
DüsenstrahlgestängeJet linkage
88th
DüsenstrahlwerkzeugJet tool
99
DüsenstrahlwerkzeugJet tool
10 1110 11
Vorrichtungcontraption
1212
Bohrkronedrill bit
1313
Bohrkronedrill bit
1414
Drehantriebrotary drive
1515
Austrittsdüseexhaust nozzle
1616
Austrittsdüse 17 18 19Outlet nozzle 17 18 19
2020
Bohrlochwell
2121
Bohrlochwell
2222
Spülkopfflushing head
2323
DurchsteckdrehkopfBy fitting rotation head
2424
Bodenbereichfloor area
2525
Bodenbereichfloor area
2626
Bodenschichtsoil layer
2727
Bodenschichtsoil layer
28 2928 29
Bodenkörpersediment
3030
Bodenkörpersediment
AA
Achseaxis
Ee
Ebenelevel
RR
Radiusradius
SS
Schneidstrahlcutting jet
TT
Tiefedepth
VV
Verfahrensschrittstep
ZZ
ZoneZone
ϕφ
Winkelangle

Claims (15)

Verfahren zur Herstellung von Bodenelementen mittels einer Vorrichtung (11) mit zumindest zwei Düsenstrahlwerkzeugen (8, 9), mit den Verfahrensschritten: Abteufen und Einstellen der Tiefe (T) der zumindest zwei Düsenstrahlwerkzeuge (8, 9) derart, dass eine Austrittsdüse (15) eines ersten Düsenstrahlwerkzeugs (8) und eine Austrittsdüse (16) eines zweiten Düsenstrahlwerkzeugs (9) zumindest etwa in einer zu den Längsachsen (A1, A2) der Düsenstrahlwerkzeuge (8, 9) senkrechten Ebene (ED) liegen, Drehen der zumindest zwei Düsenstrahlwerkzeuge (8, 9) um ihre jeweiligen Längsachse (A1, A2) zum Einbringen eines Injektionsmittels in den Boden, wobei die Winkelstellung (ϕ1, ϕ2) zumindest eines der Düsenstrahlwerkzeuge (8, 9) derart geregelt wird, dass die Austrittsdüse (15) des ersten Düsenstrahlwerkzeugs (8) und die Austrittsdüse (16) des zweiten Düsenstrahlwerkzeugs (9) gleichzeitig auf einen zwischen den beiden Düsenstrahlwerkzeugen (8, 9) liegenden Bereich des Bodens gerichtet sind. Method for producing floor elements by means of a device (11) with at least two nozzle jet tools (8, 9), with the method steps: Dumping and adjusting the depth (T) of the at least two jet tools (8, 9) such that an outlet nozzle (15) of a first jet tool (8) and an outlet nozzle (16) of a second jet tool (9) at least approximately in one of the longitudinal axes (A1, A2) of the nozzle jet tools (8, 9) are vertical plane (ED), Rotating the at least two nozzle jet tools (8, 9) about their respective longitudinal axis (A1, A2) for introducing an injection agent into the ground, wherein the angular position (φ1, φ2) of at least one of the nozzle jet tools (8, 9) is controlled such that the outlet nozzle (15) of the first jet tool (8) and the outlet nozzle (16) of the second jet tool (9) simultaneously to one between the two nozzle jet tools (8, 9) are directed lying area of the soil. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass ein Injektionsmittel in den Boden unter Regelung der Tiefe und der Winkelstellung eines ersten Düsenstrahlwerkzeugs (8, 9) in Abhängigkeit von der Tiefe (T) und der Winkelstellung (ϕ) eines zweiten Düsenstrahlwerkzeugs (9, 8) eingebracht wird.
Method according to claim 1,
characterized,
that an injection means in the ground under control of the depth and angular position of a first jet tool (8, 9) in dependence on the Depth (T) and the angular position (φ) of a second jet tool (9, 8) is introduced.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass als weitere Verfahrensschritte vorgesehen sind: Ziehen der zumindest zwei Düsenstrahlwerkzeuge (8, 9) aus dem Boden unter Einbringen von Injektionsmittel in den Boden, wobei die Tiefe (T) und die Winkelstellung (ϕ) der zumindest zwei Düsenstrahlwerkzeuge (8, 9) beim Ziehen erfasst und geregelt wird.
Method according to claim 1 or 2,
characterized,
