EP3048407A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP3048407A1
EP3048407A1 EP15202230.7A EP15202230A EP3048407A1 EP 3048407 A1 EP3048407 A1 EP 3048407A1 EP 15202230 A EP15202230 A EP 15202230A EP 3048407 A1 EP3048407 A1 EP 3048407A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flow
exchanger according
flow direction
structural elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15202230.7A
Other languages
German (de)
French (fr)
Other versions
EP3048407B9 (en
EP3048407B1 (en
Inventor
Peter Geskes
Ulrich Maucher
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP3048407A1 publication Critical patent/EP3048407A1/en
Application granted granted Critical
Publication of EP3048407B1 publication Critical patent/EP3048407B1/en
Publication of EP3048407B9 publication Critical patent/EP3048407B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the invention relates to a heat exchanger according to the preamble of claim 1 - known by the EP 0 677 715 A1 the applicant.
  • V-shaped arranged structural elements are formed by non-cutting deformation of the wall of the exhaust pipes.
  • the V-shaped arranged structural elements also referred to as so-called winglets, can thus be economically, ie introduced at low cost in the exhaust pipes.
  • the density of the structural elements is variable, especially in the flow direction is increasing.
  • the heat transfer coefficient on the inside of the flow channel is variable, in particular, the heat transfer increases in the flow direction, while it is comparatively low or minimal in the inlet region of the flow.
  • the invention is based on the recognition that the heat dissipation in the inlet region of the flow channel-for example, a cooling medium flowing around the flow channel-is greater than in the downstream region of the flow channel due to the high temperature difference prevailing there, and that a forming on the inner wall of the flow channel, in the flow direction growing temperature boundary layer in the inlet region is still relatively thin.
  • structural elements for increasing the heat transfer on the inside of the flow channel in favor of a reduced pressure drop in this area can be dispensed with in the inlet region.
  • the density of the structural elements is adapted to the conditions prevailing locally in the flow channel with respect to temperature difference and temperature boundary layer.
  • the inlet region of the flow channel initially smooth-walled, d. H. be formed without structural elements, since - as mentioned - already in this area due to the high temperature difference and the low boundary layer thickness, a high power density is achieved.
  • structural elements with increasing density or with the heat transfer increasingly increasing effect are arranged downstream in the flow channel.
  • the structural elements are formed as swirl-generating indentations in the wall of the flow channel, as so-called winglets, as they are known for exhaust gas heat exchanger according to the aforementioned prior art.
  • the arrangement and design of the winglets in the flow channel can be made variable according to the invention: thus, the distance of the winglets in the flow direction can increase continuously or gradually, as well as the height of the winglets, which extends into the flow. For manufacturing reasons, it is advantageous if the distances each amount to a multiple of the smallest distance. Further, the angle included by the V-shaped winglets can be increased continuously or stepwise in the flow direction, thereby also increasing the heat transfer, but also the pressure drop.
  • the inventive arrangement of structural elements with variable density, in particular for exhaust gas heat exchanger of internal combustion engines for motor vehicles is advantageously used.
  • Exhaust gas heat exchangers require on the one hand a high power density and on the other hand a low exhaust back pressure, so that the required EGR rates (proportion of the recirculated exhaust gas in the total exhaust gas flow) can be achieved to achieve the emission requirements.
  • the reduced pressure drop resulting from the invention thus has a particularly advantageous effect when used as an exhaust gas heat exchanger.
  • ribs in particular rib ribs are arranged as structural elements on the inside of the flow channel, which increase the heat transfer.
  • the rib elements have a density that is variable in the direction of flow, ie. H. preferably gradually increases in the flow direction, which in turn can be dispensed with in the inlet area entirely on a réelleberippung.
  • the change in density can advantageously be achieved in the case of a rib ridge by means of a variable longitudinal or transverse distribution or by a variable angle of attack for the flow. This also achieves the advantage of a reduced pressure drop.
  • further measures could be taken to increase the heat transfer, e.g.
  • the measures according to the invention are particularly advantageous in the inlet region of the respective flow channel, d. H. in the area of the flow, where there are still transient conditions with respect to the temperature difference and the thickness of the boundary layer.
  • the flow channels are designed as exhaust gas flows through and can be umströmbare exhaust gas from a coolant.
  • the structural elements, in particular the inner ribs have a rib density, which is variable in the flow direction, in particular in the flow direction (P) is increasing.
  • the rib ridge has a variable longitudinal pitch (t 1 , t 2 , t 3 , t 4 , t 5 ... t x ).
  • the smallest longitudinal pitch t x has a limit value t x > 0.3 H, where H is the channel height.
  • the rib ridge has a variable angle of attack ( ⁇ 1 , ⁇ 2 , ⁇ 3 ... ⁇ x ), wherein the angle of attack is preferably in the range of 0 ⁇ ⁇ 30 °.
  • the rib ridge has a variable transverse distribution (q 1 , q 2 , q 3 ... Q x ).
  • the transverse pitch q has a range of 8> q> 1 mm, preferably 5> q> 2 mm.
  • the inner rib has a longitudinal swivel with variable pitch (t 1 , t 2 , t 3 , t 4 ).
  • the pitch t of the inner rib has a range of 10 ⁇ t ⁇ 50 mm.
  • the flow channels are formed as tubes, in particular as a tube of a tube bundle.
  • the flow channels are formed as disks, in particular as disks of a disk package.
  • thermoelectric cooler for cooling combustion air for an internal combustion engine of a motor vehicle.
  • Fig. 1 shows a pipe 1 designed as a flow channel 2, which has an inlet cross-section 3 and is flowed through by a flow medium according to the arrow P.
  • the tube 1 is traversed by a hot exhaust gas of an internal combustion engine, not shown, and is part of a Abgas139übertragers not shown.
  • the tube 1 has a smooth inner side or inner wall 1a and an outer or outer wall 1b, which is cooled by a preferably liquid coolant.
  • the hot exhaust gas gives its heat over the Pipe 1 to the coolant.
  • a temperature boundary layer 4 forms on the inner wall 1a, which increases in its thickness d from the inlet cross-section 3 in the flow direction of the arrow P.
  • the temperature profile in this boundary layer 4 is represented by a temperature profile 5.
  • the temperature in the temperature boundary layer thus rises from a temperature Ta on the inner wall 1a to a temperature level Ti in the interior of the flow channel (core flow), which corresponds to the exhaust gas inlet temperature. Due to the growing temperature boundary layer 4, the heat transfer conditions in the inlet region of the tube 1 deteriorate.
  • Fig. 2 shows a diagram in which the heat transfer coefficient ⁇ is plotted as a relative size over the length I of a smooth-walled flow channel, ie from the inlet cross-section (reference numeral 3 in Fig. 1 ) in the flow direction of the flow medium.
  • the length I is plotted in millimeters.
  • Fig. 3a, 3b, 3c, 3d and 3e show a first embodiment of the invention with five different variants, namely the arrangement of structural elements with variable density.
  • Fig. 3a shows in a first variant, a schematically illustrated flow channel 6, preferably an exhaust pipe of a Abgastownschreibtragers not shown, wherein the exhaust pipe 6 is traversed according to the arrow P.
  • the outside of the exhaust pipe 6 is - what is not shown, but from the above-mentioned prior art is known - preferably lapped by a liquid coolant - but is also possible air cooling.
  • the exhaust pipe 6 is formed as a stainless steel tube, consisting of two halves welded together, with a rectangular cross-section.
  • the exhaust pipe 6 has an inlet region 6a, which is smooth-walled over a length L. Downstream of the smooth-walled region 6a, a region 6b adjoins, in which V-shaped arranged structural elements embossed from the tube wall 7, so-called winglets, are arranged.
  • the winglet pairs 7 are arranged in the section 6b at the same distance and in the same formation. The transition from the smooth-walled region 6a to the winglets 7 occupied area 6b thus takes place in the form of a "step".
  • a sufficiently large heat transfer or heat transfer is achieved in the smooth-walled region 6a, since the temperature difference is still sufficiently large and the temperature boundary layer is relatively small.
  • the smooth-walled region 6a - this also applies to the following variants 3b, 3c, 3d, 3e - may have a length of up to 100 mm.
  • a rectangular tube 8 is shown in longitudinal section, which also has a smooth-walled inlet region 8a and a channel height H. Downstream of this smooth-walled region 8a winglet pairs 9 are arranged with equal distances a in the flow direction, but with different heights h: projecting into the flow cross-section of the exhaust pipe 8 heights h of the winglet pairs 9 grow continuously in the flow direction P. Thus, the heat transfer in This pipe section has been successively increased. At the same time, the pressure drop increases. The transition from smooth to not smooth is thus continuous. In a preferred embodiment, a range of 0.05 ⁇ h / H ⁇ 0.4 is selected for the ratio h / H.
  • a third variant according to Fig. 3c are in a tube 10 winglet pairs 11 with decreasing in the flow direction P distances a 1 , a 2 , a 3 arranged.
  • the heat transfer starting from the smooth inlet region 10a, successively increased, since the density of the structural elements or winglets 11 is greater.
  • the distances a 1 , a 2 , a 3 can each be a multiple of the minimum distance a x .
  • the latter is advantageously in a range of 5 ⁇ a x ⁇ 50 mm and preferably in a range of 8 ⁇ a x ⁇ 30 mm.
  • Fig. 3d shows a fourth variant for the arrangement of structural elements with different density in an exhaust pipe 12, which is permeable according to the arrow P of exhaust gas.
  • the smooth-walled entry region 12a is shorter in comparison to the previous embodiments.
  • This is followed by winglet pairs 13 with equal distances in the flow direction, but with different angles ⁇ (angle with respect to flow direction P).
  • the winglets of the upstream winglet pair 12 are aligned almost parallel ( ⁇ 0), while the angle ⁇ formed by the winglets of the downstream winglet pair 13 is about 45 degrees.
  • the intervening winglet pairs 13 have corresponding intermediate values, so that the heat transfer coefficient for the inner wall of the exhaust pipe 13 increases due to the increasing spreading of the winglets in the flow direction, continuously or in small steps.
  • the angle ⁇ is advantageously in a range of 20 ° ⁇ ⁇ 50 °.
  • Fig. 3e shows a fifth variant with an exhaust pipe 30, a smooth-walled portion 30a and adjoining rows of parallel winglets 31, which each form an angle ⁇ with the flow direction P.
  • the rows have in the flow direction P decreasing distances a 1 , a 2 , a 3 , wherein the angle ⁇ of the winglets 31 from row to row changes the sign.
  • a smooth area without structural elements is preferably left at the beginning of the tube and at the tube end so that a clean separation point can be produced when the tubes are cut to length.
  • Fig. 4 shows a further embodiment of the invention for a flow channel 14, which is according to the arrow P flows of a flow medium - this may be, for example, a liquid coolant or charge air.
  • the outside of the flow channel 14 can be cooled by a gaseous or liquid cooling medium.
  • the flow channel 14 has a smooth-walled inlet region 14a, at which, in the flow direction P, a first region 14b provided with internal ribs 15 and, at the same time, another ribbed region 14c connects.
  • the regions 14b and 14c have a different fin density - in the illustrated embodiment, the rib density in the downstream region 14c is twice as large as in the upstream region 14b, since between the continuous ribs 15 further ribs 16 are arranged.
  • an increase of the heat transfer is also achieved, in stages from 14a to 14b to 14c.
  • Fig. 5 shows as a third embodiment of the invention, a gas flow channel in which a Stegrippe 17 with variable longitudinal pitch t 1 , t 2 , t 3 , t 4 , t 5 is arranged.
  • t 1 > t 2 > t 3 > t 4 > t 5 ie the heat transfer increases from t 1 to t 5 , ie in the flow direction P.
  • Web ribs are used in particular for intercoolers and are preferably soldered to the pipes.
  • the ratio of the smallest pitch t x to the channel height H has a limit of 0.3 ⁇ t x / H.
  • Fig. 6 shows a fourth embodiment of the invention, a gas flow channel in which a rib ridge 18 with variable angles of attack ⁇ 1 , a 2 , ⁇ 3 ... ⁇ x is arranged.
  • Advantageous angles of attack are in the range of 0 ⁇ ⁇ 30 °.
  • Fig. 7 shows a fifth embodiment of the invention, a gas flow channel in which a rib ridge 19 with variable transverse pitch q 1 , q 2 , q 3 ... q 6 is arranged, wherein the heat transfer with decreasing transverse division of q 1 in the direction q 6 , ie Flow direction P increases.
  • Advantageous areas for the transverse division q are 8>q> 1 mm and preferably 5>q> 2 mm.
  • Fig. 8 shows in a gas flow channel a corrugated in the flow direction P (deep waved) inner fin 20 with variable pitch t 1 , t 2 , t 3 , t 4 - the heat transfer increases here in the direction of decreasing pitch t.
  • Advantageous ranges for the pitch t are 10 ⁇ t ⁇ 50 mm.
  • Prior art known means can be achieved, for example by placing gills or windows in the ribs.
  • other forms of structural elements for vortex generation or to increase the heat transfer can be selected.
  • the application of the invention is not limited to exhaust gas heat exchangers, but also extends to intercoolers whose tubes are flowed through by hot charge air, and generally to gas flow channels, which may be formed as tubes of a tube heat exchanger or as slices of Scheibenzieübertragers.

