US20010004062A1 - Cap-based system for removing water from hydrocarbon fuels - Google Patents

Cap-based system for removing water from hydrocarbon fuels Download PDF

Info

Publication number
US20010004062A1
US20010004062A1 US09/748,443 US74844300A US2001004062A1 US 20010004062 A1 US20010004062 A1 US 20010004062A1 US 74844300 A US74844300 A US 74844300A US 2001004062 A1 US2001004062 A1 US 2001004062A1
Authority
US
United States
Prior art keywords
filter
support body
conduit
tank
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/748,443
Other versions
US6357602B2 (en
Inventor
Dwight Rutledge
Linda Rutledge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/748,443 priority Critical patent/US6357602B2/en
Publication of US20010004062A1 publication Critical patent/US20010004062A1/en
Application granted granted Critical
Publication of US6357602B2 publication Critical patent/US6357602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • B01D36/003Filters in combination with devices for the removal of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/10Thickening liquid suspensions by filtration with stationary filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • B01D35/027Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks rigidly mounted in or on tanks or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/05Coalescer

Definitions

  • This invention relates to a system for removing water, including free and emulsified water and numerous contaminants, from hydrocarbon fuels and is particularly designed for use with personal, household, consumer and domestic devices.
  • water collects in fuel storage tanks. Water collects in both the fuel tank of the device and separate storage tanks.
  • One object of this invention is to provide simple, practical systems for use by consumers and home owners to significantly remove free water, emulsified water and numerous contaminants from fuel prior to its injection into the engines of personal, domestic, household and consumer devices.
  • Super-absorbent, hydrophilic, oleophobic substances are known. These super absorbers are capable of removing free water as well as emulsified water and numerous contaminants from hydrocarbons. Generally, the super-absorbent substances themselves first subsist in a granular form. They may be further ground to a powder. Super-absorbent substances may be pressed, heated or combined, usually with other polymers, in some fashion into a substrate, as well as possibly laminated onto a substrate or media such as filter paper. Generally, the super-absorbent substances require binding with some medium or media in order to form practically useful filters. “Binding” could include simply being enclosed in a filter bag. Such enclosure means is intended to be regarded herein as an alternative way of binding to a medium.
  • a support body or means is used to locate and hold the filter strategically in a fuel tank or a fuel conduit used for personal, household, consumer and domestic devices.
  • a porous support body may hold a filter across a conduit such that flow of fluid through the conduit is funneled through the filter.
  • a support body might carry a filter to a bottom of a hydrocarbon storage tank where it could absorb free water that had dropped out of emulsified fuel to the bottom of the tank during periods of storage of fuel. If free water in fuel is not removed, free water may become emulsified due to movements (even vibrations).
  • a support body might adjustably hold the filter vertically in the storage tank, thereby providing filter portions that occupy several horizontal levels, including a lower free-water level and higher emulsified-water levels.
  • a tank in which a filter is inserted could be either a storage tank or a tank of a device itself.
  • the support body for the filter could be built, in whole or in part, into the conduit or into the tank. Alternatively, the support body could be partially or totally removable from a conduit or a tank. The support body could be partially or totally attachable to the filter. The support body and the filter could be designed to be reused or discarded, in whole or in part.
  • U.S. Pat. No. 4,618,388 to Ayers discloses a filter and filter media for use in a filter.
  • the type of filter disclosed in the patent is an industrial-scale filter.
  • PetroClear filters which are a technological product of Champion Laboratories, Inc., are one such type of industrial filters.
  • Womack U.S. Pat. No. 2,266,350, also discloses a water filter and filter media for use with fuels. However, Womack does not teach super-absorbent, hydrophilic, oleophobic filters and Womack does not teach binding a filter securely to a medium.
  • FIG. 1 illustrates schematically a hydrocarbon storage and transfer system that provides opportunities for the use of the instant invention.
  • FIG. 2A illustrates one embodiment of the invention in a hydrocarbon storage tank.
  • FIGS. 2B, 2C, 2 D and 2 E illustrate further variations of an embodiment of the invention for use with a hydrocarbon storage tank.
  • FIGS. 3A and 3B represent variations of the invention for use with a funnel conduit.
  • FIGS. 4A and 4B represent a variation of the invention for use with a cap on a storage tank.
  • FIG. 5 represents an embodiment of the invention for deployment at a bottom of a storage tank.
  • FIG. 6A and 6B represent variations of the invention for use with spouts.
  • FIG. 1 schematically illustrates roles for the instant invention in solving the problem of dewatering and particulate removal from fuel in the personal, consumer, household and domestic context.
  • FIG. 1 illustrates an industrial storage tank D for fuel.
  • Industrial storage tank D could be a gas pool.
  • Fuel could be delivered via conduit I from industrial storage tank D to a consumer storage tank A.
  • Consumer storage tank A would likely be, without being limited to, a 1-gallon or a 5-gallon can.
  • fuel could be delivered by conduit G from industrial storage tank D directly to a device fuel tank B.
  • Fuel from consumer storage tank A is illustrated as delivered by conduit C to device fuel tank B.
  • Fuel from device fuel tank B is used in an associated device engine E.
  • the term “within a conduit” is used to indicate within a flow path of a conduit. Generally, “within a conduit” would be most likely inside a conduit. The phrase, however, is intended to include at ends of a conduit or on a conduit, or being between two sections of a conduit, or being attached to a conduit such that flow is diverted therethrough.
  • the phrase “bound with the medium to prevent separation” is intended to indicate being bound in a manner wherein the super-absorbent material is not easily or inadvertently separated from the binding medium during use, including during removal or replacement, and even during inadvertent misuse such as the placement of a filter backwards in or onto a support body or the flowing of fluid reversely through a conduit.
  • a conduit used from time to time for delivering fuel indicates that a conduit is not an industrial or commercial conduit used relatively continuously for delivering fuel, such as a commercial gas dispensing pump.
