US20010016724A1 - Integral aortic arch infusion clamp having pressure ports - Google Patents

Integral aortic arch infusion clamp having pressure ports Download PDF

Info

Publication number
US20010016724A1
US20010016724A1 US09/070,696 US7069698A US2001016724A1 US 20010016724 A1 US20010016724 A1 US 20010016724A1 US 7069698 A US7069698 A US 7069698A US 2001016724 A1 US2001016724 A1 US 2001016724A1
Authority
US
United States
Prior art keywords
balloon
lumen
catheter
opening
infusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/070,696
Inventor
Albert Davis
Wendel Lloyd
Christina Draper
Mitta Suresh
Dvid Hernon
Richard C. Bryant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chase Medical Inc
Original Assignee
Chase Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chase Medical Inc filed Critical Chase Medical Inc
Priority to US09/070,696 priority Critical patent/US20010016724A1/en
Assigned to CHASE MEDICAL INC. reassignment CHASE MEDICAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRYANT, RICHARD C., DAVIS, ALBERT, DRAPER, CHRISTINA, HERNON, DAVID, LLOYD, WENDEL, SURESH, MITTA
Assigned to UNITED STATES SURGICAL CORPORATION reassignment UNITED STATES SURGICAL CORPORATION PROMISSORY NOTE Assignors: CHASE MEDICAL INC.
Publication of US20010016724A1 publication Critical patent/US20010016724A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12181Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/047Liquids non-physiological cardioplegic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system
    • A61M2210/127Aorta