Abstract

Die Erfindung betrifft einen Wärmeübertrager mit mindestens einem von einem Strömungsmedium von einem Eintritts- bis zu einem Austrittsquerschnitt durchströmbaren, eine Innen- und eine Außenseite aufweisenden Strömungskanal, welcher auf der Innenseite Strukturelemente zur Erhöhung des Wärmeüberganges aufweist. Es wird vorgeschlagen, dass die Strukturelemente (11) in Strömungsrichtung (P) variabel angeordnet und/oder ausgebildet sind, derart, dass der Strömungskanal (10) auf der Innenseite einen variablen, insbesondere einen in Strömungsrichtung (P) zunehmenden Wärmeübergang aufweist.The invention relates to a heat exchanger with at least one of a flow medium from an inlet to an outlet cross-section through which an inner and an outer side having flow channel, which has on the inside of structural elements to increase the heat transfer. It is proposed that the structural elements (11) are variably arranged and / or formed in the flow direction (P), such that the flow channel (10) has a variable heat transfer on the inside, in particular a heat transfer increasing in the flow direction (P).

Description

Die Erfindung betrifft einen Wärmeübertrager nach dem Oberbegriff des Patentanspruches 1 - bekannt durch die EP 0 677 715 A1 der Anmelderin.The invention relates to a heat exchanger according to the preamble of claim 1 - known by the EP 0 677 715 A1 the applicant.

Es ist bekannt, in Strömungskanälen von Wärmeübertragern zur Erhöhung des Wärmeüberganges Strukturelemente anzuordnen, welche Wirbel und eine turbulente Strömung erzeugen. Derartige Strukturelemente sind in verschiedensten Ausführungsformen bekannt, z. B. als gewellte Innenrippen, Turbulenzeinlagen, Stegrippen oder auch als aus der Wand des Strömungskanals ausgeformte Wirbelerzeuger, welche in die Strömung hineinragen. Durch die EP 0 677 715 A1 der Anmelderin wurde ein Wärmeübertrager mit Turbulenzeinlagen bekannt, welche paarweise aufgestellte, einen Winkel zur Strömungsrichtung bildende Laschen aufweisen. Der bekannte Wärmeübertrager wird insbesondere zur Kühlung von Abgas verwendet, wobei eine Flüssigkeitskühlung oder Luftkühlung vorgesehen ist. Die V-förmig angeordneten Laschen mit sich in Strömungsrichtung öffnendem V erzeugen einerseits eine turbulente Strömung und verhindern durch ihre Wirbelbildung eine Ablagerung von Ruß, welcher im Abgas enthalten ist.It is known to arrange in the flow channels of heat exchangers to increase the heat transfer structure elements which generate vortex and a turbulent flow. Such structural elements are known in various embodiments, for. B. as corrugated inner ribs, turbulence inserts, rib ribs or as formed from the wall of the flow channel vortex generator, which protrude into the flow. By the EP 0 677 715 A1 the applicant has a heat exchanger with turbulence inserts is known, which have paired up, forming an angle to the flow direction tabs. The known heat exchanger is used in particular for cooling exhaust gas, wherein a liquid cooling or air cooling is provided. The V-shaped tabs with opening V in the flow direction on the one hand produce a turbulent flow and prevent by their vortex formation, a deposit of soot, which is contained in the exhaust gas.

Weiterentwicklungen der V-förmig angeordneten Strukturelemente wurden durch die DE 195 40 683 A1 , die DE 196 54 367 A1 sowie die DE 196 54 368 A1 der Anmelderin für Abgaswärmeübertrager bekannt. Dabei sind die V-förmig angeordneten Strukturelemente durch spanlose Umformung aus der Wandung der Abgasrohre ausgeformt. Die V-förmig angeordneten Strukturelemente, auch als so genannte Winglets bezeichnet, können somit wirtschaftlich, d. h. zu geringen Kosten in die Abgasrohre eingebracht werden.Further developments of the V-shaped arranged structural elements were by the DE 195 40 683 A1 , the DE 196 54 367 A1 as well as the DE 196 54 368 A1 the applicant for exhaust heat exchanger known. Here, the V-shaped arranged structural elements are formed by non-cutting deformation of the wall of the exhaust pipes. The V-shaped arranged structural elements, also referred to as so-called winglets, can thus be economically, ie introduced at low cost in the exhaust pipes.

Wie durch die EP 1 061 319 A1 und die DE 101 27 084 A1 der Anmelderin bekannt geworden, werden ähnliche Strukturelemente auch für andere Arten von Wärmeübertragern, z. B. luftgekühlte Kühlmittelkühler verwendet. Allen bekannten Strukturelementen ist gemeinsam, dass sie im Wesentlichen gleichmäßig über die gesamte Länge der betreffenden Strömungskanäle, seien es Abgasrohre oder Kühlmittelflachrohre, verteilt sind. Einerseits wird durch die Strukturelemente der gewünschte erhöhte Wärmeübergang erzielt, andererseits wird dieser Vorteil mit einem erhöhten Druckabfall auf der Abgas- bzw. Kühlmittelseite erkauft. Insbesondere bei Abgaswärmeübertragern, welche in der Abgasrückführung eines Verbrennungsmotors angeordnet sind, ist ein erhöhter Druckabfall wegen des damit einhergehenden erhöhten Abgasgegendruckes nicht erwünscht. Andererseits wird insbesondere für Abgaswärmeübertrager von Kraftfahrzeugen eine erhöhte Leistungsdichte gefordert.How through the EP 1 061 319 A1 and the DE 101 27 084 A1 become known to the applicant, similar structural elements for other types of heat exchangers, for. B. air-cooled coolant cooler used. all known structural elements have in common that they are substantially evenly distributed over the entire length of the respective flow channels, be it exhaust pipes or coolant flat pipes. On the one hand, the desired increased heat transfer is achieved by the structural elements, on the other hand, this advantage is paid for with an increased pressure drop on the exhaust gas or coolant side. In particular, in exhaust gas heat exchangers, which are arranged in the exhaust gas recirculation of an internal combustion engine, an increased pressure drop is not desirable because of the associated increased exhaust backpressure. On the other hand, an increased power density is required in particular for exhaust gas heat exchanger of motor vehicles.

Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager der eingangs genannten Art dahingehend zu verbessern, dass ein Optimum zwischen Leistungsdichte und Druckabfall erzielt wird.It is an object of the present invention to improve a heat exchanger of the type mentioned in that an optimum between power density and pressure drop is achieved.

Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Erfindungsgemäß ist vorgesehen, dass die Dichte der Strukturelemente variabel, insbesondere in Strömungsrichtung zunehmend ist. Mit dieser konstruktiven Maßnahme wird auch die Wärmeübergangszahl auf der Innenseite des Strömungskanals variabel, insbesondere nimmt der Wärmeübergang in Strömungsrichtung zu, während er im Eintrittsbereich der Strömung vergleichsweise gering oder minimal ist. Die Erfindung geht von der Erkenntnis aus, dass die Wärmeabfuhr im Eintrittsbereich des Strömungskanals - beispielsweise an ein den Strömungskanal umströmendes Kühlmedium - aufgrund der dort herrschenden hohen Temperaturdifferenz größer als im stromabwärtigen Bereich des Strömungskanals ist, und dass eine sich an der Innenwand des Strömungskanals ausbildende, in Strömungsrichtung wachsende Temperaturgrenzschicht im Eintrittsbereich noch relativ dünn ist. Insofern kann im Eintrittsbereich auf Strukturelemente zur Erhöhung des Wärmeüberganges auf der Innenseite des Strömungskanals zu Gunsten eines in diesem Bereich reduzierten Druckabfalls verzichtet werden. Die Dichte der Strukturelemente ist dabei an die lokal im Strömungskanal herrschenden Bedingungen bezüglich Temperaturdifferenz und Temperaturgrenzschicht angepasst. Mit der erfindungsgemäßen Anordnung der Strukturelemente wird der Vorteil erreicht, dass der Druckabfall im Strömungskanal bei hoher Leistungsdichte reduziert wird.This object is solved by the features of claim 1. According to the invention it is provided that the density of the structural elements is variable, especially in the flow direction is increasing. With this design measure, the heat transfer coefficient on the inside of the flow channel is variable, in particular, the heat transfer increases in the flow direction, while it is comparatively low or minimal in the inlet region of the flow. The invention is based on the recognition that the heat dissipation in the inlet region of the flow channel-for example, a cooling medium flowing around the flow channel-is greater than in the downstream region of the flow channel due to the high temperature difference prevailing there, and that a forming on the inner wall of the flow channel, in the flow direction growing temperature boundary layer in the inlet region is still relatively thin. In this respect, structural elements for increasing the heat transfer on the inside of the flow channel in favor of a reduced pressure drop in this area can be dispensed with in the inlet region. The density of the structural elements is adapted to the conditions prevailing locally in the flow channel with respect to temperature difference and temperature boundary layer. With the arrangement of the structural elements according to the invention the advantage is achieved that the pressure drop in the flow channel is reduced at high power density.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Vorzugsweise kann der Eintrittsbereich des Strömungskanals zunächst glattwandig, d. h. ohne Strukturelemente ausgebildet sein, da - wie erwähnt - in diesem Bereich aufgrund der hohen Temperaturdifferenz und der geringen Grenzschichtdicke bereits eine hohe Leistungsdichte erzielt wird. Bei sinkender Temperaturdifferenz und zunehmender Grenzschichtdicke werden dann stromabwärts im Strömungskanal Strukturelemente mit zunehmender Dichte bzw. mit die Wärmeübertragung zunehmend erhöhender Wirkung angeordnet. Vorteilhafterweise sind die Strukturelemente als Wirbel erzeugende Einprägungen in der Wand des Strömungskanals ausgebildet, als so genannte Winglets, wie sie für Abgaswärmeübertrager gemäß dem eingangs genannten Stand der Technik bekannt sind. Die Anordnung und Ausbildung der Winglets im Strömungskanal kann erfindungsgemäß variabel gestaltet werden: so kann der Abstand der Winglets in Strömungsrichtung kontinuierlich oder stufenweise zunehmen, ebenso die Höhe der Winglets, die in die Strömung hineinreicht. Aus Fertigungsgründen ist es vorteilhaft, wenn die Abstände jeweils ein Vielfaches des kleinsten Abstandes betragen. Ferner kann der Winkel, den die V-förmig angeordneten Winglets einschließen, in Strömungsrichtung kontinuierlich oder stufenweise vergrößert werden, wodurch ebenfalls der Wärmeübergang, allerdings auch der Druckabfall erhöht wird.Advantageous embodiments of the invention will become apparent from the dependent claims. Preferably, the inlet region of the flow channel initially smooth-walled, d. H. be formed without structural elements, since - as mentioned - already in this area due to the high temperature difference and the low boundary layer thickness, a high power density is achieved. With decreasing temperature difference and increasing boundary layer thickness then structural elements with increasing density or with the heat transfer increasingly increasing effect are arranged downstream in the flow channel. Advantageously, the structural elements are formed as swirl-generating indentations in the wall of the flow channel, as so-called winglets, as they are known for exhaust gas heat exchanger according to the aforementioned prior art. The arrangement and design of the winglets in the flow channel can be made variable according to the invention: thus, the distance of the winglets in the flow direction can increase continuously or gradually, as well as the height of the winglets, which extends into the flow. For manufacturing reasons, it is advantageous if the distances each amount to a multiple of the smallest distance. Further, the angle included by the V-shaped winglets can be increased continuously or stepwise in the flow direction, thereby also increasing the heat transfer, but also the pressure drop.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die erfindungsgemäße Anordnung der Strukturelemente mit variabler Dichte insbesondere für Abgaswärmeübertrager von Verbrennungsmotoren für Kraftfahrzeuge vorteilhaft verwendbar. Abgaswärmeübertrager erfordern einerseits eine hohe Leistungsdichte und andererseits einen geringen Abgasgegendruck, damit die benötigten AGR-Raten (Anteil des rückgeführten Abgases am Gesamtabgasstrom) zur Erreichung der Emissionsvorschriften erzielt werden können. Der aus der Erfindung resultierende reduzierte Druckabfall wirkt sich also bei Verwendung als Abgaswärmeübertrager besonders vorteilhaft aus. Darüber hinaus ist auch eine vorteilhafte Anwendung in Ladeluftkühlern für Verbrennungsmotoren und allgemein in Gasströmungskanälen gegeben.According to a further advantageous embodiment of the invention, the inventive arrangement of structural elements with variable density, in particular for exhaust gas heat exchanger of internal combustion engines for motor vehicles is advantageously used. Exhaust gas heat exchangers require on the one hand a high power density and on the other hand a low exhaust back pressure, so that the required EGR rates (proportion of the recirculated exhaust gas in the total exhaust gas flow) can be achieved to achieve the emission requirements. The reduced pressure drop resulting from the invention thus has a particularly advantageous effect when used as an exhaust gas heat exchanger. In addition, is also an advantageous application in intercoolers for internal combustion engines and generally in gas flow channels.

In weiterer vorteilhafter Ausgestaltung der Erfindung sind auf der Innenseite des Strömungskanals Rippen, insbesondere Stegrippen als Strukturelemente angeordnet, welche den Wärmeübergang erhöhen. Erfindungsgemäß weisen die Rippenelemente eine Dichte auf, welche in Strömungsrichtung variabel ist, d. h. vorzugsweise stufenweise in Strömungsrichtung zunimmt, wobei wiederum im Eintrittsbereich gänzlich auf eine Innenberippung verzichtet werden kann. Die Änderung der Dichte kann bei einer Stegrippe vorteilhaft durch eine variable Längs- oder Querteilung oder durch einen variablen Anstellwinkel für die Strömung erreicht werden. Auch dadurch wird der Vorteil eines reduzierten Druckabfalls erreicht. Zusätzlich zur Änderung der Rippendichte könnten weitere Maßnahmen zur Erhöhung des Wärmeüberganges getroffen werden, z. B. die Anordnung von Kiemen oder Fenstern in den Flanken der Wellrippen, ebenfalls mit dem Ziel, den Wärmeübergang in Strömungsrichtung variabel zu gestalten. Die erfindungsgemäßen Maßnahmen sind insbesondere im Eintrittsbereich des jeweiligen Strömungskanals vorteilhaft, d. h. in dem Bereich der Strömung, wo noch instationäre Verhältnisse bezüglich der Temperaturdifferenz und der Dicke der Grenzschicht herrschen. Diese Parameter erreichen stromabwärts einen nahezu stationären Zustand, wo eine variable Dichte der Strukturelemente keine wesentlichen Vorteile mehr bringt.In a further advantageous embodiment of the invention, ribs, in particular rib ribs are arranged as structural elements on the inside of the flow channel, which increase the heat transfer. According to the invention, the rib elements have a density that is variable in the direction of flow, ie. H. preferably gradually increases in the flow direction, which in turn can be dispensed with in the inlet area entirely on a Innenberippung. The change in density can advantageously be achieved in the case of a rib ridge by means of a variable longitudinal or transverse distribution or by a variable angle of attack for the flow. This also achieves the advantage of a reduced pressure drop. In addition to changing the rib density, further measures could be taken to increase the heat transfer, e.g. As the arrangement of gills or windows in the flanks of the corrugated fins, also with the aim to make the heat transfer in the flow direction variable. The measures according to the invention are particularly advantageous in the inlet region of the respective flow channel, d. H. in the area of the flow, where there are still transient conditions with respect to the temperature difference and the thickness of the boundary layer. These parameters reach a near stationary state downstream, where variable density of the structural elements no longer brings any significant advantages.

Vorteilhaft ist, wenn am stromaufwärtigen und am stromabwärtigen Ende eines Strömungskanals ein glatter Bereich, ohne Strukturelemente, als Trennstelle belassen ist.It is advantageous if at the upstream and at the downstream end of a flow channel, a smooth area, without structural elements, is left as a separation point.

Vorteilhaft ist, wenn bei einer Verwendung als Wärmeübertrager die Strömungskanäle als von Abgas durchströmbare und von einem Kühlmittel umströmbare Abgasrohre ausgebildet sind.It is advantageous if, when used as a heat exchanger, the flow channels are designed as exhaust gas flows through and can be umströmbare exhaust gas from a coolant.

Vorteilhaft ist, wenn die Strukturelemente, insbesondere die Innenrippen eine Rippendichte aufweisen, die in Strömungsrichtung variabel, insbesondere in Strömungsrichtung (P) zunehmend ist.It is advantageous if the structural elements, in particular the inner ribs have a rib density, which is variable in the flow direction, in particular in the flow direction (P) is increasing.