  • tank is intended to include any container for holding fuel or any other fluid.
  • the present invention is predominately concerned with removing water and particulate contaminants from fuel while in consumer storage tank A, upon transfer from consumer storage tank A to device fuel tank B in conduit C and while in device fuel tank B.
  • the need for use of the invention with conduits I or G is less acute since industrial storage tank D may have its own filtering system.
  • Locations W 1 , W 2 and W 3 indicate prime locations within schematically illustrated conduit C where system 10 may advantageously be placed to remove emulsified and free water and particulate contaminants during a transfer of fuel from tank A to tank B. (Please refer to FIG. 1.)
  • Prime location(s) in regard to transfers via conduit G from tank D to tank B are locations W 2 and W 3 , and via conduit I from tank D to tank A is location W 1 .
  • Filters F could be positioned variously at locations W 1 , W 2 and/or W 3 , and/or anywhere between the general orifice area of location W 1 of tank A and the general orifice area of location W 3 of tank B.
  • the locations W 1 , W 2 and W 3 include the length of whatever conduit mechanisms SF that are used to transfer fuel from tank A to tank B.
  • Conduit mechanism SF can include a funnel or a spout or both a spout and a funnel (with either version indicated as “SF”).
  • Conduit C for example, is regarded as including, without being limited to, the outlet of tank A, the inlet of tank B and conduit mechanism SF, for convenience's sake.
  • Water can exist in two forms in tank A and tank B. It can exist as free water, which has dropped out of emulsified fuel to a bottom of tanks A and B, and/or as emulsified water, which is distributed throughout the fuel in tanks A and B. Numerous embodiments of a system 10 , that are used for removing free water and/or emulsified water in tanks A and B, are presented here. A method of operation of some embodiments of the system 10 is also provided. In one preferred embodiment, system 10 is designed to be inside and to reside on the bottom of tanks A and B when used for absorption of free water. (Please refer to FIG.
  • Sinking system 10 seeks the bottom of tanks A and B in order to access the heaviest concentration of free water.
  • Sinking system 10 comprises a support body SB structured to hold filter F and a weighted unit W.
  • Weighted united W may be a separate entity that is connected to or contained within support body SB or support body SB may serve as weighted unit W.
  • filter F is contained with, in or within support body SB.
  • Support body SB is suitably weighted by weighted unit (shown in FIG. 5) which carries itself and filter F to the bottom of tanks A and B.
  • Sinking system 10 is particularly designed for use in device fuel tank B where fuel may sit for long periods of time, such as in yachts or boats.
  • Sinking system 10 is designed to be inserted through orifice O of tank T and to descend down to the lowermost level of tank T (as shown in FIG. 2A).
  • support body SB is a porous ball comprised of two hemispherical portions that open and shut, as at seam 14 .
  • Filter F that may be optionally bound with a medium, is placed inside of support body SB.
  • the structure of support body SB should be porous in some fashion to permit fluid to enter into and exit out of support body SB via the structure.
  • the structure of support body SB could be no more than a means for attaching, enclosing or serving as weighted unit W.
  • support body SB would be spherical and include walls that can be opened and closed such that filter F may be removed and replaced without having to replace the structure of support body SB. Alternatively, however, part or all of the structure of support body SB and filter F can be discarded and replaced when filter F becomes filled with water.
  • support body SB or weighted unit W is preferably attached to a line L and a handling means H for retaining a portion of line L accessible.
  • Said handling means H is preferably, but not limited to, a handle for retrieval purposes.
  • Line L connects handling means H to support body SB and/or to weighted unit W.
  • Handling means H is sized large enough to prevent passing of handling means H through tank orifice O and into tank T.
  • support body SB is spherical to facilitate descending of support body SB to lowest level of tank T.
  • support body SB can be dropped into tank T and allowed to sink to the lowermost level of tank T. At such level, filter F inside of support body SB will absorb free water that has dropped out of emulsified fuel to the bottom of tank T during long periods of non-use.
  • filter F it should be understood that in many cases when the removal and replacement of filter F is discussed, it may be possible to dry out and reuse the same filter F. Drying out and reusing filter F may be one way to replace filter F. In any embodiment that includes binding of a super-absorbent, hydrophilic, oleophobic substance with a medium, preferably a bag medium, in a removing and replacing step, the bag medium for the super-absorbent substance could actually be retained while its contents are discarded and replaced.
  • FIGS. 2 A- 2 E illustrate an embodiment of the present invention that utilizes system 10 inserted into tank T.
  • Tank T may be either a device fuel tank B itself, as in FIG. 2A, or a consumer storage tank A as illustrated in FIG. 2C.
  • System 10 may either be a special purpose device, as illustrated in FIGS. 2 A- 2 C, or an adaptation of existing spouts sold with gasoline tanks as illustrated in FIG. 2D and FIG. 2E.
  • support body SB is porous and is designed to hold filter F, as illustrated.
  • System 10 is adapted at its top to be held by various means at tank orifice O, perhaps with the help of tank cap CP. (Please refer to FIGS.
  • System 10 may incorporate a screw fit to screw inside of orifice O against a matching set of screw channels of tank T.
  • System 10 might include a flange that fits over orifice O and under cap CP.
  • Support body SB of system 10 of the embodiment of FIG. 2A includes an element Y and an element Z.
  • Support body SB is preferably structured to be long enough, and preferably with its length adjustable, so as to enable filter F to reach to the bottom of tank T.
  • Element Y is designed to reside on the bottom of tanks A and B for the removal of free water.
  • Element Y may be potentially attachable to, or form a continuous part of, element Z which can further remove emulsified water at higher levels in tanks A and B.
  • FIG. 2C system 10 is much the same as system 10 in FIG. 2A.
  • FIG. 2B illustrates another embodiment of system 10 .
  • support body SB comprises a screen S.
  • Filter F of FIG. 2B is designed to fit inside of support body SB.
  • Support body SB and filter F are further designed to be cut off by the consumer, as at level 12 , in order that support body SB will reach to the bottom of and yet still fit inside of whatever tank T is desired.
  • system 10 has an attachment means 16 at its top for attaching to an orifice O of tank T, much as described in regard to FIG. 2A.
