US20010000752A1 - Devices for fast DNA replication by polymerase chain reactions (PCR) - Google Patents

Devices for fast DNA replication by polymerase chain reactions (PCR) Download PDF

Info

Publication number
US20010000752A1
US20010000752A1 US09/735,372 US73537200A US2001000752A1 US 20010000752 A1 US20010000752 A1 US 20010000752A1 US 73537200 A US73537200 A US 73537200A US 2001000752 A1 US2001000752 A1 US 2001000752A1
Authority
US
United States
Prior art keywords
capillaries
flow path
reaction
flow
pcr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/735,372
Other versions
US6428987B2 (en
Inventor
Jochen Franzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/735,372 priority Critical patent/US6428987B2/en
Publication of US20010000752A1 publication Critical patent/US20010000752A1/en
Application granted granted Critical
Publication of US6428987B2 publication Critical patent/US6428987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1822Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using Peltier elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium
    • B01L2300/1844Means for temperature control using fluid heat transfer medium using fans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/797Lipid particle
    • Y10S977/798Lipid particle having internalized material
    • Y10S977/799Containing biological material
    • Y10S977/80Nucleic acid, e.g. DNA or RNA
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/924Specified use of nanostructure for medical, immunological, body treatment, or diagnosis using nanostructure as support of dna analysis

Definitions

  • the invention concerns instruments for fast, selective replication of deoxyribonucleic acid (DNA) from biomaterial by the well-known polymerase chain reaction (PCR), working in individual duplication thermocycles.
  • DNA deoxyribonucleic acid
  • PCR polymerase chain reaction
  • Mass spectrometry today provides very fast, highly sensitive analysis methods for the size of amplified DNA segments.
  • Advances in matrix-assisted laser desorption and ionization (MALDI) make it possible to analyze about 20 samples including the MALDI preparation, the introduction of DNA MALDI samples into the mass spectrometer, the MALDI analysis and the data evaluation up to presentation on the screen in less than three minutes.
  • the tissue cells and DNA extraction can be lysed in less than two minutes.
  • DNA consists of two complementary chains made up of four nucleotides, the sequence of which forms the genetic code.
  • Each nucleotide consists of a sugar (ribose), a phosphoric acid group and a base.
  • Two bases each are complementary to one another.
  • Sugar and phosphoric acid form the continuous chain of the DNA (or the so-called backbone), the four characteristic bases are each lateral branches attached to the sugar.
  • Both complementary chains or single strands of DNA are coiled around one another in the form of a double helix, whereby two complementary nucleotides each are connected to one another via hydrogen bridges between the bases and thus form a so-called double strand.
  • PCR is the specific replication of a relatively short segment of double-stranded DNA, precisely sought from the genome, in simple temperature cycles. Selection of the DNA segment is through a so-called pair of primers, two DNA pieces with about 20 bases length apiece, which (described somewhat briefly and simply) encode the bilateral ends of the selected DNA segment. Replication is performed by an enzyme called polymerase, which represents a chemical factory in a molecule. The PCR reaction takes place in aqueous solution in which a few molecules of the original DNA and sufficient quantities of polymerase, primers, triphosphates of the four nucleic acids (so-called “substrates”), activators and stabilizers are present.
  • the DNA double helix is first “melted” at about 95° C., whereby both strands are separated from one another.
  • the primers are then attached to complementary nucleotide sequences of the DNA single strands (“hybridization”).
  • hybridization the double helixes are reconstructed by elongation of the primers, done by the temperature-resistant polymerase (e. g. taq-polymerase).
  • the selected DNA segment is duplicated in principle between the primers. Therefore, over 30 cycles, around one billion DNA segments are generated from one single double-strand of DNA as original material. (In a more exact description, the shortening to the DNA segment between the primers only occurs statistically with further replications).
  • the duration of time for a thermal cycle is practically only dependent on the rate of heating up and cooling down, which is subsequently dependent upon the volume of liquid, the dimensions of the chamber and the thermal conductivity of the chamber walls and the reaction solution. For every thermal stage, only a few seconds are necessary in principle, sometimes even less.
  • Hybridization also does not need much time if the primers are available in sufficient concentration. At an optimal concentration, about one to two seconds are enough. For hybridization, the temperature is even less critical; it need only remain under 60° C. to proceed sufficiently fast. Optimal conditions are at about 55° C.
  • a PCR reaction cycle could thus be concluded in less than 5 seconds, under the precondition that heat can be introduced or removed up to each sufficient thermal equilibrium in about 1 ⁇ 4 second each.
  • One such ideal thermal curve for a PCR cycle is shown in FIG. 1. The introduction and removal of heat are the critical time-determining variables here.
  • reaction solution to run constantly through a fine capillary which crosses three zones, kept stationarily at the appropriate temperatures, on a microfabricated chip in a simple manner for every cycle, whereby the standard temporal variation in the temperature is replaced by a simple local variation in temperature.
  • a section of one such arrangement is shown in FIG. 3.
  • a small dimension for the capillary should then allow a rapid temperature change up to thermal equilibrium.
  • the invention makes use of extremely brief cycle times of only a few seconds for the PCR reactions. These reaction are generated by using PCR reaction chambers constructed as a pattern of fine capillaries in close proximity to heating and cooling elements, and by keeping the flow rates in the capillaries to a minimum during the amplification phase so that the polymerase reaction is not disturbed. In this way, the temperature cycles in the reaction solution for the three temperature phases of the PCR duplication can be optimally shortened in duration.
  • the capillary pattern can be simply produced by means of microfabrication technology.
  • a favorable, very fine capillary structure with closely adjacent heating elements may be favorably produced using microfabrication technologies.
  • the low flow rate can be provided on the one hand (especially at a constant flow of reaction solution through the capillary structure) by a special design of the capillary net, on the other hand, the low flow rate may also be produced by special methods of application with temporally changeable flows of the reaction solution.
  • These powders can be produced with a particle diameter of about 10 to 1,000 nanometers. They are excellently suited for increasing the thermal conductivity of plastics.
  • the powders may be deposited in such a way that they do not directly lie on the surface.
  • the low flow rate necessary for this invention can be achieved in a constantly circulating capillary system, whereby zones of different temperatures are passed through, in such a way that the flow of the reaction solution in the zone of reconstruction temperature branches off into a multitude of parallel capillaries, in which the flow rate in each of these parallel capillaries is reduced as shown in FIG. 4.
  • the reaction solution can also be moved on intermittently by pressure pulses. After each filling of the capillary system for the reconstruction of the DNA double strand, at the corresponding temperature, the flow of the reaction solution stops, the incorporation reactions run down and only then (after about 2 seconds) is the reaction solution pumped on. It is therefore advantageous to keep each of the volumes at equal amounts for the chamber systems for melting, attachment of primers, and reconstruction, so that the reaction solution is always pressed on by exactly this amount of volume. A pulsed process occurs which, however, makes it imperative for the dwell times of the reaction solution to be equal in the three temperature zones.
  • Such a type of capillary system may easily be aligned in one plane, as shown in FIGS. 2 a and 2 b.
  • the capillaries arranged in a plane are enclosed in a thin membrane, on the surface of which there are heating elements, also in a planar structure.
  • a thin membrane on the surface of which there are heating elements, also in a planar structure.
  • 200 nanoliters of reaction solution in 16 parallel capillaries with cross sections of 60 ⁇ 100 micrometers and 2 millimeters length can be located on a surface of about 2 ⁇ 1.6 millimeters.
  • These capillaries are located in a silicon membrane of 300 micrometers maximum thickness. Through the thin membrane and through the bridges between the capillaries, heat can be applied or discharged very efficiently.
  • the temperature of this type of thin silicon membrane with a surface of 3 ⁇ 3 mm 2 can be raised by about 100° C. per second, an increase from 45° C. to about 72° C. can therefore be achieved in 0.3 seconds.
  • the temperature can itself be determined in the known fashion via the thermal coefficient from the resistance of the heating element. Control of the heating capacity with a slight overshoot leads to quick adjustment of the equilibrium in the reaction solution.
  • Via gaseous, liquid or solid movable cooling means which can be brought into planar contact with the membrane the membrane can be cooled very quickly.
  • cooling means may be at room temperature, or at a lower temperature for acceleration. Since the temperature for primer attachment need not be exactly adjusted, a simple time control is sufficient for the contact time. In more critical cases, the change in resistance for the heating elements may be exploited as a control of the contact time.
  • the cooling means moved for example electromechanically or pneumatically, may be a part of the microsystem arrangement, or they may also be brought in contact with the membrane through external movement devices.
  • FIG. 1 shows a cycle of an optimal thermal profile, unobtainable previously without this invention, for fast DNA amplification by PCR.
  • the three thermal levels of the cycles are run through in only 5 seconds.
  • a DNA amplification with 30 thermal cycles therefore takes only 21 ⁇ 2 minutes.
  • FIG. 2 shows a microfabricated membrane for DNA amplification with the reaction solution at rest.
  • FIG. 2 a shows the capillary structure with inlet channel ( 1 ), flow distributor ( 2 ) for uniform filling of the parallel capillaries, parallel capillaries ( 3 ), flow collector ( 4 ) and outlet channel ( 5 ).
  • FIG. 2 b shows a cross section through the membrane ( 6 ) with the parallel capillaries, the heating elements ( 7 , 8 ) and the movable solid cooling elements ( 9 , 10 ).
  • FIG. 3 shows the principle of an (unfavorable) capillary arrangement in which the reaction solution in the capillary flows through three places of varying temperature per cycle.
  • the upper edge ( 15 ) of this structure is in contact with a heater which keeps the edge at about 100° C., while the lower edge ( 16 ) is kept at about 50° C. through cooling.
  • the reaction solution flows to the opposite edge and is cooled in a primer attachment region ( 12 ) to about 55° C.
  • a reconstruction region ( 13 ) in which it is heated to about 72° C. This area has a somewhat longer flow-through path to achieve a somewhat longer time for the reconstruction phase. From there the reaction solution flows into the next melting region ( 14 ) which belongs to the next temperature cycle.
  • FIG. 3 shows an unfavorable arrangement for this capillary structure since the flow rate is equal for all thermal levels.
  • FIG. 4 One embodiment greatly improved by the idea of the invention is therefore provided by a capillary structure on a chip as shown in FIG. 4.
  • the capillary branches off without constrictions in the reconstruction region. In this way, a reduction in flow speed for PCR amplification may be achieved. It is an advantage of this arrangement that, due to the continuous operation in this structure, alternating quantities of reaction solution may be subjected to PCR amplification, although the time advantage disappears.
  • this type of operation may be performed in a single, multiply convoluted, continuous capillary, however the process of filling and emptying is then relatively long. Filling and emptying times are not insignificant. For example, a capillary with a cross section of 100 ⁇ 60 micrometers, which should hold about 250 nanoliters, is already over 40 millimeters long and requires 40 seconds already for these processes at a filling and emptying rate of 2 millimeters per second. If still other processing steps are included, the filling and emptying times become prohibitively long.
  • a simple air or water cooling system may also be considered.
  • An air system is especially advantagous because the air may serve as an thermal isolator as soon as the air flow stops. The thermal discharge of the thin membrane then takes place in less than half a second.
  • the capillary structure is emptied by washing liquid forced from behind.
  • the DNA solution is cleaned by well-known means and transferred to analysis.
  • the capillary structure is washed out sufficiently well and is once again available for the next PCR amplification.
  • This capillary structure in a microfabricated membrane does not allow any change in volume of the process reaction solution. Since for this type of analysis firm amounts of DNA are required, this is not a serious disadvantage. In contrast to this, this structure allows alternating numbers of replication cycles. In this way DNA amplification may be adapted in an advantageous manner to the amount of DNA in the original materials. If the DNA from only a few cells (about 100) is available, 32 cycles may be run, for example, or if on the other hand, the DNA is from several thousand or even tens of thousands of cells, 24 cycles may suffice. Therefore, this type of temporal variation of temperature is more flexible than the above described variations of reaction solution flowing through areas of differing temperature.
  • the initial cycles may, in this type of device, also run more slowly in order to ease the hybridization, and if enough short DNA segments are generated, the rate can be increased. It should be mentioned, however, that the number of DNA sets at the beginning should not be much below 100 DNA sets, because all of the parallel capillaries must be filled with an appropriate number of DNA sets to be effective amplifiers.
  • Analysis of amplified DNA segments may for example proceed mass spectrometrically through ionization using matrix-assisted laser desorption (MALDI) in a time-of-flight mass spectrometer (TOF).
  • MALDI matrix-assisted laser desorption
  • TOF time-of-flight mass spectrometer
  • the DNA is applied together with suitable matrix substances onto a sample support.
  • the MALDI sample supports are then introduced in a known manner into the ion source of the mass spectrometer and the individual DNA sample substances are automatically measured for the molecular weights of the DNA substance in an equally known fashion.
  • Electrospray ionization with ion trap mass spectrometers using well-known nanospray methods, constitutes an alternative method of analysis.
  • coatings with biomaterials such as proteins, lipid proteins or glycoproteins will play a greater role as coating materials. It is already possible to bind such molecules covalently onto the surfaces of metals. It can be expected that these biomaterial coatings will be even more favorable for deactivation of the surfaces for polymerase work.
  • RNA DNA after a first duplication step using “inverse transcriptase”, which reconverts the RNA back into a DNA complementary sequence.
  • This process may be performed in a unified, microfabricated apparatus. Extensive changes or derivations of DNA toward the goal of achieving more easily analyzable output products for analysis may also be performed in instruments especially adapted for this, produced using microfabrication technologies.

