EP2738386A1 - Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump - Google Patents

Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump Download PDF

Info

Publication number
EP2738386A1
EP2738386A1 EP13193768.2A EP13193768A EP2738386A1 EP 2738386 A1 EP2738386 A1 EP 2738386A1 EP 13193768 A EP13193768 A EP 13193768A EP 2738386 A1 EP2738386 A1 EP 2738386A1
Authority
EP
European Patent Office
Prior art keywords
pump
bottom plate
plate
coupling bar
pump element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13193768.2A
Other languages
German (de)
French (fr)
Other versions
EP2738386B1 (en
Inventor
Franz Laermer
Arne Dannenberg
Christian Dorrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2738386A1 publication Critical patent/EP2738386A1/en
Application granted granted Critical
Publication of EP2738386B1 publication Critical patent/EP2738386B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps

Definitions

  • the present invention relates to a method for producing a pump element for a metering pump, to a corresponding metering pump and to a corresponding pump element for a metering pump.
  • Microdosing pumps based on silicon are often complex and expensive to manufacture, if at the same time the high demands on their intrinsic safety functions must be met. For example, it must be guaranteed for insulin pumps that under no circumstances can an unwanted insulin delivery occur. In addition, the high-precision delivery of the requested dosing quantities must, for example, be guaranteed in the medical sector under all circumstances. The high manufacturing costs prevent economical use of these pumps as a disposable component. The trend to produce micropumps more cost-effectively in polymer technologies is reflected in the large number of publications such as DE 102011015184 A1 or WO 2009059664 A1 again. The metering capability of these pumps for medical applications is not given.
  • the actuator for example, a piezoelectric disk
  • the pumping membrane is firmly connected to the pumping membrane, so that it significantly increases the running costs when used as a disposable product.
  • the EP1966490 B1 and the DE102008056751A1 describe metered micropump concepts that separate an actuator / control unit from a disposable pump unit.
  • the former requires, in principle, such a large actuator that this concept is not suitable for wearing on the body.
  • the degree of miniaturization is limited, since it involves a three-dimensional arrangement of 3D individual components, which also have to be structured, for example, on the sides in three dimensions. Manufacturing tolerances result in certain minimum dimensions, and the piston requires a minimum length for a functioning piston guide.
  • the present invention provides a pump element for a metering pump, furthermore a metering pump which uses this pump element and finally a corresponding method for producing the pump element for the metering pump according to the main claims.
  • Advantageous embodiments emerge from the respective subclaims and the following description.
  • the size of the pump element or of the dosing pump connecting the pump element to an actuator is also important.
  • such pump elements and metering pumps are used in the field of drug dosage, for example for insulin.
  • a concept of a layered membrane pump allows a very flat and compact design. In this case, stiff, structured plates with flexible films can be combined to form a pump element.
  • a metering pump may comprise a pump element.
  • the pump element may also be referred to as a pump chip.
  • the pump element can be constructed from a cover plate arranged at a predefined distance to a base plate, as well as a coupling bar and pump membrane film arranged therebetween.
  • the cover plate can, at least in sections, be arranged in a tolerance range plane-parallel to the bottom plate.
  • the tolerance range may be a departure from a plane-parallel orientation of 30 degrees.
  • the pumping membrane film may be connected in a central portion to a portion of the coupling beam. A, in particular concentric, another portion of the pump membrane sheets may be connected to the bottom plate.
  • the pumping membrane sheet may have a flexible portion laterally adjacent to the central portion between the central portion and the further portion.
  • the flexible portion may receive a deformation of the pumping membrane film due to a deliberate deflection of the coupling beam in the direction of the cover plate.
  • the flexible portion of the pumping membrane sheet may have a stiffness that minimizes deformation due to pumping pressure and, simultaneously or alternatively, backpressure.
  • a connection of the pumping membrane foil to the bottom plate of the pumping element can define the lateral dimension of the pumping chamber formed by the pumping membrane foil and the bottom plate.
  • the lateral dimension of the pumping chamber may be adjusted to define the stroke volume of the pumping element.
  • the coupling bar and the bottom plate may have plane-parallel surfaces in the region of the pumping chamber.
  • the pump element may be formed by displacing or sucking liquid, in particular cyclically, deflecting the membrane.
  • the central portion of the pumping membrane can be connected to the coupling bar in such a way that a deflection of the coupling bar between the bottom plate and the cover plate leads to a deflection of the pumping membrane film.
  • the pump element is designed to displace a fluid located between the pumping membrane foil and the bottom plate when the pumping membrane foil is moved towards the bottom plate by means of the coupling bar. In a plane-parallel arrangement of the bottom plate to the coupling beam can be pressed flat on the bottom plate in a movement of the coupling beam in the direction of the bottom plate, the pumping membrane film.
  • the bottom plate to the coupling bar can be a coupling beam facing side of the bottom plate plane-parallel to a bottom plate facing side of the coupling beam.
  • the pumping chamber has no harmful volume.
  • the coupling bar can completely cover the lateral dimension of the pumping chamber.
  • the delivery volume of the pump element can be determined by the number of pump strokes, since the pumping chamber is designed to provide a constant displacement when the coupling beam is moved to stop on the bottom plate and stop on the cover plate.
  • the pump element presented here can be a pump element acting on the principle of a diaphragm pump, which can be combined with an actuator to form a metering pump according to the principle of a diaphragm pump.
  • a structure in layers allow a compact, in particular flat design.
  • the cover plate, the coupling beam, the pumping membrane film and the bottom plate can each form a layer of the pump element.
  • the pump element has a low backpressure sensitivity because flexible pumping membrane areas are expressed by the coupling bar in the ejection cycle.
  • an embodiment of a pump element for a safe dosing small amounts of liquid (0.01 - 100 ul / min) can be used, for example for drug dosage, especially in the diabetes market.
  • a metering pump can consist of a pump element as a disposable product (disposable) and an actuator unit (Durable).
  • Another advantage is the high degree of miniaturization, which is important, for example, as a driver in an insulin pump. Low production costs can be achieved and additional safety functions can be integrated.
  • the coupling beam having a spring member and / or a side wall may form a center plate disposed between the top plate and the bottom plate, the spring member being configured to move the center plate to move within a tolerance range perpendicular to the main extension plane of the bottom plate and / or cover plate restrict.
  • the side wall and the coupling bar in a tolerance range an equal thickness, that is, an equal extension of the bottom plate in the direction of the cover plate, have.
  • the tolerance range perpendicular to the main extension plane of the bottom plate and simultaneously or alternatively cover plate may be less than 45 degrees, in particular ideally less than 30 degrees, in particular ideally less than 15 degrees, in particular ideally less than five degrees, in particular ideally less than three degrees, in particular ideally less than one degree.
  • the spring element and the side wall are integrally formed as a center plate, in particular wherein a thinned portion of the center plate forms the spring element between the coupling bar and the side wall.
  • a one-piece center plate which comprises the side wall and the coupling bar connected via a spring element, offers in particular manufacturing advantages.
  • the spring element can be formed by a thinned region of the middle plate.
  • At least one joining foil can be arranged between the cover plate and the bottom plate, wherein the joining foil in the region of the coupling bar has a recess at least in the size of the coupling bar.
  • the thickness of the joining foil can increase the lifting height of the Change coupling beam or the pumping membrane film.
  • the joining foil can determine the lifting height of the coupling beam or of the pumping membrane foil. Then the lifting height can correspond to the thickness of the joining film.
  • the delivery volume can be determined based on a number of pumping strokes, if, as already described, the pumping chamber is designed to provide a constant displacement.
  • a height of a pumping stroke does not depend on the thickness of the cover plate and the thickness of the bottom plate, because these only on the facing surfaces of the center plate, in particular the side wall, and the pumping membrane film and depending on the embodiment additionally the joining film at a distance being held.
  • the stroke can be defined by a thickness of the joining film.
  • the joining film can keep the bottom plate and the cover plate at a distance to each other. Furthermore, the joining film may have a recess in the region of the coupling beam. A tolerance range in the thickness of the joining film can lead to a tolerance range in the stroke and thus to a tolerance range in the size of the pump chamber.
  • the lateral connection of the pumping membrane foil and the bottom plate may be adjusted in size to accommodate the stroke volume of the pumping chamber.
  • cover plate and at the same time or alternatively the middle plate and at the same time or alternatively the base plate can be made of a thermoplastic polymer.
  • the cover plate, the center plate and the bottom plate may be formed as rigid, structured plates. From a production point of view, it may be useful to use the cover plate, the middle plate and the bottom plate made of a thermoplastic polymer such as polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), cyclic olefin polymer (COP) or cyclo-olefin copolymers (COC). to manufacture. In this case advantageously favorable production costs can be achieved.
  • PC polycarbonate
  • PE polyethylene
  • PMMA polymethyl methacrylate
  • COP cyclic olefin polymer
  • COC cyclo-olefin copolymers
  • the cover plate and at the same time Alternatively, the center plate and at the same time or alternatively the bottom plate, for example by injection molding, injection compression, hot stamping, laser cutting, milling, punching and / or a combination thereof are produced.
  • the bottom plate and at the same time or alternatively the top plate may have a thickness between 0.6 mm and 10 mm.
  • the joining foil and simultaneously or alternatively the pumping membrane foil may be made of an elastomer and simultaneously or alternatively a thermoplastic elastomer and simultaneously or alternatively a thermoplastic as an elastic membrane.
  • the joining film and the pumping membrane film can be manufactured inexpensively as an elastic membrane.
  • the pump element may comprise at least one check valve, in particular two non-return valves for directing a flow of a fluid in the pumping chamber. It is also favorable if the at least two non-return valves are arranged in at least one of the base plate and simultaneously or alternatively the middle plate and simultaneously or alternatively the cover plate and simultaneously or alternatively the pump membrane foil and simultaneously or alternatively the joining foil.
  • the actuator unit is designed as a piezo bending transducer and, simultaneously or alternatively, a reluctance actuator and simultaneously or alternatively at least one electroactive polymer and simultaneously or alternatively at least one shape memory actuator and at the same time or alternatively at least one linear magnet.
  • The, in particular miniaturized, metering pump consists of a reusable control unit or actuator unit (actuator) and a cost-effective disposable pump element.
  • the proposed layer structure of this pump element includes an element for mechanically coupling the pumping membrane to the actuator (coupling bar), the coupling bar also serves as stiffening of the center of the pumping membrane film to achieve a stroke volume which, despite different pressures at the inlet or outlet of the metering pump constant remains.
  • Corresponding coupling bar can also press the flexible areas of the pumping membrane film when ejecting completely to the pump chamber floor, that is, the bottom plate. This can lead to an excellent backpressure tolerance.
  • the layer structure as well as the combination of materials allows easy adjustment or fine adjustment of the stroke volume of the metering pump, for example by laser welding the lateral dimensions of the pumping chamber or membrane can be defined.
  • a readjustment, for example, by laser welding is even possible even on the finished pump element:
  • dosing accuracies better than 5% can be achieved.
  • Another advantage of the proposed pump element is the achievable with the layer structure simple production process of the pump element. It still check valves are easy to integrate. Also, a pressure sensor that does not require electrical in the pump element and therefore is inexpensive, can be easily integrated. In addition, a safety valve is very easy to integrate, which prevents free (unwanted) forward flow of the fluid under pressure in the reservoir.
  • the metering pump or the pump element has a smaller, in particular flatter design of the system as known for drug dosage suitable pumps, since the flat pump element, in particular designed as a flat diaphragm pump, can be controlled by a flat piezo bending transducer (electric motors and Gears, as used in known insulin pumps have a minimum thickness), and because the actuator can engage from the side into the pump chip. Also advantageous are low running costs, since a safety function such as "outlet clogged" can be implemented without using electrical components on the pump chip.
  • the actuator can be housed in a reusable component.
  • the proposed dosing pump can provide a reliable coupling of (reusable) actuator and pump element.
  • dirt particles on the actuator can not change the stroke.
  • the pumping membrane film is disposed inside the pump element and therefore protected from damage and contamination. Only one actuator is required for the dosing pump. Overall, a small and especially flat design can be achieved. It is also advantageous that the pumping membrane film is moved back and forth between two fixed stops and thus achieves a defined counterpressure-independent displacement volume. Thus, by counting the strokes, a calculation of the delivered dose can be made possible. Furthermore, it is possible to dispense with flow sensors.
  • a drug reservoir can optionally be integrated on the pump element via a flexible membrane.
  • the cover plate and at the same time or alternatively the middle plate and simultaneously or alternatively the base plate may be made of a thermoplastic polymer such as polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), cyclic olefin polymer (COP) or cyclo-olefin copolymers (COC ) are produced for example by injection molding, injection compression, hot stamping, laser cutting, milling, punching or a combination thereof.
  • the pumping membrane film can be made of an elastomer and, at the same time or alternatively, a thermoplastic elastomer and, at the same time or alternatively, a thermoplastic.
  • the bottom plate and the cover plate can be arranged plane-parallel in a tolerance range at a predefined distance, wherein between the bottom plate and the cover plate of the coupling bar and the pumping membrane film are arranged.
  • the coupling bar can be arranged in a tolerance range plane-parallel to the bottom plate.
  • the pumping membrane foil can be placed between the coupling bar and the bottom plate.
  • the pumping membrane film is joined to the coupling bar.
  • the pump membrane film is further joined to the bottom plate.
  • a joining method in particular with the pumping membrane film, for example, laser welding can be used.
  • the bottom plate can be connected to the cover plate, wherein further layers can be arranged between the bottom plate and the cover plate.
  • a connection between the bottom plate and the top plate may be configured to set a predefined distance between the bottom plate and the top plate.
  • Various joining methods can be used in the step of joining, such as assembly, pressing and pressing, joining by welding, in particular by means of laser welding, ultrasonic welding, solvent bonding and simultaneously or alternatively gluing. In particular, it may be advantageous to stick the cover plate.
  • additional fasteners can be used in the step of joining.
  • hybrid joining ie a combination of at least two joining methods, can also be carried out. In hybrid joining, the advantages of the respective joining methods can be combined with each other.
  • Fig. 1 shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention.
  • the pump element 1 has a coupling bar 6, a pump membrane film 10, a bottom plate 12 and a cover plate 15.
  • the bottom plate 12 is arranged plane-parallel to the cover plate 15 at a predefined distance. Between the bottom plate 12 and the cover plate 15 of the coupling bar 6 is arranged. Between the coupling bar 6 and the bottom plate 12, the pumping membrane film 10 is arranged.
  • the pumping membrane film 10 is connected in a central portion 9 with the coupling bar 6. In a laterally adjoining the central portion 9 of the pumping membrane film 10 section 13, the pumping membrane membrane 10 is flexible. Lateral to the flexible portion 13 subsequent further section 14, the pumping membrane film 10 is connected to the bottom plate 12.
  • the coupling bar 6 is designed to be moved by an actuator connected to it in a tolerance range perpendicular to the main extension plane of the bottom plate 12 between the bottom plate 12 and the top plate 15. Upon movement of the coupling bar 6 between the bottom plate 12 and the cover plate 15, a stroke of the coupling bar 6 is limited by a stop on both sides. As a result, a constant stroke of the coupling bar 6 and connected to the coupling bar 6 pumping membrane film 10 is achieved.
  • the bottom plate 12 and the pumping membrane film 10 form a boundary of the pump chamber 11.
  • the pumping membrane sheet 10 can be divided into three sections. In a central portion 9, the pumping membrane film 10 is connected to the coupling bar 6. A flexible section 13 adjoins the central section 9 laterally. With the bottom plate 12, a further portion 14 is connected, which laterally connects to the flexible portion 13.
  • Fig. 2a shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention.
  • the pump element 1 corresponds to the in Fig. 1 shown pump element, with the difference that the coupling bar 6 is moved in the direction of the bottom plate 12 to the stop of the pumping membrane membrane 10 on the bottom plate 12. It can be seen here that the pump chamber 11 advantageously has no damaged volume.
  • Fig. 2b shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention.
  • the pump element corresponds to the in Fig. 1 and Fig. 2a shown pump element 1, wherein the coupling bar was moved to stop in the direction of the cover plate 15.
  • the pump chamber 11 has a maximum volume.
  • Fig. 2b illustrates that the suction of a fluid into the pump chamber 11 is actively controlled by an actuator of the coupling bar 6, is controlled.
  • Fig. 3a shows a metering pump in a schematic three-dimensional exploded view according to an embodiment of the present invention.
  • the metering pump has a pump element 1 and an actuator unit 2.
  • the pump element 1 is a disposable pump element.
  • An actuator 3 of the actuator unit 2 is designed as a piezo bending transducer 3 with an actuator fork 4, the actuator fork 4 having four tines 5.
  • the pump element 1 is now formed by a bottom plate 12, a pump membrane foil 10, a middle plate 7, a joining foil 18 and a cover plate 15.
  • the bottom plate 12, the pumping membrane film 10, the middle plate 7, the joining film 18 and the cover plate 15 are arranged in layers, in particular in a tolerance range plane-parallel.
  • a main extension plane of the pump element 1 two axes AA and BB are shown.
  • the pump element 1 is shown cut in the following figures.
  • the axis BB corresponds to a direction axis in which the tines. 5 the fork 4 mounted on the piezoelectric transducing element 3 can be pushed into the pump element 1.
  • the piezo bending transducer 3 is connected to an actuator base 3b.
  • Fig. 3a a metering pump with pump chip of a polymeric layer system.
  • the metering pump consists of a pump element 1, which can be used as a disposable component, and a reusable control / actuator unit 2.
  • the pump element 1 is based on the principle of a membrane pump: by cyclically deflecting the membrane, liquid is displaced or sucked in, whereby (at least) two check valves are used to direct the flow.
  • These functions in the pump element 1 are realized by means of three rigid, structured plates, that is to say the cover plate 15, the middle plate 7 and the bottom plate 12, as well as in each case flexible foils, that is to say the pumping membrane foil 10 and the joining foil 18.
  • One embodiment shows a pump element (for example as a disposable pump chip) and an actuator 2 whose actuator fork 4 consists of four prongs 5 which engage in the pump element 1 in order to actuate the pump membrane film 10.
  • a pump element for example as a disposable pump chip
  • an actuator 2 whose actuator fork 4 consists of four prongs 5 which engage in the pump element 1 in order to actuate the pump membrane film 10.
  • the representation of the (vertical and lateral) fixing of the pump element 1 relative to the actuator base 3b has been dispensed with.
  • Fig. 3b shows a metering pump in a schematic three-dimensional representation according to an embodiment of the present invention.
  • the metering pump shown essentially corresponds to that already in Fig. 3a shown metering pump.
  • the pump element 1 is pushed onto the tines 5 of connected to the piezo bending transducer 3 fork 4 of the actuator 2, wherein the pump element 1 is shown cut along the axis AA.
  • a coupling bar 6 is disposed between a bottom plate 12 and a top plate 15. In a plane to the coupling bar 6, a side wall of the middle plate 7 is arranged in the side wall portion 19.
  • the pump element 1 is shown in the following figure Fig. 4 described in more detail.
  • Fig. 3b the pump element 1 and the actuator 2.
  • Fig. 4 reveals their interaction inside the Pump element 1, by this along the in Fig. 3a drawn axis AA is shown cut open.
  • the core of the actuator 2 is a piezoelectric bending transducer 3, at the movable end of an actuator fork 4 is fixed so that it can be moved vertically to the pump element 1.
  • the four prongs 5 of the actuator fork 4 are aligned parallel to one another and in extension of the bending transducer.
  • the pump element 1 can be pushed onto the fork, so that their tines 5 protrude into the pump element 1 and there with two tines 5 from above and two tines 5 from below a coupling bar 6 securely embrace this relative to the (remaining) pump element 1 in the vertical can be moved.
  • the pump element 1 is shown cut open.
  • the enlargement of the pump element 1 in Fig. 4 shows the coupling bar 6, via which the movement of the actuator 3, and the actuator tines 5, is transmitted to the pumping membrane 10.
  • Under the pumping membrane 10 is the pumping chamber 11.
  • the fluidic access channels 20 to the pumping chamber 11 are illustrative, but do not exist in the illustrated embodiment.
  • Fig. 4 shows a pump element 1 in a schematic three-dimensional representation according to an embodiment of the present invention.
  • a pumping membrane film 10 Between a bottom plate 12 and a cover plate 15, a pumping membrane film 10, a center plate and a joining film 18 are arranged in layers.
  • the bottom plate 12, the pumping membrane film 10, the middle plate, the joining film 18 and the cover plate 15 are arranged in a tolerance range plane-parallel to each other.
  • the center plate is formed from a side wall (portion of the middle plate 7 in the side wall portion 19), a spring element 8 and the coupling bar 6.
  • the joining film 18 has a recess outside or within the side wall.
  • the side wall region 19 between the bottom plate 12 and the cover plate 15 is composed of the pump membrane film 10, the middle plate 7 and the joining film 18 together.
  • the joining film has a recess, so that it is arranged only in the side wall region 19.
  • the pumping membrane sheet 10 can be divided into four sections. In a central portion 9, the joining film 10 is connected to the coupling bar 6. In a laterally adjoining section 13 is the Pump membrane film 10 connected to neither the coupling bar 6 still with the bottom plate 12. The laterally arranged around the central portion 9 of the pumping membrane film 10 section 13 is designed to be movable. In a subsequent section 14, the pumping membrane film 10 is connected to the bottom plate. In a manufacturing step, the pumping membrane film can be connected, for example by means of laser welding to the bottom plate.
  • the middle plate 7 is formed by the side wall, the coupling bar 6 and a spring element 8 arranged therebetween.
  • the middle plate 7 may be made in one piece, wherein the portion of the spring element 8 may be made thinner to provide a partially flexible portion of the middle plate 7 as a spring element 8.
  • the coupling bar 6 is connected via the spring element 8 with the side wall.
  • the cover plate 15 has recesses 16 for tines of the actuator fork.
  • the bottom plate has recesses 17 for receiving prongs of the actuator fork.
  • the tines of the actuator fork are arranged in the recesses 16, 17.
  • a pump chamber 11 is formed between the bottom plate 12 and the pumping membrane film 10.
  • the pump chamber 11 is formed so that through holes 20 in the bottom plate 12, a fluid can flow in and out.
  • the pumping membrane film 10 is designed to generate by means of strokes a suction pressure or to squeeze out the fluid.
  • the fluidic through-holes 20 as access channels to the pumping chamber 11 serve in the figure for illustration. In the presented embodiments, these do not exist, but rather the access channels are formed with integrated check valves according to the following figures shown embodiments.
  • the coupling bar 6 is fixed via a spring element 8 on the side wall of the center plate 7, so that vertical movements are possible and lateral are suppressed.
  • the central, movable region 9 of the pumping membrane film 10 is fastened, so that a deflection of the actuator 3 leads to a deflection of this pumping membrane film 10.
  • the latter cyclically displaces the volume of liquid in the pumping chamber 11, which is located between a bottom of the pumping membrane film 10 and the top of the bottom plate 12.
  • Radially outwardly from the central, movable region 9, the pumping membrane film 10 has a flexible portion 13 which is attached neither to the coupling bar 6 nor to the bottom plate 12 of the pump element 1.
  • the pumping membrane film 10 can absorb the deformation of the pumping membrane film 10 due to the intended deflection (pump stroke), on the other hand, it should be so stiff that an unwanted deformation due to pumping pressures and back pressures is minimized.
  • a region 14 around the flexible portion 13 around the pumping membrane film 10 is fixed to the bottom plate 12 of the pump element 1.
  • the lateral dimension of the pumping chamber 11 is defined.
  • the entire pump membrane film 10 (or sections 9 and 13 of the pump membrane film 10) is ultimately pressed flat onto the bottom plate 12.
  • the bottom plate 12 may be referred to as a bottom stop for the pumping membrane film 10.
  • the pumping chamber 11 no Schadvolumen (or called dead volume), which has an advantageous effect on the compression ratio and the bladder tolerance.
  • the flexible region 13 of the pumping membrane film 10 is also pressed flat, even if a counter-pressure applied to the outlet of the metering pump or of the pump element 1 should have bulged it out beforehand. As a result, a low backpressure dependence of the delivery rate is to be expected.
  • the delivery volume is counted on the basis of the pumping strokes. For this purpose, a constant displacement is necessary. This is achieved by the fact that the coupling bar 6 is deflected to the bottom plate 12 when it is suctioned onto the cover plate 15 and when it is ejected.
  • this distance does not depend on the thickness of the cover plate 15 and the bottom plate 12, because they are kept only at the facing surfaces of the central plate 7 and the joining film 18 and the pumping membrane film 10 at a distance.
  • the thickness of the pumping membrane film 10 (at least) does not fluctuate locally and is therefore uniformly thick in the side wall region 19 and in the pump membrane region, ie the sections 9, 13 and 14), it likewise has no influence on the stroke or the lifting height. With the same argument, the influence of the thickness of the center plate 7 can be neglected.
  • the stroke is thus defined by the thickness of the joining film 18, which cover plate 15 and bottom plate 12 holds at a distance, but in the region of the coupling bar 6 has a recess.
  • the production-related thickness tolerance of the joining film 18 finally leads to a tolerance in the stroke.
  • this tolerance can be compensated by way of the already mentioned lateral adaptation of the pump diaphragm dimension, that is to say the lateral extent along the main extension plane of the base plate 12, in order to set an exact displacement volume or volume of the pump chamber 11 ,
  • Fig. 4 also provided in the cover plate 15 recesses 16, which provide space for the tines, shown.
  • Corresponding recesses 17 in the bottom plate are not shown for the sake of clarity. Inflow and outflow to the pumping chamber 11 could be realized, for example, by means of perforations 20 through the bottom plate 12, but so could the valves not within the existing levels (12, 10, 7, 18, 15) applied become.
  • a function monitoring can be integrated into the metering pump with pump element of polymeric layer system.
  • Fig. 5a and 5b 2 shows a schematic representation of an implementation of the functionality of two non-return valves in the layers of a pump element 1 according to one exemplary embodiment of the present invention.
  • the illustration of the pump element 1 is with respect to Fig. 3a a section along the axis BB through a pump element 1.
  • Fig. 5a shows a suction phase.
  • the inlet check valve 25 is opened. Liquid is sucked from the inlet 27 to the pumping chamber 11.
  • the outlet valve is closed: its valve diaphragm 30 seals the path from the connecting channel 29 to the outlet valve through-hole 32.
  • Fig. 5b shows an ejection phase.
  • the overpressure in the pumping chamber 11 on the one hand closes the inlet valve 25, on the other hand it opens the outlet valve.
  • FIG. 5a shows the cross section along the insertion direction BB through the pump element 1.
  • Inflow 21 and outflow 22 from the pumping chamber 11 are designed as channels (21, 22) in the bottom plate 12, which are covered by the pumping membrane film 10.
  • the inflow channel 21 leads to the inlet valve chamber 23.
  • the pump membrane foil 10 is structured (or perforated) in such a way that a valve head 25 suspended on spring arm 24 forms. The latter seals against a through hole 26 in the middle plate 7 or against a through hole 26 in the coupling bar 6, so that a check valve is formed.
  • the fluidic path can be guided directly through another through hole 27 by joining film 18 and cover plate 15 to the outside of the pump element 1.
  • further functionalities could be created in the joining film plane 18, z.
  • the fluidic path can also be returned to the pumping membrane plane 10 and the inlet connection at the bottom of the Bottom plate 12 or laterally in the middle plate 7 are applied.
  • Fig. 5a shows the inlet valve in open and Fig. 5b in the closed state.
  • the drainage channel 22 leads via a through hole 28 in the pumping membrane film through a connecting channel 29 in the middle plate 7 to the outlet valve.
  • This consists for. B. from a reference pressure valve: a flexible, closed membrane 30, which is formed by the pumping membrane 10 can deflect away from the center plate 7 in a valve chamber 31 and thereby release the fluidic path from the connecting channel 29 to the outlet valve through hole 32, so that the liquid can flow out of the pumping chamber 11. It makes sense to apply to the back of the closed membrane 30, the inlet pressure of the pump as a reference pressure (the chamber 31 has, for example, a channel to the pump inlet).
  • the membrane 30 releases the through hole only when the pressure in the pumping chamber 11 rises above the inlet pressure due to active deflection of the pump membrane film 10, or of the central portion 9 of the pump membrane film 10. From the outlet valve through-hole 32, the fluidic path can be guided via a further through hole in the joining film 18 and the cover plate 15 to the outside.
  • Fig. 5a shows the exhaust valve in closed and Fig. 5b in the open state.
  • actuation mechanisms are conceivable such.
  • the actuator can also be connected to the pumping membrane differently than via the fork described above, for example by locking a mandrel in an opening, welding or gluing.
  • the fork can be divided into 2-4 subunits, each with an actuator, in particular so that the tines left and right of the axis BB can be controlled separately.
  • control unit can a Power supply (eg battery, rechargeable battery), wireless or wireless communication interface (eg USB, WLAN), display, buttons (fields), alarm vibrators and / or loudspeakers.
  • Power supply eg battery, rechargeable battery
  • wireless or wireless communication interface eg USB, WLAN
  • display buttons (fields), alarm vibrators and / or loudspeakers.
  • buttons (fields), alarm vibrators and / or loudspeakers An alternative embodiment based on other check valves is shown in FIG Fig. 6a to 6d shown.
  • Fig. 6a to 6d show a schematic representation of a cross section of the pump element 1 according to an embodiment of the present invention. Clearly, an implementation of the functionality of two check valves in the layers of the pump element 1 is shown.
  • the pump element 1 is constructed of a base plate 12, a pumping membrane film 10, a middle plate 7, a joining film 18 and a cover plate 15 in a layered manner.
  • the center plate 7 has a coupling bar 6, which is designed to be moved by an actuator and thus to provide a pump stroke.
  • Fig. 6a shows a resting state, both check valves 35, 36 are closed.
  • the pressure increases, that is, the pumping diaphragm displaces liquid, and the outlet valve 36 is opened and the fluid flows out until the pressure is balanced again and the in Fig. 6a restores the displayed state.
  • the bottom plate 12, the middle plate 7 and the top plate 15 are rigid plates.
  • the pump membrane film 10 and the joining film 18 are designed as elastic membrane. In other words, they show Fig. 6a to 6d a pumping cycle of an alternative embodiment.
  • the valve function is here via through holes in the valve diaphragm, simultaneously the pumping membrane sheet 10 is ensured instead of perforations in the rigid middle plate 7.
  • FIG. 12 shows a flow chart of a method 700 for manufacturing a pump element for a metering pump according to an embodiment of the present invention.
  • the pump element may be an in Fig. 1 to Fig. 6 act shown pump element.
  • the method 700 includes a provisioning step 710, an arranging step 720, and a joining step 730. As shown in Fig. 7 The steps are executed sequentially one after the other. In a further embodiment, the steps are subdivided and repeatedly executed in different order.
  • the providing step 710 at least a bottom plate, a top plate, a coupling bar, and a pumping membrane foil are provided.
  • the coupling bar and the pumping membrane film are arranged between the bottom plate and the top plate, wherein the bottom plate is arranged at a predefined distance to the top plate.
  • the described elements are joined so as to provide a pump element.
  • the pumping membrane film can be joined to a structured base plate, the pumping membrane film can be joined to the coupling plate, then a joining film can be joined to the middle plate, in particular in the sidewall region, and the pump element can be joined to the joining film by joining the cover plate to get finished.
  • a structuring step may be added, in which the already arranged layer is further patterned prior to joining, for example to provide the functionality of a check valve in the pumping element.
  • a layer may be provided, then a layer in contact with the provided layer may be arranged therefor to join the two layers before the subsequent layer is placed , Before and at the same time or alternatively after the sub-step of the joining, a step of the Structuring be inserted.
  • Fig. 8a to 8f an embodiment of a method 700 for producing a pump element for a metering pump is shown.
  • the bottom plate, the middle plate and the cover plate may be made of thermoplastics (eg PC, PP, PE, PMMA, COP, COC).
  • the pump membrane film and the joining film can be produced as an elastic membrane, for example, from an elastomer, a thermoplastic elastomer, or a thermoplastic.
  • the thickness of the lid and base plate 0.6 mm to 10 mm, the thickness of the flexible valve film or pumping membrane film 30 microns to 300 microns and the depth of a valve chamber 5 microns to 150 microns.
  • the solid layers by injection molding, injection compression, hot stamping, laser cutting, milling, punching or combinations thereof can be produced. All layers can be joined - in particular the pump membrane foil on the bottom plate and center plate by means of laser welding. Of course, other joining methods can be used such.
  • the lid can also be glued on.
  • Fig. 8a to 8f sketchy shows a possible production process.
  • Fig. 8a to 8f show a schematic production sequence of a pump element according to an embodiment of the present invention.
  • the pump element may be an in Fig. 1 to Fig. 6 described pump element 1 act. In particular, it may be an embodiment of an in Fig. 6a to 6d shown embodiment of a pump element act.
  • the production process can be an in Fig. 7 already illustrated method 700 for producing a pump element for a metering pump.
  • Fig. 8a pumping membrane film 10 is arranged on a structured bottom plate 12.
  • the pumping membrane film 10 and the Base plate 12 can be welded together in the joining step.
  • Fig. 8b shows an intermediate step of structuring, are structured in the valve regions of the pumping membrane sheet 10.
  • FIG. 8c shows the step of arranging the middle plate 7 on the structured pumping membrane sheet 10.
  • the pumping membrane sheet 10 and the center plate 7 arranged thereon can be welded.
  • Fig. 8d shows a side view of the already in Fig. 8c shown layers of the pump element. Here, the partial areas of the side wall, the spring element 8 and the coupling bar 6 can be seen. In one embodiment, the side wall 7, the spring element 8 and the coupling bar 6 can be made in one piece.
  • Fig. 8e shows the lid, that is, after arranging the joining film 18, at least in the sidewall area, the cover plate 15 is arranged and the joining film and the cover plate are welded and / or glued.
  • Fig. 8f shows a page representation of the in Fig. 8e already completely arranged and assembled pump element.
  • Fig. 8a to 8f a brief overview of an embodiment for the preparation of the pump element.
  • the laser power is injected through the bottom - at steps 3 and 4 through the top.
  • an exemplary embodiment comprises a "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to one embodiment, both the first feature and the second feature and according to another embodiment either only first feature or only the second feature.