Vorteilhaft ist, wenn die Rippendichte in Stufen zunimmt.It is advantageous if the rib density increases in stages.

Vorteilhaft ist, wenn die Stegrippe eine variable Längsteilung (t1, t2, t3, t4, t5... tx) aufweist.It is advantageous if the rib ridge has a variable longitudinal pitch (t 1 , t 2 , t 3 , t 4 , t 5 ... t x ).

Vorteilhaft ist, wenn die kleinste Längsteilung tx einen Grenzwert tx > 0,3 H aufweist, wobei H die Kanalhöhe ist.It is advantageous if the smallest longitudinal pitch t x has a limit value t x > 0.3 H, where H is the channel height.

Vorteilhaft ist, wenn die Stegrippe einen variablen Anstellwinkel (α1, α2, α3... αx) aufweist, wobei der Anstellwinkel vorzugsweise im Bereich von 0 < α < 30° liegt.It is advantageous if the rib ridge has a variable angle of attack (α 1 , α 2 , α 3 ... α x ), wherein the angle of attack is preferably in the range of 0 <α <30 °.

Vorteilhaft ist, wenn die Stegrippe eine variable Querteilung (q1, q2, q3... qx) aufweist.It is advantageous if the rib ridge has a variable transverse distribution (q 1 , q 2 , q 3 ... Q x ).

Vorteilhaft ist, wenn die Querteilung q einen Bereich von 8 > q > 1 mm, vorzugsweise 5 > q > 2 mm aufweist.It is advantageous if the transverse pitch q has a range of 8> q> 1 mm, preferably 5> q> 2 mm.

Vorteilhaft ist, wenn die Innenrippe eine Längswellung mit variabler Teilung (t1, t2, t3, t4) aufweist.It is advantageous if the inner rib has a longitudinal swivel with variable pitch (t 1 , t 2 , t 3 , t 4 ).

Vorteilhaft ist, wenn die Teilung t der Innenrippe einen Bereich von 10 < t < 50 mm aufweist.It is advantageous if the pitch t of the inner rib has a range of 10 <t <50 mm.

Vorteilhaft ist, wenn die Strömungskanäle als Rohre, insbesondere als Rohres eines Rohrbündels ausgebildet sind.It is advantageous if the flow channels are formed as tubes, in particular as a tube of a tube bundle.

Vorteilhaft ist, wenn die Strömungskanäle als Scheiben, insbesondere als Scheiben eines Scheibenpaketes ausgebildet sind.It is advantageous if the flow channels are formed as disks, in particular as disks of a disk package.

Vorteilhaft ist, wenn eine Verwendung des Wärmeübertragers als Ladeluftkühler zur Kühlung von Verbrennungsluft für eine Brennkraftmaschine eines Kraftfahrzeuges vorgesehen ist.It is advantageous if a use of the heat exchanger is provided as a charge air cooler for cooling combustion air for an internal combustion engine of a motor vehicle.

Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher erläutert. Es zeigen

Fig. 1
ein Temperaturprofil im Eintrittsbereich eines Strömungskanals,
Fig. 2
die Abhängigkeit der Wärmeübergangszahl α von der Länge des Strömungskanals,
Fig. 3a - 3e
die erfindungsgemäße Anordnung von Strukturelementen mit variabler Dichte in einem Strömungskanal,
Fig. 4
ein zweites Ausführungsbeispiel der Erfindung mit Innenrippen unterschiedlicher Rippendichte,
Fig. 5
ein drittes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variabler Längsteilung,
Fig. 6
ein viertes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variablem Anstellwinkel,
Fig. 7
ein fünftes Ausführungsbeispiel der Erfindung für eine Stegrippe mit variabler Querteilung und
Fig. 8
ein sechstes Ausführungsbeispiel der Erfindung für eine gewellte Innenrippe mit variabler Wellenlänge (Teilung).
Embodiments of the invention are illustrated in the drawings and will be explained in more detail below. Show it
Fig. 1
a temperature profile in the inlet region of a flow channel,
Fig. 2
the dependence of the heat transfer coefficient α on the length of the flow channel,
Fig. 3a - 3e
the arrangement according to the invention of structural elements with variable density in a flow channel,
Fig. 4
A second embodiment of the invention with inner ribs of different fin density,
Fig. 5
A third embodiment of the invention for a rib with variable longitudinal pitch,
Fig. 6
A fourth exemplary embodiment of the invention for a rib with a variable angle of attack,
Fig. 7
a fifth embodiment of the invention for a rib with variable transverse distribution and
Fig. 8
a sixth embodiment of the invention for a wavy inner rib with variable wavelength (pitch).

Fig. 1 zeigt einen als Rohr 1 ausgebildeten Strömungskanal 2, welcher einen Eintrittsquerschnitt 3 aufweist und von einem Strömungsmedium entsprechend dem Pfeil P durchströmt wird. Vorzugsweise wird das Rohr 1 von einem heißen Abgas eines nicht dargestellten Verbrennungsmotors durchströmt und ist Teil eines nicht dargestellten Abgaswärmeübertragers. Das Rohr 1 weist eine glatte Innenseite bzw. Innenwandung 1a und eine Außenseite bzw. Außenwandung 1 b auf, welche von einem vorzugsweise flüssigen Kühlmittel gekühlt wird. Das heiße Abgas gibt also seine Wärme über das Rohr 1 an das Kühlmittel ab. Bei der Durchströmung des Strömungskanals 2 bildet sich an der Innenwand 1a eine Temperaturgrenzschicht 4 aus, welche vom Eintrittsquerschnitt 3 in Strömungsrichtung des Pfeiles P in ihrer Dicke d zunimmt. Der Temperaturverlauf in dieser Grenzschicht 4 ist durch ein Temperaturprofil 5 dargestellt. Die Temperatur in der Temperaturgrenzschicht steigt also von einer Temperatur Ta an der Innenwand 1a bis zu einem Temperaturniveau Ti im Inneren des Strömungskanals (Kernströmung), welche der Abgaseintrittstemperatur entspricht. Durch die wachsende Temperaturgrenzschicht 4 verschlechtern sich die Wärmeübergangsverhältnisse im Eintrittsbereich des Rohres 1. Fig. 1 shows a pipe 1 designed as a flow channel 2, which has an inlet cross-section 3 and is flowed through by a flow medium according to the arrow P. Preferably, the tube 1 is traversed by a hot exhaust gas of an internal combustion engine, not shown, and is part of a Abgaswärmeübertragers not shown. The tube 1 has a smooth inner side or inner wall 1a and an outer or outer wall 1b, which is cooled by a preferably liquid coolant. The hot exhaust gas gives its heat over the Pipe 1 to the coolant. During the flow through the flow channel 2, a temperature boundary layer 4 forms on the inner wall 1a, which increases in its thickness d from the inlet cross-section 3 in the flow direction of the arrow P. The temperature profile in this boundary layer 4 is represented by a temperature profile 5. The temperature in the temperature boundary layer thus rises from a temperature Ta on the inner wall 1a to a temperature level Ti in the interior of the flow channel (core flow), which corresponds to the exhaust gas inlet temperature. Due to the growing temperature boundary layer 4, the heat transfer conditions in the inlet region of the tube 1 deteriorate.

Fig. 2 zeigt ein Diagramm, bei welchem die Wärmeübergangszahl α als relative Größe aufgetragen ist über der Länge I eines glattwandigen Strömungskanals, d. h. vom Eintrittsquerschnitt (Bezugszahl 3 in Fig. 1) in Strömungsrichtung des Strömungsmediums. Die Länge I ist in Millimetern aufgetragen. Die Wärmeübergangszahl α ist im Eintrittsquerschnitt, d. h. bei I = 0 mit 1 (100 %) angesetzt. Mit zunehmender Länge, d. h. in Strömungsrichtung im Strömungskanal 2 (Fig. 1) sinkt die Wärmeübergangszahl α bis auf etwa 0,8 (80 %) des Wertes am Eintrittsquerschnitt ab. Dies ist in erster Linie auf die Ausbildung der Temperaturgrenzschicht 4 gemäß Fig. 1 zurückzuführen. Fig. 2 shows a diagram in which the heat transfer coefficient α is plotted as a relative size over the length I of a smooth-walled flow channel, ie from the inlet cross-section (reference numeral 3 in Fig. 1 ) in the flow direction of the flow medium. The length I is plotted in millimeters. The heat transfer coefficient α is set in the inlet cross-section, ie at 1 = 100 (100%). With increasing length, ie in the flow direction in the flow channel 2 (FIG. Fig. 1 ), the heat transfer coefficient α decreases to about 0.8 (80%) of the value at the inlet cross section. This is primarily due to the formation of the temperature boundary layer 4 according to Fig. 1 due.