Definitions

  • the present invention is generally related to cardiac catheters including venous perfusion and arterial perfusion cardiac catheters for providing cardiopulmonary bypass support and isolation of the heart while performing open heart surgery, and more particularly to an improved apparatus and method for providing infusion of oxygenated blood, aortic clamping, and delivery of a cardioplegia solution.
  • catheters to administer fluids to and draw out of the body has been a standard practice in medical procedures for years. Multiple catheters may be used to connect an extracorporeal circuit to the body during open-heart procedures. The various catheters are simultaneously used to provide different functions, for instance, one catheter for delivering a cardioplegia solution, with another catheter being inserted into the heart to infuse oxygenated blood to the ascending aorta.
  • the aorta is cannulated in up to three locations.
  • the aorta is cannulated with a first catheter for returning oxygenated blood to the body from the extracorporeal circuit.
  • Oxygenated blood is delivered to the heart with a catheter through the coronary arteries from the base of the aorta, known as the aortic base.
  • the ascending aorta is typically clamped distal to the coronary ostia, known as the opening for coronary arteries, with a large stainless steel aortic cross clamp. Clamping the ascending aorta isolates the coronary arteries from the extracorporeal circuit.
  • the aorta is cannulated in a second location proximal to the cross clamp using a second catheter to deliver cardioplegia.
  • the electrochemical action of the heart can be stopped by infusing the heart muscle with a cardioplegia solution.
  • Cardioplegia solution is typically rich in potassium ions.
  • the potassium ions interrupt the heart's electrical signals, resulting in a still heart. Stopping the heart gives a stable platform to effectively conduct the necessary repairs to the heart.
  • the cardioplegia solution is delivered to the heart muscle through the coronary arteries. This is typically accomplished by infusing the cardioplegia solution into the ascending aorta with the second catheter between the large cross clamp and the aortic valve located at the base of the aorta.
  • the cross clamp keeps the cardioplegia and the oxygenated blood separated from one another.
  • the aorta may be cannulated in a third location proximal to the cross clamp using a third catheter.
  • air may collect in the aortic arch proximal to the aortic cross clamp.
  • the conventional third catheter Prior to removal of the cross clamp, the conventional third catheter is used to vent the trapped air.
  • U.S. Pat. No. 5,312,344 to Grinfeld et al. discloses an arterial perfusion catheter inserted into the ascending aorta to provide extracorporeal circulation.
  • Grinfeld, et al '344 teaches a three lumen catheter with one lumen for blood perfusion, another lumen for delivering cardioplegia solution, and a third lumen for inflating a balloon at the distal end of the catheter.
  • the inflatable balloon functions to occlude the aorta to avoid cross clamping the aorta and the aforementioned disadvantages.
  • Grinfeld, et al fails to teach a method or apparatus monitoring aortic root pressure. It would be advantageous, however, to monitor arotic root pressure so that the surgeon can ensure the balloon is properly occluding the vessel and ensure the effective application of cardioplegia solution.
  • the present invention achieves technical advantages as a singular catheter and methods of use thereof to accomplish all four functions of 1) infusing blood, 2) delivering cardioplegia solution, 3) monitoring pressure in the aortic base; and 4) occluding the aorta.
  • the catheter is adapted to be inserted into the ascending aorta and has a balloon at the distal end thereof which inflates to occlude the aorta and act as a clamp.
  • the catheter includes a multi-lumen tube body wherein the largest lumen is used for delivering the oxygenated blood to the ascending aorta.
  • a first lumen is used for infusing the oxygenated blood
  • a second lumen is used to inflate or deflate the balloon
  • the third lumen is used to infuse the cardioplegia solution and to selectively vent the aorta when needed
  • the fourth lumen is used to ascertain pressure at the aortic root to determine if the aortic valve is functionally operative during cardioplegia delivery, and to monitor aortic root pressure to determine if the balloon is adequately occluding the aorta.
  • the lumen openings are all located at the catheter distal end to achieve the specific intended use of the catheter.
  • the catheter is inserted transthoracically into the ascending aorta such that the catheter distal end extends upwardly into the ascending aorta to infuse oxygenated blood out the distal end of the catheter proximate the expanded balloon.
  • the fourth lumen is used to ascertain the pressure in the aorta proximate the aortic valve, prior to delivery of a cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon. Pressure is subsequently ascertained in the aorta via the fourth lumen to check if the aortic valve is competent during delivery of cardioplegia.
  • the cardioplegia solution is delivered via an opening closely proximate and at the other side of the balloon, the opening being defined on the proximal side of the balloon.
  • the cardioplegia opening may also be used to intermittently administer oxygenated blood to the heart muscle and coronary artery.
  • the balloon is positioned in the ascending aorta such that the balloon resides above the aortic base with oxygenated blood being infused into the aortic arch. More specifically, the balloon is preferably positioned between the aortic base and the Brachiocephalie artery.
  • the catheter is transthoracically inserted into the ascending aorta in the reverse orientation. That is, the distal end of the catheter can be directed downwardly toward the aortic base.
  • the fourth lumen opens at the distal end of the catheter for sensing pressure proximate the aortic valve prior to delivery of cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon, and then subsequently to check if the aortic valve is competent during delivery of cardioplegia.
  • the cardioplegia solution is dispensed out the distal end of the catheter.
  • the opening on the other side of the balloon which is defined between the balloon and the catheter proximal end, is used to infuse oxygenated blood into the ascending aorta.
  • the catheter is inserted femorally into the ascending aorta.
  • the fourth lumen opens at the distal end of the catheter for sensing pressure proximate the aortic valve prior to delivery of cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon, and then subsequently to check if the aortic valve is competent during delivery of cardioplegia.
  • the balloon is designed to be filled with, or encompassed by, a resilient material such as a foam or gel to provide a nominal diameter when no pressure is applied.
  • a resilient material such as a foam or gel to provide a nominal diameter when no pressure is applied.
  • the balloon foam or gel provides a gentle atraumatic force that expands inside the aorta, reducing the potential for any arteriosclerotic plaque to dislodge from the aorta.
