US20010004870A1 - Laminated glass and primer used for its production - Google Patents

Laminated glass and primer used for its production Download PDF

Info

Publication number
US20010004870A1
US20010004870A1 US09/780,507 US78050701A US2001004870A1 US 20010004870 A1 US20010004870 A1 US 20010004870A1 US 78050701 A US78050701 A US 78050701A US 2001004870 A1 US2001004870 A1 US 2001004870A1
Authority
US
United States
Prior art keywords
glazing
primer
layer
metal chelate
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/780,507
Other versions
US6419734B2 (en
Inventor
Yves Naoumenko
Karin Broering
Ingrid Vaverka
Udo Gelderie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Vitrage SA
Original Assignee
Saint Gobain Vitrage SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Vitrage SA filed Critical Saint Gobain Vitrage SA
Priority to US09/780,507 priority Critical patent/US6419734B2/en
Publication of US20010004870A1 publication Critical patent/US20010004870A1/en
Application granted granted Critical
Publication of US6419734B2 publication Critical patent/US6419734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10688Adjustment of the adherence to the glass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10743Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing
    • Y10T428/31612As silicone, silane or siloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers
    • Y10T428/31649Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to a laminated glass (glazing) comprising at least one layer (sheet) of transparent glass and at least one transparent layer (sheet) of ionomer resin, where one of these layers is at least partly coated with a primer, and the primer used to make the glazing.
  • Laminated glasses are frequently used in the building industry and in the transportation industry as glass having “protection security” characteristics and for reducing the probabilities of breakage and accidents by shock.
  • One conventional example of laminated glass particularly resistant to shock is a laminated glass containing at least one layer of glass and at least one layer of polycarbonate.
  • those glasses have significant problems in adhering the polycarbonate onto the glass or cracking (due to the difference between thermal expansion coefficients) when the glass and the polycarbonates are directly connected.
  • One method to remedy those problems has been to insert between the glass and the polycarbonate at least one layer of polyurethane.
  • the use of such material considerably increases the cost of the product.
  • Another less expensive laminated glass used in the same type of applications contains a layer of glass and a transparent layer of ionomer resin.
  • a laminated glass has been described in the patents EP-191,088, U.S. Pat. Nos. 4,619,873, 4,732,944, 4,906,703 and EP-483,087.
  • a coupling agent such as a silane, organic amine (aliphatic amine, ethanolamine . . . ) or diisocyanate, before applying the layer of ionomer resin.
  • one object of the present invention is to provide an improved laminated glazing, having good properties of chock resistance, good optical properties and an accrued resistance to delamination.
  • a further object of the present invention is to provide such a laminated glazing which is also economical.
  • a laminated glazing having at least one layer of glass and at least one transparent layer of ionomer resin adhered thereto, wherein the layer of ionomer resin is adhered to another layer of the glazing at at least a portion of the surfaces in contact with one another, wherein the adhesion is performed with the use of at least one metal chelate, and a primer comprising such a metal chelate for use in the laminated glazing.
  • the expression “ionomer resin” means a resin that can be extruded and that contains ethylene/carboxylic acid or alpha olefin/carboxylic acid copolymers, those polymers being crosslinked by ionic reaction.
  • This type of resin has been previously described in patents EP-483,087, EP-191,088, U.S. Pat. Nos. 4,619,973, 4,732,944 and 4,906,703, the relevant portions of which are hereby incorporated by reference.
  • ionomer resin one can use resins based on ionically crosslinked copolymers obtained by combination of ethylene, styrene, or propylene monomers with monomers of acrylic acid, methacrylic acid or maleic anhydride.
  • the one or more ionomer resins used in the laminated glazing according to the invention are preferably made of (meth)acrylic acid (where “(meth)acrylic” refers to either methacrylic or acrylic)/ethylene (or alpha olefin) copolymer(s), crosslinked by ionic reaction.
  • the ionomer resins available commercially usually contain the previously mentioned acidic copolymers, partially neutralized or not, or metallic or amino salts of the mentioned acidic copolymers (one can notably find zinc or sodium ionomers).
  • the ionomer resin layers can be prepared by conventional means such as by casting or extrusion.
  • Several glazing structures according to the invention are possible such as the structures described in patents EP-0,191,088 or EP-0,483,087 which are hereby incorporated by reference.
  • the glazing according to the present invention can therefore contain one or several glass layers, each glass layer being optionally coated with one or several thin layers which affect optical or energy properties of the glazing, such as the transmission of energy or light.
  • the glazing also contains one or several ionomer resin layers and, optionally, one or several layers of one or several other plastic materials conventionally used in laminated glass, such as polyurethane, polycarbonate, polymethylmethacrylate or another acrylic plastic or polyvinylbutyral.
  • each layer of the ionomer resin of the glazing according to the present invention is placed between two glass layers or two plastic layers or between one glass layer and one plastic layer.
  • the chelate used according to the invention to improve the adhesion between the layer of ionomer resin and at least one adjacent layer, notably a glass layer or another plastic layer, can intervene in different forms in the laminated glazing.
  • it can be part of a primer used to coat at least a portion of at least one face of the ionomer resin layer and/or at least a portion of at least one adjacent layer, notably a glass layer (provided or not with thin layers which affect optical or energy properties), before assembling of the two layers.
  • It can also be incorporated in the composition of one of the layers, notably into a layer of the ionomer resin, in order to make it self-adhesive.
  • the metal chelate used according to the present invention can be any metal chelate, for example a titanium, zirconium, chromium chelate, and is preferably a titanium chelate.
  • the substituents (or ligands) of that chelate are generally groups having an alkoxy functionality linked to the chelate central metal atom.
  • Preferably at least one of the substituents has at least one additional second atom having one or more pairs of free electrons, such as a nitrogen, oxygen or sulfur atom.