Fig. 3a, 3b, 3c, 3d und 3e zeigen ein erstes Ausführungsbeispiel der Erfindung mit fünf verschiedenen Varianten, nämlich die Anordnung von Strukturelementen mit variabler Dichte. Fig. 3a zeigt in einer ersten Variante einen schematisch dargestellten Strömungskanal 6, vorzugsweise ein Abgasrohr eines nicht dargestellten Abgaswärmeübertragers, wobei das Abgasrohr 6 entsprechend dem Pfeil P durchströmt wird. Die Außenseite des Abgasrohres 6 wird - was nicht dargestellt, jedoch aus dem eingangs genannten Stand der Technik bekannt ist - vorzugsweise von einem flüssigen Kühlmittel umspült - möglich ist allerdings auch eine Luftkühlung. Das Abgasrohr 6 ist als Edelstahlrohr, bestehend aus zwei miteinander verschweißten Hälften, mit rechteckigem Querschnitt ausgebildet. Das Abgasrohr 6 weist einen Eintrittsbereich 6a auf, der über eine Länge L glattwandig ausgebildet ist. An den glattwandigen Bereich 6a schließt sich stromabwärts ein Bereich 6b an, in welchem V-förmig angeordnete, aus der Rohrwand geprägte Strukturelemente 7, so genannte Winglets, angeordnet sind. Die Winglet-Paare 7 sind im Abschnitt 6b mit gleichem Abstand und in gleicher Ausbildung angeordnet. Der Übergang vom glattwandigen Bereich 6a auf den mit Winglets 7 belegten Bereich 6b erfolgt somit in Form einer "Stufe". Wie eingangs erwähnt, wird in dem glattwandigen Bereich 6a trotz fehlender Strukturelemente ein hinreichend großer Wärmeübergang bzw. Wärmedurchgang erzielt, da die Temperaturdifferenz noch hinreichend groß und die Temperaturgrenzschicht relativ gering ist. An der Stelle, wo diese Bedingungen nicht mehr zutreffen, sind Strukturelemente 7 angeordnet, die für eine Verbesserung des Wärmeüberganges (Wärmeüberganszahl α) sorgen. Der glattwandige Bereich 6a - dies gilt auch für die nachfolgenden Varianten 3b, 3c, 3d, 3e - kann eine Länge von bis zu 100 mm aufweisen. Fig. 3a, 3b, 3c, 3d and 3e show a first embodiment of the invention with five different variants, namely the arrangement of structural elements with variable density. Fig. 3a shows in a first variant, a schematically illustrated flow channel 6, preferably an exhaust pipe of a Abgaswärmeübertragers not shown, wherein the exhaust pipe 6 is traversed according to the arrow P. The outside of the exhaust pipe 6 is - what is not shown, but from the above-mentioned prior art is known - preferably lapped by a liquid coolant - but is also possible air cooling. The exhaust pipe 6 is formed as a stainless steel tube, consisting of two halves welded together, with a rectangular cross-section. The exhaust pipe 6 has an inlet region 6a, which is smooth-walled over a length L. Downstream of the smooth-walled region 6a, a region 6b adjoins, in which V-shaped arranged structural elements embossed from the tube wall 7, so-called winglets, are arranged. The winglet pairs 7 are arranged in the section 6b at the same distance and in the same formation. The transition from the smooth-walled region 6a to the winglets 7 occupied area 6b thus takes place in the form of a "step". As mentioned above, despite the lack of structural elements, a sufficiently large heat transfer or heat transfer is achieved in the smooth-walled region 6a, since the temperature difference is still sufficiently large and the temperature boundary layer is relatively small. At the point where these conditions no longer apply, structural elements 7 are arranged, which provide for an improvement of the heat transfer (heat transfer coefficient α). The smooth-walled region 6a - this also applies to the following variants 3b, 3c, 3d, 3e - may have a length of up to 100 mm.

In einer zweiten Variante gemäß Fig. 3b ist ein Rechteckrohr 8 im Längsschnitt dargestellt, welches ebenfalls einen glattwandigen Eintrittsbereich 8a und eine Kanalhöhe H aufweist. Stromabwärts dieses glattwandigen Bereiches 8a sind Winglet-Paare 9 mit in Strömungsrichtung gleichen Abständen a angeordnet, jedoch mit unterschiedlichen Höhen h: die in den Strömungsquerschnitt des Abgasrohres 8 hineinragenden Höhen h der Winglet-Paare 9 wachsen kontinuierlich in Strömungsrichtung P. Damit wird der Wärmeübergang in diesem Rohrabschnitt sukzessive gesteigert. Gleichzeitig wächst der Druckabfall. Der Übergang vom glatten zum nicht glatten Bereich ist somit kontinuierlich. In einer bevorzugten Ausführungsform ist für das Verhältnis h/H ein Bereich von 0,05 ≤ h/H ≤ 0,4 gewählt.In a second variant according to Fig. 3b a rectangular tube 8 is shown in longitudinal section, which also has a smooth-walled inlet region 8a and a channel height H. Downstream of this smooth-walled region 8a winglet pairs 9 are arranged with equal distances a in the flow direction, but with different heights h: projecting into the flow cross-section of the exhaust pipe 8 heights h of the winglet pairs 9 grow continuously in the flow direction P. Thus, the heat transfer in This pipe section has been successively increased. At the same time, the pressure drop increases. The transition from smooth to not smooth is thus continuous. In a preferred embodiment, a range of 0.05 ≦ h / H ≦ 0.4 is selected for the ratio h / H.

In einer dritten Variante gemäß Fig. 3c sind in einem Rohr 10 Winglet-Paare 11 mit in Strömungsrichtung P abnehmenden Abständen a1, a2, a3 angeordnet. Damit wird der Wärmeübergang, ausgehend von dem glatten Eintrittsbereich 10a, sukzessive erhöht, da die Dichte der Strukturelemente bzw. Winglets 11 größer wird. Aus Gründen einer vereinfachten Fertigung können die Abstände a1, a2, a3 jeweils ein Vielfaches des minimalen Abstandes ax betragen. Letzterer liegt vorteilhaft in einem Bereich von 5 < ax < 50 mm und bevorzugt in einem Bereich von 8 < ax < 30 mm.In a third variant according to Fig. 3c are in a tube 10 winglet pairs 11 with decreasing in the flow direction P distances a 1 , a 2 , a 3 arranged. Thus, the heat transfer, starting from the smooth inlet region 10a, successively increased, since the density of the structural elements or winglets 11 is greater. For reasons of simplified production, the distances a 1 , a 2 , a 3 can each be a multiple of the minimum distance a x . The latter is advantageously in a range of 5 <a x <50 mm and preferably in a range of 8 <a x <30 mm.

Fig. 3d zeigt eine vierte Variante für die Anordnung von Strukturelementen mit unterschiedlicher Dichte in einem Abgasrohr 12, welches entsprechend dem Pfeil P von Abgas durchströmbar ist. Der glattwandige Eintrittsbereich 12a ist vergleichsweise zu den vorherigen Ausführungsbeispielen kürzer. Daran schließen sich Winglet-Paare 13 mit in Strömungsrichtung gleichen Abständen, jedoch mit unterschiedlichem Winkel β (Winkel gegenüber Strömungsrichtung P) an. Die Winglets des stromaufwärts gelegenen Winglet-Paares 12 sind fast parallel ausgerichtet (β ≈ 0), während der von den Winglets gebildete Winkel β des stromabwärts gelegenen Winglet-Paares 13 ca. 45 Grad beträgt. Die dazwischen liegenden Winglet-Paare 13 weisen entsprechende Zwischenwerte auf, so dass die Wärmeübergangszahl für die Innenwand des Abgasrohres 13 infolge der zunehmenden Spreizung der Winglets in Strömungsrichtung wächst, und zwar kontinuierlich bzw. in kleinen Schritten. Der Winkel β liegt vorteilhaft in einem Bereich von 20° < β < 50°. Fig. 3d shows a fourth variant for the arrangement of structural elements with different density in an exhaust pipe 12, which is permeable according to the arrow P of exhaust gas. The smooth-walled entry region 12a is shorter in comparison to the previous embodiments. This is followed by winglet pairs 13 with equal distances in the flow direction, but with different angles β (angle with respect to flow direction P). The winglets of the upstream winglet pair 12 are aligned almost parallel (β≈0), while the angle β formed by the winglets of the downstream winglet pair 13 is about 45 degrees. The intervening winglet pairs 13 have corresponding intermediate values, so that the heat transfer coefficient for the inner wall of the exhaust pipe 13 increases due to the increasing spreading of the winglets in the flow direction, continuously or in small steps. The angle β is advantageously in a range of 20 ° <β <50 °.

Fig. 3e zeigt eine fünfte Variante mit einem Abgasrohr 30, einem glattwandigen Bereich 30a und daran anschließenden Reihen von parallel zueinander angeordneten Winglets 31, welche jeweils mit der Strömungsrichtung P einen Winkel β bilden. Die Reihen weisen in Strömungsrichtung P abnehmende Abstände a1, a2, a3 auf, wobei der Winkel β der Winglets 31 von Reihe zu Reihe das Vorzeichen wechselt. Fig. 3e shows a fifth variant with an exhaust pipe 30, a smooth-walled portion 30a and adjoining rows of parallel winglets 31, which each form an angle β with the flow direction P. The rows have in the flow direction P decreasing distances a 1 , a 2 , a 3 , wherein the angle β of the winglets 31 from row to row changes the sign.

Bei allen Rohren ist vorzugsweise am Rohranfang und am Rohrende ein glatter Bereich ohne Strukturelemente belassen, damit bei einer Ablängung der Rohre eine saubere Trennstelle herstellbar ist.For all tubes, a smooth area without structural elements is preferably left at the beginning of the tube and at the tube end so that a clean separation point can be produced when the tubes are cut to length.

Fig. 4 zeigt ein weiteres Ausführungsbeispiel der Erfindung für einen Strömungskanal 14, welcher entsprechend dem Pfeil P von einem Strömungsmedium angeströmt wird - hierbei kann es sich beispielsweise um ein flüssiges Kühlmittel oder auch um Ladeluft handeln. Die Außenseite des Strömungskanals 14 kann durch ein gasförmiges oder flüssiges Kühlmedium gekühlt werden. Der Strömungskanal 14 weist einen glattwandigen Eintrittsbereich 14a auf, an welchen sich in Strömungsrichtung P ein erster mit Innenrippen 15 versehener Bereich 14b und daran ein weiterer berippter Bereich 14c anschließt. Die Bereiche 14b und 14c weisen eine unterschiedliche Rippendichte auf - im dargestellten Ausführungsbeispiel ist die Rippendichte im stromabwärts gelegenen Bereich 14c doppelt so groß wie im stromaufwärts gelegenen Bereich 14b, da zwischen den durchgehenden Rippen 15 weitere Rippen 16 angeordnet sind. Damit wird ebenfalls eine Erhöhung des Wärmeüberganges erreicht, und zwar in Stufen von 14a über 14b nach 14c. Fig. 4 shows a further embodiment of the invention for a flow channel 14, which is according to the arrow P flows of a flow medium - this may be, for example, a liquid coolant or charge air. The outside of the flow channel 14 can be cooled by a gaseous or liquid cooling medium. The flow channel 14 has a smooth-walled inlet region 14a, at which, in the flow direction P, a first region 14b provided with internal ribs 15 and, at the same time, another ribbed region 14c connects. The regions 14b and 14c have a different fin density - in the illustrated embodiment, the rib density in the downstream region 14c is twice as large as in the upstream region 14b, since between the continuous ribs 15 further ribs 16 are arranged. Thus, an increase of the heat transfer is also achieved, in stages from 14a to 14b to 14c.