Abstract

The pump element (1) has a cover plate (15) and a base plate (12) which is arranged in a predefined distance to the cover plate, where a coupling bar (6) is arranged between the cover plate and the base plate. The coupling bar is coupled with an actuator unit and is movable between the base plate and the cover plate. A pump membrane film (10) is arranged between the cover plate and the base plate, where the pump membrane film is connected in a central portion with the coupling bar. Independent claims are included for the following: (1) a dosing pump with a piezoelectric bending transducer; and (2) a method for manufacturing a pump element.

Description

Stand der TechnikState of the art

Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Herstellen eines Pumpenelements für eine Dosierpumpe, auf eine entsprechende Dosierpumpe sowie auf ein entsprechendes Pumpenelement für eine Dosierpumpe.The present invention relates to a method for producing a pump element for a metering pump, to a corresponding metering pump and to a corresponding pump element for a metering pump.

Mikrodosierpumpen basierend auf Silizium, wie beispielsweise in WO 2010/046728 A1 beschrieben, sind in der Herstellung häufig aufwendig und teuer, wenn gleichzeitig die hohen Anforderungen an deren Eigensicherheitsfunktionen erfüllt werden müssen. Beispielsweise muss für Insulinpumpen garantiert werden, dass es unter keinen Umständen zu einer ungewollten Insulinabgabe kommen kann. Die hochpräzise Abgabe der angeforderten Dosiermengen muss darüber hinaus beispielsweise im medizinischen Bereich unter allen Umständen garantiert werden. Die hohen Herstellungskosten verhindern einen wirtschaftlichen Einsatz dieser Pumpen als Einwegkomponente. Der Trend, Mikropumpen kostengünstiger in polymeren Technologien herzustellen, spiegelt sich in der Vielzahl von Offenlegungsschriften wie beispielsweise DE 102011015184 A1 oder WO 2009059664 A1 wieder. Die Dosierfähigkeit dieser Pumpen für medizinische Anwendungen ist jedoch nicht gegeben. Zudem ist bei diesen Lösungen der Aktor (beispielsweise eine Piezoscheibe) fest mit der Pumpmembran verbunden, sodass dieser die laufenden Kosten beim Einsatz als Einwegprodukt erheblich erhöht. Die EP1966490 B1 und die DE102008056751A1 beschreiben dosierfähige Mikropumpkonzepte, die eine Aktor-/Steuereinheit von einer Wegwerfpumpeneinheit trennen. Ersteres erfordert jedoch prinzipbedingt einen so großen Aktor, dass dieses Konzept nicht zum Tragen am Körper geeignet ist. Auch bei Letzterem ist der Miniaturisierungsgrad begrenzt, da es sich um eine dreidimensionale Anordnung von 3D-Einzelkomponenten handelt, welche auch beispielsweise an den Seiten dreidimensional strukturiert werden müssen. Fertigungstoleranzen haben gewisse Mindestdimensionen zur Folge, und der Kolben benötigt eine Mindestlänge für eine funktionierende Kolbenführung.Microdosing pumps based on silicon, such as in WO 2010/046728 A1 described, are often complex and expensive to manufacture, if at the same time the high demands on their intrinsic safety functions must be met. For example, it must be guaranteed for insulin pumps that under no circumstances can an unwanted insulin delivery occur. In addition, the high-precision delivery of the requested dosing quantities must, for example, be guaranteed in the medical sector under all circumstances. The high manufacturing costs prevent economical use of these pumps as a disposable component. The trend to produce micropumps more cost-effectively in polymer technologies is reflected in the large number of publications such as DE 102011015184 A1 or WO 2009059664 A1 again. The metering capability of these pumps for medical applications is not given. In addition, in these solutions, the actuator (for example, a piezoelectric disk) is firmly connected to the pumping membrane, so that it significantly increases the running costs when used as a disposable product. The EP1966490 B1 and the DE102008056751A1 describe metered micropump concepts that separate an actuator / control unit from a disposable pump unit. However, the former requires, in principle, such a large actuator that this concept is not suitable for wearing on the body. Even with the latter, the degree of miniaturization is limited, since it involves a three-dimensional arrangement of 3D individual components, which also have to be structured, for example, on the sides in three dimensions. Manufacturing tolerances result in certain minimum dimensions, and the piston requires a minimum length for a functioning piston guide.