  • Preferred substituents for the present metal chelate include: triethanolamine, acetylacetonate, octyleneglycol, isopropoxyl and butoxyl . . .
  • the present chelate used is a metal chelate having at least one (most preferably two) acetylacetonate group(s) and having at least one (most preferably two) alkoxy group(s) (notably C 1 -C 4 alkoxy group(s), such as propoxyl or butoxyl).
  • Most preferred chelates include diisopropoxy-bis[acetylacetonate] titanium or isopropoxy butoxy-bis[acetylacetonate] titanium (those products being simply designated by “titanium acetylacetonate”).
  • the use of the present chelate to improve the adhesion between the layer(s) of ionomer resin and at least one of the adjacent layers within the laminated glazing allows the laminated glazing to have an increased resistance to delamination over time. This resistance is particularly advantageous in instances where the laminated glazing is of large dimensions and is meant to be sawed. Any delamination during the sawing is thus eliminated in the glazing according to the present invention.
  • the resistance to delamination of glazing according to the invention due to the improved adhesion between the resin layer(s) and the adjacent layer(s) is notably characterized by a value of at least 3 Pummel units, when the glazing is submitted to the Pummel test, described below in the Examples, whereas the resistance to delamination of laminated glazing using a primer based on one or several silanes does not usually exceed 1 Pummel unit. In most cases, the resistance to delamination of the glazing according to the present invention is at least 5 Pummel units.
  • the glazing according to the present invention has good resistance to shock, good rigidity, minimal projection of particles upon breakage, good optical properties, can be easily and economically made and can be used to make glazings for use in numerous types of applications.
  • the polycarbonate and polyurethane type glazings are less easy and more expensive to make and are not suitable to certain types of applications, such as the fabrication of windshields.
  • the glazing according to the present invention is obtained according to processes well known to one of ordinary skill in the art, notably by assembly of the different layers of the glazing under heat and pressure.
  • the chelate used can be synthesized using conventional well-known procedures from the corresponding metal chloride by reaction in alcohol or acetylacetone, the reaction optionally being followed by a trans-esterification. In addition, some chelates are also commercially available.
  • a primer containing the chelate according to the present invention can be applied to the layer of ionomer resin using a roller immediately following the extrusion operation or can be applied or pulverized subsequently, on the layer of ionomer resin or on another layer that must come in contact with the layer of ionomer resin.
  • This primer contains at least one chelate as previously mentioned and at least one solvent capable of dissolving the chelate such as an alcohol, notably isopropanol. Since the chelate solution is relatively stable, the primer can be stored for some days before application. The use of such a chelate solution also allows an application on the layers to be glued, with the solvent being easily eliminated, for example by drying, before the assembly of the primed layer with the layer that must be joined by the primer.
  • the one or more chelates used to improve the adhesion in the laminated glass are used in conjunction with at least one silane, preferably one epoxysilane such as a gamma glycidoxy-propyl-trimethoxy-silane.
  • at least one chelate and one silane allows, in certain cases, the results obtained using only the chelate to be further improved.
  • this primer preferably uses a solvent mixture of water and chelate solvent, for example a mixture of water-alcohol, preferably a mixture of water-isopropanol.
  • the primer according to the present invention contains preferably 0.05 to 3% by weight of the metal chelate (based on total primer weight) and 95 to 99.95% by weight (based on total primer weight) of a water-alcohol mixture containing 50 to 100% alcohol (based on total weight of water-alcohol mixture).
  • the primer can also contain a silane in an amount between 0 and 3% by weight, the ratio between the amounts of silane and chelate being preferably from 0.33 to 3, with the primer containing at least 1%, preferably 5% by weight of water.
  • the dry extract of the primer is from 0.05 to 5% by weight and is preferably less than 3% by weight.
  • a laminated glazing in accordance with the present invention was prepared as follows: a layer of ionomer resin composed of ethylene-methacrylate copolymers was obtained by extrusion and then placed in between two identical glass layers, wherein the faces of the glass layers in contact with the ionomer resin layer were previously coated with a primer and dried. The pile of layers was then calendered before the final assembly under heat and pressure.
  • the samples were placed in a freezer at ⁇ 18° C. for at least two hours. The samples were then removed and hammered using an electromagnetic hammer, within seconds following their removal from the freezer. Each sample was progressively hammered at increments of 10 mm wide and 15 mm height compared to the lower side (edge) of the sample, with the sample being inclined at 5 to 10°.
  • the Pummel test was considered good when the observed values were in the range of 3 to 8 Pummel units (preferably 3 to 6 for automobile applications and 5 to 8 for architectural applications). One cannot exceed, preferably, 8 Pummel units in order to keep certain properties such as the glazing's resistance to shocks. With less than 3 Pummel units, risks of delamination can appear with time.
  • the primer used was titanium acetylacetonate (added as a 75 wt % solution, available as TiACA 75 by the HULS company) and isopropanol based.
  • the weight composition of the primer is given in Table 1 as well as the value obtained from the Pummel test.
  • Example 1 the primer used in Example 1 was replaced by respectively each one of the primers described in Table 1. The results are given in Table 1.
  • the silane used was a gamma glycidoxy-propyl-trimethoxy-silane available as SILQUEST A 187 by OSi.
  • Example 1 the primer used in Example 1 was replaced by a primer that contained no chelate, but contained a conventional aminosilane primer available as SILQUEST A 1100 by OSi.
  • the composition of this primer and the results obtained are given in Table 1.
  • the laminated glazing according to the invention can be used in a variety of end uses such as in the construction industry, in the automobile industry to make, for example, armored vehicles, glazing for jails or banks, etc. . . . TABLE 1 SILANE TiACA A187 WATER ISOPROPANOL SILANE PUMMEL (in g) (in g) (in g) (in g) A1100 VALUE Example 1 1.33 98.7 5 Example 2 1.33 10 88.7 5 Example 3 0.13 0.3 99.6 5 Example 4 0.67 1.5 97.8 6 Example 5 0.13 0.3 10 89.6 7 Example 6 0.67 1.5 10 86.8 7 Ref. Ex. 49.5 49.5 1 0-1