  • FIGS. 2D and 2E illustrate two conduit-type or funnel-type systems 10 that are currently incorporated into fuel storage tanks.
  • a lower tube 28 telescopes inside of a larger diameter tube 30 .
  • element Y of lower tube 28 would be adapted to receive filter F.
  • lower tube 28 could be telescoped down to the bottom of tank T to carry filter F to the bottom.
  • Filter F is then positioned to absorb free water in tank T while tank T is standing.
  • System 10 of FIG. 2D is stored inside of tank T until it is time to pour fuel from tank T. At such time, system 10 is pulled out of tank T and attached onto orifice O of tank T to serve as a spout SF.
  • a screen S might be provided, fixedly or removably, near the attachment points of system 10 to orifice O of tank T.
  • Filter F could be provided to fit on top of screen S such that as fluid is poured from tank T through orifice O, the fuel would flow through filter F and then through screen S and thence through system 10 .
  • system 10 consists of a flexible, accordion-pleated conduit in order to have its length adjusted.
  • element Y of system 10 can be located adjacent to the bottom of tank T.
  • Filter F can be designed to fit into element Y of system 10 during storage. Filter F could then be situated to absorb free water sinking to bottom of tank T during storage.
  • system 10 of FIG. 2E is removed from tank T and attached to or to the outside of orifice O of tank T.
  • screen S may be provided, likely near the attachment of system 10 with orifice O of tank T, and filter F may be provided to fit snugly on top of screen S, such that fluid poured from tank T would be funneled through filter F before exiting system 10 .
  • FIGS. 3A and 3B illustrate funnel SF containing filter F.
  • Screen S may be either permanently or removably attached to or may be a part of funnel SF.
  • Filter F illustrated in FIG. 3A is designed to fit inside, whether within or against or apart from screen S in each case.
  • filter F may be shaped into a cone configuration by the user and the tip may be folded up, in order to allow filter F to fit securely and snugly within funnel SF and, if screen S is used, above screen S.
  • FIGS. 4A and 4B illustrate tank T having a cap CP at orifice O and a cap insert 26 .
  • Cap insert 26 (serving as system 10 ) contains filter F, screen S, and, possibly, a tubular element 18 below screen S.
  • a lower cavity 22 extends below screen S if tubular element 18 is included and an upper cavity 20 is above screen S.
  • filter F may be positioned in lower cavity 22 or in upper cavity 20 (as shown in FIG. 4B) or both.
  • cap insert 26 (whose tubular length may be shorter than illustrated and/or may be porous) fits inside of tank T and is attached to tank orifice O. When it is time to pour fuel from tank T, filter F is inserted, either in upper cavity 20 or lower cavity 22 .
  • tubular element 18 of cap insert 26 should be porous. However, if filter F is positioned above screen S, either no tubular element 18 or a non-porous tubular element 18 may be used. If filter F is inserted in upper cavity 20 , then element 18 would be removed from orifice O and inverted prior to pouring from tank T. Filter F could be secured by being trapped between screen S and the rim of orifice O of tank T.
  • System 10 referred to as cap insert 26 in FIGS. 4A and 4B, is not limited to being placed in cap CP and can be positioned anywhere in spout SF presented in FIG. 1.
  • cap insert 26 When positioned inside spout SF, use of tubular element 18 is optional as well. If no tubular element 18 is used, a balancing axial element (not shown in figures) that extends above and below screen S may be used in order to maximize stability and balance of system 10 .
  • FIGS. 6A and 6B Another embodiment of system 10 is illustrated in FIGS. 6A and 6B wherein system 10 is one-size-fits-all.
  • One-size-fits-all system 10 can be connected to spouts SF of various sizes and shapes.
  • spout SF has an extendable accordion-like body (said version being manufactured by Wedco, Inc.).
  • One-size-fits-all system 10 comprises a larger diameter tube 30 , an upper tube 34 and a lower tube 32 .
  • Larger diameter tube 30 contains water-removing filter F.
  • Upper tube 34 extends from or is connected to top of larger diameter tube 30 and is preferably elastic.
  • Upper tube 34 is surrounded by a hose clamp 36 that tightens and expands, automatically or adjustably, for secure fit around the surrounded portion of upper tube 34 .
  • Upper tube 34 preferably consists of soft plastic material that can be slipped over spouts SF of various sizes. Thereby, a portion of spout SF from tank T (not shown) can be easily inserted into upper tube 34 and hose clamp 36 is then tightened to prevent movement of spout SF within upper tube 34 .
  • Hose clamp 36 preferably consists of metal in order to minimize any changes in size and form of upper tube 34 after the surrounded portion of spout SF is inserted into upper tube 34 and hose clamp 36 is tightened.
  • Lower tube 32 is positioned below filter F and serves as a conduit for discharge of filtered fuel.
  • Lower tube 32 extends from or is connected to bottom of larger diameter tube 30 . If lower tube 32 is removable, after removing and before repositioning lower tube 32 , filter F can be removed and then either be cleaned and reused or be discarded and replaced by another filter F. In another embodiment, filter F is attached to lower tube 32 but can be removed, along with lower tube 32 , from larger diameter tube 30 in order to be cleaned and reused or to be discarded and replaced by another filter F and lower tube 32 .
  • lower tube 32 is an inseparable extension of larger diameter tube 30 which is separable from upper tube 34 , then, upon separating larger diameter tube 30 from lower tube 32 , filter F can be removed to either be cleaned and reinserted or be discarded and replaced by another filter F. However, if lower tube 32 , larger diameter tube 30 and upper tube 34 are inseparable from one another, system 10 has to be removed and discarded and replaced by another system 10 when filter F has to be changed.
  • the invention also includes a method for removing water and numerous particulate contaminants from a hydrocarbon fluid using a conduit that forms a part of a passageway for a hydrocarbon fuel used in consumer, domestic, household or personal devices, or any combinations thereof.
  • the method of removing water from the fluids is basically the same.
  • Super-absorbent, hydrophilic, oleophobic filter F bound with a medium to prevent separation, is located upon or within porous support body SB within the conduit such that forward flow through the conduit is funneled through filter F. Then, the hydrocarbon fluid is sent through filter F within the conduit. When fluid flow becomes restricted, filter F is removed and, then, is cleaned and reused or is discarded and replaced by another filter F. Screen S may also be located in the conduit such that flow is funneled through screen S subsequent to or prior to flow through filter F. In addition, screen S may be located upon a portion of support body SB.