Offenbarung der ErfindungDisclosure of the invention

Vor diesem Hintergrund wird mit der vorliegenden Erfindung ein Pumpenelement für eine Dosierpumpe, weiterhin eine Dosierpumpe, die dieses Pumpenelement verwendet sowie schließlich ein entsprechendes Verfahren zum Herstellen des Pumpenelements für die Dosierpumpe gemäß den Hauptansprüchen vorgestellt. Vorteilhafte Ausgestaltungen ergeben sich aus den jeweiligen Unteransprüchen und der nachfolgenden Beschreibung.Against this background, the present invention provides a pump element for a metering pump, furthermore a metering pump which uses this pump element and finally a corresponding method for producing the pump element for the metering pump according to the main claims. Advantageous embodiments emerge from the respective subclaims and the following description.

In dem Bereich des sicheren Dosierens kleiner Flüssigkeitsmengen im Bereich von 0,01 bis 100 Mikroliter pro Minute (µl/min) ist auch die Größe des Pumpenelements beziehungsweise der das Pumpenelement mit einem Aktor verbindenden Dosierpumpe von Bedeutung. Insbesondere werden derartige Pumpenelemente und Dosierpumpen im Bereich der Medikamentendosierung beispielsweise für Insulin verwendet. Neben der Größe ist auch ein günstiger Herstellungspreis zu erzielen, um das Pumpenelement als ein Einweg-Produkt einsetzen zu können. Ein Konzept einer in Schichten aufgebauten Membranpumpe erlaubt eine sehr flache und kompakte Bauform. Dabei können steife, strukturierte Platten mit flexiblen Folien zu einem Pumpenelement kombiniert werden.In the area of safe dosing of small amounts of liquid in the range of 0.01 to 100 microliters per minute (μl / min), the size of the pump element or of the dosing pump connecting the pump element to an actuator is also important. In particular, such pump elements and metering pumps are used in the field of drug dosage, for example for insulin. In addition to the size and a favorable production price can be achieved in order to use the pump element as a disposable product can. A concept of a layered membrane pump allows a very flat and compact design. In this case, stiff, structured plates with flexible films can be combined to form a pump element.

Es wird ein Pumpenelement für eine Dosierpumpe vorgestellt, wobei das Pumpenelement die folgenden Merkmale aufweist:

  • eine Deckelplatte;
  • eine Bodenplatte, wobei die Bodenplatte in einem vordefinierten Abstand zur Deckelplatte angeordnet ist;
  • ein zwischen der Deckelplatte und der Bodenplatte angeordneter Koppelungsbalken, wobei der Koppelungsbalken mit einem Aktorelement koppelbar ist und zwischen der Bodenplatte und der Deckelplatte bewegbar ist;
  • eine Pumpmembranfolie, angeordnet zwischen der Deckelplatte und der Bodenplatte, wobei die Pumpmembranfolie in einem zentralen Abschnitt mit dem Koppelungsbalken verbunden ist und mittels des Koppelungsbalkens mit dem Aktorelement mechanisch koppelbar ist, wobei die Pumpmembranfolie einen lateral an den zentralen Abschnitt anschließenden flexiblen Abschnitt und einen lateral daran anschließenden mit der Bodenplatte verbundenen weiteren Abschnitt aufweist und die Pumpmembranfolie ausgebildet ist, zwischen der Pumpmembranfolie und der Bodenplatte eine Pumpkammer zu schaffen.
A pump element for a metering pump is presented, wherein the pump element has the following features:
  • a cover plate;
  • a bottom plate, wherein the bottom plate is arranged at a predefined distance to the cover plate;
  • a coupling bar disposed between the top plate and the bottom plate, the coupling bar being coupleable to an actuator element and movable between the bottom plate and the top plate;
  • a pumping membrane film, disposed between the cover plate and the bottom plate, wherein the pumping membrane film is connected in a central portion with the coupling bar and mechanically coupled by means of the coupling bar with the actuator element, wherein the pumping membrane film has a laterally adjacent to the central portion of the flexible portion and a laterally thereto has subsequent connected to the bottom plate further section and the pumping membrane is formed to provide a pumping chamber between the pumping membrane membrane and the bottom plate.

Eine Dosierpumpe kann ein Pumpenelement aufweisen. Das Pumpenelement kann auch als ein Pumpenchip bezeichnet werden. Dabei kann das Pumpenelement aus einer zu einer Bodenplatte in einem vordefinierten Abstand angeordneten Deckelplatte sowie dazwischen angeordnetem Koppelungsbalken und Pumpenmembranfolie aufgebaut sein. Die Deckelplatte kann, zumindest abschnittsweise, in einem Toleranzbereich planparallel zur Bodenplatte angeordnet sein. Der Toleranzbereich kann ein Abweichen von einer planparallelen Ausrichtung von 30 Grad betragen. Die Pumpmembranfolie kann in einem zentralen Abschnitt mit einem Abschnitt des Koppelungsbalkens verbunden sein. Ein, insbesondere hierzu konzentrischer, weiterer Abschnitt der Pumpenmembranfolien kann mit der Bodenplatte verbunden sein. Die Pumpmembranfolie kann zwischen dem zentralen Abschnitt und dem weiteren Abschnitt einen lateral an den zentralen Abschnitt anschließenden flexiblen Abschnitt aufweisen. Der flexible Abschnitt kann eine Verformung der Pumpmembranfolie aufgrund einer gewollten Auslenkung des Koppelungsbalkens in Richtung der Deckelplatte aufnehmen. Der flexible Abschnitt der Pumpmembranfolie kann eine Steifigkeit aufweisen, die eine Verformung aufgrund eines Pumpdruckes und gleichzeitig oder alternativ eines Gegendruckes minimiert. Eine Verbindung der Pumpmembranfolie mit der Bodenplatte des Pumpenelements kann die laterale Dimension der von der Pumpmembranfolie und der Bodenplatte gebildeten Pumpkammer definieren. Die laterale Dimension der Pumpkammer kann angepasst werden, um das Hubvolumen des Pumpenelements zu definieren. In einer Ausführungsform können der Koppelungsbalken und die Bodenplatte im Bereich der Pumpkammer planparallele Oberflächen aufweisen. Dabei kann das Pumpenelement ausgebildet sein durch, insbesondere zyklisches, Auslenken der Membran Flüssigkeit zu verdrängen bzw. anzusaugen. Hierzu kann der zentrale Abschnitt der Pumpmembran derart mit dem Koppelungsbalken verbunden sein, sodass eine Auslenkung des Koppelungsbalkens zwischen der Bodenplatte und der Deckelplatte zu einer Auslenkung der Pumpmembranfolie führt. Das Pumpenelement ist ausgebildet, das ein Fluid, welches sich zwischen der Pumpmembranfolie und der Bodenplatte befindet, verdrängt wird, wenn die Pumpmembranfolie mittels des Koppelungsbalkens in Richtung der Bodenplatte bewegt wird. Bei einer planparallelen Anordnung der Bodenplatte zu dem Koppelungsbalken kann bei einer Bewegung des Koppelungsbalkens in Richtung der Bodenplatte die Pumpmembranfolie flach auf die Bodenplatte gepresst werden. Bei einer planparallelen Anordnung der Bodenplatte zu dem Koppelungsbalken kann eine dem Koppelungsbalken zugewandte Seite der Bodenplatte planparallel zu einer der Bodenplatte zugewandten Seite des Koppelungsbalkens sein. Vorteilhafterweise weist die Pumpkammer kein Schadvolumen auf. Der Koppelungsbalken kann die laterale Dimension der Pumpkammer komplett bedecken. Vorteilhaft kann das Fördervolumen des Pumpenelements durch die Anzahl von Pumphüben bestimmt werden, da die Pumpkammer ausgebildet ist, ein konstantes Hubvolumen bereitzustellen, wenn der Koppelungsbalken auf Anschlag an der Bodenplatte und auf Anschlag an der Deckelplatte bewegt wird.A metering pump may comprise a pump element. The pump element may also be referred to as a pump chip. In this case, the pump element can be constructed from a cover plate arranged at a predefined distance to a base plate, as well as a coupling bar and pump membrane film arranged therebetween. The cover plate can, at least in sections, be arranged in a tolerance range plane-parallel to the bottom plate. The tolerance range may be a departure from a plane-parallel orientation of 30 degrees. The pumping membrane film may be connected in a central portion to a portion of the coupling beam. A, in particular concentric, another portion of the pump membrane sheets may be connected to the bottom plate. The pumping membrane sheet may have a flexible portion laterally adjacent to the central portion between the central portion and the further portion. The flexible portion may receive a deformation of the pumping membrane film due to a deliberate deflection of the coupling beam in the direction of the cover plate. The flexible portion of the pumping membrane sheet may have a stiffness that minimizes deformation due to pumping pressure and, simultaneously or alternatively, backpressure. A connection of the pumping membrane foil to the bottom plate of the pumping element can define the lateral dimension of the pumping chamber formed by the pumping membrane foil and the bottom plate. The lateral dimension of the pumping chamber may be adjusted to define the stroke volume of the pumping element. In one embodiment For example, the coupling bar and the bottom plate may have plane-parallel surfaces in the region of the pumping chamber. In this case, the pump element may be formed by displacing or sucking liquid, in particular cyclically, deflecting the membrane. For this purpose, the central portion of the pumping membrane can be connected to the coupling bar in such a way that a deflection of the coupling bar between the bottom plate and the cover plate leads to a deflection of the pumping membrane film. The pump element is designed to displace a fluid located between the pumping membrane foil and the bottom plate when the pumping membrane foil is moved towards the bottom plate by means of the coupling bar. In a plane-parallel arrangement of the bottom plate to the coupling beam can be pressed flat on the bottom plate in a movement of the coupling beam in the direction of the bottom plate, the pumping membrane film. In a plane-parallel arrangement of the bottom plate to the coupling bar can be a coupling beam facing side of the bottom plate plane-parallel to a bottom plate facing side of the coupling beam. Advantageously, the pumping chamber has no harmful volume. The coupling bar can completely cover the lateral dimension of the pumping chamber. Advantageously, the delivery volume of the pump element can be determined by the number of pump strokes, since the pumping chamber is designed to provide a constant displacement when the coupling beam is moved to stop on the bottom plate and stop on the cover plate.

Das hier vorgestellte Pumpenelement kann ein nach dem Prinzip einer Membranpumpe wirkendes Pumpenelement darstellen, welches mit einem Aktor zu einer Dosierpumpe nach dem Prinzip einer Membranpumpe kombiniert werden kann. Dabei kann ein Aufbau in Schichten eine kompakte, insbesondere flache Bauform erlauben. Dabei kann die Deckelplatte, der Koppelungsbalken, die Pumpmembranfolie sowie die Bodenplatte je eine Schicht des Pumpenelements bilden. Mittels des beidseitigen Anschlags für den Koppelungsbalken und damit für die Pumpmembran kann vorteilhaft ein konstanter Hub erzielt werden. Vorteilhaft weist das Pumpenelement eine geringe Gegendruckempfindlichkeit auf, da flexible Pumpmembranbereiche durch den Koppelungsbalken im Ausstoßzyklus ausgedrückt werden.The pump element presented here can be a pump element acting on the principle of a diaphragm pump, which can be combined with an actuator to form a metering pump according to the principle of a diaphragm pump. In this case, a structure in layers allow a compact, in particular flat design. In this case, the cover plate, the coupling beam, the pumping membrane film and the bottom plate can each form a layer of the pump element. By means of the two-sided stop for the coupling bar and thus for the pumping diaphragm can advantageously be achieved a constant stroke. Advantageously, the pump element has a low backpressure sensitivity because flexible pumping membrane areas are expressed by the coupling bar in the ejection cycle.

Vorteilhaft kann eine Ausführungsform eines Pumpenelements für ein sicheres Dosieren kleiner Flüssigkeitsmengen (0,01 - 100 µl/min) verwendet werden, beispielsweise zur Medikamentendosierung, insbesondere im Diabetesmarkt. Eine Dosierpumpe kann aus einem Pumpenelement als Einweg-Produkt (Disposable) und einer Aktoreinheit (Durable) bestehen. Ein weiterer Vorteil ist die hohe Miniaturisierbarkeit, welche beispielsweise als Treiber bei einer Insulinpumpe von Bedeutung ist. Dabei sind niedrige Herstellungskosten erzielbar und zusätzliche Sicherheitsfunktionen integrierbar.Advantageously, an embodiment of a pump element for a safe dosing small amounts of liquid (0.01 - 100 ul / min) can be used, for example for drug dosage, especially in the diabetes market. A metering pump can consist of a pump element as a disposable product (disposable) and an actuator unit (Durable). Another advantage is the high degree of miniaturization, which is important, for example, as a driver in an insulin pump. Low production costs can be achieved and additional safety functions can be integrated.

Ferner kann in einer Ausführungsform der Koppelungsbalken mit einem Federelement und/oder einer Seitenwand eine Mittelplatte bilden, die zwischen der Deckelplatte und der Bodenplatte angeordnet ist, wobei das Federelement ausgebildet ist, die Bewegung der Mittelplatte auf einer Bewegung innerhalb eines Toleranzbereichs lotrecht zur Haupterstreckungsebene der Bodenplatte und/oder Deckelplatte einzuschränken. Dabei können die Seitenwand und der Koppelungsbalken in einem Toleranzbereich eine gleiche Dicke, das heißt eine gleiche Ausdehnung von der Bodenplatte in Richtung der Deckelplatte, aufweisen. Der Toleranzbereich lotrecht zur Haupterstreckungsebene der Bodenplatte und gleichzeitig oder alternativ Deckelplatte kann kleiner 45 Grad betragen, insbesondere idealerweise kleiner 30 Grad, insbesondere idealerweise kleiner 15 Grad, insbesondere idealerweise kleiner fünf Grad, insbesondere idealerweise kleiner drei Grad, insbesondere idealerweise kleiner ein Grad betragen.Further, in one embodiment, the coupling beam having a spring member and / or a side wall may form a center plate disposed between the top plate and the bottom plate, the spring member being configured to move the center plate to move within a tolerance range perpendicular to the main extension plane of the bottom plate and / or cover plate restrict. In this case, the side wall and the coupling bar in a tolerance range, an equal thickness, that is, an equal extension of the bottom plate in the direction of the cover plate, have. The tolerance range perpendicular to the main extension plane of the bottom plate and simultaneously or alternatively cover plate may be less than 45 degrees, in particular ideally less than 30 degrees, in particular ideally less than 15 degrees, in particular ideally less than five degrees, in particular ideally less than three degrees, in particular ideally less than one degree.

Günstig ist auch, wenn in einer Ausführungsform das Federelement und die Seitenwand als eine Mittelplatte einstückig ausgebildet sind, insbesondere wobei ein abgedünnter Abschnitt der Mittelplatte das Federelement zwischen dem Koppelungsbalken und der Seitenwand bildet. Eine einstückige Mittelplatte, die die Seitenwand und den über ein Federelement verbundenen Koppelungsbalken umfasst, bietet insbesondere fertigungstechnische Vorteile. Das Federelement kann von einem abgedünnten Bereich der Mittelplatte gebildet werden.It is also advantageous if, in one embodiment, the spring element and the side wall are integrally formed as a center plate, in particular wherein a thinned portion of the center plate forms the spring element between the coupling bar and the side wall. A one-piece center plate, which comprises the side wall and the coupling bar connected via a spring element, offers in particular manufacturing advantages. The spring element can be formed by a thinned region of the middle plate.

Ferner kann zwischen der Deckelplatte und der Bodenplatte zumindest eine Fügefolie angeordnet sein, wobei die Fügefolie im Bereich des Koppelungsbalkens eine Aussparung zumindest in der Größe des Koppelungsbalkens aufweist. Die Dicke der Fügefolie kann die Hubhöhe des Koppelungsbalkens beziehungsweise der Pumpmembranfolie verändern. Vorteilhaft kann die Fügefolie die Hubhöhe des Koppelungsbalkens beziehungsweise der Pumpmembranfolie bestimmen. Dann kann die Hubhöhe der Dicke der Fügefolie entsprechen.Furthermore, at least one joining foil can be arranged between the cover plate and the bottom plate, wherein the joining foil in the region of the coupling bar has a recess at least in the size of the coupling bar. The thickness of the joining foil can increase the lifting height of the Change coupling beam or the pumping membrane film. Advantageously, the joining foil can determine the lifting height of the coupling beam or of the pumping membrane foil. Then the lifting height can correspond to the thickness of the joining film.

Das Fördervolumen kann anhand einer Anzahl von Pumphüben bestimmt werden, wenn, wie bereits beschrieben, die Pumpkammer ausgebildet ist, ein konstantes Hubvolumen bereitzustellen. Wenn der Koppelungsbalken beim Ansaugen auf Anschlag an die Deckelplatte und beim Auswerfen auf Anschlag an die Bodenplatte ausgelenkt wird, kann ein konstantes Hubvolumen der Pumpkammer erzielt werden. Vorteilhafterweise hängt in einer Ausführungsform eine Höhe eines Pumphubes nicht von der Dicke der Deckelplatte und der Dicke der Bodenplatte ab, weil diese lediglich an den einander zugewandten Flächen von der Mittenplatte, insbesondere der Seitenwand, sowie der Pumpmembranfolie und je nach Ausführungsform zusätzlich der Fügefolie auf Abstand gehalten werden. Wenn man von einer konstanten Dicke der Mittelplatte sowie der Pumpmembranfolie ausgeht sowie einer planparallelen Anordnung der Bodenplatte zur Deckelplatte, kann der Hub durch eine Dicke der Fügefolie definiert werden. Die Fügefolie kann die Bodenplatte und die Deckelplatte auf Abstand zueinanderhalten. Ferner kann die Fügefolie eine Aussparung im Bereich des Koppelungsbalkens aufweisen. Ein Toleranzbereich in der Dicke der Fügefolie kann zu einem Toleranzbereich im Hub und somit zu einem Toleranzbereich bei der Größe der Pumpenkammer führen. Ansprechend auf eine tatsächliche Dicke der Fügefolie kann die laterale Verbindung der Pumpmembranfolie und der Bodenplatte in der Größe angepasst werden, um das Hubvolumen der Pumpkammer anzupassen.The delivery volume can be determined based on a number of pumping strokes, if, as already described, the pumping chamber is designed to provide a constant displacement. When the coupling bar is deflected to the bottom plate during suction on abutment against the cover plate and when ejecting to stop, a constant displacement of the pumping chamber can be achieved. Advantageously, in one embodiment, a height of a pumping stroke does not depend on the thickness of the cover plate and the thickness of the bottom plate, because these only on the facing surfaces of the center plate, in particular the side wall, and the pumping membrane film and depending on the embodiment additionally the joining film at a distance being held. If one proceeds from a constant thickness of the middle plate and the pumping membrane film and a plane-parallel arrangement of the bottom plate to the cover plate, the stroke can be defined by a thickness of the joining film. The joining film can keep the bottom plate and the cover plate at a distance to each other. Furthermore, the joining film may have a recess in the region of the coupling beam. A tolerance range in the thickness of the joining film can lead to a tolerance range in the stroke and thus to a tolerance range in the size of the pump chamber. In response to an actual thickness of the bonding foil, the lateral connection of the pumping membrane foil and the bottom plate may be adjusted in size to accommodate the stroke volume of the pumping chamber.