Abstract

A glazing made of at least one glass layer and at least one transparent layer of ionomer resin, wherein at least a portion of one face of the at least one transparent layer of ionomer resin is adhered to at least a portion of one face of another layer of the glazing using at least one metal chelate, preferably a metal chelate based primer composition, and the primer composition for use in such a glazing are described, to provide laminated glazings which have improved chock resistance, good optical properties, improved resistance to lamination even during cutting operations, and is economical to produce.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a laminated glass (glazing) comprising at least one layer (sheet) of transparent glass and at least one transparent layer (sheet) of ionomer resin, where one of these layers is at least partly coated with a primer, and the primer used to make the glazing. [0002]
  • 2. Discussion of the Background [0003]
  • Laminated glasses are frequently used in the building industry and in the transportation industry as glass having “protection security” characteristics and for reducing the probabilities of breakage and accidents by shock. One conventional example of laminated glass particularly resistant to shock, is a laminated glass containing at least one layer of glass and at least one layer of polycarbonate. However, those glasses have significant problems in adhering the polycarbonate onto the glass or cracking (due to the difference between thermal expansion coefficients) when the glass and the polycarbonates are directly connected. One method to remedy those problems, has been to insert between the glass and the polycarbonate at least one layer of polyurethane. However, the use of such material considerably increases the cost of the product. [0004]
  • Another less expensive laminated glass used in the same type of applications contains a layer of glass and a transparent layer of ionomer resin. Such a laminated glass has been described in the patents EP-191,088, U.S. Pat. Nos. 4,619,873, 4,732,944, 4,906,703 and EP-483,087. In order to increase the adhesion between the glass and the layer of ionomer resin, it is known to prime the glass' surface with a coupling agent, such as a silane, organic amine (aliphatic amine, ethanolamine . . . ) or diisocyanate, before applying the layer of ionomer resin. However, these coupling agents can sometimes be insufficient to provide adequate adhesion between the glass and ionomer resin, with delamination possibly occurring during processing such as cutting operations of the obtained laminated glazing. Thus, there is a need to further increase the adhesion between the ionomer resin layers and the substrates, notably the glass substrates, which are associated with them in the laminated glazings. [0005]
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the present invention is to provide an improved laminated glazing, having good properties of chock resistance, good optical properties and an accrued resistance to delamination. [0006]
  • A further object of the present invention is to provide such a laminated glazing which is also economical. [0007]
  • These and other objects of the present invention have been satisfied by the discussion of a laminated glazing having at least one layer of glass and at least one transparent layer of ionomer resin adhered thereto, wherein the layer of ionomer resin is adhered to another layer of the glazing at at least a portion of the surfaces in contact with one another, wherein the adhesion is performed with the use of at least one metal chelate, and a primer comprising such a metal chelate for use in the laminated glazing. [0008]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the present invention, the expression “ionomer resin” means a resin that can be extruded and that contains ethylene/carboxylic acid or alpha olefin/carboxylic acid copolymers, those polymers being crosslinked by ionic reaction. This type of resin has been previously described in patents EP-483,087, EP-191,088, U.S. Pat. Nos. 4,619,973, 4,732,944 and 4,906,703, the relevant portions of which are hereby incorporated by reference. As a preferred ionomer resin, one can use resins based on ionically crosslinked copolymers obtained by combination of ethylene, styrene, or propylene monomers with monomers of acrylic acid, methacrylic acid or maleic anhydride. The one or more ionomer resins used in the laminated glazing according to the invention are preferably made of (meth)acrylic acid (where “(meth)acrylic” refers to either methacrylic or acrylic)/ethylene (or alpha olefin) copolymer(s), crosslinked by ionic reaction. The ionomer resins available commercially usually contain the previously mentioned acidic copolymers, partially neutralized or not, or metallic or amino salts of the mentioned acidic copolymers (one can notably find zinc or sodium ionomers). [0009]