that are provided as further method steps: Pulling the at least two nozzle jet tools (8, 9) from the ground with the introduction of injection means into the soil, wherein the depth (T) and the angular position (φ) of the at least two jet tools (8, 9) is detected and controlled while pulling.
Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
Regeln der Tiefe (T) der zumindest zwei Düsenstrahlwerkzeuge (8, 9) derart, dass, in einer gegebenen Tiefenposition des ersten bzw. zweiten Düsenstrahlwerkzeuges (8, 9), ein in den Boden eingebrachter Schneidstrahl (S1, S2) des ersten Düsenstrahlwerkzeuges (8, 9) in Längsrichtung des Düsenstrahlwerkzeuges zumindest teilweise eine Überdeckung mit einem in den Boden eingebrachten Schneidstrahl (S2, S1) des zweiten Düsenstrahlwerkzeuges (9, 8) hat.
Method according to one of claims 1 to 3,
characterized
Controlling the depth (T) of the at least two jet tools (8, 9) such that, in a given depth position of the first and second jet tools (8, 9), a cutting jet (S1, S2) of the first jet tool ( 8, 9) in the longitudinal direction of the jet tool at least partially an overlap with an introduced into the ground cutting jet (S2, S1) of the second jet tool (9, 8).
Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
Regeln der Winkelstellung (ϕ) der zumindest zwei Düsenstrahlwerkzeuge (8, 9) derart, dass die Austrittsdüse (15) des ersten Düsenstrahlwerkzeuges (8) und die Austrittsdüse (16) des zweiten Düsenstrahlwerkzeuges (9), in einer Querschnittsebene durch die Düsenstrahlwerkzeuge (8, 9) betrachtet, in jeder Drehstellung während des Einbringens von Injektionsmittel in den Boden zumindest etwa spiegelsymmetrisch zu einer zwischen den beiden Längsachsen (A1, A2) verlaufenden Mittelebene (EM) ausgerichtet sind.
Method according to one of claims 1 to 4,
characterized
Controlling the angular position (φ) of the at least two jet tools (8, 9) such that the outlet nozzle (15) of the first jet tool (8) and the outlet nozzle (16) of the second jet tool (9), in a cross-sectional plane viewed through the jet tools (8, 9) are aligned in each rotational position during the injection of injection medium into the ground at least approximately mirror-symmetrical to a between the two longitudinal axes (A1, A2) extending center plane (EM).
Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass die Drehbewegung des ersten Düsenstrahlwerkzeuges (8) durch einen ersten Phasenwinkel (ϕ1) über der Zeit (t) definiert ist und die Drehbewegung des zweiten Düsenstrahlwerkzeuges (9) durch einen zweiten Phasenwinkel (ϕ2) über der Zeit (t) definiert ist,
wobei die Winkelstellung (ϕ) der zumindest zwei Düsenstrahlwerkzeuge (8, 9) derart geregelt wird, dass der Sinus der ersten und zweiten Phasenwinkel (ϕ1, ϕ2) einen Phasenversatz 0° ± 10° aufweist und der Kosinus der ersten und zweiten Phasenwinkel (ϕ1, ϕ2) einen Phasenversatz von 180°± 10°hat.
Method according to one of claims 1 to 5,
characterized,
that the rotational movement of the first jet tool (8) by a first phase angle (φ1) over time (t) is defined, and the rotational movement of the second jet tool (9) by a second phase angle (φ2) over time (t) is defined,
wherein the angular position (φ) of the at least two jet tools (8, 9) is controlled such that the sine of the first and second phase angles (φ1, φ2) has a phase offset of 0 ° ± 10 ° and the cosine of the first and second phase angles (φ1 , φ2) has a phase offset of 180 ° ± 10 °.
Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass das erste und zweite Düsenstrahlwerkzeug (8, 9) derart angetrieben werden, dass sie mit derselben Winkelgeschwindigkeit drehen.
Method according to one of claims 1 to 6,
characterized,
in that the first and second jet stream tools (8, 9) are driven to rotate at the same angular velocity.
Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
dass das erste und zweite Düsenstrahlwerkzeug (8, 9) derart angetrieben werden, dass sie in entgegengesetzte Drehrichtungen drehen.
Method according to one of claims 1 to 7,
characterized,
in that the first and second jet stream tools (8, 9) are driven to rotate in opposite directions of rotation.
Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
dass das erste und zweite Düsenstrahlwerkzeug (8, 9) synchron angetrieben werden.
Method according to one of claims 1 to 8,
characterized,
in that the first and second jet stream tools (8, 9) are driven synchronously.
Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet,
dass als weiterer Verfahrensschritt vorgesehen ist: Erfassen einer die Tiefenlage (T1) des ersten Düsenstrahlwerkzeugs (8) repräsentierenden ersten Tiefengröße mittels einer ersten Tiefenmesseinrichtung, Erfassen der die Tiefenlage (T2) des zweiten Düsenstrahlwerkzeugs (9) repräsentierenden zweiten Tiefengröße mittels einer zweiten Tiefenmesseinrichtung, Vergleichen der ersten und zweiten Tiefengröße, Anpassen der Abteuf- bzw. Ziehgeschwindigkeit des ersten Düsenstrahlwerkzeugs (8, 9) an die Abteuf- bzw. Ziehgeschwindigkeit des zweiten Düsenstrahlwerkzeugs (9, 8).
Method according to one of claims 1 to 9,
characterized,
that is provided as a further method step: Detecting a depth dimension (T1) of the first jet tool (8) representing the first depth by means of a first depth measuring means, Detecting the second depth size representing the depth position (T2) of the second jet tool (9) by means of a second depth measuring device, Comparing the first and second depths, Adjusting the drawing speed of the first jet tool (8, 9) to the drawing speed of the second jet tool (9, 8).
Verfahren nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet,
dass als weiterer Verfahrensschritt vorgesehen ist: Erfassen einer die Winkelposition (ϕ1) des ersten Düsenstrahlwerkzeugs (8) repräsentierenden ersten Winkelgröße mittels einer ersten Winkelerfassungseinrichtung, Erfassen einer die Winkelposition (ϕ2) des zweiten Düsenstrahlwerkzeugs (9) repräsentierenden zweiten Winkelgröße mittels einer zweiten Winkelerfassungseinrichtung, Vergleichen der ersten und zweiten Winkelgröße, Anpassen der Winkelposition (ϕ1) des ersten Düsenstrahlwerkzeugs (8) an die Winkelposition (ϕ2) des zweiten Düsenstrahlwerkzeugs (9).
Method according to one of claims 1 to 10,
characterized,
that is provided as a further method step: Detecting a first angular quantity representing the angular position (φ1) of the first jet tool (8) by means of a first angle detection device, Detecting a second angular quantity representing the angular position (φ2) of the second jet-jet tool (9) by means of a second angle-detecting device, Comparing the first and second angle sizes, Adjusting the angular position (φ1) of the first jet tool (8) to the angular position (φ2) of the second jet tool (9).
Vorrichtung zur Herstellung von Bodenelementen, umfassend: ein erstes Düsenstrahlwerkzeug (8) und ein zweites Düsenstrahlwerkzeug (9), die von zumindest einer Antriebseinheit (14) drehend antreibbar sind; je Düsenstrahlwerkzeug (8, 9) eine Tiefenmesseinrichtung zur Ermittlung der Tiefe des Düsenstrahlwerkzeugs, je Düsenstrahlwerkzeug (8, 9) eine Winkelerfassungseinrichtung zur Ermittlung einer die Winkelstellung des Düsenstrahlwerkzeuges repräsentierenden Winkelgröße, eine Stelleinheit, mit der die Tiefe (T1, T2) und die Winkelstellung (ϕ1, ϕ2) zumindest eines der beiden Düsenstrahlwerkzeuge (8, 9) derart einstellbar ist, dass eine Austrittsdüse (15) des ersten Düsenstrahlwerkzeugs (8) und eine Austrittsdüse (16) des zweiten