Ferner kann die Deckelplatte und gleichzeitig oder alternativ die Mittelplatte und gleichzeitig oder alternativ die Bodenplatte aus einem thermoplastischen Polymer gefertigt sein. Die Deckelplatte, die Mittelplatte und die Bodenplatte können als steife, strukturierte Platten ausgebildet sein. Fertigungstechnisch kann es sinnvoll sein, die Deckelplatte, die Mittelplatte und die Bodenplatte aus einem thermoplastischen Polymer wie beispielsweise Polycarbonat (PC), Polyethylen (PE), Polymethylmethacrylat (PMMA), Cyclic Olefin Polymer (COP) oder Cyclo-Olefin-Copolymere (COC) zu fertigen. Hierbei können vorteilhaft günstige Herstellungskosten erzielt werden. Ferner kann die Deckelplatte und gleichzeitig oder alternativ die Mittelplatte und gleichzeitig oder alternativ die Bodenplatte beispielsweise durch Spritzgießen, Spritzprägen, Heißprägen, Laserschneiden, Fräsen, Stanzen und/oder eine Kombination derselben hergestellt werden. Idealerweise kann die Bodenplatte und gleichzeitig oder alternativ die Deckelplatte eine Dicke zwischen 0,6 mm und 10 mm betragen.Furthermore, the cover plate and at the same time or alternatively the middle plate and at the same time or alternatively the base plate can be made of a thermoplastic polymer. The cover plate, the center plate and the bottom plate may be formed as rigid, structured plates. From a production point of view, it may be useful to use the cover plate, the middle plate and the bottom plate made of a thermoplastic polymer such as polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), cyclic olefin polymer (COP) or cyclo-olefin copolymers (COC). to manufacture. In this case advantageously favorable production costs can be achieved. Furthermore, the cover plate and at the same time Alternatively, the center plate and at the same time or alternatively the bottom plate, for example by injection molding, injection compression, hot stamping, laser cutting, milling, punching and / or a combination thereof are produced. Ideally, the bottom plate and at the same time or alternatively the top plate may have a thickness between 0.6 mm and 10 mm.

Ferner kann die Fügefolie und gleichzeitig oder alternativ die Pumpmembranfolie aus einem Elastomer und gleichzeitig oder alternativ einem thermoplastischen Elastomer und gleichzeitig oder alternativ einem Thermoplast als eine elastische Membran gefertigt sein. Mit den genannten Materialen kann die Fügefolie und die Pumpmembranfolie als eine elastische Membran kostengünstig gefertigt werden.Furthermore, the joining foil and simultaneously or alternatively the pumping membrane foil may be made of an elastomer and simultaneously or alternatively a thermoplastic elastomer and simultaneously or alternatively a thermoplastic as an elastic membrane. With the materials mentioned, the joining film and the pumping membrane film can be manufactured inexpensively as an elastic membrane.

Ferner kann das Pumpenelement zumindest ein Rückschlagventil, insbesondere zwei Rückschlagventile zum Richten eines Flusses eines Fluids in der Pumpkammer aufweisen. Günstig ist es auch, wenn die zumindest zwei Rückschlagventile in zumindest einer der Bodenplatte und gleichzeitig oder alternativ der Mittelplatte und gleichzeitig oder alternativ der Deckelplatte und gleichzeitig oder alternativ der Pumpmembranfolie und gleichzeitig oder alternativ der Fügefolie angeordnet sind.Furthermore, the pump element may comprise at least one check valve, in particular two non-return valves for directing a flow of a fluid in the pumping chamber. It is also favorable if the at least two non-return valves are arranged in at least one of the base plate and simultaneously or alternatively the middle plate and simultaneously or alternatively the cover plate and simultaneously or alternatively the pump membrane foil and simultaneously or alternatively the joining foil.

Es wird eine Dosierpumpe vorgestellt, wobei die Dosierpumpe die folgenden Merkmale aufweist:

  • Pumpenelement; und
  • Aktoreinheit für eine Dosierpumpe, die ausgebildet ist, den Koppelungsbalken in einem Toleranzbereich lotrecht zur Bodenplatte und/oder Deckelplatte zu bewegen, wobei die Aktoreinheit mittels mindestens einer Aktorgabel und gleichzeitig oder alternativ mindestens eines in einer Öffnung einrastenden Dorns und gleichzeitig oder alternativ Verschweißen und gleichzeitig oder alternativ Verkleben mit dem Koppelungsbalken des Pumpenelements verbunden ist.
A metering pump is presented, the metering pump having the following features:
  • Pump element; and
  • Actuator for a metering pump, which is designed to move the coupling bar in a tolerance range perpendicular to the bottom plate and / or cover plate, wherein the actuator unit by means of at least one Aktorgabel and simultaneously or alternatively at least one latching in an opening mandrel and simultaneously or alternatively welding and simultaneously or Alternatively, bonding is connected to the coupling bar of the pump element.

Günstig ist es dabei auch, wenn die Aktoreinheit ausgebildet ist als ein Piezobiegewandler und gleichzeitig oder alternativ ein Reluktanzaktor und gleichzeitig oder alternativ mindestens ein elektroaktives Polymer und gleichzeitig oder alternativ mindestens ein Formgedächtnisaktor und gleichzeitig oder alternativ mindestens ein Linearmagnet.It is also advantageous if the actuator unit is designed as a piezo bending transducer and, simultaneously or alternatively, a reluctance actuator and simultaneously or alternatively at least one electroactive polymer and simultaneously or alternatively at least one shape memory actuator and at the same time or alternatively at least one linear magnet.

Die, insbesondere miniaturisierte, Dosierpumpe besteht aus einer wiederverwendbaren Steuereinheit beziehungsweise Aktoreinheit (Aktor) sowie einem kostengünstigen Einweg-Pumpenelement. Der vorgestellte Schichtaufbau dieses Pumpenelements beinhaltet ein Element zur mechanischen Kopplung der Pumpmembran an den Aktor (Koppelungsbalken), wobei der Koppelungsbalken gleichzeitig als Versteifung des Zentrums der Pumpmembranfolie dient, um ein Hubvolumen zu erreichen, welches trotz verschiedener Drücke an Ein- oder Auslass der Dosierpumpe konstant bleibt. Entsprechender Koppelungsbalken kann außerdem die flexiblen Bereiche der Pumpmembranfolie beim Ausstoßen komplett an den Pumpkammerboden, das heißt die Bodenplatte, pressen. Dies kann zu einer ausgezeichneten Gegendrucktoleranz führen. Der Schichtaufbau sowie die Materialkombination ermöglicht die einfache Anpassung bzw. Feinjustierung des Hubvolumens der Dosierpumpe, indem beispielsweise per Laserschweißen die lateralen Dimensionen der Pumpkammer bzw. -membran definiert werden kann. Insbesondere ist selbst noch am fertigen Pumpenelement eine Nachjustierung beispielsweise per Laserschweißen möglich: Mit dem vorgestellten Pumpenelement können Dosiergenauigkeiten besser als 5% erreicht werden. Ein weiterer Vorteil des vorgestellten Pumpenelements ist der mit dem Schichtaufbau erzielbare einfache Fertigungsablauf des Pumpenelements. Dabei sind weiterhin Rückschlagventile einfach integrierbar. Auch ein Drucksensor, der ohne Elektrik im Pumpenelement auskommt und deshalb kostengünstig ist, kann einfach integrierbar sein. Zusätzlich ist ein Sicherheitsventil sehr einfach integrierbar, das freien (ungewollten) Vorwärtsfluss des Fluids bei Druck im Reservoir verhindert.The, in particular miniaturized, metering pump consists of a reusable control unit or actuator unit (actuator) and a cost-effective disposable pump element. The proposed layer structure of this pump element includes an element for mechanically coupling the pumping membrane to the actuator (coupling bar), the coupling bar also serves as stiffening of the center of the pumping membrane film to achieve a stroke volume which, despite different pressures at the inlet or outlet of the metering pump constant remains. Corresponding coupling bar can also press the flexible areas of the pumping membrane film when ejecting completely to the pump chamber floor, that is, the bottom plate. This can lead to an excellent backpressure tolerance. The layer structure as well as the combination of materials allows easy adjustment or fine adjustment of the stroke volume of the metering pump, for example by laser welding the lateral dimensions of the pumping chamber or membrane can be defined. In particular, a readjustment, for example, by laser welding is even possible even on the finished pump element: With the presented pump element dosing accuracies better than 5% can be achieved. Another advantage of the proposed pump element is the achievable with the layer structure simple production process of the pump element. It still check valves are easy to integrate. Also, a pressure sensor that does not require electrical in the pump element and therefore is inexpensive, can be easily integrated. In addition, a safety valve is very easy to integrate, which prevents free (unwanted) forward flow of the fluid under pressure in the reservoir.

Gegenüber bekannten polymeren Mikropumpen ist durch den hier vorgestellten Ansatz eine einfache Trennung von Aktor und Pumpenelement möglich, wodurch die Dosierpumpe sehr kostengünstig hergestellt und als Wegwerfteil verwendet werden kann. Dabei weist die Dosierpumpe beziehungsweise das Pumpenelement eine kleinere, insbesondere flachere Bauform des Systems als bekannte zur Medikamentendosierung geeignete Pumpen auf, da das flache Pumpenelement, insbesondere als flache Membranpumpe ausgeführt, von einem flachen Piezobiegewandler angesteuert werden kann (E-Motoren und Getriebe, wie sie in bekannten Insulinpumpen verwendet werden, haben eine Mindestdicke), und da der Aktor von der Seite in den Pumpenchip eingreifen kann. Vorteilhaft sind auch geringe laufende Kosten, da eine Sicherheitsfunktion wie beispielsweise "Auslass verstopft" ohne Verwendung elektrischer Komponenten auf dem Pumpenchip umsetzbar ist. Darüber hinaus kann der Aktor in einer wiederverwendbaren Komponente untergebracht sein. Die vorgeschlagene Dosierpumpe kann eine zuverlässige Kopplung von (wiederverwendbarem) Aktor und Pumpenelement schaffen. Vorteilhaft können Schmutzpartikel am Aktor den Hub nicht verändern. Auch ist die Pumpmembranfolie im Inneren des Pumpenelements angeordnet und daher geschützt vor Beschädigung und Verschmutzung. Für die Dosierpumpe ist nur ein Aktor erforderlich. Insgesamt kann eine kleine und insbesondere flache Bauform erreicht werden. Vorteilhaft ist auch, dass die Pumpmembranfolie zwischen zwei festen Anschlägen hin und her bewegt wird und somit ein definiertes, gegendruckunabhängiges Hubvolumen erzielt. So kann mittels Zählen der Hübe eine Berechnung der abgegebenen Dosis ermöglicht werden. Weiterhin kann auf Flusssensoren verzichtet werden. Es ist eine günstige Massenherstellung möglich (z. B. Spritzguss), da der Abstand zwischen beidseitigem Anschlag für die Pumpmembranfolie nicht von Spritzgusstoleranzen abhängig, beziehungsweise können Toleranzen durch gezieltes Ändern der Befestigung der Pumpmembranfolie an der Bodenplatte ausgeglichen werden. Zusätzlich ist ein Medikamentenreservoir optional auf dem Pumpenelement per flexibler Membran integrierbar. Dabei ist ein beliebiges Medikamentenreservoir, insbesondere von der Bauform und der Verformbarkeit, möglich, wodurch beispielsweise im medizinischen Bereich ein hoher Tragekomfort einhergehen kann.Compared with known polymeric micropumps, a simple separation of actuator and pump element is possible by the approach presented here, whereby the metering pump can be produced very inexpensively and used as a disposable part. In this case, the metering pump or the pump element has a smaller, in particular flatter design of the system as known for drug dosage suitable pumps, since the flat pump element, in particular designed as a flat diaphragm pump, can be controlled by a flat piezo bending transducer (electric motors and Gears, as used in known insulin pumps have a minimum thickness), and because the actuator can engage from the side into the pump chip. Also advantageous are low running costs, since a safety function such as "outlet clogged" can be implemented without using electrical components on the pump chip. In addition, the actuator can be housed in a reusable component. The proposed dosing pump can provide a reliable coupling of (reusable) actuator and pump element. Advantageously, dirt particles on the actuator can not change the stroke. Also, the pumping membrane film is disposed inside the pump element and therefore protected from damage and contamination. Only one actuator is required for the dosing pump. Overall, a small and especially flat design can be achieved. It is also advantageous that the pumping membrane film is moved back and forth between two fixed stops and thus achieves a defined counterpressure-independent displacement volume. Thus, by counting the strokes, a calculation of the delivered dose can be made possible. Furthermore, it is possible to dispense with flow sensors. It is a cheap mass production possible (eg injection molding), since the distance between the two-sided stop for the pumping membrane film is not dependent on injection molding tolerances, or tolerances can be compensated for by selectively changing the attachment of the pumping membrane film to the bottom plate. In addition, a drug reservoir can optionally be integrated on the pump element via a flexible membrane. In this case, any medication reservoir, in particular of the design and the deformability, possible, which may be accompanied by high wearing comfort, for example, in the medical field.

Es wird ein Verfahren zum Herstellen eines Pumpenelements für eine Dosierpumpe vorgestellt, wobei das Verfahren die folgenden Schritte aufweist:

  • Bereitstellen von zumindest einer Bodenplatte, einer Deckelplatte, eines Koppelungsbalken und einer Pumpmembranfolie;
  • Anordnen des Koppelungsbalkens und der Pumpmembranfolie zwischen der Bodenplatte und der Deckelplatte, wobei die Bodenplatte in einem vordefinierten Abstand zur Deckelplatte angeordnet ist; und
  • Fügen der Bodenplatte, der Pumpmembranfolie, des Koppelungsbalkens und der Deckelplatte, um ein Pumpenelement herzustellen.
A process for producing a pump element for a metering pump is presented, the method comprising the following steps:
  • Providing at least a bottom plate, a top plate, a coupling bar, and a pumping membrane foil;
  • Arranging the coupling beam and the pumping membrane film between the bottom plate and the cover plate, wherein the bottom plate is arranged at a predefined distance to the cover plate; and
  • Add the bottom plate, the pumping membrane foil, the coupling bar and the top plate to make a pump element.

Die Deckelplatte und gleichzeitig oder alternativ die Mittelplatte und gleichzeitig oder alternativ die Bodenplatte können aus einem thermoplastischen Polymer wie beispielsweise Polycarbonat (PC), Polyethylen (PE), Polymethylmethacrylat (PMMA), Cyclic Olefin Polymer (COP) oder Cyclo-Olefin-Copolymere (COC) beispielsweise durch Spritzgießen, Spritzprägen, Heißprägen, Laserschneiden, Fräsen, Stanzen oder eine Kombination derselben hergestellt werden. Die Pumpmembranfolie kann aus einem Elastomer und gelichzeitig oder alternativ einem thermoplastischen Elastomer und gelichzeitig oder alternativ einem Thermoplast gefertigt sein. Die Bodenplatte und die Deckelplatte können in einem Toleranzbereich planparallel in einem vordefinierten Abstand angeordnet werden, wobei zwischen der Bodenplatte und der Deckelplatte der Koppelungsbalken und die Pumpmembranfolie angeordnet werden. Dabei kann der Koppelungsbalken in einem Toleranzbereich planparallel zur Bodenplatte angeordnet werden. Die Pumpmembranfolie kann zwischen dem Koppelungsbalken und der Bodenplatte angeordnet werden. Im Schritt des Fügens wird die Pumpmembranfolie mit dem Koppelungsbalken gefügt. Die Pumpmembranfolie wird weiterhin mit der Bodenplatte gefügt. Als Fügeverfahren, insbesondere mit der Pumpmembranfolie, kann beispielsweise Laserschweißen verwendet werden. Die Bodenplatte kann mit der Deckelplatte verbunden werden, wobei zwischen der Bodenplatte und der Deckelplatte weitere Schichten angeordnet sein können. Eine Verbindung zwischen der Bodenplatte und der Deckelplatte kann ausgebildet sein, einen vordefinierten Abstand zwischen der Bodenplatte und der Deckelplatte einzustellen. Es können verschiedene Fügeverfahren im Schritt des Fügens eingesetzt werden, wie beispielsweise Zusammensetzen, An-und Einpressen, Fügen durch Schweißen, insbesondere mittels Laserschweißen, Ultraschallschweißen, Lösungsmittelbonden und gleichzeitig oder alternativ Kleben. Insbesondere kann es vorteilhaft sein, die Deckelplatte aufzukleben. Auch können zusätzliche Verbindungselemente im Schritt des Fügens eingesetzt werden. Im Schritt des Fügens kann auch ein Hybridfügen, d. h. eine Kombination von zumindest zwei Fügeverfahren, durchgeführt werden. Beim Hybridfügen können die Vorteile der jeweiligen Fügeverfahren miteinander verbunden werden.The cover plate and at the same time or alternatively the middle plate and simultaneously or alternatively the base plate may be made of a thermoplastic polymer such as polycarbonate (PC), polyethylene (PE), polymethyl methacrylate (PMMA), cyclic olefin polymer (COP) or cyclo-olefin copolymers (COC ) are produced for example by injection molding, injection compression, hot stamping, laser cutting, milling, punching or a combination thereof. The pumping membrane film can be made of an elastomer and, at the same time or alternatively, a thermoplastic elastomer and, at the same time or alternatively, a thermoplastic. The bottom plate and the cover plate can be arranged plane-parallel in a tolerance range at a predefined distance, wherein between the bottom plate and the cover plate of the coupling bar and the pumping membrane film are arranged. In this case, the coupling bar can be arranged in a tolerance range plane-parallel to the bottom plate. The pumping membrane foil can be placed between the coupling bar and the bottom plate. In the step of joining, the pumping membrane film is joined to the coupling bar. The pump membrane film is further joined to the bottom plate. As a joining method, in particular with the pumping membrane film, for example, laser welding can be used. The bottom plate can be connected to the cover plate, wherein further layers can be arranged between the bottom plate and the cover plate. A connection between the bottom plate and the top plate may be configured to set a predefined distance between the bottom plate and the top plate. Various joining methods can be used in the step of joining, such as assembly, pressing and pressing, joining by welding, in particular by means of laser welding, ultrasonic welding, solvent bonding and simultaneously or alternatively gluing. In particular, it may be advantageous to stick the cover plate. Also, additional fasteners can be used in the step of joining. In the joining step, hybrid joining, ie a combination of at least two joining methods, can also be carried out. In hybrid joining, the advantages of the respective joining methods can be combined with each other.