  • The ionomer resin layers can be prepared by conventional means such as by casting or extrusion. Several glazing structures according to the invention are possible such as the structures described in patents EP-0,191,088 or EP-0,483,087 which are hereby incorporated by reference. The glazing according to the present invention can therefore contain one or several glass layers, each glass layer being optionally coated with one or several thin layers which affect optical or energy properties of the glazing, such as the transmission of energy or light. The glazing also contains one or several ionomer resin layers and, optionally, one or several layers of one or several other plastic materials conventionally used in laminated glass, such as polyurethane, polycarbonate, polymethylmethacrylate or another acrylic plastic or polyvinylbutyral. The ionomer resins adhere more or less well to the other plastic materials that can be used to make the laminated glazing, and if desired or needed, can be co-extruded with the mentioned materials. Preferably, each layer of the ionomer resin of the glazing according to the present invention is placed between two glass layers or two plastic layers or between one glass layer and one plastic layer. [0010]
  • The chelate used according to the invention to improve the adhesion between the layer of ionomer resin and at least one adjacent layer, notably a glass layer or another plastic layer, can intervene in different forms in the laminated glazing. In particular it can be part of a primer used to coat at least a portion of at least one face of the ionomer resin layer and/or at least a portion of at least one adjacent layer, notably a glass layer (provided or not with thin layers which affect optical or energy properties), before assembling of the two layers. It can also be incorporated in the composition of one of the layers, notably into a layer of the ionomer resin, in order to make it self-adhesive. [0011]
  • The metal chelate used according to the present invention can be any metal chelate, for example a titanium, zirconium, chromium chelate, and is preferably a titanium chelate. The substituents (or ligands) of that chelate are generally groups having an alkoxy functionality linked to the chelate central metal atom. Preferably at least one of the substituents has at least one additional second atom having one or more pairs of free electrons, such as a nitrogen, oxygen or sulfur atom. Preferred substituents for the present metal chelate include: triethanolamine, acetylacetonate, octyleneglycol, isopropoxyl and butoxyl . . . Most preferably, the present chelate used is a metal chelate having at least one (most preferably two) acetylacetonate group(s) and having at least one (most preferably two) alkoxy group(s) (notably C[0012] 1-C4 alkoxy group(s), such as propoxyl or butoxyl). Most preferred chelates include diisopropoxy-bis[acetylacetonate] titanium or isopropoxy butoxy-bis[acetylacetonate] titanium (those products being simply designated by “titanium acetylacetonate”).
  • The use of the present chelate to improve the adhesion between the layer(s) of ionomer resin and at least one of the adjacent layers within the laminated glazing allows the laminated glazing to have an increased resistance to delamination over time. This resistance is particularly advantageous in instances where the laminated glazing is of large dimensions and is meant to be sawed. Any delamination during the sawing is thus eliminated in the glazing according to the present invention. [0013]
  • The resistance to delamination of glazing according to the invention due to the improved adhesion between the resin layer(s) and the adjacent layer(s) is notably characterized by a value of at least 3 Pummel units, when the glazing is submitted to the Pummel test, described below in the Examples, whereas the resistance to delamination of laminated glazing using a primer based on one or several silanes does not usually exceed 1 Pummel unit. In most cases, the resistance to delamination of the glazing according to the present invention is at least 5 Pummel units. [0014]
  • In addition to significantly improved resistance to delamination, the glazing according to the present invention has good resistance to shock, good rigidity, minimal projection of particles upon breakage, good optical properties, can be easily and economically made and can be used to make glazings for use in numerous types of applications. By contrast, the polycarbonate and polyurethane type glazings are less easy and more expensive to make and are not suitable to certain types of applications, such as the fabrication of windshields. [0015]
  • The glazing according to the present invention is obtained according to processes well known to one of ordinary skill in the art, notably by assembly of the different layers of the glazing under heat and pressure. The chelate used can be synthesized using conventional well-known procedures from the corresponding metal chloride by reaction in alcohol or acetylacetone, the reaction optionally being followed by a trans-esterification. In addition, some chelates are also commercially available. [0016]
  • In order to make the laminated glazing according to the present invention, one preferably uses a primer containing the chelate according to the present invention. This primer can be applied to the layer of ionomer resin using a roller immediately following the extrusion operation or can be applied or pulverized subsequently, on the layer of ionomer resin or on another layer that must come in contact with the layer of ionomer resin. [0017]
  • This primer contains at least one chelate as previously mentioned and at least one solvent capable of dissolving the chelate such as an alcohol, notably isopropanol. Since the chelate solution is relatively stable, the primer can be stored for some days before application. The use of such a chelate solution also allows an application on the layers to be glued, with the solvent being easily eliminated, for example by drying, before the assembly of the primed layer with the layer that must be joined by the primer. [0018]