Abstract

The invention concerns instruments for fast, selective replication of deoxyribonucleic acid (DNA) from biomaterial through polymerase chain reaction (PCR), working in individual duplication thermocycles. The invention consists of extremely brief cycle times of only a few seconds for the PCR reactions, generated, on the one hand, by reaction chambers for the reception of the reaction solution constructed of a pattern of fine capillaries in close proximity to heating and cooling elements in order to optimally accelerate the temperature setting in the reaction solution for the three temperature phases of the PCR duplication cycles and, on the other hand, by keeping the flow rates in the capillaries to a minimum during the amplification phase so that the polymerase reaction is not disturbed. The capillary pattern can be simply produced by means of microsystem technology.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This is a divisional of U.S. patent application Ser. No. 09/049,646, filed Mar. 27, 1998. [0001]
  • FIELD OF THE INVENTION
  • The invention concerns instruments for fast, selective replication of deoxyribonucleic acid (DNA) from biomaterial by the well-known polymerase chain reaction (PCR), working in individual duplication thermocycles. [0002]
  • DESCRIPTION OF THE RELATED ART
  • It is becoming more and more important for the medical care of patients that analysis methods in genetic engineering are made available which work very quickly. One example of this is the identification of infectious microorganisms, which still requires days at present, but actually requires treatment at the earliest possible stage, in the initial hours if possible. More intense will be the demand for quick analysis during examinations of tissue possibly affected by cancer or other disease during surgery on the open patient by means of oncogenetic, virological or bacteriological analyses. Here, a maximum analysis time of about ten minutes is required. [0003]
  • Mass spectrometry today provides very fast, highly sensitive analysis methods for the size of amplified DNA segments. Advances in matrix-assisted laser desorption and ionization (MALDI) make it possible to analyze about 20 samples including the MALDI preparation, the introduction of DNA MALDI samples into the mass spectrometer, the MALDI analysis and the data evaluation up to presentation on the screen in less than three minutes. The tissue cells and DNA extraction can be lysed in less than two minutes. [0004]
  • This maximum of five minutes total for sample preparation and mass spectrometry analysis stands in contrast to times of three hours for classic PCR replication. Extreme reductions in these times are on the horizon however. In one instrument, available commercially in the meantime, this time has already been reduced to about 20 minutes. In a recent publication (A. T. Woolley et al., “Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device”, Anal. Chem. 68, 4081, December 1996), DNA in 20 microliters of reaction solution was amplified through 30 cycles in only 15 minutes in a miniature chamber made of polypropylene. Even this time is, however, too long for a fast analysis in the above sense. The goal must be to perform the PCR amplification in only two to three minutes. [0005]
  • As is known, DNA consists of two complementary chains made up of four nucleotides, the sequence of which forms the genetic code. Each nucleotide consists of a sugar (ribose), a phosphoric acid group and a base. Two bases each are complementary to one another. Sugar and phosphoric acid form the continuous chain of the DNA (or the so-called backbone), the four characteristic bases are each lateral branches attached to the sugar. Both complementary chains or single strands of DNA are coiled around one another in the form of a double helix, whereby two complementary nucleotides each are connected to one another via hydrogen bridges between the bases and thus form a so-called double strand. [0006]
  • The basis for many analysis methods in genetics is the selectively functioning PCR (polymerase chain reaction), a simple replication method for specifically selected DNA pieces in a test tube, first developed in 1983 by K. B. Mullis (who received the Nobel Prize for this in 1993) and which, after the introduction of temperature stable polymerases, went on to unequalled success in genetic engineering laboratories. [0007]
  • PCR is the specific replication of a relatively short segment of double-stranded DNA, precisely sought from the genome, in simple temperature cycles. Selection of the DNA segment is through a so-called pair of primers, two DNA pieces with about 20 bases length apiece, which (described somewhat briefly and simply) encode the bilateral ends of the selected DNA segment. Replication is performed by an enzyme called polymerase, which represents a chemical factory in a molecule. The PCR reaction takes place in aqueous solution in which a few molecules of the original DNA and sufficient quantities of polymerase, primers, triphosphates of the four nucleic acids (so-called “substrates”), activators and stabilizers are present. In every thermal cycle, the DNA double helix is first “melted” at about 95° C., whereby both strands are separated from one another. At about 55° C., the primers are then attached to complementary nucleotide sequences of the DNA single strands (“hybridization”). At 72° C. the double helixes are reconstructed by elongation of the primers, done by the temperature-resistant polymerase (e. g. taq-polymerase). Complementary nucleotides are bonded, one after the other, to a specific end of the primers to form two new double helixes. In this way, the selected DNA segment is duplicated in principle between the primers. Therefore, over 30 cycles, around one billion DNA segments are generated from one single double-strand of DNA as original material. (In a more exact description, the shortening to the DNA segment between the primers only occurs statistically with further replications). [0008]
  • The duration of time for a thermal cycle is practically only dependent on the rate of heating up and cooling down, which is subsequently dependent upon the volume of liquid, the dimensions of the chamber and the thermal conductivity of the chamber walls and the reaction solution. For every thermal stage, only a few seconds are necessary in principle, sometimes even less. [0009]
  • In the above cited article by Woolley et al., in which the PCR amplification for 30 cycles only lasted 15 minutes, the following times were required, for example, for the work in the three thermal stages: 2 seconds at 96° C. for melting, 5 seconds at 55° C. for the primer attachment and 2 seconds at 72° C. for reconstruction. The remaining time of 21 seconds per cycle was used for the thermal transitions. The DNA melts almost instantaneously at a temperature a few degrees above the “melting temperature.” Analyses have shown that heating to this temperature for one half second suffices for complete separation of all double helix structures. Precise maintenance of the temperature is not even especially critical here, as long as one remains above the melting temperature but below a coagulation temperature. Hybridization also does not need much time if the primers are available in sufficient concentration. At an optimal concentration, about one to two seconds are enough. For hybridization, the temperature is even less critical; it need only remain under 60° C. to proceed sufficiently fast. Optimal conditions are at about 55° C. [0010]
  • The growth of the attached primers into a complementary DNA molecule through the polymerase, known as “reconstruction” in the following, has a very high velocity. 500 to 1,000 bases can be bonded per second under optimal thermal and concentration conditions by the polymerase. Since generally only DNA segments of a maximum of 400 bases in length are necessary for the analyses, two seconds are quite sufficient for this reconstruction phase. For this process of reconstruction of a new double helix, good maintenance of the optimal temperature is required in order to achieve the high rate of reconstruction. [0011]
  • Theoretically, a PCR reaction cycle could thus be concluded in less than 5 seconds, under the precondition that heat can be introduced or removed up to each sufficient thermal equilibrium in about ¼ second each. One such ideal thermal curve for a PCR cycle is shown in FIG. 1. The introduction and removal of heat are the critical time-determining variables here. [0012]
  • By the addition of only one primer pair, uniform DNA segments can be replicated. However, if several different primer pairs are added at the same time, several DNA segments will also be replicated at the same time (“multiplexed PCR”). This type of multiplexed PCR is frequently used and often has special advantages. For so-called “fingerprinting” for the identification of individuals through DNA segments of variable length (methods of “VNTR=Variable Number of Tandem Repeats” or “AMP-FLP=Amplified Fragment Length Polymorphism”), it makes the analyses faster. Here through the selection of primers, which determines the average molecular weight of the DNA segments, the result can be achieved that the variations of molecular weights for the DNA segments formed by the various primer pairs only seldomly or never overlap. This type of multiplexed PCR requires an analyzer which is capable of simultaneous measurement of a large range of molecular weights. The method is particularly advantageous for the identification of infectious organisms, since 20 types of bacteria (or viruses, yeasts, molds) can be detected at the same time, for example, with a single PCR replication. [0013]
  • The high sensitivity of modern measurement methods for the analysis of DNA, for example the sensitivity of the above-mentioned mass spectrometric measurements, permits the volume of reaction solution to be reduced while maintaining the optimal concentration. Since on the one hand, for the same initial amount of DNA, the reaction solution is then exhausted after a few cycles (though on the other hand not very much amplified DNA material is required for the analysis) the number of cycles can be reduced from the normal amount of 30 to about 24 to 28. However, the time-saving due to this is minimal. Possible reduction of the volumes suggests a solution based on microfabrication technologies for a new PCR amplification method such as has already been applied in the above cited article by Woolley et al. [0014]
  • Also in the review article “Microfabrication Technologies for Integrated Nucleic Acid”, D. T. Burke, M. A. Burns and C. Mastrangelo, [0015] Genome Research 7, 189 (1997), chambers manufactured using microfabrication technology are presented for PCR amplification, without however giving any indication of the achievable rates. Such chambers, 1,000×1,000×250 micrometers large here and made of a low temperature polymer, nevertheless have the disadvantage that they can only be emptied by extended rinsing with a washing liquid and thus force a dilution of the amplified DNA when emptying.
  • Another obvious idea is to allow the reaction solution to run constantly through a fine capillary which crosses three zones, kept stationarily at the appropriate temperatures, on a microfabricated chip in a simple manner for every cycle, whereby the standard temporal variation in the temperature is replaced by a simple local variation in temperature. A section of one such arrangement is shown in FIG. 3. A small dimension for the capillary should then allow a rapid temperature change up to thermal equilibrium. [0016]
  • Unfortunately, the flow in a capillary impairs the work of the polymerase in the reconstruction phase. In a cylindrical capillary, a laminar flow with a parabolic velocity profile generally prevails, whereby the average velocity is doubled in the central axis of the capillary while it is zero at the margin of the capillary. In a capillary with a square or rectangular cross section, somewhat different conditions prevail, however the differences are not decisive here. The flowing reaction solution is therefore divided into sliding layers of differing velocity, while adjacent molecules in different sliding layers move past one another. The individual molecules are subject to shearing forces. Straight molecules are aligned parallel to the direction of flow. For a close-to-real average velocity of 2 millimeters per second in a capillary 100 micrometers in diameter, two almost spherical molecules which are in contact with one another on both sides of an imaginary sliding surface, move past one another in one millisecond by about 8% of their diameter on average. One millisecond corresponds to the minimum time for the incorporation of a base. Molecules in the center of the flow do not experience this sort of displacement. Molecules close to the wall of the capillary experience a greater displacement. In this way, however, the work of the polymerase which requires a calm, adjacent positioning of the molecules on a millisecond scale, is greatly impaired. Increased errors are the result and, with even greater displacement motion, the polymerase work is even stopped. The displacement motion of adjacent molecules increases for the same flow in proportion to the third power of the reciprocal diameter of the capillary. There is therefore a dilemma for the flow PCR: thinner capillaries improve the temperature setting, however they extend the distance, therefore necessitating an increased flow rate and thus impairing amplification. [0017]
  • SUMMARY OF THE INVENTION
  • The invention makes use of extremely brief cycle times of only a few seconds for the PCR reactions. These reaction are generated by using PCR reaction chambers constructed as a pattern of fine capillaries in close proximity to heating and cooling elements, and by keeping the flow rates in the capillaries to a minimum during the amplification phase so that the polymerase reaction is not disturbed. In this way, the temperature cycles in the reaction solution for the three temperature phases of the PCR duplication can be optimally shortened in duration. The capillary pattern can be simply produced by means of microfabrication technology. [0018]
  • It is the basic idea of the invention to use, on the one hand, a pattern of very fine capillaries in close proximity to heating and cooling elements as a chamber system for the reaction solution in order to keep the heating and cooling-down times for the reaction solution extremely low, while on the other hand however keeping the flow rate for the reaction solution in the capillaries during the reconstruction phase of the DNA double strand using the polymerase as low as possible. The flow rate during the reconstruction phase should never exceed ten times the maximum capillary diameter prevalent there per second, while more favorable would be a medium flow rate of less than five maximum capillary diameters per second. The error rate for the reconstruction only approaches its minimum below a medium flow rate which is less than double the diameter per second. The maximum capillary diameter corresponds to the normal diameter for round capillaries, for rectangular cross sections that of the diagonal. [0019]
  • A favorable, very fine capillary structure with closely adjacent heating elements may be favorably produced using microfabrication technologies. The low flow rate can be provided on the one hand (especially at a constant flow of reaction solution through the capillary structure) by a special design of the capillary net, on the other hand, the low flow rate may also be produced by special methods of application with temporally changeable flows of the reaction solution. [0020]
  • The advantage of a fine capillary structure is evident: the times for the thermal transitions in the reaction solution may be kept very short. This advantage is however opposed by severe disadvantages: the extremely large surface area of the chamber system disturbs the biochemical processes if the surface even only minimally influences the affected molecules. Thus for example a bare silicon surface immediately kills the activity of the polymerase. Many plastics too have proven to be unsuitable for the PCR. Even the same plastics from different manufacturers, for example the normally favorable plastics polyethylene or polypropylene, have had different types of effects on the PCR due to their varying qualities. Therefore, the surface must very thoroughly be made completely inert. [0021]
  • The activity of a surface can be almost completely eliminated by a thorough coating. Coating methods for capillaries are known from chromatography, especially from gas chromatography, which eliminate even the smallest remnant of active surface. Particularly coatings with thread-shaped molecules which are bonded monolaterally onto the surface (“chemically bonded phases”), have generated thermally stable and extremely inert surface coatings. Here, hydrophobic or hydrophilic, polar or nonpolar, fat or water absorbent surface coatings can be generated which may also have other characteristics within the depth of the layer. It is therefore a further idea of the invention to use the known chromatographic coatings for the deactivation of surfaces. Particularly for the coating of quartz glass and glass surfaces on the interior of thin capillaries, explicit and comprehensive formulas with descriptions of the necessary steps are available. Silicon surfaces can be transformed by oxidation into quartz surfaces. [0022]