Die Erfindung wird nachstehend anhand der beigefügten Zeichnungen beispielhaft näher erläutert. Es zeigen:

Fig. 1
eine schematische Schnittdarstellung eines Pumpenelementes gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 2a
eine schematische Schnittdarstellung eines Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 2b
eine schematische Schnittdarstellung eines Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 3a
eine Dosierpumpe in einer schematischen dreidimensionalen Explosionsdarstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 3b
eine Dosierpumpe in einer schematischen dreidimensionalen Darstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 4
ein Pumpenelement in einer schematischen dreidimensionalen Darstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 5a und 5b
eine schematische Darstellung einer Implementierung der Funktionalität von zwei Rückschlagventilen in den Schichten eines Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 6a bis 6d
eine schematische Darstellung eines Querschnitts des Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 7
ein Ablaufdiagramm eines Verfahrens zum Herstellen eines Pumpenelements für eine Dosierpumpe gemäß einem Ausführungsbeispiel der vorliegenden Erfindung; und
Fig. 8a bis 8f
einen schematischen Fertigungsablauf eines Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
The invention will now be described by way of example with reference to the accompanying drawings. Show it:
Fig. 1
a schematic sectional view of a pump element according to an embodiment of the present invention;
Fig. 2a
a schematic sectional view of a pump element according to an embodiment of the present invention;
Fig. 2b
a schematic sectional view of a pump element according to an embodiment of the present invention;
Fig. 3a
a metering pump in a schematic three-dimensional exploded view according to an embodiment of the present invention;
Fig. 3b
a metering pump in a schematic three-dimensional representation according to an embodiment of the present invention;
Fig. 4
a pump element in a schematic three-dimensional representation according to an embodiment of the present invention;
Fig. 5a and 5b
a schematic representation of an implementation of the functionality of two check valves in the layers of a pump element according to an embodiment of the present invention;
Fig. 6a to 6d
a schematic representation of a cross section of the pump element according to an embodiment of the present invention;
Fig. 7
a flow diagram of a method of manufacturing a pump element for a metering pump according to an embodiment of the present invention; and
Fig. 8a to 8f
a schematic production sequence of a pump element according to an embodiment of the present invention.

In der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele der vorliegenden Erfindung werden für die in den verschiedenen Figuren dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche Bezugszeichen verwendet, wobei auf eine wiederholte Beschreibung dieser Elemente verzichtet wird.In the following description of preferred embodiments of the present invention, the same or similar reference numerals are used for the elements shown in the various figures and similarly acting, wherein a repeated description of these elements is omitted.

Fig. 1 zeigt eine schematische Schnittdarstellung eines Pumpenelementes 1 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Pumpenelement 1 weist einen Koppelungsbalken 6, eine Pumpmembranfolie 10, eine Bodenplatte 12 sowie eine Deckelplatte 15 auf. Die Bodenplatte 12 ist planparallel zur Deckelplatte 15 in einem vordefinierten Abstand angeordnet. Zwischen der Bodenplatte 12 und der Deckelplatte 15 ist der Koppelungsbalken 6 angeordnet. Zwischen dem Koppelungsbalken 6 und der Bodenplatte 12 ist die Pumpmembranfolie 10 angeordnet. Die Pumpmembranfolie 10 ist in einem zentralen Abschnitt 9 mit dem Koppelungsbalken 6 verbunden. In einem lateral an den zentralen Abschnitt 9 der Pumpmembranfolie 10 anschließenden Abschnitt 13 ist die Pumpmembranfolie 10 flexibel ausgebildet. Lateral an den flexiblen Abschnitt 13 anschließenden weiteren Abschnitt 14 ist die Pumpmembranfolie 10 mit der Bodenplatte 12 verbunden. Der Koppelungsbalken 6 ist ausgebildet, von einem mit ihm verbundenen Aktor in einem Toleranzbereich lotrecht zur Haupterstreckungsebene der Bodenplatte 12 zwischen der Bodenplatte 12 und der Deckelplatte 15 bewegt zu werden. Bei einer Bewegung des Koppelungsbalkens 6 zwischen der Bodenplatte 12 und der Deckelplatte 15 wird ein Hub des Koppelungsbalkens 6 durch einen beidseitigen Anschlag begrenzt. Hierdurch wird ein konstanter Hub des Koppelungsbalkens 6 und der mit dem Koppelungsbalken 6 verbundenen Pumpmembranfolie 10 erzielt. Die Bodenplatte 12 und die Pumpmembranfolie 10 bilden eine Begrenzung der Pumpenkammer 11. Fig. 1 shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention. The pump element 1 has a coupling bar 6, a pump membrane film 10, a bottom plate 12 and a cover plate 15. The bottom plate 12 is arranged plane-parallel to the cover plate 15 at a predefined distance. Between the bottom plate 12 and the cover plate 15 of the coupling bar 6 is arranged. Between the coupling bar 6 and the bottom plate 12, the pumping membrane film 10 is arranged. The pumping membrane film 10 is connected in a central portion 9 with the coupling bar 6. In a laterally adjoining the central portion 9 of the pumping membrane film 10 section 13, the pumping membrane membrane 10 is flexible. Lateral to the flexible portion 13 subsequent further section 14, the pumping membrane film 10 is connected to the bottom plate 12. The coupling bar 6 is designed to be moved by an actuator connected to it in a tolerance range perpendicular to the main extension plane of the bottom plate 12 between the bottom plate 12 and the top plate 15. Upon movement of the coupling bar 6 between the bottom plate 12 and the cover plate 15, a stroke of the coupling bar 6 is limited by a stop on both sides. As a result, a constant stroke of the coupling bar 6 and connected to the coupling bar 6 pumping membrane film 10 is achieved. The bottom plate 12 and the pumping membrane film 10 form a boundary of the pump chamber 11.

Die Pumpmembranfolie 10 kann in drei Abschnitte aufgeteilt werden. In einem zentralen Abschnitt 9 ist die Pumpmembranfolie 10 mit dem Koppelungsbalken 6 verbunden. An den zentralen Abschnitt 9 schließt lateral ein flexibler Abschnitt 13 an. Mit der Bodenplatte 12 ist ein weiterer Abschnitt 14 verbunden, der an den flexiblen Abschnitt 13 lateral anschließt.The pumping membrane sheet 10 can be divided into three sections. In a central portion 9, the pumping membrane film 10 is connected to the coupling bar 6. A flexible section 13 adjoins the central section 9 laterally. With the bottom plate 12, a further portion 14 is connected, which laterally connects to the flexible portion 13.

Fig. 2a zeigt eine schematische Schnittdarstellung eines Pumpenelements 1 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Pumpenelement 1 entspricht dem in Fig. 1 gezeigten Pumpenelement, mit dem Unterschied, dass der Koppelungsbalken 6 in Richtung der Bodenplatte 12 bis zum Anschlag der Pumpmembranfolie 10 auf der Bodenplatte 12 bewegt ist. Hierbei ist zu sehen, dass die Pumpenkammer 11 vorteilhafterweise kein Schadvolumen aufweist. Fig. 2a shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention. The pump element 1 corresponds to the in Fig. 1 shown pump element, with the difference that the coupling bar 6 is moved in the direction of the bottom plate 12 to the stop of the pumping membrane membrane 10 on the bottom plate 12. It can be seen here that the pump chamber 11 advantageously has no damaged volume.

Fig. 2b zeigt eine schematische Schnittdarstellung eines Pumpenelements 1 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Das Pumpenelement entspricht dem in Fig. 1 und Fig. 2a gezeigten Pumpenelement 1, wobei der Koppelungsbalken auf Anschlag in Richtung der Deckelplatte 15 bewegt wurde. Die Pumpenkammer 11 weist ein maximales Volumen auf. Fig. 2b verdeutlicht, dass das Ansaugen eines Fluids in die Pumpenkammer 11 aktiv durch einen Aktor der den Koppelungsbalken 6 bewegt, gesteuert wird. Fig. 2b shows a schematic sectional view of a pump element 1 according to an embodiment of the present invention. The pump element corresponds to the in Fig. 1 and Fig. 2a shown pump element 1, wherein the coupling bar was moved to stop in the direction of the cover plate 15. The pump chamber 11 has a maximum volume. Fig. 2b illustrates that the suction of a fluid into the pump chamber 11 is actively controlled by an actuator of the coupling bar 6, is controlled.

Fig. 3a zeigt eine Dosierpumpe in einer schematischen dreidimensionalen Explosionsdarstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Dosierpumpe weist ein Pumpenelement 1 sowie eine Aktoreinheit 2 auf. Bei dem Pumpenelement 1 handelt es sich um ein Einweg-Pumpenelement. Ein Aktor 3 der Aktoreinheit 2 ist als ein Piezobiegewandler 3 mit einer Aktorgabel 4 ausgebildet, wobei die Aktorgabel 4vier Zinken 5 aufweist. Das Pumpenelement 1 wird von einer Bodenplatte 12, einer Pumpmembranfolie 10, einer Mittelplatte 7, einer Fügefolie jetzt 18 sowie einer Deckelplatte 15 gebildet. Die Bodenplatte 12, die Pumpmembranfolie 10, die Mittelplatte 7, die Fügefolie 18 sowie die Deckelplatte 15 sind in Schichten, insbesondere in einem Toleranzbereich planparallel, angeordnet. Auf einer Haupterstreckungsebene des Pumpenelements 1 sind zwei Achsen A-A und B-B eingezeichnet. Entlang der Achse A-A wird in folgenden Figuren das Pumpenelement 1 aufgeschnitten dargestellt. Die Achse B-B entspricht einer Richtungsachse, in der die Zinken 5 der am Piezobiegewandler Element 3 befestigten Gabel 4 in das Pumpenelement 1 hinein geschoben werden können. Der Piezobiegewandler 3 ist mit einer Aktorbasis 3b verbunden. Mit anderen Worten zeigt Fig. 3a eine Dosierpumpe mit Pumpenchip aus einem polymeren Schichtsystem. Fig. 3a shows a metering pump in a schematic three-dimensional exploded view according to an embodiment of the present invention. The metering pump has a pump element 1 and an actuator unit 2. The pump element 1 is a disposable pump element. An actuator 3 of the actuator unit 2 is designed as a piezo bending transducer 3 with an actuator fork 4, the actuator fork 4 having four tines 5. The pump element 1 is now formed by a bottom plate 12, a pump membrane foil 10, a middle plate 7, a joining foil 18 and a cover plate 15. The bottom plate 12, the pumping membrane film 10, the middle plate 7, the joining film 18 and the cover plate 15 are arranged in layers, in particular in a tolerance range plane-parallel. On a main extension plane of the pump element 1, two axes AA and BB are shown. Along the axis AA, the pump element 1 is shown cut in the following figures. The axis BB corresponds to a direction axis in which the tines. 5 the fork 4 mounted on the piezoelectric transducing element 3 can be pushed into the pump element 1. The piezo bending transducer 3 is connected to an actuator base 3b. In other words shows Fig. 3a a metering pump with pump chip of a polymeric layer system.

Die Dosierpumpe besteht aus einem Pumpenelement 1, welches als EinwegKomponente verwendbar ist, und einer wiederverwendbaren Steuer-/Aktoreinheit 2. Dabei basiert das Pumpenelement 1 auf dem Prinzip einer Membranpumpe: Durch zyklisches Auslenken der Membran wird Flüssigkeit verdrängt bzw. angesaugt, wobei (mindestens) zwei Rückschlagventile zum Richten des Flusses verwendet werden. Diese Funktionen im Pumpenelement 1 werden über drei steife, strukturierte Platten, das heißt die Deckelplatte 15, die Mittelplatte 7 und die Bodenplatte 12, sowie jeweils dazwischen befindliche flexible Folien, das heißt die Pumpmembranfolie 10 sowie die Fügefolie 18, realisiert.The metering pump consists of a pump element 1, which can be used as a disposable component, and a reusable control / actuator unit 2. In this case, the pump element 1 is based on the principle of a membrane pump: by cyclically deflecting the membrane, liquid is displaced or sucked in, whereby (at least) two check valves are used to direct the flow. These functions in the pump element 1 are realized by means of three rigid, structured plates, that is to say the cover plate 15, the middle plate 7 and the bottom plate 12, as well as in each case flexible foils, that is to say the pumping membrane foil 10 and the joining foil 18.

Ein Ausführungsbeispiel zeigt ein Pumpenelement (beispielsweise als Einweg-Pumpenchip) und einen Aktor 2, dessen Aktorgabel 4 aus vier Zinken 5 besteht, welche in das Pumpenelement 1 eingreifen, um die Pumpmembranfolie 10 zu aktuieren. Der Übersichtlichkeit halber wurde auf die Darstellung der (vertikalen und lateralen) Fixierung des Pumpenelements 1 relativ zur Aktorbasis 3b verzichtet.One embodiment shows a pump element (for example as a disposable pump chip) and an actuator 2 whose actuator fork 4 consists of four prongs 5 which engage in the pump element 1 in order to actuate the pump membrane film 10. For the sake of clarity, the representation of the (vertical and lateral) fixing of the pump element 1 relative to the actuator base 3b has been dispensed with.

Fig. 3b zeigt eine Dosierpumpe in einer schematischen dreidimensionalen Darstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die dargestellte Dosierpumpe entspricht im Wesentlichen der bereits in Fig. 3a gezeigten Dosierpumpe. Hierbei ist das Pumpenelement 1 auf die Zinken 5 der mit dem Piezobiegewandler 3 verbundenen Gabel 4 des Aktors 2 aufgeschoben, wobei das Pumpenelement 1 entlang der Achse A-A aufgeschnitten dargestellt ist. Ein Koppelungsbalken 6 ist zwischen einer Bodenplatte 12 und einer Deckelplatte 15 angeordnet. In einer Ebene zu dem Koppelungsbalken 6 ist im Seitenwandbereich 19 eine Seitenwand der Mittelplatte 7 angeordnet. Das Pumpenelement 1 wird in der folgenden Figur Fig. 4 detaillierter beschrieben. Fig. 3b shows a metering pump in a schematic three-dimensional representation according to an embodiment of the present invention. The metering pump shown essentially corresponds to that already in Fig. 3a shown metering pump. In this case, the pump element 1 is pushed onto the tines 5 of connected to the piezo bending transducer 3 fork 4 of the actuator 2, wherein the pump element 1 is shown cut along the axis AA. A coupling bar 6 is disposed between a bottom plate 12 and a top plate 15. In a plane to the coupling bar 6, a side wall of the middle plate 7 is arranged in the side wall portion 19. The pump element 1 is shown in the following figure Fig. 4 described in more detail.

Im Folgenden soll nun erklärt werden, wie die Kraftübertragung vom Aktor 2 auf die Pumpmembranfolie 10 erfolgt. Hierfür zeigt Fig. 3b das Pumpenelement1 und die Aktorik 2. Fig. 4 offenbart deren Zusammenspiel im Inneren des Pumpenelements 1, indem dieser entlang der in Fig. 3a eingezeichneten Achse A-A aufgeschnitten dargestellt ist. Der Übersichtlichkeit wegen wurde auf eine Darstellung der Steuereinheit sowie der (vertikalen und lateralen) Fixierung des Pumpenelements 1 relativ zur Aktorbasis 3b verzichtet. Kern der Aktorik 2 ist ein Piezobiegewandler 3, an dessen beweglichem Ende eine Aktorgabel 4 befestigt ist, sodass diese vertikal zum Pumpenelement 1 bewegt werden kann. Die vier Zinken 5 der Aktorgabel 4 sind parallel zueinander und in Verlängerung des Biegewandlers ausgerichtet. Entlang dieser Achse (B-B, siehe Fig. 3a) kann das Pumpenelement 1 auf die Gabel geschoben werden, sodass deren Zinken 5 in das Pumpenelement 1 ragen und dort mit je zwei Zinken 5 von oben und zwei Zinken 5 von unten einen Koppelungsbalken 6 sicher umgreifen wobei dieser relativ zum (restlichen) Pumpenelement 1 in der Vertikalen bewegt werden kann. Zur Veranschaulichung der Interaktion von Aktor 2 und Pumpenelement 1 ist das Pumpenelement 1 aufgeschnitten dargestellt. Die Vergrößerung des Pumpenelements 1 in Fig. 4 zeigt den Koppelungsbalken 6, über den die Bewegung des Aktors 3, bzw. der Aktorzinken 5, auf die Pumpmembran 10 übertragen wird. Unter der Pumpmembran 10 befindet sich die Pumpkammer 11. Die fluidischen Zugangskanäle 20 zur Pumpkammer 11 dienen der Veranschaulichung, existieren im vorgestellten Ausführungsbeispiel jedoch nicht.In the following, it will now be explained how the power transmission from the actuator 2 to the pumping membrane film 10 takes place. For this shows Fig. 3b the pump element 1 and the actuator 2. Fig. 4 reveals their interaction inside the Pump element 1, by this along the in Fig. 3a drawn axis AA is shown cut open. For clarity, a representation of the control unit and the (vertical and lateral) fixation of the pump element 1 was omitted relative to the actuator base 3b. The core of the actuator 2 is a piezoelectric bending transducer 3, at the movable end of an actuator fork 4 is fixed so that it can be moved vertically to the pump element 1. The four prongs 5 of the actuator fork 4 are aligned parallel to one another and in extension of the bending transducer. Along this axis (BB, see Fig. 3a ), the pump element 1 can be pushed onto the fork, so that their tines 5 protrude into the pump element 1 and there with two tines 5 from above and two tines 5 from below a coupling bar 6 securely embrace this relative to the (remaining) pump element 1 in the vertical can be moved. To illustrate the interaction of actuator 2 and pump element 1, the pump element 1 is shown cut open. The enlargement of the pump element 1 in Fig. 4 shows the coupling bar 6, via which the movement of the actuator 3, and the actuator tines 5, is transmitted to the pumping membrane 10. Under the pumping membrane 10 is the pumping chamber 11. The fluidic access channels 20 to the pumping chamber 11 are illustrative, but do not exist in the illustrated embodiment.