Fig. 5 zeigt als drittes Ausführungsbeispiel der Erfindung einen Gasströmungskanal, in welchem eine Stegrippe 17 mit variabler Längsteilung t1, t2, t3, t4, t5 angeordnet ist. In der zeichnerischen Darstellung ist t1 > t2 > t3 > t4 > t5, d. h. der Wärmeübergang nimmt von t1 nach t5, d. h. in Strömungsrichtung P zu. Stegrippen werden insbesondere bei Ladeluftkühlern eingesetzt und sind vorzugsweise mit den Rohren verlötet. Bei einer vorteilhaften Ausführung weist das Verhältnis der kleinsten Teilung tx zur Kanalhöhe H einen Grenzwert von 0,3 < tx/H auf. Fig. 5 shows as a third embodiment of the invention, a gas flow channel in which a Stegrippe 17 with variable longitudinal pitch t 1 , t 2 , t 3 , t 4 , t 5 is arranged. In the drawing, t 1 > t 2 > t 3 > t 4 > t 5 , ie the heat transfer increases from t 1 to t 5 , ie in the flow direction P. Web ribs are used in particular for intercoolers and are preferably soldered to the pipes. In an advantageous embodiment, the ratio of the smallest pitch t x to the channel height H has a limit of 0.3 <t x / H.

Fig. 6 zeigt als viertes Ausführungsbeispiel der Erfindung einen Gasströmungskanal, in welchem eine Stegrippe 18 mit variablen Anstellwinkeln α1, a2, α3... αx angeordnet ist. Vorteilhafte Anstellwinkel liegen im Bereich von 0 < α < 30°. Fig. 6 shows a fourth embodiment of the invention, a gas flow channel in which a rib ridge 18 with variable angles of attack α 1 , a 2 , α 3 ... α x is arranged. Advantageous angles of attack are in the range of 0 <α <30 °.

Fig. 7 zeigt als fünftes Ausführungsbeispiel der Erfindung einen Gasströmungskanal, in welchem eine Stegrippe 19 mit variabler Querteilung q1, q2, q3... q6 angeordnet ist, wobei der Wärmeübergang mit kleiner werdender Querteilung von q1 in Richtung q6, d. h. in Strömungsrichtung P steigt. Vorteilhafte Bereiche für die Querteilung q sind 8 > q > 1 mm und bevorzugt 5 > q > 2 mm. Fig. 7 shows a fifth embodiment of the invention, a gas flow channel in which a rib ridge 19 with variable transverse pitch q 1 , q 2 , q 3 ... q 6 is arranged, wherein the heat transfer with decreasing transverse division of q 1 in the direction q 6 , ie Flow direction P increases. Advantageous areas for the transverse division q are 8>q> 1 mm and preferably 5>q> 2 mm.

Fig. 8 zeigt in einem Gasströmungskanal eine in Strömungsrichtung P gewellte (tiefengewellte) Innenrippe 20 mit variabler Teilung t1, t2, t3, t4 - der Wärmeübergang steigt hier in Richtung kleiner werdender Teilung t. Vorteilhafte Bereiche für die Teilung t sind 10 < t < 50 mm. Fig. 8 shows in a gas flow channel a corrugated in the flow direction P (deep waved) inner fin 20 with variable pitch t 1 , t 2 , t 3 , t 4 - the heat transfer increases here in the direction of decreasing pitch t. Advantageous ranges for the pitch t are 10 <t <50 mm.

In Abwandlung der dargestellten Ausführungsbeispiele kann eine Variation des Wärmeüberganges im Strömungskanal auch durch weitere aus demIn a modification of the illustrated embodiments, a variation of the heat transfer in the flow channel also by further from the

Stand der Technik bekannte Mittel erreicht werden, beispielsweise durch Anordnung von Kiemen oder Fenstern in den Rippen. Darüber hinaus können andere Formen von Strukturelementen zur Wirbelerzeugung bzw. zur Erhöhung des Wärmeüberganges gewählt werden. Die Anwendung der Erfindung ist nicht auf Abgaswärmeübertrager beschränkt, sondern erstreckt sich auch auf Ladeluftkühler, deren Rohre von heißer Ladeluft durchströmt werden, sowie generell auf Gasströmungskanäle, welche als Rohre eines Rohrbündelwärmeübertragers oder als Scheiben eines Scheibenwärmeübertragers ausgebildet sein können.Prior art known means can be achieved, for example by placing gills or windows in the ribs. In addition, other forms of structural elements for vortex generation or to increase the heat transfer can be selected. The application of the invention is not limited to exhaust gas heat exchangers, but also extends to intercoolers whose tubes are flowed through by hot charge air, and generally to gas flow channels, which may be formed as tubes of a tube heat exchanger or as slices of Scheibenwärmeübertragers.

Claims (15)

Wärmeübertrager mit mindestens einem von einem Strömungsmedium von einem Eintritts- bis zu einem Austrittsquerschnitt durchströmbaren, eine Innen- und eine Außenseite aufweisenden Strömungskanal, welcher auf der Innenseite Strukturelemente zur Erhöhung des Wärmeüberganges aufweist, dadurch gekennzeichnet, dass die Strukturelemente (7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 31) in Strömungsrichtung (P) variabel angeordnet und/oder ausgebildet sind, derart, dass der Strömungskanal (6, 8, 10, 12, 14, 30) auf der Innenseite einen variablen, insbesondere einen in Strömungsrichtung (P) zunehmenden Wärmeübergang aufweist.Heat exchanger with at least one of a flow medium from an inlet to an outlet cross-section through, an inner and an outer having flow channel, which on the inside of structural elements to increase the heat transfer, characterized in that the structural elements (7, 9, 11, 13, 15, 16, 17, 18, 19, 20, 31) in the flow direction (P) are variably arranged and / or formed, such that the flow channel (6, 8, 10, 12, 14, 30) on the inside a variable, in particular in the flow direction (P) increasing heat transfer. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Dichte der Strukturelemente (11; 15, 16; 19; 31) variabel, insbesondere in Strömungsrichtung (P) zunehmend ist.Heat exchanger according to claim 1, characterized in that the density of the structural elements (11; 15, 16; 19; 31) is variable, in particular in the flow direction (P) increasing. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strukturelemente (9, 11, 13, 15, 16, 17, 18, 19, 20, 31) einen Strömungswiderstand gegenüber dem Strömungsmedium aufweisen und derart angeordnet und/oder ausgebildet sind, dass der Druckabfall im Strömungskanal (8, 10, 12, 14) variabel, insbesondere im Eintrittsbereich (6a, 8a, 10a, 12a, 14a, 30a) minimal ist.Heat exchanger according to claim 1 or 2, characterized in that the structural elements (9, 11, 13, 15, 16, 17, 18, 19, 20, 31) have a flow resistance to the flow medium and are arranged and / or formed such that the pressure drop in the flow channel (8, 10, 12, 14) variable, in particular in the inlet region (6a, 8a, 10a, 12a, 14a, 30a) is minimal. Wärmeübertrager nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Strömungskanal (6, 8, 10, 12, 14, 30), ausgehend vom Eintrittsquerschnitt, einen glattwandigen Abschnitt (6a, 8a, 10a, 12a, 14a, 30a) ohne Strukturelemente aufweist.Heat exchanger according to claim 1, 2 or 3, characterized in that the flow channel (6, 8, 10, 12, 14, 30), starting from the inlet cross section, a smooth-walled portion (6a, 8a, 10a, 12a, 14a, 30a) without Has structural elements. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass der glattwandige Abschnitt (6a, 8a, 10a, 12a, 14a, 30a) in Strömungsrichtung (P) eine Länge L aufweist, wobei L ≤ 100 mm ist.Heat exchanger according to claim 4, characterized in that the smooth-walled portion (6a, 8a, 10a, 12a, 14a, 30a) in the flow direction (P) has a length L, wherein L ≤ 100 mm. Wärmeübertrager nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Strukturelemente als Wirbelerzeuger, so genannte Winglets (7, 9, 11, 13, 31) ausgebildet sind.Heat exchanger according to one of claims 1 to 5, characterized in that the structural elements as vortex generators, so-called winglets (7, 9, 11, 13, 31) are formed. Wärmeübertrager nach Anspruch 6, dadurch gekennzeichnet, dass die Winglets (11, 31) in Reihen angeordnet sind und mit der Strömungsrichtung (P) einen Winkel β bilden, wobei der Winkel β für benachbarte Winglets gleiches oder entgegengesetztes Vorzeichen aufweist.Heat exchanger according to claim 6, characterized in that the winglets (11, 31) are arranged in rows and with the flow direction (P) form an angle β, wherein the angle β for adjacent winglets has the same or opposite sign. Wärmeübertrager nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Strukturelemente als Innenberippung, Innenrippen (15, 16, 20), Stegrippen (17, 18, 19) und/oder Turbulenzeinlagen ausgebildet und insbesondere in die Strömungskanäle eingelötet sind.Heat exchanger according to one of claims 1 to 5, characterized in that the structural elements as Innenberippung, inner ribs (15, 16, 20), rib ribs (17, 18, 19) and / or turbulence inserts are formed and in particular soldered into the flow channels. Wärmeübertrager nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Winglets (13, 31) mit der Strömungsrichtung (P) einen Winkel β bilden, welcher variabel, insbesondere in Strömungsrichtung (P) zunehmend ist.Heat exchanger according to claim 6 or 7, characterized in that the winglets (13, 31) with the flow direction (P) form an angle β, which is variable, in particular in the flow direction (P) is increasing. Wärmeübertrager nach Anspruch 9, dadurch gekennzeichnet, dass der Winkel β einen Bereich von 20° < β < 50° aufweist.Heat exchanger according to claim 9, characterized in that the angle β has a range of 20 ° <β <50 °. Wärmeübertrager nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Winglets (9) eine in die Strömung hineinragende Höhe (h) aufweisen, welche variabel, insbesondere in Strömungsrichtung (P) zunehmend ist.Heat exchanger according to claim 6 or 7, characterized in that the winglets (9) have a projecting into the flow height (h), which is variable, in particular in the flow direction (P) is increasing. Wärmeübertrager nach Anspruch 11, dadurch gekennzeichnet, dass der Strömungskanal (8) eine Höhe H und das Verhältnis von h/H einen Bereich von 0,05 ≤ h/H ≤ 0,4 aufweist.Heat exchanger according to claim 11, characterized in that the flow channel (8) has a height H and the ratio of h / H has a range of 0.05 ≤ h / H ≤ 0.4. Wärmeübertrager nach Anspruch 5, 7 oder 8, dadurch gekennzeichnet, dass Winglets (11, 31) in Reihen quer zur Strömungsrichtung (P) angeordnet sind und dass die Reihen einen in Strömungsrichtung variablen, insbesondere abnehmenden Abstand (α1, a2, a3 ... ax) aufweisen.Heat exchanger according to claim 5, 7 or 8, characterized in that winglets (11, 31) are arranged in rows transversely to the flow direction (P) and that the rows have a variable in flow direction, in particular decreasing distance (α 1 , a 2 , a 3 ... a x ). Wärmeübertrager nach Anspruch 13, dadurch gekennzeichnet, dass der kleinste Abstand ax einen Bereich von 5 < ax < 50 mm, insbesondere einen Bereich von 8 < ax < 30 mm aufweist.Heat exchanger according to claim 13, characterized in that the smallest distance a x has a range of 5 <a x <50 mm, in particular a range of 8 <a x <30 mm. Wärmeübertrager nach Anspruch 13, dadurch gekennzeichnet, dass der Abstand (a1, a2, a3...) der Reihen ein (ganzzahliges) Vielfaches des kleinsten Abstandes ax ist.Heat exchanger according to claim 13, characterized in that the distance (a 1 , a 2 , a 3 ...) of the rows is an (integer) multiple of the smallest distance a x .
EP15202230.7A 2005-06-24 2006-06-23 Heat exchanger Active EP3048407B9 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005029321A DE102005029321A1 (en) 2005-06-24 2005-06-24 Heat exchanger for exhaust gas cooling has structural elements arranged so that duct has internal variable heat transfer increasing in direction of flow
EP06762163.1A EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger
PCT/EP2006/006071 WO2006136437A1 (en) 2005-06-24 2006-06-23 Heat exchanger