  • Particularly for metal implants, stable coatings have been developed which correspond to endogenous proteins and glycoproteins such as occur in cell membranes. Such coatings may reduce the activities on the surfaces for polymerase reactions in the present case, even if they are not yet successful as implant coatings. The micromanufacturing methods, however, also comprise the molding of plastics in micromanufactured silicon forms. In this way as well, capillary systems can be developed which may be used as reaction chambers. It is therefore a further idea of the invention to use favorable polymers such as low pressure polyethylene or polypropylene for the manufacture of capillary systems. Since polymers normally possess poor thermal conductivity characteristics, these may also be filled with thermally well conducting nanopowders, for example with silver powder. These powders can be produced with a particle diameter of about 10 to 1,000 nanometers. They are excellently suited for increasing the thermal conductivity of plastics. The powders may be deposited in such a way that they do not directly lie on the surface. The low flow rate necessary for this invention can be achieved in a constantly circulating capillary system, whereby zones of different temperatures are passed through, in such a way that the flow of the reaction solution in the zone of reconstruction temperature branches off into a multitude of parallel capillaries, in which the flow rate in each of these parallel capillaries is reduced as shown in FIG. 4. [0023]
  • The reaction solution can also be moved on intermittently by pressure pulses. After each filling of the capillary system for the reconstruction of the DNA double strand, at the corresponding temperature, the flow of the reaction solution stops, the incorporation reactions run down and only then (after about 2 seconds) is the reaction solution pumped on. It is therefore advantageous to keep each of the volumes at equal amounts for the chamber systems for melting, attachment of primers, and reconstruction, so that the reaction solution is always pressed on by exactly this amount of volume. A pulsed process occurs which, however, makes it imperative for the dwell times of the reaction solution to be equal in the three temperature zones. [0024]
  • It is however also possible, in particular, to select a capillary system large enough so that the entire quantity of reaction solution to be processed can be held in it and then very quickly passed through the temperature phases one after another using fast heating and cooling elements with the solution at rest. [0025]
  • Such a type of capillary system may easily be aligned in one plane, as shown in FIGS. 2[0026] a and 2 b. The capillaries arranged in a plane are enclosed in a thin membrane, on the surface of which there are heating elements, also in a planar structure. Thus for example, 200 nanoliters of reaction solution in 16 parallel capillaries with cross sections of 60×100 micrometers and 2 millimeters length can be located on a surface of about 2×1.6 millimeters. These capillaries are located in a silicon membrane of 300 micrometers maximum thickness. Through the thin membrane and through the bridges between the capillaries, heat can be applied or discharged very efficiently.
  • On the top and bottom of the membrane, there are resistance grids planarly imbedded or otherwise attached, which take care of the heating capacity. With less than two watts heating capacity, the temperature of this type of thin silicon membrane with a surface of 3×3 mm[0027] 2 can be raised by about 100° C. per second, an increase from 45° C. to about 72° C. can therefore be achieved in 0.3 seconds. The temperature can itself be determined in the known fashion via the thermal coefficient from the resistance of the heating element. Control of the heating capacity with a slight overshoot leads to quick adjustment of the equilibrium in the reaction solution. Via gaseous, liquid or solid movable cooling means, which can be brought into planar contact with the membrane the membrane can be cooled very quickly. An arrangement with a solid cooling element is depicted in FIG. 2b. In the simplest case, the cooling means may be at room temperature, or at a lower temperature for acceleration. Since the temperature for primer attachment need not be exactly adjusted, a simple time control is sufficient for the contact time. In more critical cases, the change in resistance for the heating elements may be exploited as a control of the contact time. The cooling means, moved for example electromechanically or pneumatically, may be a part of the microsystem arrangement, or they may also be brought in contact with the membrane through external movement devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a cycle of an optimal thermal profile, unobtainable previously without this invention, for fast DNA amplification by PCR. The three thermal levels of the cycles are run through in only 5 seconds. A DNA amplification with 30 thermal cycles therefore takes only 2½ minutes. [0028]
  • FIG. 2 shows a microfabricated membrane for DNA amplification with the reaction solution at rest. FIG. 2[0029] a shows the capillary structure with inlet channel (1), flow distributor (2) for uniform filling of the parallel capillaries, parallel capillaries (3), flow collector (4) and outlet channel (5). FIG. 2b shows a cross section through the membrane (6) with the parallel capillaries, the heating elements (7,8) and the movable solid cooling elements (9,10).
  • FIG. 3 shows the principle of an (unfavorable) capillary arrangement in which the reaction solution in the capillary flows through three places of varying temperature per cycle. The upper edge ([0030] 15) of this structure is in contact with a heater which keeps the edge at about 100° C., while the lower edge (16) is kept at about 50° C. through cooling. After flowing through the melting region (11) at about 95° C., the reaction solution flows to the opposite edge and is cooled in a primer attachment region (12) to about 55° C. Then it flows to a reconstruction region (13) in which it is heated to about 72° C. This area has a somewhat longer flow-through path to achieve a somewhat longer time for the reconstruction phase. From there the reaction solution flows into the next melting region (14) which belongs to the next temperature cycle. FIG. 3 shows an unfavorable arrangement for this capillary structure since the flow rate is equal for all thermal levels.
  • FIG. 4 shows a more favorable embodiment of a capillary arrangement for constant flow. In the reconstruction region ([0031] 23) the capillary branches off into a number of parallel capillaries with equal cross sections, which greatly reduces the flow rate here. Otherwise this arrangement is equal in all parts to the arrangement in FIG. 3.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It seems expedient to generate a capillary structure in a silicon chip by microfabrication techniques with stationary thermal distribution as shown and described in FIG. 3, and to have the reaction solution flow through it at a constant rate. It however appears that the PCR reaction at capillary diameters below about 400 micrometers are considerably disturbed by the necessarily high flow rate in the capillaries. However this capillary diameter is still much too great for the heating rates required here. On the other hand, in order to maintain the polymerase work at the usual low error rate of 10[0032] −4, a flow rate is necessary that is so low that no substantial reduction in total time is achieved.
  • One embodiment greatly improved by the idea of the invention is therefore provided by a capillary structure on a chip as shown in FIG. 4. Here the capillary branches off without constrictions in the reconstruction region. In this way, a reduction in flow speed for PCR amplification may be achieved. It is an advantage of this arrangement that, due to the continuous operation in this structure, alternating quantities of reaction solution may be subjected to PCR amplification, although the time advantage disappears. [0033]
  • This chip structure also has disadvantages, however. It is relatively long and narrow (about 4×60 millimeters), unusual for a microfabricated chip and very fragile, and it is additionally subject to strong thermal stress. These disadvantages may be partially balanced out by a circular or loop-shaped arrangement with central heating, or by a convoluted arrangement with capillary levels lying on top of one another, which leads to a reduction in the overall structure. A further disadvantage is the fixation of the number of PCR cycles, strictly prescribed by the number of structure repetitions in the microfabricated chip. Another disadvantage is the relatively long duration of the overall process including emptying after the work has already been completed for the front of the reaction solution passing through. [0034]
  • It is therefore advantageous to fill a larger volume pattern with very fine capillaries only once, to allow the PCR reactions in the reaction solution at rest to run through temporal thermal cycles and then empty the structure again once. [0035]
  • In principle, this type of operation may be performed in a single, multiply convoluted, continuous capillary, however the process of filling and emptying is then relatively long. Filling and emptying times are not insignificant. For example, a capillary with a cross section of 100×60 micrometers, which should hold about 250 nanoliters, is already over 40 millimeters long and requires 40 seconds already for these processes at a filling and emptying rate of 2 millimeters per second. If still other processing steps are included, the filling and emptying times become prohibitively long. [0036]
  • A particularly favorable embodiment is therefore shown in FIGS. 2[0037] a and 2 b. This is a number of parallel capillaries (3) which lie in the central level of a thin, microfabricated membrane (6). Two distributor systems (2,4) at the start and end of the parallel capillaries, which guarantee equal flow resistances for all inlet and outlet ways of the parallel capillaries, ensure a strictly cophasal filling. This capillary structure is filled at the beginning of PCR amplification, afterwards the reaction solution is at rest. The heating elements (7, 8) on the surface of the membrane can heat up the membrane and, with it, the reaction solution in a very brief time. Thus 2 watts of heating capacity suffice in order to generate a temperature increase of more than 100° C. per second. The increases from the primer attachment temperature (55° C.) to reconstruction temperature (72° C.) and then to melting temperature (95° C.) may be passed through in about ¼ second each. If the heaters are operated, for example, by a high frequency alternating current, the thermal coefficients may then be used in the known fashion to measure the temperature in the heater and thus control the heating process.
  • The membrane is cooled in this embodiment via two gold or silver-plated elements made of copper ([0038] 9, 10), which are pressed against the membrane by an electromechanically or pneumatically generated movement, producing a large area thermal contact. A mechanical forced coupling of the opposing movements of both cooling elements can protect the membrane from damage. The cooling outlets are provided with cooling vanes cooled using ambient air.
  • For strong cooling, a simple air or water cooling system may also be considered. An air system is especially advantagous because the air may serve as an thermal isolator as soon as the air flow stops. The thermal discharge of the thin membrane then takes place in less than half a second. [0039]
  • If the parallel capillaries are filled, at the beginning of the PCR process, with a very few DNA double strangs only, it may happen that only one or two capillaries contain amplifyable DNA. In this case, the complete reaction solution may be drawn back after some initial PCR cycles, mixed, and returned into the capillary system to have a better distribution among the capillaries. [0040]
  • After completing the PCR amplification, the capillary structure is emptied by washing liquid forced from behind. The DNA solution is cleaned by well-known means and transferred to analysis. The capillary structure is washed out sufficiently well and is once again available for the next PCR amplification. [0041]
  • This capillary structure in a microfabricated membrane does not allow any change in volume of the process reaction solution. Since for this type of analysis firm amounts of DNA are required, this is not a serious disadvantage. In contrast to this, this structure allows alternating numbers of replication cycles. In this way DNA amplification may be adapted in an advantageous manner to the amount of DNA in the original materials. If the DNA from only a few cells (about 100) is available, 32 cycles may be run, for example, or if on the other hand, the DNA is from several thousand or even tens of thousands of cells, 24 cycles may suffice. Therefore, this type of temporal variation of temperature is more flexible than the above described variations of reaction solution flowing through areas of differing temperature. [0042]
  • The initial cycles may, in this type of device, also run more slowly in order to ease the hybridization, and if enough short DNA segments are generated, the rate can be increased. It should be mentioned, however, that the number of DNA sets at the beginning should not be much below 100 DNA sets, because all of the parallel capillaries must be filled with an appropriate number of DNA sets to be effective amplifiers. [0043]
  • Analysis of amplified DNA segments may for example proceed mass spectrometrically through ionization using matrix-assisted laser desorption (MALDI) in a time-of-flight mass spectrometer (TOF). To do this, the DNA is applied together with suitable matrix substances onto a sample support. The MALDI sample supports are then introduced in a known manner into the ion source of the mass spectrometer and the individual DNA sample substances are automatically measured for the molecular weights of the DNA substance in an equally known fashion. Electrospray ionization with ion trap mass spectrometers, using well-known nanospray methods, constitutes an alternative method of analysis. [0044]
  • All of the above described capillary systems require deactivation of the inner capillary surfaces so that the polymerase work is not disturbed. Experiments have shown that bare silicon surfaces inactivate the polymerase immediately. [0045]
  • The inner capillary surfaces must therefore be coated with deactivating layers. Very good coating methods for deactivation are known from capillary gas chromatography. The glass or quartz glass capillaries used there also have very active surfaces, in this case active in adsorbing substances. The activity essentially proceeds from free OH groups. Such free OH groups are also responsible for the disturbance of the polymerase. [0046]
  • For capillary gas chromatography, various coating substances have been developed. Since these substances form the liquid phase of this type of distribution chromatography (which is often called GLC=gas-liquid-chromatography instead of just GC), the coating substances are simply called “phases” here. There are polar and nonpolar phases, hydrophilic and hydrophobic. For well over 20 years, so-called “chemically bonded phases” have established themselves in which long, thread-shaped molecules are bonded chemically covalently on the surface, side-by-side like seaweed. These phases are thermally stable up to several hundred degrees Celsius and long-lasting. [0047]
  • Due to the parallel arrangement of the phase molecules, any desired arrangement can be custom-tailored here. Thus a superficially hydrophobic layer may be made hydrophilic on the inside. The thickness can be adapted to the requirements. Silicon rubber phases are primarily used standard phases in gas chromatography, however they are less favorable for PCR reactions, while on the other hand waxy phases are better, for example Carbowax. [0048]
  • In the future, coatings with biomaterials such as proteins, lipid proteins or glycoproteins will play a greater role as coating materials. It is already possible to bind such molecules covalently onto the surfaces of metals. It can be expected that these biomaterial coatings will be even more favorable for deactivation of the surfaces for polymerase work. [0049]
  • However, it is also possible to generate the capillary system of polymer plastics using microfabrication methods and tools. Microprinting processes exist which proceed from a silicone structure as a matrix. Using known microwelding or microadhesion techniques, the production of thin membranes with imbedded capillaries is also possible. The finished membranes may be printed with a resistance network; such resistance networks can be created by applying metal layers and then etching. Plastics may be filled with metallic powders to improve the thermal conductivity, such as with silver nanopowder. [0050]
  • The methods and structures described may of course be varied in many ways. It is simple for a specialist, following the indicated invention ideas, to develop further capillary structures and other operating methods. [0051]
  • Thus it is possible, for example, to replicate and finally to analyze RNA in the above described fashion as DNA after a first duplication step using “inverse transcriptase”, which reconverts the RNA back into a DNA complementary sequence. This process, too, may be performed in a unified, microfabricated apparatus. Extensive changes or derivations of DNA toward the goal of achieving more easily analyzable output products for analysis may also be performed in instruments especially adapted for this, produced using microfabrication technologies. [0052]