Fig. 4 zeigt ein Pumpenelement 1 in einer schematischen dreidimensionalen Darstellung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Zwischen einer Bodenplatte 12 und einer Deckelplatte 15 sind in Schichten eine Pumpmembranfolie 10 eine Mittelplatte sowie eine Fügefolie 18 angeordnet. Die Bodenplatte 12, die Pumpmembranfolie 10 die Mittelplatte, die Fügefolie 18 sowie die Deckelplatte 15 sind in einem Toleranzbereich planparallel zueinander angeordnet. Die Mittelplatte wird gebildet aus einer Seitenwand (Abschnitt der Mittelplatte 7 im Seitenwandbereich 19), einem Federelement 8 sowie dem Koppelungsbalken 6. Die Fügefolie 18 weist eine Aussparung außerhalb bzw. innerhalb der Seitenwand auf. Der Seitenwandbereich 19 zwischen der Bodenplatte 12 und der Deckelplatte 15 setzt sich aus der Pumpmembranfolie 10, der Mittelplatte 7 sowie der Fügefolie 18 zusammen. Die Fügefolie weist eine Aussparung auf, sodass diese nur im Seitenwandbereich 19 angeordnet ist. Die Pumpmembranfolie 10 kann in vier Abschnitte unterteilt werden. In einem zentralen Abschnitt 9 ist die Fügefolie 10 mit dem Koppelungsbalken 6 verbunden. In einem lateral daran anschließenden Abschnitt 13 ist die Pumpmembranfolie 10 weder mit dem Koppelungsbalken 6 noch mit der Bodenplatte 12 verbunden. Der lateral um den zentralen Abschnitt 9 der Pumpmembranfolie 10 angeordnete Abschnitt 13 ist beweglich ausgeführt. In einem daran anschließenden Abschnitt 14 ist die Pumpmembranfolie 10 mit der Bodenplatte verbunden. In einem Fertigungsschritt kann die Pumpmembranfolie beispielsweise mittels Laserschweißen mit der Bodenplatte verbunden werden. Ein weiterer Abschnitt der Pumpmembranfolie 10 ist im Seitenwandbereich 19 angeordnet und bestimmt somit auch den vorbestimmten Abstand zwischen der Bodenplatte 12 und der Deckelplatte 15 mit. Die Mittelplatte 7 wird von der Seitenwand, dem Koppelungsbalken 6 sowie einem dazwischen angeordneten Federelement 8 gebildet. In einem Ausführungsbeispiel kann die Mittelplatte 7 einstückig gefertigt sein, wobei der Abschnitt des Federelements 8 dünner ausgeführt sein kann, um einen teilflexiblen Abschnitt der Mittelplatte 7 als Federelement 8 zu schaffen. Der Koppelungsbalken 6 ist über das Federelement 8 mit der Seitenwand verbunden. Hierdurch werden Bewegungen des Koppelungsbalkens in einem Toleranzbereich lotrecht zu einer Haupterstreckungsebene der Bodenplatte 12 ermöglicht, davon abweichende Bewegungen, insbesondere Bewegungen in einer Bewegungsrichtung in einem Toleranzbereich parallel zur Haupterstreckungsebene der Bodenplatte 12 unterdrückt. Fig. 4 shows a pump element 1 in a schematic three-dimensional representation according to an embodiment of the present invention. Between a bottom plate 12 and a cover plate 15, a pumping membrane film 10, a center plate and a joining film 18 are arranged in layers. The bottom plate 12, the pumping membrane film 10, the middle plate, the joining film 18 and the cover plate 15 are arranged in a tolerance range plane-parallel to each other. The center plate is formed from a side wall (portion of the middle plate 7 in the side wall portion 19), a spring element 8 and the coupling bar 6. The joining film 18 has a recess outside or within the side wall. The side wall region 19 between the bottom plate 12 and the cover plate 15 is composed of the pump membrane film 10, the middle plate 7 and the joining film 18 together. The joining film has a recess, so that it is arranged only in the side wall region 19. The pumping membrane sheet 10 can be divided into four sections. In a central portion 9, the joining film 10 is connected to the coupling bar 6. In a laterally adjoining section 13 is the Pump membrane film 10 connected to neither the coupling bar 6 still with the bottom plate 12. The laterally arranged around the central portion 9 of the pumping membrane film 10 section 13 is designed to be movable. In a subsequent section 14, the pumping membrane film 10 is connected to the bottom plate. In a manufacturing step, the pumping membrane film can be connected, for example by means of laser welding to the bottom plate. Another portion of the pumping membrane film 10 is disposed in the side wall portion 19 and thus also determines the predetermined distance between the bottom plate 12 and the cover plate 15 with. The middle plate 7 is formed by the side wall, the coupling bar 6 and a spring element 8 arranged therebetween. In one embodiment, the middle plate 7 may be made in one piece, wherein the portion of the spring element 8 may be made thinner to provide a partially flexible portion of the middle plate 7 as a spring element 8. The coupling bar 6 is connected via the spring element 8 with the side wall. As a result, movements of the coupling beam in a tolerance range perpendicular to a main extension plane of the bottom plate 12 are made possible, deviating movements, especially movements in a direction of movement in a tolerance range parallel to the main extension plane of the bottom plate 12 suppressed.

Die Deckelplatte 15 weist Aussparungen 16 für Zinken der Aktorgabel auf. Ebenso weist die Bodenplatte Aussparungen 17 zur Aufnahme von Zinken der Aktorgabel auf. In Fig. 3b sind die Zinken der Aktorgabel in den Aussparungen 16, 17 angeordnet. Zwischen der Bodenplatte 12 und der Pumpmembranfolie 10 ist eine Pumpenkammer 11 ausgebildet. Die Pumpenkammer 11 ist ausgebildet, sodass über Durchlöcher 20 in der Bodenplatte 12 ein Fluid hineinströmen und herausströmen kann. Dabei ist die Pumpmembranfolie 10 ausgebildet, mittels Hubbewegungen einen Ansaugdruck zu erzeugen beziehungsweise das Fluid herauszupressen. Die fluidischen Durchlöcher 20 als Zugangskanäle zur Pumpkammer 11 dienen in der Figur der Veranschaulichung. In den vorgestellten Ausführungsbeispielen existieren diese nicht, sondern vielmehr sind die Zugangskanäle mit integrierten Rückschlagventilen entsprechend den folgenden Figuren gezeigten Ausführungsbeispielen ausgebildet.The cover plate 15 has recesses 16 for tines of the actuator fork. Likewise, the bottom plate has recesses 17 for receiving prongs of the actuator fork. In Fig. 3b the tines of the actuator fork are arranged in the recesses 16, 17. Between the bottom plate 12 and the pumping membrane film 10, a pump chamber 11 is formed. The pump chamber 11 is formed so that through holes 20 in the bottom plate 12, a fluid can flow in and out. In this case, the pumping membrane film 10 is designed to generate by means of strokes a suction pressure or to squeeze out the fluid. The fluidic through-holes 20 as access channels to the pumping chamber 11 serve in the figure for illustration. In the presented embodiments, these do not exist, but rather the access channels are formed with integrated check valves according to the following figures shown embodiments.

Der Koppelungsbalken 6 ist über ein Federelement 8 an der Seitenwand der Mittelplatte 7 befestigt, sodass vertikale Bewegungen ermöglicht werden und laterale unterdrückt werden. In einem fertigungstechnisch vorteilhaften Ausführungsbeispiel besteht der Koppelungsbalken 6 und die Seitenwand aus einem Element, wobei z. B. ein vertikal abgedünnter Bereich 8 das Federelement 8 bildet.The coupling bar 6 is fixed via a spring element 8 on the side wall of the center plate 7, so that vertical movements are possible and lateral are suppressed. In a manufacturing advantageous embodiment, the coupling bar 6 and the side wall of an element, wherein z. B. a vertically thinned area 8, the spring element 8 forms.

An der Unterseite des Koppelungsbalkens 6 ist der zentrale, bewegliche Bereich 9 der Pumpmembranfolie 10 befestigt, sodass eine Auslenkung des Aktors 3 zu einer Auslenkung dieser Pumpmembranfolie 10 führt. Letztere verdrängt zyklisch das Flüssigkeitsvolumen in der Pumpenkammer 11, welches sich zwischen einer Unterseite der Pumpmembranfolie 10 und der Oberseite der Bodenplatte 12 befindet. Radial nach außen von dem zentralen, beweglichen Bereich 9 weist die Pumpmembranfolie 10 einen flexiblen Abschnitt 13 auf, der weder am Koppelungsbalken 6 noch an der Bodenplatte 12 des Pumpenelements 1 befestigt ist. Somit kann er einerseits die Verformung der Pumpmembranfolie 10 aufgrund der gewollten Auslenkung (Pumpenhub) aufnehmen, andererseits sollte er so steif sein, dass eine ungewollte Verformung aufgrund von Pumpdrücken und Gegendrücken minimiert wird. In einem Bereich 14 um den flexiblen Abschnitt 13 herum ist die Pumpmembranfolie 10 an der Bodenplatte 12 des Pumpenelements 1 befestigt. Hierdurch wird die laterale Dimension der Pumpkammer 11 definiert. Bei Fügen von Pumpmembranfolie 10 und Bodenplatte 12 per Laserschweißen kann diese laterale Dimension sehr einfach angepasst werden, um das Hubvolumen der Dosierpumpe beziehungsweise des Pumpenelements 1 fein zu justieren. Diese Anordnung kann somit zu einer konzentrischen Pumpkammer führen.On the underside of the coupling beam 6, the central, movable region 9 of the pumping membrane film 10 is fastened, so that a deflection of the actuator 3 leads to a deflection of this pumping membrane film 10. The latter cyclically displaces the volume of liquid in the pumping chamber 11, which is located between a bottom of the pumping membrane film 10 and the top of the bottom plate 12. Radially outwardly from the central, movable region 9, the pumping membrane film 10 has a flexible portion 13 which is attached neither to the coupling bar 6 nor to the bottom plate 12 of the pump element 1. Thus, on the one hand, it can absorb the deformation of the pumping membrane film 10 due to the intended deflection (pump stroke), on the other hand, it should be so stiff that an unwanted deformation due to pumping pressures and back pressures is minimized. In a region 14 around the flexible portion 13 around the pumping membrane film 10 is fixed to the bottom plate 12 of the pump element 1. As a result, the lateral dimension of the pumping chamber 11 is defined. When joining the pumping membrane film 10 and bottom plate 12 by laser welding, this lateral dimension can be very easily adjusted to finely adjust the stroke volume of the metering pump or the pump element 1. This arrangement can thus lead to a concentric pumping chamber.

Wie in Fig. 3b zu sehen, weisen Koppelungsbalken 6 und Bodenplatte 12 im Bereich der Pumpkammer 11 planparallele Oberflächen auf. Wird der Koppelungsbalken 6 in Richtung der Bodenplatte 12 ausgelenkt, so wird deshalb letztlich die komplette Pumpmembranfolie 10 (beziehungsweise Abschnitt 9 und 13 der Pumpmembranfolie 10) flach auf die Bodenplatte 12 gepresst. Die Bodenplatte 12 kann als unterer Anschlag für die Pumpmembranfolie 10 bezeichnet werden. Somit weist die Pumpkammer 11 kein Schadvolumen (oder auch Totvolumen genannt) auf, was sich vorteilhaft auf das Kompressionsverhältnis und die Blasentoleranz auswirkt. Insbesondere wird dabei ebenso der flexible Bereich 13 der Pumpmembranfolie 10 flach gepresst, selbst wenn ein am Auslass der Dosierpumpe beziehungsweise des Pumpenelements 1 anliegender Gegendruck diese zuvor ausgewölbt haben sollte. Hierdurch ist eine geringe Gegendruckabhängigkeit der Förderrate zu erwarten.As in Fig. 3b see coupling beam 6 and bottom plate 12 in the pump chamber 11 plane-parallel surfaces. If the coupling bar 6 is deflected in the direction of the bottom plate 12, the entire pump membrane film 10 (or sections 9 and 13 of the pump membrane film 10) is ultimately pressed flat onto the bottom plate 12. The bottom plate 12 may be referred to as a bottom stop for the pumping membrane film 10. Thus, the pumping chamber 11 no Schadvolumen (or called dead volume), which has an advantageous effect on the compression ratio and the bladder tolerance. In particular, will In this case, the flexible region 13 of the pumping membrane film 10 is also pressed flat, even if a counter-pressure applied to the outlet of the metering pump or of the pump element 1 should have bulged it out beforehand. As a result, a low backpressure dependence of the delivery rate is to be expected.

Das Fördervolumen wird anhand der Pumphübe mitgezählt. Hierfür ist ein konstantes Hubvolumen notwendig. Dies wird darüber erreicht, dass der Koppelungsbalken 6 beim Ansaugen auf Anschlag an die Deckelplatte 15 und beim Auswerfen auf Anschlag an die Bodenplatte 12 ausgelenkt wird. Vorteilhafterweise hängt in dem in Fig. 4 gezeigten Ausführungsbeispiel diese Distanz nicht von der Dicke der Deckelplatte 15 und der Bodenplatte 12 ab, weil diese lediglich an den einander zugewandten Flächen von der Mittelplatte 7 und der Fügefolie 18 sowie der Pumpmembranfolie 10 auf Abstand gehalten werden. Da davon auszugehen ist, dass die Dicke der Pumpmembranfolie 10 (zumindest) lokal nicht schwankt und sie somit im Seitenwandbereich 19 sowie im Pumpmembranbereich, d. h. den Abschnitten 9, 13 sowie 14) gleich dick ist, hat sie ebenfalls keinen Einfluss auf den Hub beziehungsweise die Hubhöhe. Mit dem gleichen Argument lässt sich auch der Einfluss der Dicke der Mittelplatte 7 vernachlässigen. Der Hub wird also durch die Dicke der Fügefolie 18 definiert, welche Deckelplatte 15 und Bodenplatte 12 auf Abstand hält, aber im Bereich des Koppelungsbalkens 6 eine Aussparung aufweist. Die herstellungsbedingte Dickentoleranz der Fügefolie 18 führt schließlich zu einer Toleranz im Hub. Durch beispielsweise optische Messung der tatsächlichen Dicke der Fügefolie 18, kann über die bereits angesprochene laterale Anpassung der Pumpmembrandimension, das heißt der lateralen Ausdehnung entlang der Haupterstreckungsebene der Bodenplatte 12, diese Toleranz ausgeglichen werden, um ein exaktes Hubvolumen, beziehungsweise Volumen der Pumpenkammer 11, einzustellen.The delivery volume is counted on the basis of the pumping strokes. For this purpose, a constant displacement is necessary. This is achieved by the fact that the coupling bar 6 is deflected to the bottom plate 12 when it is suctioned onto the cover plate 15 and when it is ejected. Advantageously, in the in Fig. 4 shown embodiment, this distance does not depend on the thickness of the cover plate 15 and the bottom plate 12, because they are kept only at the facing surfaces of the central plate 7 and the joining film 18 and the pumping membrane film 10 at a distance. Since it can be assumed that the thickness of the pumping membrane film 10 (at least) does not fluctuate locally and is therefore uniformly thick in the side wall region 19 and in the pump membrane region, ie the sections 9, 13 and 14), it likewise has no influence on the stroke or the lifting height. With the same argument, the influence of the thickness of the center plate 7 can be neglected. The stroke is thus defined by the thickness of the joining film 18, which cover plate 15 and bottom plate 12 holds at a distance, but in the region of the coupling bar 6 has a recess. The production-related thickness tolerance of the joining film 18 finally leads to a tolerance in the stroke. By means of, for example, optical measurement of the actual thickness of the joining film 18, this tolerance can be compensated by way of the already mentioned lateral adaptation of the pump diaphragm dimension, that is to say the lateral extent along the main extension plane of the base plate 12, in order to set an exact displacement volume or volume of the pump chamber 11 ,

Weiterhin sind in Fig. 4 außerdem in der Deckelplatte 15 angelegte Aussparungen 16, welche Platz für die Zinken bieten, dargestellt. Entsprechende Aussparungen 17 in der Bodenplatte werden der Übersichtlichkeit wegen nicht dargestellt. Zu- und Abfluss zur Pumpkammer 11 ließen sich beispielsweise mittels Durchlöchern 20 durch die Bodenplatte 12 realisieren, jedoch könnten so die Ventile nicht innerhalb der vorhandenen Ebenen (12, 10, 7, 18, 15) angelegt werden. In einem nicht gezeigten Ausführungsbeispiel kann in die Dosierpumpe mit Pumpenelement aus polymerem Schichtsystem eine Funktionsüberwachung integriert werden.Furthermore, in Fig. 4 also provided in the cover plate 15 recesses 16, which provide space for the tines, shown. Corresponding recesses 17 in the bottom plate are not shown for the sake of clarity. Inflow and outflow to the pumping chamber 11 could be realized, for example, by means of perforations 20 through the bottom plate 12, but so could the valves not within the existing levels (12, 10, 7, 18, 15) applied become. In an embodiment, not shown, a function monitoring can be integrated into the metering pump with pump element of polymeric layer system.

Fig. 5a und 5b zeigen eine schematische Darstellung einer Implementierung der Funktionalität von zwei Rückschlagventilen in den Schichten eines Pumpenelements 1 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Die Darstellung des Pumpenelements 1 ist in Bezug zu Fig. 3a ein Schnitt entlang der Achse B-B durch ein Pumpenelement 1. Mittels der Rückschlagventile kann der Fluss eines Fluids in der Pumpkammer 11 gerichtet werden. Gezeigt wird ein Querschnitt durch das Pumpenelement 1 zur Darstellung der Ventilintegration. Fig. 5a zeigt eine Ansaugphase. Das Einlass-Rückschlagventil 25 ist geöffnet. Flüssigkeit wird vom Einlass 27 zur Pumpkammer 11 gesaugt. Dabei ist das Auslassventil geschlossen: Dessen Ventilmembran 30 dichtet den Weg vom Verbindungskanal 29 zum Auslassventil-Durchloch 32 ab. Fig. 5b zeigt eine Auswurfphase. Der Überdruck in der Pumpkammer 11 verschließt einerseits das Einlassventil 25, andererseits öffnet er das Auslassventil. Fig. 5a and 5b 2 shows a schematic representation of an implementation of the functionality of two non-return valves in the layers of a pump element 1 according to one exemplary embodiment of the present invention. The illustration of the pump element 1 is with respect to Fig. 3a a section along the axis BB through a pump element 1. By means of the check valves, the flow of a fluid in the pumping chamber 11 can be directed. Shown is a cross section through the pump element 1 to illustrate the valve integration. Fig. 5a shows a suction phase. The inlet check valve 25 is opened. Liquid is sucked from the inlet 27 to the pumping chamber 11. In this case, the outlet valve is closed: its valve diaphragm 30 seals the path from the connecting channel 29 to the outlet valve through-hole 32. Fig. 5b shows an ejection phase. The overpressure in the pumping chamber 11 on the one hand closes the inlet valve 25, on the other hand it opens the outlet valve.

Wie die Ventilfunktionen innerhalb der vorhandenen Schichten realisierbar sind, ist Fig. 5a zu entnehmen. Diese zeigt den Querschnitt entlang der Einschubrichtung B-B durch das Pumpenelement 1. Zufluss 21 und Abfluss 22 von der Pumpkammer 11 sind als Kanäle (21, 22) in der Bodenplatte 12 ausgeführt, welche von der Pumpmembranfolie 10 gedeckelt sind. Der Zuflusskanal 21 führt zur Einlassventilkammer 23. Dort ist die Pumpmembranfolie 10 derart strukturiert (bzw. perforiert), dass sich ein an Federärmchen 24 aufgehängter Ventilkopf 25 bildet. Letzterer dichtet gegen ein Durchloch 26 in der Mittelplatte 7 beziehungsweise gegen ein Durchloch 26 in dem Koppelungsbalken 6 ab, so dass ein Rückschlagventil entsteht.How the valve functions within the existing layers can be realized is Fig. 5a refer to. This shows the cross section along the insertion direction BB through the pump element 1. Inflow 21 and outflow 22 from the pumping chamber 11 are designed as channels (21, 22) in the bottom plate 12, which are covered by the pumping membrane film 10. The inflow channel 21 leads to the inlet valve chamber 23. There, the pump membrane foil 10 is structured (or perforated) in such a way that a valve head 25 suspended on spring arm 24 forms. The latter seals against a through hole 26 in the middle plate 7 or against a through hole 26 in the coupling bar 6, so that a check valve is formed.