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP06762163.1A Division EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger
EP06762163.1A Division-Into EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger

Publications (3)

Publication Number Publication Date
EP3048407A1 true EP3048407A1 (en) 2016-07-27
EP3048407B1 EP3048407B1 (en) 2019-08-07
EP3048407B9 EP3048407B9 (en) 2019-11-27

Family

ID=37114549

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06762163.1A Not-in-force EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger
EP15202230.7A Active EP3048407B9 (en) 2005-06-24 2006-06-23 Heat exchanger

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06762163.1A Not-in-force EP1899670B1 (en) 2005-06-24 2006-06-23 Heat exchanger

Country Status (5)

Country Link
US (1) US7942137B2 (en)
EP (2) EP1899670B1 (en)
JP (1) JP5112304B2 (en)
DE (1) DE102005029321A1 (en)
WO (1) WO2006136437A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124277A1 (en) * 2019-09-10 2021-03-11 Carl Freudenberg Kg Jacket cooling system

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007054913A1 (en) * 2006-11-15 2008-08-28 Behr Gmbh & Co. Kg Heat exchanger
US20080271877A1 (en) * 2007-02-21 2008-11-06 Gerald Glass Apparatus for multi-tube heat exchanger with turbulence promoters
JP5022075B2 (en) * 2007-03-27 2012-09-12 東京ラヂエーター製造株式会社 Internal structure of oil cooler tube for construction machinery
DE102007041338B3 (en) * 2007-08-31 2008-12-11 Pierburg Gmbh Heat transfer unit for an internal combustion engine
WO2009086894A1 (en) * 2008-01-10 2009-07-16 Behr Gmbh & Co. Kg Extruded tube for a heat exchanger
DE102008036222B3 (en) * 2008-08-02 2009-08-06 Pierburg Gmbh Heat transfer unit for an internal combustion engine
FR2938637B1 (en) * 2008-11-18 2013-01-04 Cie Mediterraneenne Des Cafes CIRCULATING CONDUIT OF A FLUID
JP5254082B2 (en) * 2009-03-05 2013-08-07 株式会社ユタカ技研 Heat exchange tube
JP2010249373A (en) * 2009-04-14 2010-11-04 Panasonic Corp Heat exchanger and heat pump water heater using the same
DE102009026546B4 (en) * 2009-05-28 2012-05-16 Schott Solar Ag solar panel
IT1399246B1 (en) * 2009-11-03 2013-04-11 Advanced Res Consulting S R L TUBULAR HEAT EXCHANGER, IN PARTICULAR RECEIVER TUBE FOR A SOLAR CONCENTRATION SYSTEM.
JP2011214786A (en) * 2010-03-31 2011-10-27 Yutaka Giken Co Ltd Heat exchanger
WO2012150969A1 (en) * 2011-05-02 2012-11-08 Research Foundation Of The City University Of New York Thermal energy storage for combined cycle power plants
US20120312515A1 (en) * 2011-06-10 2012-12-13 Waukesha Electric Systems, Inc. Apparatus for heat dissipation of transforming radiators
JP5915187B2 (en) * 2012-01-10 2016-05-11 マツダ株式会社 Heat exchanger
DE102012208742A1 (en) * 2012-03-28 2013-10-02 Mahle International Gmbh exhaust gas cooler
JP3197685U (en) * 2012-05-29 2015-06-04 ハンジョウ・シェンシ・エナジー・コンサベーション・テクノロジー・カンパニー・リミテッドHangzhou Shenshi Energy Conservation Technology Co., Ltd. Microchannel structure of heat exchanger and integrated microchannel heat exchanger
EP2857786B1 (en) * 2012-05-30 2020-12-23 Kyocera Corporation Flow path member, and heat exchanger and semiconductor manufacturing apparatus using same
DE102012013755B8 (en) * 2012-07-12 2022-01-13 Al-Ko Therm Gmbh Heat exchanger plate assembly, heat exchanger and method of manufacturing a heat exchanger
FR2993354B1 (en) * 2012-07-13 2018-07-13 Delphi Automotive Systems Lux COOLING AIR COOLER
SG11201506400PA (en) 2013-03-14 2015-09-29 Duramax Marine Llc Turbulence enhancer for keel cooler
JP6203080B2 (en) * 2013-04-23 2017-09-27 カルソニックカンセイ株式会社 Heat exchanger
US20140332188A1 (en) * 2013-05-09 2014-11-13 Ford Global Technologies, Llc Heat exchanger
DE102013020469A1 (en) * 2013-12-06 2015-06-11 Webasto SE Heat exchanger and method for producing a heat exchanger
KR101569829B1 (en) * 2014-06-13 2015-11-19 주식회사 코렌스 Heat exchanger having wavy fin plate for reducing differential pressure of egr gas
JP6459027B2 (en) * 2014-07-15 2019-01-30 国立大学法人 東京大学 Heat exchanger
DE102014010891A1 (en) * 2014-07-23 2016-01-28 Webasto SE Heat exchanger and modular system for the production of a heat exchanger
JP6464598B2 (en) * 2014-07-31 2019-02-06 いすゞ自動車株式会社 Internal combustion engine cooling system
US9528771B2 (en) 2014-10-27 2016-12-27 Hussmann Corporation Heat exchanger with non-linear coil
JP6256295B2 (en) * 2014-10-28 2018-01-10 株式会社デンソー Heat exchanger
US20160123683A1 (en) * 2014-10-30 2016-05-05 Ford Global Technologies, Llc Inlet air turbulent grid mixer and dimpled surface resonant charge air cooler core
CN104602469B (en) * 2015-01-15 2017-09-26 华为技术有限公司 Rack
JP6435209B2 (en) * 2015-02-18 2018-12-05 ダイキョーニシカワ株式会社 Heating element cooling structure
US10222106B2 (en) * 2015-03-31 2019-03-05 The Boeing Company Condenser apparatus and method
CN107921400B (en) 2015-06-10 2020-10-27 康宁股份有限公司 Continuous flow reactor with adjustable heat transfer capability
CN105115338B (en) * 2015-08-31 2017-08-25 东南大学 A kind of phase transition heat accumulation unit
ITUB20155713A1 (en) * 2015-11-18 2017-05-18 Robur Spa IMPROVED FLAME TUBE.
CN108474629B (en) * 2015-12-28 2021-11-02 开利公司 Folded conduits for heat exchanger applications
TWM528417U (en) * 2016-02-19 2016-09-11 Enzotechnology Corp Heat radiator that achieves low wind pressure requirement, low noise, and high performance with heat sink arrangement
CN107105595A (en) * 2016-02-19 2017-08-29 恩佐科技股份有限公司 Low blast demand, low noise, dynamical radiator are reached using radiator arrangement
US20170336153A1 (en) * 2016-05-12 2017-11-23 Price Industries Limited Gas turbulator for an indirect gas-fired air handling unit
EP3518638B1 (en) 2016-09-23 2022-11-09 Sumitomo Precision Products Co., Ltd. Cooling device
DE102016225508A1 (en) 2016-12-19 2018-06-21 Bayerische Motoren Werke Aktiengesellschaft Heat exchanger with several heat transfer areas
CN106785828A (en) * 2017-02-28 2017-05-31 武汉大学 A kind of step for optical fiber laser cools down radiating tube
US20180328285A1 (en) * 2017-05-11 2018-11-15 Unison Industries, Llc Heat exchanger
CN107218825A (en) * 2017-05-25 2017-09-29 合肥皖化电泵有限公司 A kind of BCP pumps with efficient heat exchanger
GB2565143B (en) * 2017-08-04 2021-08-04 Hieta Tech Limited Heat exchanger
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler
CN109990638B (en) * 2017-12-29 2021-08-24 杭州三花微通道换热器有限公司 Flat tube, heat exchanger and manufacturing method of flat tube
JP2019168171A (en) * 2018-03-23 2019-10-03 サンデンホールディングス株式会社 Heat exchanger
DE102018124574B4 (en) * 2018-10-05 2022-09-29 Hanon Systems finned heat exchanger
DE102019204640A1 (en) * 2019-04-02 2020-10-08 Mahle International Gmbh Heat exchanger
US11073344B2 (en) * 2019-04-24 2021-07-27 Rheem Manufacturing Company Heat exchanger tubes
EP3836205A1 (en) * 2019-12-13 2021-06-16 Valeo Siemens eAutomotive Germany GmbH Cooling device for semiconductor switching elements, power inverter device, arrangement and manufacturing method
DE102020004359A1 (en) 2020-07-20 2022-01-20 Daimler Ag heat transfer body
FR3133437A1 (en) * 2022-03-08 2023-09-15 Valeo Systemes Thermiques Thermal regulation device, in particular cooling for a motor vehicle
FR3139891A1 (en) * 2022-09-19 2024-03-22 Valeo Systemes Thermiques Heat exchanger for a motor vehicle, with means of disturbing the fluid in the flow channels