  • One can also use as the chelate solvent mixtures of water-alcohol in ratios allowing a clear solution to be obtained (preferably mixtures of at least 50% weight of alcohol). [0019]
  • In one advantageous embodiment of the present invention, the one or more chelates used to improve the adhesion in the laminated glass are used in conjunction with at least one silane, preferably one epoxysilane such as a gamma glycidoxy-propyl-trimethoxy-silane. The combination of at least one chelate and one silane allows, in certain cases, the results obtained using only the chelate to be further improved. When a primer containing at least one chelate and at least one silane is used, this primer preferably uses a solvent mixture of water and chelate solvent, for example a mixture of water-alcohol, preferably a mixture of water-isopropanol. [0020]
  • The primer according to the present invention contains preferably 0.05 to 3% by weight of the metal chelate (based on total primer weight) and 95 to 99.95% by weight (based on total primer weight) of a water-alcohol mixture containing 50 to 100% alcohol (based on total weight of water-alcohol mixture). The primer can also contain a silane in an amount between 0 and 3% by weight, the ratio between the amounts of silane and chelate being preferably from 0.33 to 3, with the primer containing at least 1%, preferably 5% by weight of water. The dry extract of the primer is from 0.05 to 5% by weight and is preferably less than 3% by weight. [0021]
  • Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified. [0022]
  • EXAMPLES Example 1
  • A laminated glazing in accordance with the present invention was prepared as follows: a layer of ionomer resin composed of ethylene-methacrylate copolymers was obtained by extrusion and then placed in between two identical glass layers, wherein the faces of the glass layers in contact with the ionomer resin layer were previously coated with a primer and dried. The pile of layers was then calendered before the final assembly under heat and pressure. [0023]
  • A Pummel test was done on samples of the laminated glazing obtained, the test having the following steps: [0024]
  • The samples were placed in a freezer at −18° C. for at least two hours. The samples were then removed and hammered using an electromagnetic hammer, within seconds following their removal from the freezer. Each sample was progressively hammered at increments of 10 mm wide and 15 mm height compared to the lower side (edge) of the sample, with the sample being inclined at 5 to 10°. [0025]
  • When the lower edge had been totally pulverized, the next 15 mm were hammered. This process was repeated until 10 cm of the sample had been pulverized. It is important to ensure that all the glass on the two faces was pulverized. [0026]
  • The samples to be tested were then brought to ambient temperature and left a time sufficient to allow any condensed humidity to evaporate before the evaluation was continued. [0027]
  • The samples were compared to “Pummel” standards, to observe whether the standards or the samples have more resin without glass. This procedure was repeated until an agreement was obtained between standards and samples. [0028]
  • The sample was turned and retested as just described. [0029]
  • The Pummel test was considered good when the observed values were in the range of 3 to 8 Pummel units (preferably 3 to 6 for automobile applications and 5 to 8 for architectural applications). One cannot exceed, preferably, 8 Pummel units in order to keep certain properties such as the glazing's resistance to shocks. With less than 3 Pummel units, risks of delamination can appear with time. [0030]
  • In the present example, the primer used was titanium acetylacetonate (added as a 75 wt % solution, available as TiACA 75 by the HULS company) and isopropanol based. The weight composition of the primer is given in Table 1 as well as the value obtained from the Pummel test. [0031]
  • Examples 2, 3, 4, 5, 6
  • In these examples, the primer used in Example 1 was replaced by respectively each one of the primers described in Table 1. The results are given in Table 1. The silane used was a gamma glycidoxy-propyl-trimethoxy-silane available as SILQUEST A 187 by OSi. [0032]
  • Reference Example
  • In this example, the primer used in Example 1 was replaced by a primer that contained no chelate, but contained a conventional aminosilane primer available as SILQUEST A 1100 by OSi. The composition of this primer and the results obtained are given in Table 1. [0033]
  • One can observe an improvement of the adhesion using a primer that has a chelate base according to the present invention. The glazing according to the invention also has an increased resistance to delamination. [0034]
  • The laminated glazing according to the invention can be used in a variety of end uses such as in the construction industry, in the automobile industry to make, for example, armored vehicles, glazing for jails or banks, etc. . . . [0035]
    TABLE 1
    SILANE
    TiACA A187 WATER ISOPROPANOL SILANE PUMMEL
    (in g) (in g) (in g) (in g) A1100 VALUE
    Example 1 1.33 98.7 5
    Example 2 1.33 10 88.7 5
    Example 3 0.13 0.3 99.6 5
    Example 4 0.67 1.5 97.8 6
    Example 5 0.13 0.3 10 89.6 7
    Example 6 0.67 1.5 10 86.8 7
    Ref. Ex. 49.5 49.5 1 0-1
  • This application is based on French Patent Application 96/00577, filed with the French Patent Office on Jan. 19, 1996, the entire contents of which are hereby incorporated by reference. [0036]
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0037]