Abstract

A system for removal of water from a hydrocarbon fluid, such as a fuel emulsion in a tank or flowing through a conduit that is used from time to time for delivering fuel to a household or consumer device, including a filter with a super-absorbent, hydrophilic, oleophobic substance bound with a medium to prevent separation and a support body structured to hold the filter, the filter being removable in order to be cleaned and reused or to be discarded and replaced by another filter.

Description

    FIELD OF INVENTION
  • This invention relates to a system for removing water, including free and emulsified water and numerous contaminants, from hydrocarbon fuels and is particularly designed for use with personal, household, consumer and domestic devices. [0001]
  • BACKGROUND OF INVENTION
  • This invention relates to the invention described in patent application Ser. No. 897,305, now issued U.S. Pat. No. 5,888,399. For convenience, U.S. Pat. No. 5,888,399 is herein incorporated by reference. [0002]
  • Repair shop surveys indicate that one source of the most significant repair and maintenance problems for personal, domestic, household and consumer device engines, ranging from yachts to lawn mowers, is the contamination of the device's fuel system by water. One aspect of this invention involves appreciating the significance of the scale of repair and maintenance problems caused by water in the fuel system in personal, domestic, consumer and household devices. [0003]
  • By a variety of means, water collects in fuel storage tanks. Water collects in both the fuel tank of the device and separate storage tanks. [0004]
  • One object of this invention is to provide simple, practical systems for use by consumers and home owners to significantly remove free water, emulsified water and numerous contaminants from fuel prior to its injection into the engines of personal, domestic, household and consumer devices. [0005]
  • Super-absorbent, hydrophilic, oleophobic substances are known. These super absorbers are capable of removing free water as well as emulsified water and numerous contaminants from hydrocarbons. Generally, the super-absorbent substances themselves first subsist in a granular form. They may be further ground to a powder. Super-absorbent substances may be pressed, heated or combined, usually with other polymers, in some fashion into a substrate, as well as possibly laminated onto a substrate or media such as filter paper. Generally, the super-absorbent substances require binding with some medium or media in order to form practically useful filters. “Binding” could include simply being enclosed in a filter bag. Such enclosure means is intended to be regarded herein as an alternative way of binding to a medium. [0006]
  • Given a suitably bound, super-absorbent, hydrophilic, oleophobic substance into a filter, a support body or means is used to locate and hold the filter strategically in a fuel tank or a fuel conduit used for personal, household, consumer and domestic devices. For instance, a porous support body may hold a filter across a conduit such that flow of fluid through the conduit is funneled through the filter. Alternatively, a support body might carry a filter to a bottom of a hydrocarbon storage tank where it could absorb free water that had dropped out of emulsified fuel to the bottom of the tank during periods of storage of fuel. If free water in fuel is not removed, free water may become emulsified due to movements (even vibrations). For another instance, a support body might adjustably hold the filter vertically in the storage tank, thereby providing filter portions that occupy several horizontal levels, including a lower free-water level and higher emulsified-water levels. A tank in which a filter is inserted could be either a storage tank or a tank of a device itself. [0007]
  • The support body for the filter could be built, in whole or in part, into the conduit or into the tank. Alternatively, the support body could be partially or totally removable from a conduit or a tank. The support body could be partially or totally attachable to the filter. The support body and the filter could be designed to be reused or discarded, in whole or in part. [0008]
  • U.S. Pat. No. 4,618,388 to Ayers discloses a filter and filter media for use in a filter. The type of filter disclosed in the patent is an industrial-scale filter. PetroClear filters, which are a technological product of Champion Laboratories, Inc., are one such type of industrial filters. [0009]
  • Womack, U.S. Pat. No. 2,266,350, also discloses a water filter and filter media for use with fuels. However, Womack does not teach super-absorbent, hydrophilic, oleophobic filters and Womack does not teach binding a filter securely to a medium. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A better understanding of the present invention can be obtained when the following detailed description of the preferred embodiment is considered in conjunction with the following drawings, in which: [0011]
  • FIG. 1 illustrates schematically a hydrocarbon storage and transfer system that provides opportunities for the use of the instant invention. [0012]
  • FIG. 2A illustrates one embodiment of the invention in a hydrocarbon storage tank. [0013]
  • FIGS. 2B, 2C, [0014] 2D and 2E illustrate further variations of an embodiment of the invention for use with a hydrocarbon storage tank.
  • FIGS. 3A and 3B represent variations of the invention for use with a funnel conduit. [0015]
  • FIGS. 4A and 4B represent a variation of the invention for use with a cap on a storage tank. [0016]
  • FIG. 5 represents an embodiment of the invention for deployment at a bottom of a storage tank. [0017]
  • FIG. 6A and 6B represent variations of the invention for use with spouts. [0018]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 1 schematically illustrates roles for the instant invention in solving the problem of dewatering and particulate removal from fuel in the personal, consumer, household and domestic context. FIG. 1 illustrates an industrial storage tank D for fuel. Industrial storage tank D could be a gas pool. Fuel could be delivered via conduit I from industrial storage tank D to a consumer storage tank A. Consumer storage tank A would likely be, without being limited to, a 1-gallon or a 5-gallon can. Alternatively, fuel could be delivered by conduit G from industrial storage tank D directly to a device fuel tank B. Fuel from consumer storage tank A is illustrated as delivered by conduit C to device fuel tank B. Fuel from device fuel tank B is used in an associated device engine E. [0019]
  • The term “within a conduit” is used to indicate within a flow path of a conduit. Generally, “within a conduit” would be most likely inside a conduit. The phrase, however, is intended to include at ends of a conduit or on a conduit, or being between two sections of a conduit, or being attached to a conduit such that flow is diverted therethrough. [0020]
  • The phrase “bound with the medium to prevent separation” is intended to indicate being bound in a manner wherein the super-absorbent material is not easily or inadvertently separated from the binding medium during use, including during removal or replacement, and even during inadvertent misuse such as the placement of a filter backwards in or onto a support body or the flowing of fluid reversely through a conduit. [0021]
  • The phrase “a conduit used from time to time for delivering fuel” indicates that a conduit is not an industrial or commercial conduit used relatively continuously for delivering fuel, such as a commercial gas dispensing pump. [0022]