Claims (22)

1. Apparatus for use in replicating DNA located in a polymerase chain reaction (PCR) fluid, the apparatus comprising:
a housing having a flow path through which the reaction fluid may flow, the flow path including a set of reaction chambers comprising a plurality of capillaries into which fluid flowing through the flow path is divided to flow simultaneously before being recombined, such that a local flow rate of the reaction solution through the parallel capillaries is lower than elsewhere in the flow path; and
heating apparatus that provides heat to the flow path such that at least three different temperatures affect the reaction solution, the solution being subjected to at least one of the three temperatures while simultaneously present in the capillaries.
2. Apparatus according to
claim 1
, wherein the capillaries each have a diameter below 400 micrometers.
3. Device according to
claim 1
, wherein the volume of each reaction chamber is less than one microliter.
4. Apparatus according to
claim 1
, wherein the capillary reaction chambers are each microfabricated from silicon, and the surface of the capillaries is coated with a coating material that does not inhibit PCR.
5. Apparatus according to
claim 4
, wherein the coating material has been bonded chemically to a surface of the silicon.
6. Apparatus according to
claim 4
, wherein the coating material comprises a chromatographic coating.
7. Apparatus according to
claim 4
, wherein the coating material comprises nonpolar phase Carbowax.
8. Apparatus according to
claim 4
, wherein the coating material comprises glycoproteins, proteins or lipoproteins.
9. Apparatus according to
claim 1
, wherein the capillaries comprise polymer plastics.
10. Apparatus according to
claim 1
, wherein the capillaries comprise polyethylene or polypropylene.
11. Apparatus according to
claim 1
, wherein capillaries comprise, at least in part, a material with a high thermal conductivity.
12. Apparatus according to
claim 1
wherein the three temperatures correspond to temperatures appropriate for the phases of PCR melting, primer attachment and reconstruction.
13. Apparatus according to
claim 12
wherein a reaction solution passing through the flow path is at the reconstruction temperature while in the capillaries.
14. Apparatus according to
claim 1
wherein the heating apparatus comprises fluid cooling means that can be brought into thermal contact with the capillaries to change the temperature of the reaction solution in the capillaries.
15. Apparatus according to
claim 1
wherein the local flow rate through the capillaries is no greater than a value equal to ten times the diameter of each capillary per second.
16. Apparatus according to
claim 1
wherein the plurality of capillaries is a first set of capillaries and wherein the housing comprises multiple sets of capillaries through which the reaction fluid must flow.
17. Apparatus according to
claim 1
further comprising a flow inducer for inducing flow of the reaction fluid through the flow path.
18. Apparatus according to
claim 17
wherein the flow inducer provides pressure pulses to the fluid in the flow path.
19. Apparatus for use in performing the steps of PCR melting, primer attachment and reconstruction for replicating DNA located in a polymerase chain reaction (PCR) fluid, the apparatus comprising:
a housing having a flow path through which the reaction fluid may flow, the flow path including a set of reaction chambers comprising a plurality of capillaries into which fluid flowing through the flow path is divided to flow simultaneously before being recombined, such that a local flow rate of the reaction solution through the parallel capillaries is lower than elsewhere in the flow path;
heating elements adjacent to the fluid path to change the reaction solution temperature from the primer attachment temperature to the temperatures for PCR reconstruction and melting; and
gaseous, liquid or solid cooling means that can be brought into thermal contact with the flow path to reduce the temperature of the reaction solution in the flow path.
20. Apparatus according to
claim 19
, wherein the flow path is formed, at least in part, by a surface that is thinner than one millimeter.
21. Apparatus according to
claim 19
, wherein a portion of the flow path comprises a single, convoluted capillary.
22. Apparatus according to
claim 19
wherein the plurality of capillaries is a first set of capillaries and wherein the housing comprises multiple sets of capillaries through which the reaction fluid must flow.
US09/735,372 1997-04-23 2000-12-12 Devices for fast DNA replication by polymerase chain reactions (PCR) Expired - Fee Related US6428987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/735,372 US6428987B2 (en) 1997-04-23 2000-12-12 Devices for fast DNA replication by polymerase chain reactions (PCR)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19717085.4 1997-04-23
DE19717085 1997-04-23
DE19717085A DE19717085C2 (en) 1997-04-23 1997-04-23 Processes and devices for extremely fast DNA multiplication using polymerase chain reactions (PCR)
US09/049,646 US6180372B1 (en) 1997-04-23 1998-03-27 Method and devices for extremely fast DNA replication by polymerase chain reactions (PCR)
US09/735,372 US6428987B2 (en) 1997-04-23 2000-12-12 Devices for fast DNA replication by polymerase chain reactions (PCR)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/049,646 Division US6180372B1 (en) 1997-04-23 1998-03-27 Method and devices for extremely fast DNA replication by polymerase chain reactions (PCR)

Publications (2)

Publication Number Publication Date
US20010000752A1 true US20010000752A1 (en) 2001-05-03
US6428987B2 US6428987B2 (en) 2002-08-06

Family

ID=7827461

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/049,646 Expired - Lifetime US6180372B1 (en) 1997-04-23 1998-03-27 Method and devices for extremely fast DNA replication by polymerase chain reactions (PCR)
US09/735,372 Expired - Fee Related US6428987B2 (en) 1997-04-23 2000-12-12 Devices for fast DNA replication by polymerase chain reactions (PCR)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/049,646 Expired - Lifetime US6180372B1 (en) 1997-04-23 1998-03-27 Method and devices for extremely fast DNA replication by polymerase chain reactions (PCR)

Country Status (3)

Country Link
US (2) US6180372B1 (en)
DE (1) DE19717085C2 (en)
GB (1) GB2325464B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060057556A1 (en) * 2002-10-21 2006-03-16 The Government Of The United States Of America Department Of Health And Human Services Contiguous capillary electrospray sources and analytical devices
US20110212446A1 (en) * 2010-02-26 2011-09-01 Life Technologies Corporation Fast pcr for str genotyping
WO2012018741A2 (en) * 2010-08-02 2012-02-09 Weight Brent L Pressurizable cartridge for polymerase chain reactions
CN106268993A (en) * 2016-08-31 2017-01-04 上海快灵生物科技有限公司 A kind of differential temperature reaction chip and temperature-conditioned metal bath
CN111500406A (en) * 2020-04-20 2020-08-07 哈尔滨工业大学 Microfluidic PCR chip
EP3714979A1 (en) * 2005-05-09 2020-09-30 BioFire Diagnostics, LLC Self-contained biological analysis
USRE48788E1 (en) * 2003-03-14 2021-10-26 Lawrence Livermore National Security, Llc Chemical amplification based on fluid partitioning
WO2022231612A1 (en) * 2021-04-30 2022-11-03 Hewlett-Packard Development Company, L.P. Pcr system
US11866774B2 (en) 2006-11-15 2024-01-09 Biofire Diagnostics, Llc High density self-contained biological analysis