Von dem Durchloch 26 kann der fluidische Weg direkt durch ein weiteres Durchloch 27 durch Fügefolie 18 und Deckelplatte 15 zur Außenseite des Pumpenelements 1 geführt werden. Alternativ könnten weitere Funktionalitäten in der Fügefolienebene 18 angelegt sein, z. B. ein Filter zum Reinigen des Fluids. Alternativ kann der fluidische Weg auch wieder zur Pumpmembranebene 10 zurückgeführt werden und der Einlassanschluss an der Unterseite der Bodenplatte 12 oder seitlich in der Mittelplatte 7 angelegt werden. Fig. 5a zeigt das Einlassventil im offenen und Fig. 5b im geschlossenen Zustand.From the through hole 26, the fluidic path can be guided directly through another through hole 27 by joining film 18 and cover plate 15 to the outside of the pump element 1. Alternatively, further functionalities could be created in the joining film plane 18, z. B. a filter for cleaning the fluid. Alternatively, the fluidic path can also be returned to the pumping membrane plane 10 and the inlet connection at the bottom of the Bottom plate 12 or laterally in the middle plate 7 are applied. Fig. 5a shows the inlet valve in open and Fig. 5b in the closed state.

Von der Pumpkammer 11 führt der Abflusskanal 22 über ein Durchloch 28 in der Pumpmembranfolie durch einen Verbindungskanal 29 in der Mittelplatte 7 zum Auslassventil. Dieses besteht z. B. aus einem Referenzdruckventil: einer flexiblen, geschlossenen Membran 30, welche durch die Pumpmembranfolie 10 gebildet wird, kann sich von der Mittelplatte 7 weg in eine Ventilkammer 31 hinein auslenken und dabei den fluidischen Pfad vom Verbindungskanal 29 zum Auslassventil-Durchloch 32 freigeben, so dass die Flüssigkeit aus der Pumpkammer 11 abfließen kann. Sinnvollerweise legt man auf die Rückseite der geschlossenen Membran 30 den Einlassdruck der Pumpe als Referenzdruck an (die Kammer 31 verfüge beispielsweise über einen Kanal zum Pumpeneinlass). So gibt die Membran 30 das Durchloch nur dann frei, wenn durch aktives Auslenken der Pumpmembranfolie 10, beziehungsweise des zentralen Abschnitts 9 der Pumpmembranfolie 10, der Druck in der Pumpkammer 11 über den Einlassdruck steigt. Vom Auslassventil-Durchloch 32 kann der fluidische Pfad über ein weiteres Durchloch in der Fügefolie 18 und der Deckelplatte 15 nach außen geführt werden. Entsprechend der Bemerkung bei der Beschreibung des Einlassventils sei hier auf die einfache Möglichkeit der Integration weiterer fluidischer Funktionen hingewiesen, insbesondere auf die eines (Schwellwert-) Drucksensors. Fig. 5a zeigt das Auslassventil im geschlossenen und Fig. 5b im offenen Zustand. Durch das Anlegen der Ventile in der Achse senkrecht zu der Koppelungsbalkenachse (A-A) bleibt die Länge der Kanäle zwischen Ventilen und Pumpkammer 11 klein, so dass fluidische Widerstände, Kapazitäten und Induktivitäten minimal bleiben.From the pumping chamber 11, the drainage channel 22 leads via a through hole 28 in the pumping membrane film through a connecting channel 29 in the middle plate 7 to the outlet valve. This consists for. B. from a reference pressure valve: a flexible, closed membrane 30, which is formed by the pumping membrane 10 can deflect away from the center plate 7 in a valve chamber 31 and thereby release the fluidic path from the connecting channel 29 to the outlet valve through hole 32, so that the liquid can flow out of the pumping chamber 11. It makes sense to apply to the back of the closed membrane 30, the inlet pressure of the pump as a reference pressure (the chamber 31 has, for example, a channel to the pump inlet). Thus, the membrane 30 releases the through hole only when the pressure in the pumping chamber 11 rises above the inlet pressure due to active deflection of the pump membrane film 10, or of the central portion 9 of the pump membrane film 10. From the outlet valve through-hole 32, the fluidic path can be guided via a further through hole in the joining film 18 and the cover plate 15 to the outside. Corresponding to the remark in the description of the inlet valve, attention should be drawn here to the simple possibility of integrating further fluidic functions, in particular to that of a (threshold) pressure sensor. Fig. 5a shows the exhaust valve in closed and Fig. 5b in the open state. By applying the valves in the axis perpendicular to the coupling beam axis (AA), the length of the channels between valves and pump chamber 11 remains small, so that fluidic resistances, capacitances and inductances remain minimal.

Zu den gezeigten Ausführungsbeispielen sind weitere Alternativen denkbar. Anstatt eines Piezobiegewandlers sind andere Aktuierungsmechanismen denkbar wie z. B. Reluktanzaktoren, Elektromotoren, elektroaktive Polymere, Formgedächtnisaktoren und Linearmagnete. Der Aktor kann auch anders als über die oben beschriebene Gabel mit der Pumpmembran verbunden werden, beispielsweise durch Einrasten eines Dorns in eine Öffnung, Verschweißen oder Verkleben. Außerdem kann die Gabel in 2-4 Untereinheiten mit jeweils einem Aktor aufgeteilt werden, insbesondere so, dass die Zinken links und rechts der Achse B-B separat angesteuert werden können. In die Steuereinheit kann eine Energieversorgung (z. B. Batterie, Akku), kabellose oder- gebundene Kommunikationsschnittstelle (z. B. USB, WLAN), Display, Tasten (-felder), Alarmvibratoren und/oder Lautsprecher integriert sein. Ein alternatives Ausführungsbeispiel, basierend auf anderen Rückschlagventilen, ist in Fig. 6a bis 6d dargestellt.For the embodiments shown, other alternatives are conceivable. Instead of a piezo bending transducer other actuation mechanisms are conceivable such. B. reluctance, electric motors, electroactive polymers, shape memory actuators and linear magnets. The actuator can also be connected to the pumping membrane differently than via the fork described above, for example by locking a mandrel in an opening, welding or gluing. In addition, the fork can be divided into 2-4 subunits, each with an actuator, in particular so that the tines left and right of the axis BB can be controlled separately. In the control unit can a Power supply (eg battery, rechargeable battery), wireless or wireless communication interface (eg USB, WLAN), display, buttons (fields), alarm vibrators and / or loudspeakers. An alternative embodiment based on other check valves is shown in FIG Fig. 6a to 6d shown.

Fig. 6a bis 6d zeigen eine schematische Darstellung eines Querschnitts des Pumpenelements 1 gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Deutlich wird eine Implementierung der Funktionalität von zwei Rückschlagventilen in den Schichten des Pumpenelements 1 dargestellt. Das Pumpenelement 1 ist aus einer Bodenplatte 12, einer Pumpmembranfolie 10, einer Mittelplatte 7, einer Fügefolie 18 sowie einer Deckelplatte 15 in geschichtet aufgebaut. Die Mittelplatte 7 weist einen Koppelungsbalken 6 auf, der ausgebildet ist, von einem Aktor bewegt zu werden und somit einen Pumpenhub zu schaffen. Fig. 6a zeigt einen Ruhezustand, wobei beide Rückschlagventile 35, 36 geschlossen sind. Fig. 6b zeigt das Pumpelement im Zustand des Flüssigkeit Ansaugens, der Koppelungsbalken 6 ist bis auf Anschlag an die Deckelplatte 15 "nach oben" gefahren, die Pumpmembranfolie 10 ist maximal ausgelenkt und die Pumpkammer 11 hat das maximale Volumen. Durch den entstehenden Unterdruck in der Pumpkammer 11 wird das Einlassventil 35 geöffnet. Ein Fluid kann durch das geöffnete Einlassventil 35 einströmen, bis der Druck in der Druckkammer ausgeglichen ist. Es stellt sich dann der in Fig. 6c dargestellte Zustand ein, bei dem das Ansaugen abgeschlossen ist und die Rückschlagventile 35, 36 beide geschlossen sind. In einem nicht dargestellten Zwischenschritt kann der Koppelungsbalken 6 in Richtung der Bodenplatte bewegt werden. Es stellt sich der in Fig. 6d dargestellte Zustand ein. Durch die Bewegung des Koppelungsbalkens 6 steigt in der Pumpkammer 11 der Druck an, das heißt die Pumpmembran verdrängt Flüssigkeit, und das Auslassventil 36 wird geöffnet und das Fluid strömt hinaus, bis der Druck wieder ausgeglichen ist und sich der in Fig. 6a dargestellte Zustand wieder einstellt. In dem gezeigten Ausführungsbeispiel handelt es sich bei der Bodenplatte 12, der Mittelplatte 7 sowie der Deckelplatte 15 um steife Platten. Die Pumpmembranfolie 10 sowie die Fügefolie 18 sind als elastische Membran ausgeführt. Mit anderen Worten zeigen die Fig. 6a bis 6d einen Pumpzyklus eines alternativen Ausführungsbeispiels. Die Ventilfunktion wird hier über Durchlöcher in der Ventilmembran, die gleichzeitig die Pumpmembranfolie 10 ist, gewährleistet anstatt von Durchlöchern in der steifen Mittelplatte 7. Fig. 6a to 6d show a schematic representation of a cross section of the pump element 1 according to an embodiment of the present invention. Clearly, an implementation of the functionality of two check valves in the layers of the pump element 1 is shown. The pump element 1 is constructed of a base plate 12, a pumping membrane film 10, a middle plate 7, a joining film 18 and a cover plate 15 in a layered manner. The center plate 7 has a coupling bar 6, which is designed to be moved by an actuator and thus to provide a pump stroke. Fig. 6a shows a resting state, both check valves 35, 36 are closed. Fig. 6b shows the pumping element in the state of liquid suction, the coupling bar 6 is driven up to the stop on the cover plate 15 "up", the pumping membrane 10 is deflected maximum and the pumping chamber 11 has the maximum volume. Due to the resulting negative pressure in the pumping chamber 11, the inlet valve 35 is opened. A fluid may flow through the opened inlet valve 35 until the pressure in the pressure chamber is equalized. It turns then the in Fig. 6c shown state in which the suction is completed and the check valves 35, 36 are both closed. In an intermediate step, not shown, the coupling bar 6 can be moved in the direction of the bottom plate. It turns the in Fig. 6d shown state. By the movement of the coupling bar 6 in the pumping chamber 11, the pressure increases, that is, the pumping diaphragm displaces liquid, and the outlet valve 36 is opened and the fluid flows out until the pressure is balanced again and the in Fig. 6a restores the displayed state. In the embodiment shown, the bottom plate 12, the middle plate 7 and the top plate 15 are rigid plates. The pump membrane film 10 and the joining film 18 are designed as elastic membrane. In other words, they show Fig. 6a to 6d a pumping cycle of an alternative embodiment. The valve function is here via through holes in the valve diaphragm, simultaneously the pumping membrane sheet 10 is ensured instead of perforations in the rigid middle plate 7.

Fig. 7 zeigt ein Ablaufdiagramm eines Verfahrens 700 zum Herstellen eines Pumpenelements für eine Dosierpumpe gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Bei dem Pumpenelement kann es sich um ein in Fig. 1 bis Fig. 6 gezeigtes Pumpenelement handeln. Das Verfahren 700 weist einen Schritt des Bereitstellens 710, einen Schritt des Anordnens 720 und einen Schritt des Fügens 730 auf. Entsprechend der Darstellung in Fig. 7 werden die Schritte sequenziell hintereinander ausgeführt. In einem weiteren Ausführungsbeispiel werden die Schritte in Teilschritte unterteilt und wiederholt in unterschiedlicher Reihenfolge ausgeführt. Im Schritt des Bereitstellens 710 werden zumindest eine Bodenplatte, eine Deckelplatte, ein Koppelungsbalken und eine Pumpmembranfolie bereitgestellt. Im Schritt des Anordnens 720 werden der Koppelungsbalken und die Pumpmembranfolie zwischen der Bodenplatte und der Deckelplatte angeordnet, wobei die Bodenplatte in einem vordefinierten Abstand zur Deckelplatte angeordnet ist. Im Schritt des Fügens 730 der Bodenplatte, der Pumpmembranfolie, des Koppelungsbalkens und der Deckelplatte werden die beschriebenen Elemente derart gefügt, um ein Pumpenelement zu schaffen. Im Schritt des Fügens 730 kann die Pumpmembranfolie auf eine strukturierte Bodenplatte gefügt werden, auf die Pumpmembranfolie kann die Mittelplatte mit dem Koppelungsbalken gefügt, anschließend eine Fügefolie auf die Mittelplatte, insbesondere im Seitenwandbereich, gefügt werden und das Pumpenelement mit dem Fügen der Deckelplatte auf die Fügefolie fertiggestellt werden. Zwischen den Schritten des Anordnens 720 und des Fügens 730 kann noch ein Schritt des Strukturierens eingefügt werden, in dem die bereits angeordnete Schicht vor dem Fügen noch strukturiert wird, um beispielsweise die Funktionalität eines Rückschlagventils in dem Pumpenelement vorzusehen. Fig. 7 FIG. 12 shows a flow chart of a method 700 for manufacturing a pump element for a metering pump according to an embodiment of the present invention. The pump element may be an in Fig. 1 to Fig. 6 act shown pump element. The method 700 includes a provisioning step 710, an arranging step 720, and a joining step 730. As shown in Fig. 7 The steps are executed sequentially one after the other. In a further embodiment, the steps are subdivided and repeatedly executed in different order. In the providing step 710, at least a bottom plate, a top plate, a coupling bar, and a pumping membrane foil are provided. In the step of arranging 720, the coupling bar and the pumping membrane film are arranged between the bottom plate and the top plate, wherein the bottom plate is arranged at a predefined distance to the top plate. In the step of joining 730 the bottom plate, the pumping membrane foil, the coupling bar and the top plate, the described elements are joined so as to provide a pump element. In the step of joining 730, the pumping membrane film can be joined to a structured base plate, the pumping membrane film can be joined to the coupling plate, then a joining film can be joined to the middle plate, in particular in the sidewall region, and the pump element can be joined to the joining film by joining the cover plate to get finished. Between the steps of arranging 720 and joining 730, a structuring step may be added, in which the already arranged layer is further patterned prior to joining, for example to provide the functionality of a check valve in the pumping element.

Bei dem Verfahren 700 zum Herstellen eines Pumpenelements für eine Dosierpumpe kann in einem nicht dargestellten Ausführungsbeispiel eine Schicht bereitgestellt werden, dann eine zu der bereitgestellten Schicht in Kontakt stehende Schicht hierzu angeordnet werden, um die beiden Schichten zu fügen, bevor die darauf folgende Schicht angeordnet wird. Vor und gleichzeitig oder alternativ nach dem Teilschritt des Fügens kann noch ein Schritt des Strukturierens eingeschoben werden. In Fig. 8a bis 8f ist ein Ausführungsbeispiel für ein Verfahren 700 zum Herstellen eines Pumpenelements für eine Dosierpumpe dargestellt.In the method 700 for manufacturing a pump element for a metering pump, in one embodiment, not shown, a layer may be provided, then a layer in contact with the provided layer may be arranged therefor to join the two layers before the subsequent layer is placed , Before and at the same time or alternatively after the sub-step of the joining, a step of the Structuring be inserted. In Fig. 8a to 8f an embodiment of a method 700 for producing a pump element for a metering pump is shown.

Folgende Materialbeispiele können je nach Ausführungsbeispiel eingesetzt werden. Als feste Polymerschichten können die Bodenplatte, die Mittelplatte sowie die Deckelplatte aus Thermoplasten (z. B. PC, PP, PE, PMMA, COP, COC) hergestellt sein. Die Pumpmembranfolie und die Fügefolie können als elastische Membran beispielsweise aus einem Elastomer,einem thermoplastischen Elastomer, oder einem Thermoplast hergestellt werden. Dabei kann die dicke der Deckel- und Bodenplatte 0.6 mm bis 10 mm, die dicke der flexiblen Ventilfolie beziehungsweise Pumpmembranfolie 30 µm bis 300 µm sowie die tiefe einer Ventilkammer 5 µm bis 150 µm betragen. Dabei können die Abmessungen für den Durchmesser der Ventilkammer 200 µm bis 2000 µm, des Durchlochs der Ventilfolie 10 µm bis 1000 µm, sowie der Schweißung des Kopplungsbalkens an die Pumpmembranfolie 0.1 mm bis 10 mm und der Schweißung der Pumpmembranfolie an die Bodenplatte 1 mm bis 30 mm betragen.
Als Fertigungsverfahren können beispielsweise die festen Schichten durch Spritzgießen, Spritzprägen, Heißprägen, Laserschneiden, Fräsen, Stanzen oder Kombinationen derselben hergestellt werden. Gefügt werden können alle Schichten - insbesondere die Pumpmembranfolie auf die Bodenplatte sowie Mittelplatte mittels Laserschweißen. Selbstverständlich können auch andere Fügeverfahren verwendet werden wie z. B. Ultraschallschweißen oder Lösungsmittelbonden. Der Deckel kann auch aufgeklebt werden. Fig. 8a bis 8f zeigt skizzenhaft einen möglichen Fertigungsablauf.
The following material examples can be used depending on the embodiment. As solid polymer layers, the bottom plate, the middle plate and the cover plate may be made of thermoplastics (eg PC, PP, PE, PMMA, COP, COC). The pump membrane film and the joining film can be produced as an elastic membrane, for example, from an elastomer, a thermoplastic elastomer, or a thermoplastic. The thickness of the lid and base plate 0.6 mm to 10 mm, the thickness of the flexible valve film or pumping membrane film 30 microns to 300 microns and the depth of a valve chamber 5 microns to 150 microns. The dimensions for the diameter of the valve chamber 200 microns to 2000 microns, the perforation of the valve film 10 microns to 1000 microns, and the welding of the coupling beam to the pumping membrane 0.1 mm to 10 mm and the welding of the pumping membrane to the bottom plate 1 mm to 30 mm.
As a manufacturing method, for example, the solid layers by injection molding, injection compression, hot stamping, laser cutting, milling, punching or combinations thereof can be produced. All layers can be joined - in particular the pump membrane foil on the bottom plate and center plate by means of laser welding. Of course, other joining methods can be used such. B. ultrasonic welding or solvent bonding. The lid can also be glued on. Fig. 8a to 8f sketchy shows a possible production process.