Düsenstrahlwerkzeugs (9) zumindest etwa in einer zu den Drehachsen (A1, A2) der Düsenstrahlwerkzeuge (8, 9) senkrechten Ebene (ED) liegen und gleichzeitig auf einen zwischen den beiden Düsenstrahlwerkzeugen (8, 9) liegenden Bodenbereich gerichtet sind. Device for producing floor elements, comprising: a first jet tool (8) and a second jet tool (9), which are rotationally driven by at least one drive unit (14); each jet tool (8, 9) has a depth measuring device for determining the depth of the jet tool, each jet nozzle (8, 9) an angle detection device for determining an angular size representing the angular position of the jet tool, an adjusting unit with which the depth (T1, T2) and the angular position (φ1, φ2) of at least one of the two jet-cutting tools (8, 9) can be set in such a manner, an outlet nozzle (15) of the first jet nozzle (8) and an outlet nozzle (16) of the second jet nozzle (9) lie at least approximately in a plane (ED) perpendicular to the axes of rotation (A1, A2) of the nozzle jet tools (8, 9) and are simultaneously directed to a lying between the two nozzle jet tools (8, 9) bottom area. Vorrichtung nach Anspruch 12,
dadurch gekennzeichnet,
dass eine Regeleinheit vorgesehen ist, welche derart gestaltet ist, dass die Tiefe (T1) und die Winkelstellung (ϕ1) des ersten Düsenstrahlwerkzeugs (8) in Abhängigkeit von der Tiefe (T2) und der Winkelstellung (ϕ2) des zweiten Düsenstrahlwerkzeugs (9) einstellbar ist.
Device according to claim 12,
characterized,
that a control unit is provided which is designed such that the depth (T1) and the angular position (φ1) of the first jet tool (8) depending on the depth (T2) and the angular position (φ2) of the second jet tool (9) can be adjusted is.
Vorrichtung nach Anspruch 12 oder 13,
dadurch gekennzeichnet,
dass mindestens eine Antriebseinheit (14) zum drehenden Antreiben der beiden Düsenstrahlwerkzeuge (8, 9) vorgesehen ist,
wobei im Antriebsstrang zwischen der Antriebseinheit (14) und den Düsenstrahlwerkzeugen (8, 9) eine Verteilereinheit angeordnet ist, die ein eingeleitetes Antriebsmoment auf die zumindest zwei Düsenstrahlwerkzeuge (8, 9) aufteilt und die beiden Düsenstrahlwerkzeuge (8, 9) in entgegengesetzte Drehrichtungen antreibt.
Device according to claim 12 or 13,
characterized,
in that at least one drive unit (14) is provided for rotationally driving the two jet-blasting tools (8, 9),
wherein in the drive train between the drive unit (14) and the nozzle jet tools (8, 9) a distributor unit is arranged, which divides an introduced drive torque on the at least two jet tools (8, 9) and drives the two jet stream tools (8, 9) in opposite directions of rotation ,
Vorrichtung nach einem der Ansprüche 12 bis 14,
dadurch gekennzeichnet,
dass die Stelleinheit zum Einstellen der Winkelstellung zumindest eines der Düsenstrahlwerkzeuge (8, 9) im Antriebsstrang zwischen der Antriebseinheit (14) und den Düsenstrahlwerkzeugen angeordnet ist.
Device according to one of claims 12 to 14,
characterized,
in that the adjusting unit for adjusting the angular position of at least one of the jet-jet tools (8, 9) is arranged in the drive train between the drive unit (14) and the jet-jet tools.
EP12190925.3A 2012-10-31 2012-10-31 Method and device for the production of parallel ground bodies using jet nozzle tools Active EP2730702B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12190925.3A EP2730702B1 (en) 2012-10-31 2012-10-31 Method and device for the production of parallel ground bodies using jet nozzle tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12190925.3A EP2730702B1 (en) 2012-10-31 2012-10-31 Method and device for the production of parallel ground bodies using jet nozzle tools