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635226B1 (en) * 1994-10-19 2003-10-21 Agilent Technologies, Inc. Microanalytical device and use thereof for conducting chemical processes
US6048734A (en) 1995-09-15 2000-04-11 The Regents Of The University Of Michigan Thermal microvalves in a fluid flow method
US20110166040A1 (en) * 1997-09-05 2011-07-07 Ibis Biosciences, Inc. Compositions for use in identification of strains of e. coli o157:h7
US6303343B1 (en) 1999-04-06 2001-10-16 Caliper Technologies Corp. Inefficient fast PCR
US6605475B1 (en) * 1999-04-16 2003-08-12 Perspective Biosystems, Inc. Apparatus and method for sample delivery
FR2795426A1 (en) * 1999-06-22 2000-12-29 Commissariat Energie Atomique Support for genetic analysis comprising reservoir(s) for a medium to be analyzed connected by passage(s) having temperature control device(s) to a test strip with analysis sites having biological probes
WO2001007159A2 (en) * 1999-07-28 2001-02-01 Genset Integration of biochemical protocols in a continuous flow microfluidic device
FR2799139B1 (en) * 1999-10-01 2002-05-03 Genset Sa BIOCHEMICAL ANALYSIS DEVICE COMPRISING A MICROFLUIDIC SUBSTRATE, PARTICULARLY FOR THE AMPLIFICATION OR ANALYSIS OF NUCLEIC ACIDS.
FR2796863B1 (en) * 1999-07-28 2001-09-07 Commissariat Energie Atomique PROCESS AND DEVICE FOR CONDUCTING A HEAT TREATMENT PROTOCOL ON A SUBSTANCE IN CONTINUOUS FLOW
US6977145B2 (en) 1999-07-28 2005-12-20 Serono Genetics Institute S.A. Method for carrying out a biochemical protocol in continuous flow in a microreactor
EP1123739B1 (en) * 2000-02-11 2006-11-29 STMicroelectronics S.r.l. Integrated device for microfluid thermoregulation, and manufacturing process thereof
US20010042712A1 (en) * 2000-05-24 2001-11-22 Battrell C. Frederick Microfluidic concentration gradient loop
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
US7718354B2 (en) 2001-03-02 2010-05-18 Ibis Biosciences, Inc. Methods for rapid identification of pathogens in humans and animals
WO2004060278A2 (en) 2002-12-06 2004-07-22 Isis Pharmaceuticals, Inc. Methods for rapid identification of pathogens in humans and animals
US20040121313A1 (en) 2002-12-06 2004-06-24 Ecker David J. Methods for rapid detection and identification of bioagents in organs for transplantation
US7666588B2 (en) 2001-03-02 2010-02-23 Ibis Biosciences, Inc. Methods for rapid forensic analysis of mitochondrial DNA and characterization of mitochondrial DNA heteroplasmy
US20030027135A1 (en) 2001-03-02 2003-02-06 Ecker David J. Method for rapid detection and identification of bioagents
US7226739B2 (en) 2001-03-02 2007-06-05 Isis Pharmaceuticals, Inc Methods for rapid detection and identification of bioagents in epidemiological and forensic investigations
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US7010391B2 (en) 2001-03-28 2006-03-07 Handylab, Inc. Methods and systems for control of microfluidic devices
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6852287B2 (en) 2001-09-12 2005-02-08 Handylab, Inc. Microfluidic devices having a reduced number of input and output connections
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US8073627B2 (en) 2001-06-26 2011-12-06 Ibis Biosciences, Inc. System for indentification of pathogens
US7217510B2 (en) 2001-06-26 2007-05-15 Isis Pharmaceuticals, Inc. Methods for providing bacterial bioagent characterizing information
US20030032172A1 (en) * 2001-07-06 2003-02-13 The Regents Of The University Of California Automated nucleic acid assay system
WO2003006161A2 (en) * 2001-07-11 2003-01-23 Dongqing Li Microchannel thermal reactor
US6972173B2 (en) * 2002-03-14 2005-12-06 Intel Corporation Methods to increase nucleotide signals by raman scattering
US6852492B2 (en) * 2001-09-24 2005-02-08 Intel Corporation Nucleic acid sequencing by raman monitoring of uptake of precursors during molecular replication
US7238477B2 (en) * 2001-09-24 2007-07-03 Intel Corporation Methods to increase nucleotide signals by Raman scattering
KR100442836B1 (en) * 2001-11-10 2004-08-02 삼성전자주식회사 System and method for circulating biochemical fluidic solutions around closed two or more temperature zones of chambers
US20030116552A1 (en) 2001-12-20 2003-06-26 Stmicroelectronics Inc. Heating element for microfluidic and micromechanical applications
US6977162B2 (en) * 2002-03-01 2005-12-20 Ravgen, Inc. Rapid analysis of variations in a genome
NZ535045A (en) * 2002-03-01 2008-04-30 Ravgen Inc Rapid analysis of variations in a genome
US7179639B2 (en) * 2002-03-05 2007-02-20 Raveendran Pottathil Thermal strip thermocycler
US7476501B2 (en) * 2002-03-26 2009-01-13 Intel Corporation Methods and device for DNA sequencing using surface enhanced raman scattering (SERS)
US20040110208A1 (en) * 2002-03-26 2004-06-10 Selena Chan Methods and device for DNA sequencing using surface enhanced Raman scattering (SERS)
US20070178478A1 (en) * 2002-05-08 2007-08-02 Dhallan Ravinder S Methods for detection of genetic disorders
US7727720B2 (en) * 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US7442506B2 (en) * 2002-05-08 2008-10-28 Ravgen, Inc. Methods for detection of genetic disorders
WO2004038363A2 (en) * 2002-05-09 2004-05-06 The University Of Chicago Microfluidic device and method for pressure-driven plug transport and reaction
US7901939B2 (en) 2002-05-09 2011-03-08 University Of Chicago Method for performing crystallization and reactions in pressure-driven fluid plugs
US6952651B2 (en) * 2002-06-17 2005-10-04 Intel Corporation Methods and apparatus for nucleic acid sequencing by signal stretching and data integration
JP2006515672A (en) * 2002-12-20 2006-06-01 ノースイースタン・ユニバーシティ Precision control thermostat
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
GB0307428D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US20060078893A1 (en) * 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
JP2004305009A (en) * 2003-04-02 2004-11-04 Hitachi Ltd Apparatus for amplifying nucleic acid and method for amplifying nucleic acid
US8046171B2 (en) * 2003-04-18 2011-10-25 Ibis Biosciences, Inc. Methods and apparatus for genetic evaluation
US8057993B2 (en) 2003-04-26 2011-11-15 Ibis Biosciences, Inc. Methods for identification of coronaviruses
US7964343B2 (en) * 2003-05-13 2011-06-21 Ibis Biosciences, Inc. Method for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
US8158354B2 (en) 2003-05-13 2012-04-17 Ibis Biosciences, Inc. Methods for rapid purification of nucleic acids for subsequent analysis by mass spectrometry by solution capture
JP4758891B2 (en) * 2003-06-06 2011-08-31 マイクロニクス, インコーポレイテッド Systems and methods for heating, cooling and thermal cycling on microfluidic devices
US7648835B2 (en) * 2003-06-06 2010-01-19 Micronics, Inc. System and method for heating, cooling and heat cycling on microfluidic device
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
US20100035239A1 (en) * 2003-09-11 2010-02-11 Isis Pharmaceuticals, Inc. Compositions for use in identification of bacteria
US20100129811A1 (en) * 2003-09-11 2010-05-27 Ibis Biosciences, Inc. Compositions for use in identification of pseudomonas aeruginosa
US20120122103A1 (en) 2003-09-11 2012-05-17 Rangarajan Sampath Compositions for use in identification of bacteria
US20080138808A1 (en) * 2003-09-11 2008-06-12 Hall Thomas A Methods for identification of sepsis-causing bacteria
US8097416B2 (en) 2003-09-11 2012-01-17 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US8546082B2 (en) 2003-09-11 2013-10-01 Ibis Biosciences, Inc. Methods for identification of sepsis-causing bacteria
US20060240412A1 (en) * 2003-09-11 2006-10-26 Hall Thomas A Compositions for use in identification of adenoviruses
US20050280811A1 (en) * 2003-09-19 2005-12-22 Donald Sandell Grooved high density plate
US20050225751A1 (en) * 2003-09-19 2005-10-13 Donald Sandell Two-piece high density plate
US8163895B2 (en) 2003-12-05 2012-04-24 Ibis Biosciences, Inc. Compositions for use in identification of orthopoxviruses
US20050147980A1 (en) * 2003-12-30 2005-07-07 Intel Corporation Nucleic acid sequencing by Raman monitoring of uptake of nucleotides during molecular replication
US20050147979A1 (en) * 2003-12-30 2005-07-07 Intel Corporation Nucleic acid sequencing by Raman monitoring of uptake of nucleotides during molecular replication
US7666592B2 (en) * 2004-02-18 2010-02-23 Ibis Biosciences, Inc. Methods for concurrent identification and quantification of an unknown bioagent
EP2354256B1 (en) 2004-02-24 2019-04-10 Thermal Gradient Thermal cycling device
US8043849B2 (en) * 2004-02-24 2011-10-25 Thermal Gradient Thermal cycling device
US8119336B2 (en) * 2004-03-03 2012-02-21 Ibis Biosciences, Inc. Compositions for use in identification of alphaviruses
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
WO2005108620A2 (en) 2004-05-03 2005-11-17 Handylab, Inc. Processing polynucleotide-containing samples
TW200538548A (en) * 2004-05-17 2005-12-01 Univ Nat Cheng Kung The method of biological and/or chemical reaction to fast reach thermally-equilibrium
DE102004025538A1 (en) * 2004-05-25 2005-12-22 Advalytix Ag Temperature control method and apparatus for the temperature treatment of small quantities of liquid
EP2458619B1 (en) * 2004-05-24 2017-08-02 Ibis Biosciences, Inc. Mass spectrometry with selective ion filtration by digital thresholding
US20050266411A1 (en) * 2004-05-25 2005-12-01 Hofstadler Steven A Methods for rapid forensic analysis of mitochondrial DNA
US9477233B2 (en) * 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
US7811753B2 (en) 2004-07-14 2010-10-12 Ibis Biosciences, Inc. Methods for repairing degraded DNA
WO2006024167A1 (en) * 2004-08-31 2006-03-09 Total Synthesis Ltd. Method and apparatus for performing micro-scale chemical reactions
US7968287B2 (en) * 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US7398015B2 (en) * 2004-12-10 2008-07-08 Electronics And Telecommunications Research Institute Apparatus for controlling fluid-heating using polymer disk
EP1836319B1 (en) * 2005-01-06 2012-09-19 Life Technologies Corporation Polypeptides having nucleic acid binding activity and methods for nucleic acid amplification
PL1859330T3 (en) 2005-01-28 2013-01-31 Univ Duke Apparatuses and methods for manipulating droplets on a printed circuit board
US8084207B2 (en) * 2005-03-03 2011-12-27 Ibis Bioscience, Inc. Compositions for use in identification of papillomavirus
CA2600184A1 (en) * 2005-03-03 2006-09-08 Isis Pharmaceuticals, Inc. Compositions for use in identification of adventitious viruses
JP2008539759A (en) 2005-05-11 2008-11-20 ナノリティックス・インコーポレイテッド Method and apparatus for performing biochemical or chemical reactions at multiple temperatures
US8026084B2 (en) * 2005-07-21 2011-09-27 Ibis Biosciences, Inc. Methods for rapid identification and quantitation of nucleic acid variants
US20070059713A1 (en) * 2005-09-09 2007-03-15 Lee Jun E SSB-DNA polymerase fusion proteins
US20090155894A1 (en) * 2005-10-17 2009-06-18 Soper Steven A Electrokinetic Thermal Cycler and Reactor
EP2364774A3 (en) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Microfluidic Devices And Methods Of Use In The Formation And Control Of Nanoreactors
WO2007084568A2 (en) 2006-01-17 2007-07-26 Health Research, Inc. Heteroduplex tracking assay
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
EP2001990B1 (en) 2006-03-24 2016-06-29 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US8088616B2 (en) * 2006-03-24 2012-01-03 Handylab, Inc. Heater unit for microfluidic diagnostic system
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
EP2759307B1 (en) 2006-03-29 2016-11-09 Merial Limited Vaccine against Streptococci
WO2007118222A2 (en) 2006-04-06 2007-10-18 Ibis Biosciences, INC Compositions for the use in identification of fungi
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US20140193807A1 (en) 2006-04-18 2014-07-10 Advanced Liquid Logic, Inc. Bead manipulation techniques
US8980198B2 (en) * 2006-04-18 2015-03-17 Advanced Liquid Logic, Inc. Filler fluids for droplet operations
US8389297B2 (en) 2006-04-18 2013-03-05 Duke University Droplet-based affinity assay device and system
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US8809068B2 (en) 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