Fig. 8a bis 8f zeigen einen schematischen Fertigungsablauf eines Pumpenelements gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Bei dem Pumpenelement kann es sich um eines in Fig. 1 bis Fig. 6 beschriebenes Pumpenelement 1 handeln. Insbesondere kann es sich um ein Ausführungsbeispiel eines in Fig. 6a bis 6d gezeigtes Ausführungsbeispiel eines Pumpenelements handeln. Bei dem Fertigungsablauf kann es sich um ein in Fig. 7 bereits dargestelltes Verfahren 700 zum Herstellen eines Pumpenelements für eine Dosierpumpe handeln. In Fig. 8a wird eine Pumpmembranfolie 10 auf einer strukturierten Bodenplatte 12 angeordnet. Die Pumpmembranfolie 10 und die Bodenplatte 12 können im Schritt des Fügens miteinander verschweißt werden. Fig. 8b zeigt einen Zwischenschritt des Strukturierens, in dem Ventilbereiche der Pumpmembranfolie 10 strukturiert werden. Fig. 8c zeigt den Schritt des Anordnens der Mittelplatte 7 auf der strukturierten Pumpmembranfolie 10. Im Schritt des Fügens können die Pumpmembranfolie 10 und die darauf angeordnete Mittelplatte 7 verschweißt werden. Fig. 8d zeigt eine Seitenansicht der bereits in Fig. 8c gezeigten Schichten des Pumpenelements. Hierbei sind die Teilbereiche der Seitenwand, das Federelement 8 sowie der Koppelungsbalken 6 zu sehen. In einem Ausführungsbeispiel können die Seitenwand 7, das Federelement 8 sowie der Koppelungsbalken 6 einstückig hergestellt sein. Fig. 8e zeigt das Deckeln, das heißt nach dem Anordnen der Fügefolie 18, zumindest im Seitenwandbereich, wird die Deckelplatte 15 angeordnet und die Fügefolie und die Deckelplatte werden verschweißt und/oder verklebt. Fig. 8f zeigt eine Seitendarstellung des in Fig. 8e bereits komplett angeordneten und gefügten Pumpenelements. Fig. 8a to 8f show a schematic production sequence of a pump element according to an embodiment of the present invention. The pump element may be an in Fig. 1 to Fig. 6 described pump element 1 act. In particular, it may be an embodiment of an in Fig. 6a to 6d shown embodiment of a pump element act. The production process can be an in Fig. 7 already illustrated method 700 for producing a pump element for a metering pump. In Fig. 8a a pumping membrane film 10 is arranged on a structured bottom plate 12. The pumping membrane film 10 and the Base plate 12 can be welded together in the joining step. Fig. 8b shows an intermediate step of structuring, are structured in the valve regions of the pumping membrane sheet 10. Fig. 8c shows the step of arranging the middle plate 7 on the structured pumping membrane sheet 10. In the step of joining, the pumping membrane sheet 10 and the center plate 7 arranged thereon can be welded. Fig. 8d shows a side view of the already in Fig. 8c shown layers of the pump element. Here, the partial areas of the side wall, the spring element 8 and the coupling bar 6 can be seen. In one embodiment, the side wall 7, the spring element 8 and the coupling bar 6 can be made in one piece. Fig. 8e shows the lid, that is, after arranging the joining film 18, at least in the sidewall area, the cover plate 15 is arranged and the joining film and the cover plate are welded and / or glued. Fig. 8f shows a page representation of the in Fig. 8e already completely arranged and assembled pump element.

Mit anderen Worten zeigt Fig. 8a bis 8f eine Kurzübersicht eines Ausführungsbeispiels zur Herstellung des Pumpenelements. Bei Schritt 1 und 2 wird die Laserleistung durch die Unterseite eingekoppelt - bei Schritt 3 und 4 durch die Oberseite.In other words shows Fig. 8a to 8f a brief overview of an embodiment for the preparation of the pump element. In steps 1 and 2, the laser power is injected through the bottom - at steps 3 and 4 through the top.

Die beschriebenen und in den Figuren gezeigten Ausführungsbeispiele sind nur beispielhaft gewählt. Unterschiedliche Ausführungsbeispiele können vollständig oder in Bezug auf einzelne Merkmale miteinander kombiniert werden. Auch kann ein Ausführungsbeispiel durch Merkmale eines weiteren Ausführungsbeispiels ergänzt werden.The embodiments described and shown in the figures are chosen only by way of example. Different embodiments may be combined together or in relation to individual features. Also, an embodiment can be supplemented by features of another embodiment.

Ferner können erfindungsgemäße Verfahrensschritte wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden.Furthermore, method steps according to the invention can be repeated as well as carried out in a sequence other than that described.

Umfasst ein Ausführungsbeispiel eine "und/oder"-Verknüpfung zwischen einem ersten Merkmal und einem zweiten Merkmal, so ist dies so zu lesen, dass das Ausführungsbeispiel gemäß einer Ausführungsform sowohl das erste Merkmal als auch das zweite Merkmal und gemäß einer weiteren Ausführungsform entweder nur das erste Merkmal oder nur das zweite Merkmal aufweist.If an exemplary embodiment comprises a "and / or" link between a first feature and a second feature, then this is to be read so that the embodiment according to one embodiment, both the first feature and the second feature and according to another embodiment either only first feature or only the second feature.

Claims (10)

Pumpenelement (1) für eine Dosierpumpe, wobei das Pumpenelement (1) die folgenden Merkmale aufweist: eine Deckelplatte (15); eine Bodenplatte (12), wobei die Bodenplatte (12) in einem vordefinierten Abstand zur Deckelplatte (15) angeordnet ist; ein zwischen der Deckelplatte (15) und der Bodenplatte (12) angeordneter Koppelungsbalken (6), wobei der Koppelungsbalken (6) mit einer Aktoreinheit (2) koppelbar ist und zwischen der Bodenplatte (12) und der Deckelplatte (15) bewegbar ist; eine Pumpmembranfolie (10), angeordnet zwischen der Deckelplatte (15) und der Bodenplatte (12), wobei die Pumpmembranfolie (10) in einem zentralen Abschnitt mit dem Koppelungsbalken (6) verbunden ist und mittels des Koppelungsbalkens (6) mit der Aktoreinheit (2) mechanisch koppelbar ist, wobei die Pumpmembranfolie (10) einen lateral an den zentralen Abschnitt (9) anschließenden flexiblen Abschnitt (13) und einen lateral daran anschließenden mit der Bodenplatte (12) verbundenen weiteren Abschnitt (14) aufweist und die Pumpmembranfolie (10) ausgebildet ist, zwischen der Pumpmembranfolie (10) und der Bodenplatte (12) eine Pumpkammer (11) zu schaffen. Pump element (1) for a metering pump, the pump element (1) having the following features: a lid plate (15); a bottom plate (12), wherein the bottom plate (12) is arranged at a predefined distance to the cover plate (15); a coupling bar (6) disposed between the lid plate (15) and the bottom plate (12), the coupling bar (6) being coupleable to an actuator unit (2) and movable between the bottom plate (12) and the lid plate (15); a pump membrane film (10) arranged between the cover plate (15) and the bottom plate (12), wherein the pump membrane film (10) in a central portion with the coupling bar (6) is connected and by means of the coupling bar (6) with the actuator unit (2 ), wherein the pump membrane film (10) has a laterally adjacent to the central portion (9) flexible portion (13) and a laterally adjoining connected to the bottom plate (12) further portion (14) and the pumping membrane membrane (10) is formed, between the pumping membrane membrane (10) and the bottom plate (12) to provide a pumping chamber (11). Pumpenelement (1) gemäß Anspruch 1, bei dem der Koppelungsbalken (6) mit einem Federelement (8) und/oder einer Seitenwand eine Mittelplatte (7) bildet, die zwischen der Deckelplatte (15) und der Bodenplatte (12) angeordnet ist, wobei das Federelement (8) ausgebildet ist, die Bewegung der Mittelplatte (7) auf einer Bewegung innerhalb eines Toleranzbereichs lotrecht zur Haupterstreckungsebene der Bodenplatte (12) und/oder Deckelplatte (15) einzuschränken.Pump element (1) according to claim 1, wherein the coupling bar (6) with a spring element (8) and / or a side wall forms a middle plate (7) which is arranged between the cover plate (15) and the bottom plate (12) the spring element (8) is formed, the movement of the center plate (7) on a movement within a tolerance range perpendicular to the main extension plane of the bottom plate (12) and / or cover plate (15) restrict. Pumpenelement (1) gemäß Anspruch 2, bei dem der Koppelungsbalken (6), das Federelement (8) und die Seitenwand als eine Mittelplatte einstückig ausgebildet sind, insbesondere wobei ein abgedünnter Abschnitt der Mittelplatte (7) das Federelement (8) zwischen dem Koppelungsbalken (6) und der Seitenwand bildet.Pump element (1) according to claim 2, in which the coupling bar (6), the spring element (8) and the side wall are integrally formed as a central plate, in particular wherein a thinned portion of the middle plate (7) separates the spring element (8) between the coupling bar (8). 6) and the side wall forms. Pumpenelement (1) gemäß einem der vorangegangenen Ansprüche, mit zumindest einer zwischen der Deckelplatte (15) und der Bodenplatte (12) angeordneten Fügefolie (18), wobei die Fügefolie (18) im Bereich des Koppelungsbalkens (6) eine Aussparung zumindest in der Größe des Koppelungsbalkens (6) aufweist.Pump element (1) according to one of the preceding claims, comprising at least one joining film (18) arranged between the cover plate (15) and the bottom plate (12), wherein the joining film (18) in the region of the coupling bar (6) has a recess at least in size of the coupling bar (6). Pumpenelement (1) gemäß einem der vorangegangenen Ansprüche, bei dem die Deckelplatte (15) und/oder die Mittelplatte (7) und/oder die Bodenplatte (12) aus einem thermoplastischen Polymer gefertigt ist.Pump element (1) according to one of the preceding claims, wherein the cover plate (15) and / or the middle plate (7) and / or the bottom plate (12) is made of a thermoplastic polymer. Pumpenelement (1) gemäß einem der vorangegangenen Ansprüche, bei dem die Fügefolie (18) und/oder die Pumpmembranfolie (10) aus einem Elastomer, einem thermoplastischen Elastomer und/oder einem Thermoplast als eine elastische Membran gefertigt ist.Pump element (1) according to one of the preceding claims, wherein the joining film (18) and / or the pumping membrane membrane (10) is made of an elastomer, a thermoplastic elastomer and / or a thermoplastic as an elastic membrane. Pumpenelement (1) gemäß einem der vorangegangenen Ansprüche, mit zumindest einem Rückschlagventil, insbesondere zumindest zwei Rückschlagventilen zum Richten eines Flusses eines Fluids in der Pumpkammer (11).Pump element (1) according to one of the preceding claims, with at least one check valve, in particular at least two check valves for directing a flow of a fluid in the pumping chamber (11). Dosierpumpe, wobei die Dosierpumpe die folgenden Merkmale aufweist: Pumpenelement (1), gemäß einem der Ansprüche 1 bis 7; und Aktoreinheit (2) für eine Dosierpumpe, die ausgebildet ist, den Koppelungsbalken (6) in einem Toleranzbereich lotrecht zur Bodenplatte (12) und/oder Deckelplatte (15) zu bewegen, wobei die Aktoreinheit (2) mittels mindestens einer Aktorgabel (4) und/oder mindestens eines in einer Öffnung einrastenden Dorns und/oder Verschweißen und/oder Verkleben mit dem Koppelungsbalken (6) des Pumpenelements (1) verbunden ist. Metering pump, wherein the metering pump has the following features: Pump element (1) according to one of claims 1 to 7; and Actuator unit (2) for a metering pump, which is designed to move the coupling bar (6) in a tolerance range perpendicular to the bottom plate (12) and / or cover plate (15), wherein the actuator unit (2) by means of at least one actuator fork (4) and / or at least one mandrel engaging in an opening and / or welding and / or gluing to the coupling bar (6) of the pump element (1). Dosierpumpe gemäß Anspruch 8, bei der die Aktoreinheit (2) ausgebildet ist als mindestens ein Piezobiegewandler und/oder mindestens ein Reluktanzaktor und/oder mindestens ein elektroaktives Polymer und/oder mindestens ein Formgedächtnisaktor und/oder mindestens ein Linearmagnet.Dosing pump according to claim 8, wherein the actuator unit (2) is designed as at least one piezo bending transducer and / or at least one reluctance actuator and / or at least one electroactive polymer and / or at least one shape memory actuator and / or at least one linear magnet. Verfahren (700) zum Herstellen eines Pumpenelements (1) für eine Dosierpumpe gemäß einem der vorangegangenen Ansprüche, wobei das Verfahren (700) die folgenden Schritte aufweist: Bereitstellen (710) von zumindest einer Bodenplatte (12), einer Deckelplatte (15), eines Koppelungsbalken (6) und einer Pumpmembranfolie (10); Anordnen (720) des Koppelungsbalkens (6) und der Pumpmembranfolie (10) zwischen der Bodenplatte (12) und der Deckelplatte (15), wobei die Bodenplatte (12) in einem vordefinierten Abstand zur Deckelplatte (15) angeordnet ist; und Fügen (730) der Bodenplatte (12), der Pumpmembranfolie (10), des Koppelungsbalkens (6) und der Deckelplatte (15), um ein Pumpenelement (1) gemäß einem der Ansprüche 1 bis 7 herzustellen. Method (700) for producing a pump element (1) for a metering pump according to one of the preceding claims, the method (700) comprising the following steps: Providing (710) at least one bottom plate (12), a top plate (15), a coupling bar (6) and a pumping membrane film (10); Arranging (720) the coupling beam (6) and the pumping membrane film (10) between the bottom plate (12) and the cover plate (15), the bottom plate (12) being arranged at a predefined distance from the cover plate (15); and Joining (730) the bottom plate (12), the pumping membrane foil (10), the coupling bar (6) and the top plate (15) to produce a pump element (1) according to any one of claims 1 to 7.
EP13193768.2A 2012-11-29 2013-11-21 Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump Not-in-force EP2738386B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012221832.7A DE102012221832A1 (en) 2012-11-29 2012-11-29 Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump

Publications (2)

Publication Number Publication Date
EP2738386A1 true EP2738386A1 (en) 2014-06-04
EP2738386B1 EP2738386B1 (en) 2017-01-11

Family

ID=49679347

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13193768.2A Not-in-force EP2738386B1 (en) 2012-11-29 2013-11-21 Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump

Country Status (2)

Country Link
EP (1) EP2738386B1 (en)
DE (1) DE102012221832A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016015547B4 (en) * 2016-12-27 2021-04-29 Forschungsgemeinschaft Werkzeuge und Werkstoffe (FGW) Zentrum für angewandte Formgedächtnistechnik Shape memory actuators with polymer-integrated shape memory elements and injection molding processes for production

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309189B1 (en) * 1996-12-31 2001-10-30 Westonbridge International Limited Micropump with a built-in intermediate part
DE102006027208A1 (en) * 2006-06-12 2007-12-13 Lewa Gmbh Membrane dosing pump for dosing e.g. corrosion protection agents, has drive head with pressure stroke side that is connected with inlet line through control valve when delivery stroke side is connected with outlet line at time period
JP2009074418A (en) * 2007-09-20 2009-04-09 Murata Mfg Co Ltd Piezoelectric micro-pump
WO2009059664A1 (en) 2007-11-05 2009-05-14 Bartels Mikrotechnik Gmbh Method for supplying a fluid and micropump for said purpose
EP1966490B1 (en) 2005-12-28 2009-10-28 Sensile Medical A.G. Micropump
WO2010046728A1 (en) 2008-10-22 2010-04-29 Debiotech S.A. Mems fluid pump with integrated pressure sensor for dysfunction detection
DE102008056751A1 (en) 2008-11-11 2010-05-12 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Fluidic device i.e. bidirectional peristaltic micropump, for delivering medicament, has spring elements bearing force from side of inlet opening, and membrane section pressed against pusher by force for movement into pre-stressed position
DE102011015184A1 (en) 2010-06-02 2011-12-08 Thinxxs Microtechnology Ag Device for transporting small volumes of a fluid, in particular micropump or microvalve
EP2469089A1 (en) * 2010-12-23 2012-06-27 Debiotech S.A. Electronic control method and system for a piezo-electric pump
US20120237375A1 (en) * 2009-12-07 2012-09-20 Niklaus Schneeberger Flexible element for micropump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309189B1 (en) * 1996-12-31 2001-10-30 Westonbridge International Limited Micropump with a built-in intermediate part
EP1966490B1 (en) 2005-12-28 2009-10-28 Sensile Medical A.G. Micropump
DE102006027208A1 (en) * 2006-06-12 2007-12-13 Lewa Gmbh Membrane dosing pump for dosing e.g. corrosion protection agents, has drive head with pressure stroke side that is connected with inlet line through control valve when delivery stroke side is connected with outlet line at time period
JP2009074418A (en) * 2007-09-20 2009-04-09 Murata Mfg Co Ltd Piezoelectric micro-pump
WO2009059664A1 (en) 2007-11-05 2009-05-14 Bartels Mikrotechnik Gmbh Method for supplying a fluid and micropump for said purpose
WO2010046728A1 (en) 2008-10-22 2010-04-29 Debiotech S.A. Mems fluid pump with integrated pressure sensor for dysfunction detection
DE102008056751A1 (en) 2008-11-11 2010-05-12 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Fluidic device i.e. bidirectional peristaltic micropump, for delivering medicament, has spring elements bearing force from side of inlet opening, and membrane section pressed against pusher by force for movement into pre-stressed position
US20120237375A1 (en) * 2009-12-07 2012-09-20 Niklaus Schneeberger Flexible element for micropump
DE102011015184A1 (en) 2010-06-02 2011-12-08 Thinxxs Microtechnology Ag Device for transporting small volumes of a fluid, in particular micropump or microvalve
EP2469089A1 (en) * 2010-12-23 2012-06-27 Debiotech S.A. Electronic control method and system for a piezo-electric pump

Also Published As

Publication number Publication date
EP2738386B1 (en) 2017-01-11
DE102012221832A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
EP2220371B1 (en) Pump arrangement having safety valve
EP2205869B1 (en) Membrane pump
EP1320686B1 (en) Micro valve normally in a closed position
EP1458977B2 (en) Peristaltic micropump
EP2207963B1 (en) Pump and pump arrangement
DE60310244T2 (en) DIAPHRAGM PUMP WITH ADJUSTABLE PUMP MEMBRANE
EP2467603B1 (en) Disposable element, system for pumping and method for pumping a liquid
EP2731721B1 (en) Microfluidic device and method for producing a microfluidic device
EP2576065A1 (en) Flow cell with cavity and diaphragm
EP2611594B1 (en) Method of making a microfluidic device and related laminating apparatus
DE102012200501A1 (en) Microdosing pump and method for manufacturing a microdosing pump
EP1331538A1 (en) Piezo-electrically controlled micro actuator for fluids
WO2009156103A1 (en) Micro-valve and sealing device for use in a microfluidic system, and method for the production thereof
EP1576294B1 (en) Microvalve that is doubly closed in a normal manner
DE4138491C2 (en) Micromechanical valve for micromechanical dosing devices
EP2203645A1 (en) Microdosing device for dosing very small amounts of a medium
EP2738386B1 (en) Metering pump, pump element for the metering pump and method for producing a pump element for a metering pump
DE102013013545B4 (en) Vacuum generating device
EP2567092B1 (en) Microfluidic component, in particular a peristaltic micropump, and method for producing same
DE102008048064A1 (en) Microfluidic valve, microfluidic pump, microfluidic system and a manufacturing process
EP2232070B1 (en) Micropump
EP2522427A1 (en) Micro-fluid device and method for manufacturing the same
EP2759751B1 (en) Method for producing a normally closed non-return valve for micro-fluid components comprising a polymer layer system and non-return valve
DE10335492B4 (en) Method for selectively connecting microstructured parts
DE102007045638A1 (en) Microdosing apparatus with reliable seal, e.g. for dosing insulin, includes pump, medium channel between inlet and outlet, self-sealing outlet valve and controllable valve actuators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141204

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160720

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006057

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 861555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201123

Year of fee payment: 8

Ref country code: IT

Payment date: 20201130

Year of fee payment: 8

Ref country code: FR

Payment date: 20201119

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210126

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013006057

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211121

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211121