  • The term “tank” is intended to include any container for holding fuel or any other fluid. [0023]
  • The present invention is predominately concerned with removing water and particulate contaminants from fuel while in consumer storage tank A, upon transfer from consumer storage tank A to device fuel tank B in conduit C and while in device fuel tank B. The need for use of the invention with conduits I or G is less acute since industrial storage tank D may have its own filtering system. Locations W[0024] 1, W2 and W3 indicate prime locations within schematically illustrated conduit C where system 10 may advantageously be placed to remove emulsified and free water and particulate contaminants during a transfer of fuel from tank A to tank B. (Please refer to FIG. 1.) Prime location(s) in regard to transfers via conduit G from tank D to tank B are locations W2 and W3, and via conduit I from tank D to tank A is location W1.
  • Filters F could be positioned variously at locations W[0025] 1, W2 and/or W3, and/or anywhere between the general orifice area of location W1 of tank A and the general orifice area of location W3 of tank B. The locations W1, W2 and W3 include the length of whatever conduit mechanisms SF that are used to transfer fuel from tank A to tank B. Conduit mechanism SF can include a funnel or a spout or both a spout and a funnel (with either version indicated as “SF”). Conduit C, for example, is regarded as including, without being limited to, the outlet of tank A, the inlet of tank B and conduit mechanism SF, for convenience's sake.
  • Water can exist in two forms in tank A and tank B. It can exist as free water, which has dropped out of emulsified fuel to a bottom of tanks A and B, and/or as emulsified water, which is distributed throughout the fuel in tanks A and B. Numerous embodiments of a [0026] system 10, that are used for removing free water and/or emulsified water in tanks A and B, are presented here. A method of operation of some embodiments of the system 10 is also provided. In one preferred embodiment, system 10 is designed to be inside and to reside on the bottom of tanks A and B when used for absorption of free water. (Please refer to FIG. 1.) Sinking system 10, by design, seeks the bottom of tanks A and B in order to access the heaviest concentration of free water. Sinking system 10 comprises a support body SB structured to hold filter F and a weighted unit W. (“Weighted united W” may be a separate entity that is connected to or contained within support body SB or support body SB may serve as weighted unit W.) In this embodiment, filter F is contained with, in or within support body SB. Support body SB is suitably weighted by weighted unit (shown in FIG. 5) which carries itself and filter F to the bottom of tanks A and B. Sinking system 10 is particularly designed for use in device fuel tank B where fuel may sit for long periods of time, such as in yachts or boats. Sinking system 10 is designed to be inserted through orifice O of tank T and to descend down to the lowermost level of tank T (as shown in FIG. 2A). In a preferred embodiment shown in FIG. 5, support body SB is a porous ball comprised of two hemispherical portions that open and shut, as at seam 14. Filter F, that may be optionally bound with a medium, is placed inside of support body SB. The structure of support body SB should be porous in some fashion to permit fluid to enter into and exit out of support body SB via the structure. Arguably, the structure of support body SB could be no more than a means for attaching, enclosing or serving as weighted unit W. Preferably, support body SB would be spherical and include walls that can be opened and closed such that filter F may be removed and replaced without having to replace the structure of support body SB. Alternatively, however, part or all of the structure of support body SB and filter F can be discarded and replaced when filter F becomes filled with water. As shown in FIG. 5, support body SB or weighted unit W is preferably attached to a line L and a handling means H for retaining a portion of line L accessible. Said handling means H is preferably, but not limited to, a handle for retrieval purposes. Line L connects handling means H to support body SB and/or to weighted unit W. Handling means H is sized large enough to prevent passing of handling means H through tank orifice O and into tank T. Preferably, support body SB is spherical to facilitate descending of support body SB to lowest level of tank T.
  • During storage periods, support body SB can be dropped into tank T and allowed to sink to the lowermost level of tank T. At such level, filter F inside of support body SB will absorb free water that has dropped out of emulsified fuel to the bottom of tank T during long periods of non-use. [0027]
  • It should be understood that in many cases when the removal and replacement of filter F is discussed, it may be possible to dry out and reuse the same filter F. Drying out and reusing filter F may be one way to replace filter F. In any embodiment that includes binding of a super-absorbent, hydrophilic, oleophobic substance with a medium, preferably a bag medium, in a removing and replacing step, the bag medium for the super-absorbent substance could actually be retained while its contents are discarded and replaced. [0028]
  • FIGS. [0029] 2A-2E illustrate an embodiment of the present invention that utilizes system 10 inserted into tank T. Tank T may be either a device fuel tank B itself, as in FIG. 2A, or a consumer storage tank A as illustrated in FIG. 2C. System 10 may either be a special purpose device, as illustrated in FIGS. 2A-2C, or an adaptation of existing spouts sold with gasoline tanks as illustrated in FIG. 2D and FIG. 2E. In FIG. 2A, support body SB is porous and is designed to hold filter F, as illustrated. System 10 is adapted at its top to be held by various means at tank orifice O, perhaps with the help of tank cap CP. (Please refer to FIGS. 2A and 2C.) System 10 may incorporate a screw fit to screw inside of orifice O against a matching set of screw channels of tank T. System 10 might include a flange that fits over orifice O and under cap CP. Support body SB of system 10 of the embodiment of FIG. 2A includes an element Y and an element Z. Support body SB is preferably structured to be long enough, and preferably with its length adjustable, so as to enable filter F to reach to the bottom of tank T. Element Y is designed to reside on the bottom of tanks A and B for the removal of free water. Element Y, however, may be potentially attachable to, or form a continuous part of, element Z which can further remove emulsified water at higher levels in tanks A and B. To the extent that filter F has sufficient height within support body SB, the lower portions of filter F will absorb free water on the bottom of tank T. Upper portions of filter F will absorb emulsified water in higher levels of the fuel in tank T. In FIG. 2C, system 10 is much the same as system 10 in FIG. 2A. FIG. 2B illustrates another embodiment of system 10. In FIG. 2B, support body SB comprises a screen S. Filter F of FIG. 2B is designed to fit inside of support body SB. Support body SB and filter F are further designed to be cut off by the consumer, as at level 12, in order that support body SB will reach to the bottom of and yet still fit inside of whatever tank T is desired. In FIG. 2B, system 10 has an attachment means 16 at its top for attaching to an orifice O of tank T, much as described in regard to FIG. 2A.