WO2007123908A2 (en) 2006-04-18 2007-11-01 Advanced Liquid Logic, Inc. Droplet-based multiwell operations
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
WO2009111769A2 (en) 2008-03-07 2009-09-11 Advanced Liquid Logic, Inc. Reagent and sample preparation and loading on a fluidic device
US20080014589A1 (en) 2006-05-11 2008-01-17 Link Darren R Microfluidic devices and methods of use thereof
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US7641860B2 (en) 2006-06-01 2010-01-05 Nanotek, Llc Modular and reconfigurable multi-stage microreactor cartridge apparatus
US7998418B1 (en) 2006-06-01 2011-08-16 Nanotek, Llc Evaporator and concentrator in reactor and loading system
EP2077912B1 (en) 2006-08-07 2019-03-27 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
US7854902B2 (en) * 2006-08-23 2010-12-21 Nanotek, Llc Modular and reconfigurable multi-stage high temperature microreactor cartridge apparatus and system for using same
US7939312B2 (en) * 2006-08-30 2011-05-10 Dxna Llc Rapid thermocycler with movable cooling assembly
US9149473B2 (en) * 2006-09-14 2015-10-06 Ibis Biosciences, Inc. Targeted whole genome amplification method for identification of pathogens
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
WO2008060604A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US20100078077A1 (en) * 2006-12-19 2010-04-01 Ismagilov Rustem F Spacers for Microfluidic Channels
US8772046B2 (en) 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
CA2712863C (en) 2007-02-09 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
WO2008104002A2 (en) * 2007-02-23 2008-08-28 Ibis Biosciences, Inc. Methods for rapid forensic dna analysis
WO2011084703A2 (en) 2009-12-21 2011-07-14 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
WO2008118808A1 (en) 2007-03-23 2008-10-02 Advion Bioscience, Inc. Liquid chromatography-mass spectrometry
ES2797951T3 (en) 2007-04-04 2020-12-04 Ande Corp Integrated nucleic acid analysis
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
WO2009023358A2 (en) * 2007-05-25 2009-02-19 Ibis Biosciences, Inc. Compositions for use in identification of strains of hepatitis c virus
WO2008151023A2 (en) 2007-06-01 2008-12-11 Ibis Biosciences, Inc. Methods and compositions for multiple displacement amplification of nucleic acids
US20110045456A1 (en) * 2007-06-14 2011-02-24 Ibis Biosciences, Inc. Compositions for use in identification of adventitious contaminant viruses
US9458451B2 (en) 2007-06-21 2016-10-04 Gen-Probe Incorporated Multi-channel optical measurement instrument
US8951732B2 (en) * 2007-06-22 2015-02-10 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
EP3741869A1 (en) 2007-07-13 2020-11-25 Handylab, Inc. Polynucleotide capture materials and methods of using same
US9618139B2 (en) 2007-07-13 2017-04-11 Handylab, Inc. Integrated heater and magnetic separator
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US8133671B2 (en) 2007-07-13 2012-03-13 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
USD621060S1 (en) 2008-07-14 2010-08-03 Handylab, Inc. Microfluidic cartridge
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
WO2009015390A2 (en) * 2007-07-26 2009-01-29 University Of Chicago Co-incuating confined microbial communities
EP2171420A1 (en) * 2007-07-31 2010-04-07 Micronics, Inc. Sanitary swab collection system, microfluidic assay device, and methods for diagnostic assays
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
JP5462183B2 (en) 2007-12-23 2014-04-02 アドヴァンスト リキッド ロジック インコーポレイテッド Droplet actuator configuration and method for directing droplet motion
US20110097704A1 (en) * 2008-01-29 2011-04-28 Ibis Biosciences, Inc. Compositions for use in identification of picornaviruses
WO2009137415A2 (en) 2008-05-03 2009-11-12 Advanced Liquid Logic, Inc. Reagent and sample preparation, loading, and storage
ES2438989T3 (en) * 2008-05-13 2014-01-21 Advanced Liquid Logic, Inc. Devices, systems and droplet actuator methods
US20110097763A1 (en) * 2008-05-13 2011-04-28 Advanced Liquid Logic, Inc. Thermal Cycling Method
WO2009151982A1 (en) * 2008-05-30 2009-12-17 Ibis Biosciences, Inc. Compositions for use in identification of francisella
WO2009155103A2 (en) * 2008-05-30 2009-12-23 Ibis Biosciences, Inc. Compositions for use in identification of tick-borne pathogens
US20110151437A1 (en) * 2008-06-02 2011-06-23 Ibis Biosciences, Inc. Compositions for use in identification of adventitious viruses
WO2009149257A1 (en) * 2008-06-04 2009-12-10 The University Of Chicago The chemistrode: a plug-based microfluidic device and method for stimulation and sampling with high temporal, spatial, and chemical resolution
USD618820S1 (en) 2008-07-11 2010-06-29 Handylab, Inc. Reagent holder
USD787087S1 (en) 2008-07-14 2017-05-16 Handylab, Inc. Housing
EP2315629B1 (en) 2008-07-18 2021-12-15 Bio-Rad Laboratories, Inc. Droplet libraries
US8148163B2 (en) 2008-09-16 2012-04-03 Ibis Biosciences, Inc. Sample processing units, systems, and related methods
US8534447B2 (en) 2008-09-16 2013-09-17 Ibis Biosciences, Inc. Microplate handling systems and related computer program products and methods
EP2349549B1 (en) 2008-09-16 2012-07-18 Ibis Biosciences, Inc. Mixing cartridges, mixing stations, and related kits, and system
US20110200985A1 (en) * 2008-10-02 2011-08-18 Rangarajan Sampath Compositions for use in identification of herpesviruses
US20110189687A1 (en) * 2008-10-02 2011-08-04 Ibis Bioscience, Inc. Compositions for use in identification of members of the bacterial genus mycoplasma
WO2010039848A2 (en) * 2008-10-03 2010-04-08 Ibis Biosciences, Inc. Compositions for use in identification of streptococcus pneumoniae
US20110183343A1 (en) * 2008-10-03 2011-07-28 Rangarajan Sampath Compositions for use in identification of members of the bacterial class alphaproteobacter
WO2010039870A1 (en) * 2008-10-03 2010-04-08 Ibis Biosciences, Inc. Compositions for use in identification of neisseria, chlamydia, and/or chlamydophila bacteria
WO2010039787A1 (en) * 2008-10-03 2010-04-08 Ibis Biosciences, Inc. Compositions for use in identification of clostridium difficile
US20110190170A1 (en) * 2008-10-03 2011-08-04 Ibis Biosciences, Inc. Compositions for use in identification of antibiotic-resistant bacteria
WO2010093943A1 (en) 2009-02-12 2010-08-19 Ibis Biosciences, Inc. Ionization probe assemblies
WO2010104798A1 (en) 2009-03-08 2010-09-16 Ibis Biosciences, Inc. Bioagent detection methods
EP2411148B1 (en) 2009-03-23 2018-02-21 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US9447461B2 (en) 2009-03-24 2016-09-20 California Institute Of Technology Analysis devices, kits, and related methods for digital quantification of nucleic acids and other analytes
US9464319B2 (en) 2009-03-24 2016-10-11 California Institute Of Technology Multivolume devices, kits and related methods for quantification of nucleic acids and other analytes
AU2010229490B2 (en) 2009-03-24 2015-02-12 University Of Chicago Slip chip device and methods
US10196700B2 (en) 2009-03-24 2019-02-05 University Of Chicago Multivolume devices, kits and related methods for quantification and detection of nucleic acids and other analytes
US9393564B2 (en) 2009-03-30 2016-07-19 Ibis Biosciences, Inc. Bioagent detection systems, devices, and methods
JP2012529908A (en) 2009-06-15 2012-11-29 ネットバイオ・インコーポレーテッド Improved method for quantification of forensic DNA
EP2454000A4 (en) 2009-07-17 2016-08-10 Ibis Biosciences Inc Systems for bioagent identification
US8950604B2 (en) * 2009-07-17 2015-02-10 Ibis Biosciences, Inc. Lift and mount apparatus
WO2011014811A1 (en) 2009-07-31 2011-02-03 Ibis Biosciences, Inc. Capture primers and capture sequence linked solid supports for molecular diagnostic tests
WO2011017656A2 (en) 2009-08-06 2011-02-10 Ibis Biosciences, Inc. Non-mass determined base compositions for nucleic acid detection
US8926065B2 (en) 2009-08-14 2015-01-06 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US20110065111A1 (en) * 2009-08-31 2011-03-17 Ibis Biosciences, Inc. Compositions For Use In Genotyping Of Klebsiella Pneumoniae
WO2011041695A1 (en) * 2009-10-02 2011-04-07 Ibis Biosciences, Inc. Determination of methylation status of polynucleotides
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
ES2628739T3 (en) * 2009-10-15 2017-08-03 Ibis Biosciences, Inc. Multiple displacement amplification
WO2011057197A2 (en) 2009-11-06 2011-05-12 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel electrophoresis and molecular analysis
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
EP2353716A1 (en) 2010-02-05 2011-08-10 Ludwig-Maximilians-Universität München Method and apparatus for amplifying nucleic acid sequences
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
CA2789425C (en) 2010-02-12 2020-04-28 Raindance Technologies, Inc. Digital analyte analysis with polymerase error correction
WO2011115840A2 (en) * 2010-03-14 2011-09-22 Ibis Biosciences, Inc. Parasite detection via endosymbiont detection
US8795592B2 (en) 2010-09-23 2014-08-05 Analogic Corporation Sample thermal cycling
EP3447155A1 (en) 2010-09-30 2019-02-27 Raindance Technologies, Inc. Sandwich assays in droplets
US8945843B2 (en) 2010-12-09 2015-02-03 Analogic Corporation Thermocooler with thermal breaks that thermally isolate a thermocycling region from at least one guard heat region
WO2012109600A2 (en) 2011-02-11 2012-08-16 Raindance Technologies, Inc. Methods for forming mixed droplets
EP3736281A1 (en) 2011-02-18 2020-11-11 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
CA2833262C (en) 2011-04-15 2020-08-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
CA2833897C (en) 2011-05-09 2020-05-19 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
CA2840949A1 (en) 2011-07-06 2013-01-10 Advanced Liquid Logic Inc Reagent storage on a droplet actuator
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
WO2013016413A2 (en) 2011-07-25 2013-01-31 Advanced Liquid Logic Inc Droplet actuator apparatus and system
WO2013027393A1 (en) * 2011-08-22 2013-02-28 パナソニック株式会社 Micro fluid device
KR102121853B1 (en) 2011-09-30 2020-06-12 벡톤 디킨슨 앤드 컴퍼니 Unitized reagent strip
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
CN104040238B (en) 2011-11-04 2017-06-27 汉迪拉布公司 Polynucleotides sample preparation apparatus
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
CA2863637C (en) 2012-02-03 2021-10-26 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10273532B2 (en) 2012-03-09 2019-04-30 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification method
WO2014004908A1 (en) 2012-06-27 2014-01-03 Advanced Liquid Logic Inc. Techniques and droplet actuator designs for reducing bubble formation
WO2015019520A1 (en) * 2013-08-08 2015-02-12 パナソニック株式会社 Microfluidic device
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US10519493B2 (en) 2015-06-22 2019-12-31 Fluxergy, Llc Apparatus and method for image analysis of a fluid sample undergoing a polymerase chain reaction (PCR)
WO2016209734A1 (en) 2015-06-22 2016-12-29 Fluxergy, Llc Device for analyzing a fluid sample and use of test card with same
US10214772B2 (en) 2015-06-22 2019-02-26 Fluxergy, Llc Test card for assay and method of manufacturing same
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
WO2017119902A1 (en) 2016-01-08 2017-07-13 Hewlett-Packard Development Company, L.P. Polymerase chain reaction device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120662A (en) * 1989-05-09 1992-06-09 Abbott Laboratories Multilayer solid phase immunoassay support and method of use
GB8917963D0 (en) * 1989-08-05 1989-09-20 Scras Apparatus for repeated automatic execution of a thermal cycle for treatment of biological samples
FR2672231A1 (en) 1991-02-01 1992-08-07 Eibet Apparatus for repeated automatic execution of a heat cycle, especially for the amplification of the number of a defined nucleic acid sequence
US5270183A (en) 1991-02-08 1993-12-14 Beckman Research Institute Of The City Of Hope Device and method for the automated cycling of solutions between two or more temperatures
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
EP0636413B1 (en) * 1993-07-28 2001-11-14 PE Corporation (NY) Nucleic acid amplification reaction apparatus and method
US5849208A (en) * 1995-09-07 1998-12-15 Microfab Technoologies, Inc. Making apparatus for conducting biochemical analyses