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1095966A (en) * 1953-02-14 1955-06-08 Tubular duct for heat exchangers
DE1931148A1 (en) * 1969-06-19 1971-01-07 Otte & Co Kg Laurenz Conical flue gas duct
US4314587A (en) * 1979-09-10 1982-02-09 Combustion Engineering, Inc. Rib design for boiler tubes
JPS60185094A (en) * 1984-03-02 1985-09-20 Satoru Fujii Heat transfer pipe of uniform heat flow type
US4945981A (en) * 1990-01-26 1990-08-07 General Motors Corporation Oil cooler
EP0677715A1 (en) 1994-04-14 1995-10-18 Behr GmbH & Co. Heat exchanger for cooling of the exhaust gas from an automotive engine
DE19511665A1 (en) * 1995-03-30 1996-10-02 Abb Management Ag Method of air cooling IC piston engines
EP0767000A1 (en) * 1993-07-05 1997-04-09 Packinox Sa Process and apparatus for controlling reaction temperatures
DE19540683A1 (en) 1995-11-01 1997-05-07 Behr Gmbh & Co Heat exchanger for cooling exhaust gas
US5655599A (en) * 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
DE19654367A1 (en) 1996-12-24 1998-06-25 Behr Gmbh & Co Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet
DE19654368A1 (en) 1996-12-24 1998-06-25 Behr Gmbh & Co Heat exchangers, in particular exhaust gas heat exchangers
US5901641A (en) * 1998-11-02 1999-05-11 Afc Enterprises, Inc. Baffle for deep fryer heat exchanger
EP1061319A1 (en) 1999-06-18 2000-12-20 Valeo Engine Cooling AB Fluid conveying tube and vehicle cooler provided therewith
DE10127084A1 (en) 2000-06-17 2002-03-28 Behr Gmbh & Co Heat exchanger for use in engine cooling system of motor vehicle, has rows of indentations formed on each flat face of each flat tube and used as vortex generators
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1066213B (en) * 1956-11-21 1959-10-01
FR1252033A (en) 1959-04-28 1961-01-27 Rough Surface Heat Exchanger Tubes
NL263727A (en) * 1960-04-18
JPS49123657U (en) * 1973-02-16 1974-10-23
US4353350A (en) * 1981-03-11 1982-10-12 Helmut Albrecht Fireplace heat exchanger
JPS58158247U (en) * 1982-04-15 1983-10-21 松下電器産業株式会社 Heat exchanger
US5600052A (en) * 1994-05-02 1997-02-04 Uop Process and apparatus for controlling reaction temperatures
EP0828983A1 (en) * 1996-03-30 1998-03-18 Imi Marston Limited Plate-type heat exchanger with distribution zone
DE19654366B4 (en) * 1996-12-24 2005-10-20 Behr Gmbh & Co Kg Flow channel, in particular for an exhaust gas heat exchanger
DE19654363B4 (en) * 1996-12-24 2007-09-27 Behr Gmbh & Co. Kg Exhaust gas heat exchanger for an internal combustion engine

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1095966A (en) * 1953-02-14 1955-06-08 Tubular duct for heat exchangers
DE1931148A1 (en) * 1969-06-19 1971-01-07 Otte & Co Kg Laurenz Conical flue gas duct
US4314587A (en) * 1979-09-10 1982-02-09 Combustion Engineering, Inc. Rib design for boiler tubes
JPS60185094A (en) * 1984-03-02 1985-09-20 Satoru Fujii Heat transfer pipe of uniform heat flow type
US4945981A (en) * 1990-01-26 1990-08-07 General Motors Corporation Oil cooler
EP0767000A1 (en) * 1993-07-05 1997-04-09 Packinox Sa Process and apparatus for controlling reaction temperatures
EP0677715A1 (en) 1994-04-14 1995-10-18 Behr GmbH & Co. Heat exchanger for cooling of the exhaust gas from an automotive engine
DE19511665A1 (en) * 1995-03-30 1996-10-02 Abb Management Ag Method of air cooling IC piston engines
US5655599A (en) * 1995-06-21 1997-08-12 Gas Research Institute Radiant tubes having internal fins
DE19540683A1 (en) 1995-11-01 1997-05-07 Behr Gmbh & Co Heat exchanger for cooling exhaust gas
DE19654367A1 (en) 1996-12-24 1998-06-25 Behr Gmbh & Co Method for attaching tabs and / or protrusions to a sheet and sheet with tabs and / or devices and rectangular tube made of sheet
DE19654368A1 (en) 1996-12-24 1998-06-25 Behr Gmbh & Co Heat exchangers, in particular exhaust gas heat exchangers
US5901641A (en) * 1998-11-02 1999-05-11 Afc Enterprises, Inc. Baffle for deep fryer heat exchanger
EP1061319A1 (en) 1999-06-18 2000-12-20 Valeo Engine Cooling AB Fluid conveying tube and vehicle cooler provided therewith
US6484795B1 (en) * 1999-09-10 2002-11-26 Martin R. Kasprzyk Insert for a radiant tube
DE10127084A1 (en) 2000-06-17 2002-03-28 Behr Gmbh & Co Heat exchanger for use in engine cooling system of motor vehicle, has rows of indentations formed on each flat face of each flat tube and used as vortex generators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124277A1 (en) * 2019-09-10 2021-03-11 Carl Freudenberg Kg Jacket cooling system

Also Published As

Publication number Publication date
US20100139631A1 (en) 2010-06-10
JP5112304B2 (en) 2013-01-09
EP1899670A1 (en) 2008-03-19
JP2008544207A (en) 2008-12-04
EP3048407B9 (en) 2019-11-27
US7942137B2 (en) 2011-05-17
DE102005029321A1 (en) 2006-12-28
WO2006136437A1 (en) 2006-12-28
EP1899670B1 (en) 2016-08-10
EP3048407B1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3048407B1 (en) Heat exchanger
EP1837499B1 (en) Device for cooling an exhaust gas stream
EP1178278B1 (en) Heat exchange tube with twisted inner fins
WO2004065876A1 (en) Heat exchanger, particularly exhaust gas cooler for motor vehicles
WO2008058734A1 (en) Heat exchanger
EP2066992A2 (en) Heat exchanger for an internal combustion engine
EP1682842A1 (en) Flow channel for a heat exchanger, and heat exchanger comprising such flow channels
EP1999423A2 (en) Heat exchanger for a motor vehicle
EP1985953A1 (en) Heat exchanger, in particular exhaust gas cooler; method for operating such a heat exchanger; system with an exhaust gas cooler
DE102009047620B4 (en) Heat exchanger with tube bundle
DE102007013302A1 (en) Heat exchanger e.g. u-flow exhaust gas heat exchanger, for e.g. Otto engine of passenger car, has flow path with flow channels sustained as continuous channels, which are separated from each other, in deflecting area and in another path
DE102010008175B4 (en) Heat exchanger
DE102007031824A1 (en) Heat exchanger tube comprises first thin sheet of material partially forming broad and narrow sides of tube body and partially enclosing an interior space, and second sheet of material partially forming fin brazed to tube body
DE10100241A1 (en) Heat exchanger tube for liquid or gaseous media
EP1640684A1 (en) heat exchanger with flat tubes and corrugated fins
EP2029883A1 (en) Heat exchanger
EP3039372B1 (en) Heat exchanger
EP2096397A2 (en) Ridge for a heat exchanger and manufacturing method
DE102008020230A1 (en) Heat exchanger for vehicle combustion engine coolant radiator has exchanger tube wall perpendicular to longitudinal direction with zigzag profile and/or zigzag flow cross-section for first medium; cross-section can also have interruptions
EP1798507A2 (en) Heat exchanger, more particularly evaporator
EP1398592B1 (en) Flat tubes heat exchanger
EP1673583B1 (en) Charge air / coolant cooler
EP1331464B1 (en) Heat exchanger
DE102010043309A1 (en) Method for attachment of winglets on base material for producing winglet tube for e.g. exhaust gas heat exchanger in internal combustion engine, involves embossing winglets into base material by using extrusion process
DE19749620C2 (en) EGR gas cooler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1899670

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170127

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190226

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190520

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1899670

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164533

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006016326

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006016326

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200831

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1164533

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006016326

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807