  • FIGS. 2D and 2E illustrate two conduit-type or funnel-[0030] type systems 10 that are currently incorporated into fuel storage tanks. In FIG. 2D, a lower tube 28 telescopes inside of a larger diameter tube 30. In an embodiment of the present invention, element Y of lower tube 28 would be adapted to receive filter F. While stored inside of tank T, lower tube 28 could be telescoped down to the bottom of tank T to carry filter F to the bottom. Filter F is then positioned to absorb free water in tank T while tank T is standing. System 10 of FIG. 2D is stored inside of tank T until it is time to pour fuel from tank T. At such time, system 10 is pulled out of tank T and attached onto orifice O of tank T to serve as a spout SF. At such location, a screen S might be provided, fixedly or removably, near the attachment points of system 10 to orifice O of tank T. Filter F could be provided to fit on top of screen S such that as fluid is poured from tank T through orifice O, the fuel would flow through filter F and then through screen S and thence through system 10.
  • Similarly, in FIG. 2E, [0031] system 10 consists of a flexible, accordion-pleated conduit in order to have its length adjusted. When stored inside of tank T, element Y of system 10 can be located adjacent to the bottom of tank T. Filter F can be designed to fit into element Y of system 10 during storage. Filter F could then be situated to absorb free water sinking to bottom of tank T during storage. When it is time to use system 10 of FIG. 2E as a conduit for pouring from tank T, system 10 is removed from tank T and attached to or to the outside of orifice O of tank T. At such point, screen S may be provided, likely near the attachment of system 10 with orifice O of tank T, and filter F may be provided to fit snugly on top of screen S, such that fluid poured from tank T would be funneled through filter F before exiting system 10.
  • FIGS. 3A and 3B illustrate funnel SF containing filter F. Screen S may be either permanently or removably attached to or may be a part of funnel SF. Filter F illustrated in FIG. 3A, is designed to fit inside, whether within or against or apart from screen S in each case. In FIG. 3B, filter F may be shaped into a cone configuration by the user and the tip may be folded up, in order to allow filter F to fit securely and snugly within funnel SF and, if screen S is used, above screen S. [0032]
  • FIGS. 4A and 4B illustrate tank T having a cap CP at orifice O and a [0033] cap insert 26. Cap insert 26 (serving as system 10) contains filter F, screen S, and, possibly, a tubular element 18 below screen S. A lower cavity 22 extends below screen S if tubular element 18 is included and an upper cavity 20 is above screen S. Optionally, filter F may be positioned in lower cavity 22 or in upper cavity 20 (as shown in FIG. 4B) or both. During storage, cap insert 26 (whose tubular length may be shorter than illustrated and/or may be porous) fits inside of tank T and is attached to tank orifice O. When it is time to pour fuel from tank T, filter F is inserted, either in upper cavity 20 or lower cavity 22. If filter F is inserted in lower cavity 22, tubular element 18 of cap insert 26 should be porous. However, if filter F is positioned above screen S, either no tubular element 18 or a non-porous tubular element 18 may be used. If filter F is inserted in upper cavity 20, then element 18 would be removed from orifice O and inverted prior to pouring from tank T. Filter F could be secured by being trapped between screen S and the rim of orifice O of tank T.
  • [0034] System 10, referred to as cap insert 26 in FIGS. 4A and 4B, is not limited to being placed in cap CP and can be positioned anywhere in spout SF presented in FIG. 1. When positioned inside spout SF, use of tubular element 18 is optional as well. If no tubular element 18 is used, a balancing axial element (not shown in figures) that extends above and below screen S may be used in order to maximize stability and balance of system 10.
  • Another embodiment of [0035] system 10 is illustrated in FIGS. 6A and 6B wherein system 10 is one-size-fits-all. One-size-fits-all system 10 can be connected to spouts SF of various sizes and shapes. In one embodiment, spout SF has an extendable accordion-like body (said version being manufactured by Wedco, Inc.). One-size-fits-all system 10 comprises a larger diameter tube 30, an upper tube 34 and a lower tube 32. Larger diameter tube 30 contains water-removing filter F. Upper tube 34 extends from or is connected to top of larger diameter tube 30 and is preferably elastic. At least a portion of upper tube 34 is surrounded by a hose clamp 36 that tightens and expands, automatically or adjustably, for secure fit around the surrounded portion of upper tube 34. Upper tube 34 preferably consists of soft plastic material that can be slipped over spouts SF of various sizes. Thereby, a portion of spout SF from tank T (not shown) can be easily inserted into upper tube 34 and hose clamp 36 is then tightened to prevent movement of spout SF within upper tube 34. Hose clamp 36 preferably consists of metal in order to minimize any changes in size and form of upper tube 34 after the surrounded portion of spout SF is inserted into upper tube 34 and hose clamp 36 is tightened. Lower tube 32 is positioned below filter F and serves as a conduit for discharge of filtered fuel. Lower tube 32 extends from or is connected to bottom of larger diameter tube 30. If lower tube 32 is removable, after removing and before repositioning lower tube 32, filter F can be removed and then either be cleaned and reused or be discarded and replaced by another filter F. In another embodiment, filter F is attached to lower tube 32 but can be removed, along with lower tube 32, from larger diameter tube 30 in order to be cleaned and reused or to be discarded and replaced by another filter F and lower tube 32. If lower tube 32 is an inseparable extension of larger diameter tube 30 which is separable from upper tube 34, then, upon separating larger diameter tube 30 from lower tube 32, filter F can be removed to either be cleaned and reinserted or be discarded and replaced by another filter F. However, if lower tube 32, larger diameter tube 30 and upper tube 34 are inseparable from one another, system 10 has to be removed and discarded and replaced by another system 10 when filter F has to be changed.
  • The invention also includes a method for removing water and numerous particulate contaminants from a hydrocarbon fluid using a conduit that forms a part of a passageway for a hydrocarbon fuel used in consumer, domestic, household or personal devices, or any combinations thereof. In the numerous versions of the [0036] system 10 described above, the method of removing water from the fluids is basically the same.
  • Super-absorbent, hydrophilic, oleophobic filter F, bound with a medium to prevent separation, is located upon or within porous support body SB within the conduit such that forward flow through the conduit is funneled through filter F. Then, the hydrocarbon fluid is sent through filter F within the conduit. When fluid flow becomes restricted, filter F is removed and, then, is cleaned and reused or is discarded and replaced by another filter F. Screen S may also be located in the conduit such that flow is funneled through screen S subsequent to or prior to flow through filter F. In addition, screen S may be located upon a portion of support body SB. [0037]
  • The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape, and materials, as well as in the details of the illustrated system may be made without departing from the spirit of the invention. The invention is claimed using terminology that depends upon a historic presumption that recitation of a single element covers one or more, and recitation of two elements covers two or more, and the like. [0038]