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7544932B2 (en) 2002-10-21 2009-06-09 The United States Of America, As Represented By The Secretary, Of The Department Of Health And Human Services Contiguous capillary electrospray sources and analytical devices
US20060057556A1 (en) * 2002-10-21 2006-03-16 The Government Of The United States Of America Department Of Health And Human Services Contiguous capillary electrospray sources and analytical devices
USRE48788E1 (en) * 2003-03-14 2021-10-26 Lawrence Livermore National Security, Llc Chemical amplification based on fluid partitioning
EP3714979A1 (en) * 2005-05-09 2020-09-30 BioFire Diagnostics, LLC Self-contained biological analysis
US11707741B2 (en) 2005-05-09 2023-07-25 Biofire Diagnostics, Llc Self-contained biological analysis
US11866774B2 (en) 2006-11-15 2024-01-09 Biofire Diagnostics, Llc High density self-contained biological analysis
WO2011106724A3 (en) * 2010-02-26 2012-03-01 Life Technologies Corporation Fast pcr for str genotyping
US10519491B2 (en) 2010-02-26 2019-12-31 Life Technologies Corporation Fast PCR for STR genotyping
US8580505B2 (en) 2010-02-26 2013-11-12 Life Technologies Corporation Fast PCR for STR genotyping
US11466315B2 (en) 2010-02-26 2022-10-11 Life Technologies Corporation Fast PCR for STR genotyping
US20110212446A1 (en) * 2010-02-26 2011-09-01 Life Technologies Corporation Fast pcr for str genotyping
US9816131B2 (en) 2010-08-02 2017-11-14 Dxna Llc Pressurizable cartridge for polymerase chain reactions
WO2012018741A3 (en) * 2010-08-02 2012-04-26 Weight Brent L Pressurizable cartridge for polymerase chain reactions
WO2012018741A2 (en) * 2010-08-02 2012-02-09 Weight Brent L Pressurizable cartridge for polymerase chain reactions
CN106268993A (en) * 2016-08-31 2017-01-04 上海快灵生物科技有限公司 A kind of differential temperature reaction chip and temperature-conditioned metal bath
CN111500406A (en) * 2020-04-20 2020-08-07 哈尔滨工业大学 Microfluidic PCR chip
WO2022231612A1 (en) * 2021-04-30 2022-11-03 Hewlett-Packard Development Company, L.P. Pcr system