Claims (18)

What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. A glazing comprising at least one glass layer and at least one transparent layer of ionomer resin, wherein at least a portion of one face of said at least one transparent layer of ionomer resin is adhered to at least a portion of one face of another layer of the glazing using at least one metal chelate.
2. The glazing according to
claim 1
, wherein the at least one metal chelate is a titanium chelate.
3. The glazing according to
claim 2
, wherein the at least one metal chelate is a titanium acetylacetonate.
4. The glazing according to
claim 1
, wherein the at least one metal chelate is used in combination with at least one silane compound.
5. The glazing according to
claim 1
, wherein the at least one metal chelate is part of a primer, wherein said primer is applied on at least a portion of at least one face of the layer of ionomer resin, on at least a portion of at least one layer to come in contact with said layer of ionomer resin in the glazing or both.
6. The glazing according to
claim 1
, further comprising at least one layer of a plastic material different from said ionomer resin.
7. The glazing according to
claim 1
, wherein said at least one metal chelate is a compound having a metal selected from the group consisting of titanium, zirconium and chromium and wherein said metal has at least one alkoxy ligand.
8. The glazing according to
claim 7
, wherein said at least one metal chelate further contains at least one substituent having at least two atoms having one or more pairs of free electrons capable of chelation.
9. The glazing according to
claim 8
, wherein said at least one substituent having at least two atoms having one or more free electrons is a member selected from the group consisting of triethanolamine, acetylacetonate and octyleneglycol.
10. The glazing according to
claim 1
, wherein said at least one metal chelate is selected from diisopropoxy-bis(acetylacetonate) titanium or isopropoxy butoxy-bis(acetylacetonate) titanium.
11. A primer composition useful to make laminated glazing, comprising at least one metal chelate in a suitable carrier.
12. The primer according to
claim 11
, wherein said suitable carrier is an alcohol.
13. The primer according to
claim 11
, further comprising at least one silane compound.
14. The primer according to
claim 13
, wherein said primer comprises at least 1% by weight of water.
15. The primer according to
claim 11
, wherein said at least one metal chelate is a compound having a metal selected from the group consisting of titanium, zirconium and chromium and wherein said metal has at least one alkoxy ligand.
16. The primer according to
claim 11
, wherein said at least one metal chelate further contains at least one substituent having at least two atoms having one or more pairs of free electrons capable of chelation.
17. The primer according to
claim 16
, wherein said at least one substituent having at least two atoms having one or more free electrons is a member selected from the group consisting of triethanolamine, acetylacetonate and octyleneglycol.
18. The primer according to
claim 11
, wherein said at least one metal chelate is selected from diisopropoxy-bis(acetylacetonate) titanium or isopropoxy butoxy-bis (acetylacetonate) titanium.
US09/780,507 1996-01-19 2001-02-12 Laminated glass and primer used for its production Expired - Fee Related US6419734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/780,507 US6419734B2 (en) 1996-01-19 2001-02-12 Laminated glass and primer used for its production

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR96/00577 1996-01-19
FR9600577A FR2743802B1 (en) 1996-01-19 1996-01-19 SHEET GLASS AND PRIMER USED FOR ITS PRODUCTION
FR9600577 1996-01-19
US08/613,940 US5895721A (en) 1996-01-19 1996-03-13 Laminated glass and primer used for its production
US09/257,941 US6238801B1 (en) 1996-01-19 1999-02-26 Laminated glass and primer used for its production
US09/780,507 US6419734B2 (en) 1996-01-19 2001-02-12 Laminated glass and primer used for its production

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/257,941 Division US6238801B1 (en) 1996-01-19 1999-02-26 Laminated glass and primer used for its production

Publications (2)

Publication Number Publication Date
US20010004870A1 true US20010004870A1 (en) 2001-06-28
US6419734B2 US6419734B2 (en) 2002-07-16

Family

ID=9488252

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/613,940 Expired - Fee Related US5895721A (en) 1996-01-19 1996-03-13 Laminated glass and primer used for its production
US09/257,941 Expired - Fee Related US6238801B1 (en) 1996-01-19 1999-02-26 Laminated glass and primer used for its production
US09/780,507 Expired - Fee Related US6419734B2 (en) 1996-01-19 2001-02-12 Laminated glass and primer used for its production

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/613,940 Expired - Fee Related US5895721A (en) 1996-01-19 1996-03-13 Laminated glass and primer used for its production
US09/257,941 Expired - Fee Related US6238801B1 (en) 1996-01-19 1999-02-26 Laminated glass and primer used for its production

Country Status (7)

Country Link
US (3) US5895721A (en)
EP (1) EP0785064B1 (en)
JP (1) JPH09227177A (en)
CA (1) CA2170017C (en)
DE (1) DE69725195T2 (en)
ES (1) ES2208836T3 (en)
FR (1) FR2743802B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793592B2 (en) 2002-08-27 2004-09-21 Acushnet Company Golf balls comprising glass ionomers, or other hybrid organic/inorganic compositions
US20040230022A1 (en) * 2002-08-27 2004-11-18 Harris Kevin M. Ormocer composites for golf ball components
US7037965B2 (en) 2002-08-27 2006-05-02 Acushnet Company Golf balls comprising glass ionomers, ormocers, or other hybrid organic/inorganic compositions
WO2011102936A1 (en) * 2010-02-16 2011-08-25 Ferro Corporation MATERIALS FOR IMPROVED ADHESION RELATING TO FUNCTIONAL COLD END COATINGS (CECs) AND METHODS OF DETECTING SAME