Claims (22)

What is claimed is:
1. A system for removal of water from a hydrocarbon fluid flowing through a conduit, used from time to time for delivering fuel to a device for domestic, household, personal or consumer uses, said system comprising:
(a) a filter including a super-absorbent, hydrophilic, oleophobic substance bound with a medium;
(b) a support body structured to hold the filter within the conduit at least during forward flow of the fluid and such that forward flow of the fluid through the conduit is funneled through the filter; and
(c) wherein at least the filter is replaceable.
2. The system of
claim 1
wherein the support body includes a screen structured such that forward flow of the fluid flows through the filter and then through the screen.
3. The system of
claim 1
wherein the conduit includes a storage tank spout.
4. The system of
claim 1
wherein the support body has means for attachment to a tank and includes a longitudinal part with an adjustable length such that the longitudinal part can be adjusted to extend to bottom of the tank.
5. The system of
claim 4
wherein the longitudinal part has a telescopic section, a flexible, accordion-pleated section or any combination of sections that enable the longitudinal part to have the adjustable length.
6. The system of
claim 1
wherein the support body holds the filter vertically in a tank, such that portions of the filter occupy several horizontal levels in tank.
7. The system of
claim 1
wherein:
(a) the support body is built in whole into and is not removable from, is built in part into and is partially removable from, or is attached to and is totally removable from the conduit; and
(b) the support body is partially or totally attachable to the filter; such that the support body and the filter are designed to be, in whole or in part, revised or discarded.
8. The system of
claim 7
wherein the system comprises a larger diameter tube containing the filter and connected to a lower tube and an elastic upper tube that is surrounded by a hose clamp, such that the hose clamp tightens and expands automatically or adjustably for secure fit around the elastic upper tube.
9. The system of
claim 1
wherein the medium comprises a bag.
10. The system of
claim 1
wherein at least a portion of the support body is removed from the conduit.
11. The system of
claim 1
wherein the support body is a funnel.
12. The system of
claim 11
wherein the support body contains a screen that is either permanently or removably attached to or is a part of the support body, such that the filter fits either inside, including within or against, the screen or apart from the screen.
13. The system of
claim 11
wherein the filter is shaped into a cone having a tip, such that the tip is folded up to enable the filter to fit securely within the funnel.
14. The system of
claim 1
wherein the system includes an insert containing a screen, with the filter being inserted either above or below the screen, such that
(a) the support body of the insert contains a porous tubular element in which the filter is positioned if the filter is positioned below the screen, or
(b) the support body contains either no tubular element or a non-porous tubular element if the filter is positioned above the screen, with the system including a balancing axial element that extends above and below the screen if the support body does not contain any tubular element and maximal balance of the system is required.
15. A system for removal of water from a hydrocarbon fluid in a tank from which the fluid is delivered from time to time to a household, domestic, personal or consumer engine, said system comprising:
(a) a filter including a super-absorbent, hydrophilic, oleophobic substance bound with a medium; and
(b) a weighted support body structured to hold the filter.
16. The system of
claim 15
wherein the system further comprises:
(a) a line attached to the support body; and
(b) a means for retaining a portion of the line accessible.
17. The system of
claim 15
wherein the weighted support body includes a weighted unit or serves as the weighted unit.
18. The system of
claim 15
wherein the support body includes a porous ball.
19. The system of
claim 16
wherein the means includes a handle attached to the line.
20. A method for removing water from a hydrocarbon fluid using a conduit that forms part of a passageway, for hydrocarbon fuel used in consumer, domestic, household or personal devices, or any combinations thereof, said method comprising:
(a) locating a super-absorbent, hydrophilic, oleophobic filter, bound with a medium to prevent separation including from reverse flow, upon or within a porous support body within the conduit such that forward flow through the conduit is funneled through the filter;
(b) flowing the hydrocarbon fluid through the filter within the conduit; and
(c) when fluid flow becomes restricted, removing and, then, cleaning and reusing the filter or discarding the filter and replacing the filter by another filter.
21. The method of
claim 20
that includes locating a screen in the conduit such that the fluid is funneled through the screen subsequent to or prior to flow of the fluid through the filter.
22. The method of
claim 20
that includes locating the screen upon a portion of the support body.
US09/748,443 1999-05-19 2000-12-27 Cap-based system removing water from hydrocarbon fuels Expired - Fee Related US6357602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/748,443 US6357602B2 (en) 1999-05-19 2000-12-27 Cap-based system removing water from hydrocarbon fuels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31465199A 1999-05-19 1999-05-19
US09/748,443 US6357602B2 (en) 1999-05-19 2000-12-27 Cap-based system removing water from hydrocarbon fuels

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US31465199A Division 1999-05-19 1999-05-19

Publications (2)

Publication Number Publication Date
US20010004062A1 true US20010004062A1 (en) 2001-06-21
US6357602B2 US6357602B2 (en) 2002-03-19

Family

ID=23220855

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/748,445 Expired - Fee Related US6439396B2 (en) 1999-05-19 2000-12-27 Sinking system for removing water from hydrocarbon fuels
US09/748,443 Expired - Fee Related US6357602B2 (en) 1999-05-19 2000-12-27 Cap-based system removing water from hydrocarbon fuels

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/748,445 Expired - Fee Related US6439396B2 (en) 1999-05-19 2000-12-27 Sinking system for removing water from hydrocarbon fuels

Country Status (1)

Country Link
US (2) US6439396B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030047512A1 (en) * 2001-09-10 2003-03-13 France Paul Amaat Raymond Gerald Multifunctional filter
US20030047513A1 (en) * 2001-09-10 2003-03-13 The Procter & Gamble Company Removal of contaminants from a lipophilic fluid
US20030047511A1 (en) * 2001-09-10 2003-03-13 Burton Dewey Edward Filter for removing water and/or surfactants from a lipophilic fluid
US20030070238A1 (en) * 2001-09-10 2003-04-17 The Procter & Gamble Company System for processing a lipophilic fluid
US20040052704A1 (en) * 2002-09-16 2004-03-18 Devos John A. Gas generation system
US20050000029A1 (en) * 2003-06-27 2005-01-06 The Procter & Gamble Company Process for purifying a lipophilic fluid by modifying the contaminants
US20050000897A1 (en) * 2003-06-27 2005-01-06 The Procter & Gamble Company Method for purifying a dry cleaning solvent
US20050011543A1 (en) * 2003-06-27 2005-01-20 Haught John Christian Process for recovering a dry cleaning solvent from a mixture by modifying the mixture
US6855173B2 (en) 2000-06-05 2005-02-15 Procter & Gamble Company Use of absorbent materials to separate water from lipophilic fluid
US7300593B2 (en) 2003-06-27 2007-11-27 The Procter & Gamble Company Process for purifying a lipophilic fluid
US20120298579A1 (en) * 2011-05-24 2012-11-29 Bucknell University Apparatus and method for separating hydrophilic and hydrophobic components