Also Published As

Publication number Publication date
GB2325464B (en) 2001-09-26
DE19717085C2 (en) 1999-06-17
GB2325464A (en) 1998-11-25
US6180372B1 (en) 2001-01-30
US6428987B2 (en) 2002-08-06
GB9808440D0 (en) 1998-06-17
DE19717085A1 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US6428987B2 (en) Devices for fast DNA replication by polymerase chain reactions (PCR)
US6303298B1 (en) Two-step method of DNA amplification for MALDI-TOF measurement
Lagally et al. Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis
GB2336206A (en) Method of enzymatic replication of genetic material in preparation for mass spectrometric analysis
US6589735B1 (en) Simple SNP analysis using mass spectrometry
Schneegaß et al. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler
US6132580A (en) Miniature reaction chamber and devices incorporating same
JP5368321B2 (en) QPCR using solid phase pH detection
Wells et al. Studies on polynucleotides: L. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: A new double-stranded DNA-like polymer containing repeating dinucleotide sequences
US7537917B2 (en) Microwave assisted PCR amplification of DNA
EP1878503A1 (en) Temperature sensor element for monitoring heating and cooling
US20010046701A1 (en) Nucleic acid amplification and detection using microfluidic diffusion based structures
US20170253912A1 (en) Diagnostic and sample preparation devices and methods
JP2010535502A (en) Integrated microfluidic device for gene synthesis
WO2007078833A2 (en) Reusable pcr amplification system and method
JP2002513917A (en) Infrared matrix assisted laser desorption / ionization mass spectrometry of polymers
US20140187429A1 (en) Apparatus and Method for Specific Release of Captured Extension Products
WO2002060584A2 (en) Method for carrying out a biochemical protocol in continuous flow in a microreactor
AU2002244899A1 (en) Method for carrying out a biochemical protocol in continuous flow in a microreactor
US5795720A (en) Process and device for the separation and detection of components of a mixture of materials by temperature gradient gel electrophoresis
JPH05503351A (en) Method and device for separating and detecting mixture components by temperature gradient gel electrophoresis
JPH09510353A (en) Methods for processing nucleic acids
EP1960540A1 (en) Monitoring real-time pcr with label free intrinsic imaging
US20090227476A1 (en) Amplification and microarray detection apparatus and methods of making
KR100571822B1 (en) Micro PCR device, method for amplifying a nucleic acid and method for measuring concentration of PCR product using the same

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100806