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286039A (en) * 1996-04-22 1997-11-04 Komatsu Ltd Plate-shaped composite and its production
DE19729336A1 (en) * 1997-07-09 1999-01-14 Vetrotech Saint Gobain Int Ag Fire-resistant laminated glass
EP1105287B1 (en) * 1998-05-14 2006-10-11 E.I. Du Pont De Nemours And Company Glass laminates for threat resistant window systems
US6737151B1 (en) * 1999-04-22 2004-05-18 E. I. Du Pont De Nemours And Company Glass laminates having improved structural integrity against severe impacts
US7351468B2 (en) * 2000-10-26 2008-04-01 E. I. Du Pont De Nemours And Company Interlayers for laminated safety glass with superior de-airing and laminating properties and process for making the same
US20040166085A1 (en) * 2003-02-21 2004-08-26 Gurusamy Manivannan Shave gel compositions
US7117914B2 (en) * 2003-03-20 2006-10-10 Cardinal Lg Company Non-autoclave laminated glass
US7143800B2 (en) * 2003-03-20 2006-12-05 Cardinal Lg Company Non-autoclave laminated glass
US7291398B2 (en) * 2003-10-28 2007-11-06 E. I. Du Pont De Nemours And Company Ionomer resins as interlayers for use with imbedded or attached IR reflective or absorptive films in laminated glazing applications
US7763360B2 (en) * 2004-10-29 2010-07-27 E.I. Du Pont De Nemours And Company Thermoplastic resin compositions suitable for use in transparent laminates
US7759414B2 (en) * 2005-07-14 2010-07-20 E.I. Du Pont De Nemours And Company Nanoparticulate solar control compositions
US7786183B2 (en) * 2005-06-20 2010-08-31 Dow Global Technologies Inc. Coated glass articles
US7781493B2 (en) 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
EP1934244A2 (en) * 2005-10-06 2008-06-25 Emthrax LLC Methods and compositions relating to anthrax spore glycoproteins as vaccines
US7445683B2 (en) * 2005-11-30 2008-11-04 E. I. Du Pont De Nemours And Company Thermoplastic resin compositions suitable for use in laminated safety glass
US7678441B2 (en) 2005-12-02 2010-03-16 E.I. Du Pont De Nemours And Company Interlayers for laminated safety glass with superior de-airing and laminating properties and process for making the same
US20070196630A1 (en) * 2005-12-30 2007-08-23 Hayes Richard A Decorative solar control laminates
US8101267B2 (en) * 2005-12-30 2012-01-24 E. I. Du Pont De Nemours And Company Multilayer polymeric laminates and high strength laminates produced therefrom
US7622192B2 (en) * 2005-12-30 2009-11-24 E.I. Du Pont De Nemours And Company Solar control laminates
US20080044666A1 (en) 2006-08-17 2008-02-21 Anderson Jerrel C Amine-neutralized ethylene acid copolymers, shaped articles and laminates produced therefrom
US20080099064A1 (en) * 2006-10-27 2008-05-01 Richard Allen Hayes Solar cells which include the use of high modulus encapsulant sheets
US8691372B2 (en) * 2007-02-15 2014-04-08 E I Du Pont De Nemours And Company Articles comprising high melt flow ionomeric compositions
US20080196760A1 (en) * 2007-02-15 2008-08-21 Richard Allen Hayes Articles such as safety laminates and solar cell modules containing high melt flow acid copolymer compositions
US20080233377A1 (en) * 2007-03-19 2008-09-25 Smith Rebecca L High contrast high strength decorative sheets and laminates
US20080233412A1 (en) * 2007-03-19 2008-09-25 Smith Rebecca L High contrast high strength decorative films and laminates
US20080233371A1 (en) * 2007-03-19 2008-09-25 Richard Allen Hayes Decorative safety glass
US20080302461A1 (en) * 2007-06-08 2008-12-11 E. I. Du Pont De Nemours And Company Transparent Colored High Modulus Interlayers and Laminates Therefrom
US20080318063A1 (en) * 2007-06-22 2008-12-25 Anderson Jerrel C Glass laminates with improved weatherability
US20090126859A1 (en) * 2007-11-16 2009-05-21 Cadwallader Robert J Process for producing glass laminates
US8319094B2 (en) * 2007-11-16 2012-11-27 E I Du Pont De Nemours And Company Multilayer terionomer encapsulant layers and solar cell laminates comprising the same
US20090151772A1 (en) * 2007-12-14 2009-06-18 E.I. Du Pont De Nemours And Company Terionomer Films or Sheets and Solar Cell Modules Comprising the Same
KR101587666B1 (en) 2007-12-18 2016-01-21 다우 글로벌 테크놀로지스 엘엘씨 Protective coating for window glass having enhanced adhesion to glass bonding adhesives
US20090155576A1 (en) * 2007-12-18 2009-06-18 E. I. Du Pont De Nemours And Company Glass-less glazing laminates
EP2257994B1 (en) * 2008-04-04 2018-01-17 Kuraray America Inc. Solar cell modules comprising high melt flow poly(vinyl butyral) encapsulants
US20090288701A1 (en) * 2008-05-23 2009-11-26 E.I.Du Pont De Nemours And Company Solar cell laminates having colored multi-layer encapsulant sheets
CN102047442B (en) 2008-06-02 2014-05-07 纳幕尔杜邦公司 Solar cell module having a low haze encapsulant layer
US7641965B1 (en) 2008-06-30 2010-01-05 E.I. Du Pont De Nemours And Company Transparent light-weight safety glazings
WO2010051525A1 (en) * 2008-10-31 2010-05-06 E. I. Du Pont De Nemours And Company High clarity laminated articles comprising an ionomer interlayer
AU2009308728B2 (en) * 2008-10-31 2016-02-04 Performance Materials Na, Inc. High-clarity ionomer compositions and articles comprising the same
US20100154867A1 (en) * 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Mechanically reliable solar cell modules
WO2010077429A1 (en) 2008-12-30 2010-07-08 E. I. Du Pont De Nemours And Company High-clarity blended ionomer compositions and articles comprising the same
WO2010077427A1 (en) * 2008-12-31 2010-07-08 E. I. Du Pont De Nemours And Company Laminates comprising ionomer interlayers with low haze and high moisture resistance
US8334033B2 (en) * 2008-12-31 2012-12-18 E I Du Pont De Nemours And Company Ionomer compositions with low haze and high moisture resistance and articles comprising the same
WO2012016127A1 (en) 2010-07-30 2012-02-02 E. I. Du Pont De Nemours And Company Crosslinkable materials for safety laminates
US8758898B2 (en) * 2010-10-11 2014-06-24 Liveglass, Inc. Thermoplastic multilayer interlayer polymer film and related glass laminate composite including same
US20150251384A1 (en) 2012-10-12 2015-09-10 E.I.Du Pont De Nemours And Company Glass laminates with nanofilled ionomer interlayers
EP2934883B1 (en) 2012-12-19 2018-06-27 E. I. du Pont de Nemours and Company Cross-linked polymers and their use in packaging films and injection molded articles
FR2999978A1 (en) * 2012-12-20 2014-06-27 Saint Gobain Laminated glazing, useful in wall, door and ceiling, comprises polymer interlayer sheet ensuring connection between sheets, and lacquer layer, where adhesion between lacquer layer and polymer interlayer sheet is performed via promoter
US20150158986A1 (en) 2013-12-06 2015-06-11 E.I. Du Pont De Nemours And Company Polymeric interlayer sheets and light weight laminates produced therefrom
US10286631B2 (en) 2015-06-03 2019-05-14 Precision Glass Bending Corporation Bent, veneer-encapsulated heat-treated safety glass panels and methods of manufacture