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0025315D0 (en) * 2000-10-16 2000-11-29 Capsule Technology Ltd Filtration container
US20050087231A1 (en) * 2003-10-14 2005-04-28 Sanders Larry C. Non-electronic, automatically controlled valving system utilizing expanding/contracting material
WO2006039287A2 (en) * 2004-09-28 2006-04-13 Paul Scharf Filter system for containers and container openings
US7491328B2 (en) * 2007-01-30 2009-02-17 Brodbeck Robert M Fuel sampler/strainer assembly
DE202008016281U1 (en) * 2008-12-10 2010-04-22 Mann+Hummel Gmbh Device for receiving water
CN102758262B (en) * 2011-04-29 2014-08-13 中国科学院化学研究所 Underwater self-cleaning superoleophobic mineralized fibrous film and preparation method thereof
CN105582693B (en) * 2015-12-22 2018-09-11 北京航空航天大学 A kind of T-type oily water separating equipment integrating two kinds of special wellability materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2266350A (en) * 1940-04-13 1941-12-16 Womack Isabelle Jones Absorber
US4618388A (en) * 1982-09-02 1986-10-21 Central Illinois Manufacturing Co. Water removing filter media and method of making the same
US5888399A (en) * 1997-07-21 1999-03-30 Rutledge; Dwight Dean Water-removing funnel insert and method of application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855173B2 (en) 2000-06-05 2005-02-15 Procter & Gamble Company Use of absorbent materials to separate water from lipophilic fluid
US7258797B2 (en) * 2001-09-10 2007-08-21 The Procter & Gamble Company Filter for removing water and/or surfactants from a lipophilic fluid
US20060027493A1 (en) * 2001-09-10 2006-02-09 France Paul Amaat Raymond G Process for treating lipophilic fluid
US6955761B2 (en) 2001-09-10 2005-10-18 Procter & Gamble Company Multifunctional filter
US20030070238A1 (en) * 2001-09-10 2003-04-17 The Procter & Gamble Company System for processing a lipophilic fluid
WO2003022400A3 (en) * 2001-09-10 2003-08-14 Procter & Gamble Filter for removing water and/or surfactants from a lipophilic fluid
US20060234892A1 (en) * 2001-09-10 2006-10-19 Radomyselski Arseni V System for processing a lipophilic fluid
US20030047511A1 (en) * 2001-09-10 2003-03-13 Burton Dewey Edward Filter for removing water and/or surfactants from a lipophilic fluid
US7241728B2 (en) 2001-09-10 2007-07-10 The Procter & Gamble Company Process for purifying a contaminant-containing lipophilic fluid
US20030047512A1 (en) * 2001-09-10 2003-03-13 France Paul Amaat Raymond Gerald Multifunctional filter
US7084099B2 (en) 2001-09-10 2006-08-01 Procter & Gamble Company Method for processing a contaminant-containing lipophilic fluid
WO2003022400A2 (en) * 2001-09-10 2003-03-20 The Procter & Gamble Company Filter for removing water and/or surfactants from a lipophilic fluid
US7247241B2 (en) 2001-09-10 2007-07-24 The Procter & Gamble Company Process for treating lipophilic fluid
US20030047513A1 (en) * 2001-09-10 2003-03-13 The Procter & Gamble Company Removal of contaminants from a lipophilic fluid
US20040052704A1 (en) * 2002-09-16 2004-03-18 Devos John A. Gas generation system
US7201782B2 (en) * 2002-09-16 2007-04-10 Hewlett-Packard Development Company, L.P. Gas generation system
US20050000029A1 (en) * 2003-06-27 2005-01-06 The Procter & Gamble Company Process for purifying a lipophilic fluid by modifying the contaminants
US20050011543A1 (en) * 2003-06-27 2005-01-20 Haught John Christian Process for recovering a dry cleaning solvent from a mixture by modifying the mixture
US7297277B2 (en) 2003-06-27 2007-11-20 The Procter & Gamble Company Method for purifying a dry cleaning solvent
US7300593B2 (en) 2003-06-27 2007-11-27 The Procter & Gamble Company Process for purifying a lipophilic fluid
US7300594B2 (en) 2003-06-27 2007-11-27 The Procter & Gamble Company Process for purifying a lipophilic fluid by modifying the contaminants
US20050000897A1 (en) * 2003-06-27 2005-01-06 The Procter & Gamble Company Method for purifying a dry cleaning solvent
US9126127B2 (en) * 2011-05-24 2015-09-08 Bucknell University Apparatus and method for separating hydrophilic and hydrophobic components
US20120298579A1 (en) * 2011-05-24 2012-11-29 Bucknell University Apparatus and method for separating hydrophilic and hydrophobic components

Also Published As

Publication number Publication date
US20010004978A1 (en) 2001-06-28
US6357602B2 (en) 2002-03-19
US6439396B2 (en) 2002-08-27

Similar Documents

Publication Publication Date Title
US6357602B2 (en) Cap-based system removing water from hydrocarbon fuels
US6733669B1 (en) Water filter bottle
US5167819A (en) Canteen having a removably mounted filter device
US5322625A (en) Filter element for a gravity-flow water filter
US5897787A (en) Strainer and method for separating solid particles from a liquid
US7014759B2 (en) Method and apparatus for water purification
US8758605B2 (en) Filter block having a hollow center
US4759474A (en) Beverage dispensing system and filter cartridge therefor
US5653878A (en) Single orifice bottle water filter
US5122272A (en) Drinking water supply container having a removably mounted filter device
US5652008A (en) Universal water filtration device and method of filtering water
US7955501B2 (en) Floating filter holder
US5128036A (en) Water container assembly for use on a water stand
US20060249442A1 (en) Water filtration system with improved performance
US5229015A (en) Liquid separator
CA2506454A1 (en) Drop-in filter for spray gun reservoir
US7275568B2 (en) Liquid reclamation apparatus
US20040124127A1 (en) Filter
US5804082A (en) Container for separating and dispensing fluids
US6485644B2 (en) Liquid dispenser with closed gravity filter and air breathing system
US11339358B2 (en) Pouring spout for bottled liquids
WO2015128372A1 (en) Apparatus and method for treating a liquid
US4877155A (en) Spill protecting apparatus
EP0404573A2 (en) Water dispenser
US5833850A (en) Water filter

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20100319