Publications (2)

Publication Number Publication Date
EP2730702A1 true EP2730702A1 (en) 2014-05-14
EP2730702B1 EP2730702B1 (en) 2015-05-27

Family

ID=47357911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12190925.3A Active EP2730702B1 (en) 2012-10-31 2012-10-31 Method and device for the production of parallel ground bodies using jet nozzle tools

Country Status (1)

Country Link
EP (1) EP2730702B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391876B1 (en) * 2018-04-06 2018-09-19 小野田ケミコ株式会社 Ground improvement method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589775A (en) 1993-11-22 1996-12-31 Vector Magnetics, Inc. Rotating magnet for distance and direction measurements from a first borehole to a second borehole
EP1045073A1 (en) * 1999-04-15 2000-10-18 TREVI S.p.A. An excavation tool and a method for forming a column of consolidated soil
DE19960023A1 (en) 1999-12-13 2001-06-28 Keller Grundbau Gmbh Active foundation
WO2003103492A1 (en) * 2002-06-10 2003-12-18 Rayonex Schwingungstechnik Gmbh Method and device for controlling and determining the position of an instrument or device
KR20050037911A (en) 2003-10-20 2005-04-25 한미기초개발주식회사 Method and apparatus of multi-jet compaction grouting, jcg

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589775A (en) 1993-11-22 1996-12-31 Vector Magnetics, Inc. Rotating magnet for distance and direction measurements from a first borehole to a second borehole
EP1045073A1 (en) * 1999-04-15 2000-10-18 TREVI S.p.A. An excavation tool and a method for forming a column of consolidated soil
DE19960023A1 (en) 1999-12-13 2001-06-28 Keller Grundbau Gmbh Active foundation
WO2003103492A1 (en) * 2002-06-10 2003-12-18 Rayonex Schwingungstechnik Gmbh Method and device for controlling and determining the position of an instrument or device
DE10225518B4 (en) 2002-06-10 2004-07-08 Rayonex Schwingungstechnik Gmbh Method and device for controlling and determining the position of an instrument or device
KR20050037911A (en) 2003-10-20 2005-04-25 한미기초개발주식회사 Method and apparatus of multi-jet compaction grouting, jcg

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K. ANDROMALOS; H. GAZAWAY: "Jet grouting to construct a soilcrete wall using a twin stem system", DOUBLE STEM METHOD, 1989

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391876B1 (en) * 2018-04-06 2018-09-19 小野田ケミコ株式会社 Ground improvement method

Also Published As

Publication number Publication date
EP2730702B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
DE2158764A1 (en) Method for producing an underground wall
DE2124385C3 (en) Method for injecting a hardening liquid substance into the building ground and device for carrying out the method
EP0548588B1 (en) Device for making boreholes in the ground
EP0474070B1 (en) Method and device for the insertion of a narrow partition or subterraneous curtain in the earth
DE3718480C2 (en) Drilling device for a high pressure injection drilling method and drilling method using the drilling device
DE2423163A1 (en) METHOD OF ERECTING A WALL IN THE SOIL
DE4335290C2 (en) Process for sealing floor bodies and device for carrying out this process
EP2730702B1 (en) Method and device for the production of parallel ground bodies using jet nozzle tools
EP1108818B1 (en) Active foundation
DE2126867A1 (en) Directional drilling method
DE102014009630A1 (en) Method and device for creating a borehole
EP0151389A1 (en) Method and apparatus for constructing building elements in the soil like piles, injection anchorages, cut-off walls or similar
EP2728071B1 (en) Method and device for producing wall-shaped floor elements
EP0481079A1 (en) Method and tool for producing a pile
DE2406030A1 (en) METHOD OF MAKING HOLES IN THE SOIL BY FLUSH DRILLING AND MACHINE FOR CARRYING OUT THE METHOD
DE19832935C1 (en) Method of production high pressure injected building foundation
DE3034746C2 (en) Method and device for producing groundwater passages in sealing walls
DE102007008373A1 (en) Device for producing deep bores in earthy, pebbly or rocky subsoil with aid of boring system, has separate drive on bore-head, power supply, flexible flushing and supply line
DE102004040189B4 (en) Process for producing a sealing soil in the soil
DE19536778C1 (en) Groundwater seal forming machine for continuous seals against metal contaminants
DE19807060A1 (en) Fluid injection especially high pressure injection into soil
EP3631149B1 (en) Abrasive suspension eroding system
AT10281U1 (en) HORIZONTAL FILTER FOUNTAIN
EP1555388B1 (en) Method for removing soils
EP1961871A1 (en) Constructing method for a pit well with horizontal drain pipes and well as such

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20140709

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: E02D 3/12 20060101AFI20141128BHEP

INTG Intention to grant announced

Effective date: 20141217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 728945

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003272

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 18896

Country of ref document: SK

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150928

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150927

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20151026

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003272

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502012003272

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20200902

REG Reference to a national code

Ref country code: SK

Ref legal event code: QA4A

Ref document number: E 18896

Country of ref document: SK

Effective date: 20201007

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231017

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231006

Year of fee payment: 12

Ref country code: FR

Payment date: 20231009

Year of fee payment: 12

Ref country code: DE

Payment date: 20231031

Year of fee payment: 12

Ref country code: CZ

Payment date: 20231031

Year of fee payment: 12

Ref country code: CH

Payment date: 20231102

Year of fee payment: 12

Ref country code: AT

Payment date: 20231005

Year of fee payment: 12