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3492394A (en) * 1966-10-03 1970-01-27 Minnesota Mining & Mfg Molding capable of providing multiple release of articles therefrom and of using same
FR2405905A1 (en) * 1977-10-11 1979-05-11 Saint Gobain AQUEOUS GEL FIREWALL GLASS
US4495156A (en) * 1983-01-05 1985-01-22 American Can Company Primary system
FR2542926B1 (en) 1983-03-16 1986-11-07 Sanyo Electric Co PRESERVATION DEVICE FOR LEAD ACCUMULATOR BATTERY
US4906703A (en) * 1984-08-17 1990-03-06 Artistic Glass Products Company Ionomer resin films and laminates thereof
US4732944A (en) * 1984-08-17 1988-03-22 Advanced Glass Systems, Inc. Ionomer resin films
US4619973A (en) * 1984-08-17 1986-10-28 Advanced Glass Systems, Inc. Ionomer resin films
US4959405A (en) * 1986-06-04 1990-09-25 Illinois Tool Works, Inc. Acid modified adhesive composition
CA2039629A1 (en) * 1990-10-23 1992-04-24 Nelson Bolton Method for preparing laminated safety glass
DE4138218C2 (en) * 1991-11-21 1994-08-04 Doerken Ewald Ag Use of post-dipping agents for the post-treatment of chromated or passivated galvanizing layers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793592B2 (en) 2002-08-27 2004-09-21 Acushnet Company Golf balls comprising glass ionomers, or other hybrid organic/inorganic compositions
US20040230022A1 (en) * 2002-08-27 2004-11-18 Harris Kevin M. Ormocer composites for golf ball components
US7037965B2 (en) 2002-08-27 2006-05-02 Acushnet Company Golf balls comprising glass ionomers, ormocers, or other hybrid organic/inorganic compositions
US7238122B2 (en) 2002-08-27 2007-07-03 Acushnet Company Ormocer composites for golf ball components
WO2011102936A1 (en) * 2010-02-16 2011-08-25 Ferro Corporation MATERIALS FOR IMPROVED ADHESION RELATING TO FUNCTIONAL COLD END COATINGS (CECs) AND METHODS OF DETECTING SAME
US9656911B2 (en) 2010-02-16 2017-05-23 Ferro Corporation Materials for improved adhesion relating to functional cold end coatings (CECs) and methods of detecting same

Also Published As

Publication number Publication date
ES2208836T3 (en) 2004-06-16
EP0785064A1 (en) 1997-07-23
DE69725195D1 (en) 2003-11-06
US5895721A (en) 1999-04-20
FR2743802B1 (en) 1998-03-20
JPH09227177A (en) 1997-09-02
CA2170017A1 (en) 1997-07-20
FR2743802A1 (en) 1997-07-25
US6419734B2 (en) 2002-07-16
DE69725195T2 (en) 2004-06-17
EP0785064B1 (en) 2003-10-01
US6238801B1 (en) 2001-05-29
CA2170017C (en) 2006-06-27

Similar Documents

Publication Publication Date Title
US6238801B1 (en) Laminated glass and primer used for its production
AU2005309953B2 (en) Thermoplastic resin compositions suitable for use in transparent laminates
US4277538A (en) Method of manufacturing laminated safety glass
KR910009518B1 (en) Laminated safety glass and polymeric laminate for use thorein
US20020155302A1 (en) Method for preparing laminated safety glass
US4952460A (en) Process for the production of composite safety glass
CA1243590A (en) Laminated safety glass
WO2016139318A1 (en) Temporary surface protective adhesive layer
AU686735B2 (en) Laminated glazing unit
CN101374656A (en) Thermoplastic resin compositions suitable for use in laminated safety glass
KR20070097426A (en) Sun protection film which absorbs infrared radiation
EP1022261A4 (en) Interlayer for laminated glass and laminated glass
KR20020053778A (en) Removable reflective sheeting
EP0714764A2 (en) Improved impact resistant laminate
US5569537A (en) Laminated glass with polyurethane resin layer and silane coupling agent layer
CA1069813A (en) Laminated safety glass
GB2048167A (en) Composite synthetic resin panes
US9452950B2 (en) Reflective panel
US3821071A (en) Safety panes
US20230264454A1 (en) Safety window film including polyurethane

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100716