  • the resilient material is preferably partitioned into sections to facilitate further expansion of the balloon in a body vessel having a varying diameter or curvature.
  • a balloon is provided having walls of varying thickness to facilitate the balloon expanding radially to increase the radial force and effect a seal with the body vessel wall.
  • the balloon is elongated to prevent shifting within the body vessel after inflation.
  • the balloon may have 2 lobes defining a cavity therebetween when inflated in the aorta to create a bloodless region.
  • This bloodless region facilitates performing an anastomosis in a clear field when attaching a saphenous vein to the aorta.
  • a single multi-lumen catheter is utilized which requires only one incision in the ascending aorta, or which can be inserted femorally.
  • the catheter provides the four necessary functions of occluding the aorta, infusing oxygenated blood, delivering the cardioplegia solution, and sensing pressure in the aorta to determine if the aorta is properly occluded, and to determine if the aortic valve is competent.
  • FIG. 1 is an illustration of a single four lumen catheter transthoracically inserted into the ascending aorta according to a first insertion method of the present invention
  • FIG. 2 is a sectional side view of the catheter utilized to conduct the insertion method in FIG. 1, the catheter shown as having four lumens, the first for inflating the balloon, the second for infusing oxygenated blood out the distal end of the catheter proximate the balloon, the third for dispensing a cardioplegia solution closely proximate the balloon and proximal of the balloon, and the fourth for sensing pressure at the aortic root;
  • FIG. 3 is a cross section of the catheter taken along lines 3 - 3 in FIG. 2 illustrating the location and relative diameters of the four lumens;
  • FIG. 4 is an illustration of a second insertion method of the present invention whereby a single four lumen catheter is transthoracically inserted into the ascending aorta with the catheter distal end and fourth lumen opening oriented toward the aortic base for sensing pressure in the aortic base, with the oxygenated blood being infused via catheter openings closely proximate the balloon and proximal of the balloon, as shown;
  • FIG. 5 is a sectional side view of the catheter utilized to conduct the insertion method in FIG. 4, wherein the larger lumen terminates proximal of the balloon;
  • FIG. 6 is a cross section of the catheter taken along lines 6 - 6 in FIG. 5 illustrating the location and relative diameters of the four lumens;
  • FIG. 7 is an illustration of the four-lumen catheter of FIG. 5 femorally inserted into the ascending aorta according to a third insertion method of the invention
  • FIG. 8 is a sectional side view of a catheter according to another alternative embodiment of the present invention suitable for occluding any body passageway, such as the aorta, having a balloon with an inner shell with a resilient material disposed thereabout;
  • FIG. 9 is a cross section of the balloon taken along line 9 - 9 in FIG. 8 to illustrate the resilient foam material encapsulated between the inner balloon shell and the outer balloon shell;
  • FIG. 10 is an illustration of the catheter of FIG. 8 with the balloon in the expanded state by a pressure applied to the inner balloon shell, compressing the resilient foam material to further expand the overall diameter of the balloon;
  • FIG. 11 is a sectional view of an alternative embodiment of the catheter shown in FIG. 8 whereby the resilient foam material of the balloon is partitioned into sections, each section being separated by radially extending opposing edges about the catheter body;
  • FIG. 12 is a sectional view illustrating the embodiment of FIG. 11 in the expanded state, with the resilient foam sections expanding radially outward and away from one another to further increase the diameter of the balloon when pressure is applied to the balloon via the associated lumen;
  • FIG. 13 is yet another alternative embodiment of the catheter of the present invention wherein the resilient foam material of the balloon is partitioned in the transverse direction with respect to the catheter body;
  • FIG. 14 is a cross-sectional view taken along line 14 - 14 in FIG. 13 illustrating the annular resilient foam sections
  • FIG. 15 is a sectional side view of the catheter of FIG. 13 illustrating the balloon in the expanded state, whereby the annular resilient foam sections expand outwardly and away from one another as pressure is applied via the associated lumen to expand the outer balloon shell and increase the overall diameter of the balloon as a function of the pressure applied;
  • FIG. 16 is a sectional side view of an alternate embodiment of the catheter of FIG. 2 having a balloon with a varying thickness wall;
  • FIG. 17 is a sectional side view of an alternate embodiment of the catheter of FIG. 5 having a balloon with a varying thickness wall;
  • FIG. 18 is an illustration of the four lumen catheter of FIG. 17 femorally inserted into the ascending aorta;
  • FIG. 19 is a cross section of an alternative embodiment of a catheter having a double lobe balloon for creating a bloodless region in the aorta to perform an anastomosis of an artery.
  • FIG. 1 First with reference to FIG. 1, there is shown the first preferred insertion method of the present invention.
  • a single four lumen catheter 10 is utilized for cannulating the ascending aorta 12 of a human heart 14 .
  • the right atrium is shown at 16
  • the inferior vena cava shown at 18
  • superior vena cava shown at 20
  • the Brachiocephalie artery is shown at 22 .
  • the blood is siphoned away from the superior vena cava and inferior vena cava, oxygenated, and then returned to the ascending aorta.
  • Catheter 10 is upwardly positioned within the ascending aorta 12 , as shown, by first creating a suitable incision in the aorta proximate the aortic base, shown at 30 .
  • the distal end 32 of catheter 10 is transthoracically inserted into the incision 30 of the aorta just above the aortic base 34 , with the distal end 32 being advanced upwardly into the ascending aorta 12 until a reference marker 36 of catheter 10 is located adjacent incision 30 .
  • the distal end 32 is oriented upwardly proximate the Brachiocephalie artery 22 .
  • An inflatable balloon 40 of catheter 10 is carefully positioned above the aortic base but ahead of the left Brachiocephalie artery 22 .
  • a plurality of cardioplegia delivery openings 42 and a pressure sensing opening 44 are oriented in the aortic root 34 and above an aortic valve 38 of the heart.
  • An infusion opening 46 is oriented proximate the left Brachiocephalie artery 22 .
  • Opening 44 is used to sense pressure in the aortic root when used in the orientation shown in FIG. 1, both during inflation of balloon 40 , and then during delivery of cardioplegia solution.
  • One lumen of catheter 10 communicates pressure from opening 44 to remote pressure sensing equipment. There is a clinical benefit to sense pressure in the aortic root between the inflated balloon 40 and the aortic valve 38 to ensure that the balloon 40 is properly occluding the aorta 12 . This is particularly true since monitoring an inflation pressure in the balloon is not necessarily indicative of the effectiveness of the arterial occlusion. If the aortic base pressure detected via this opening 44 indicates that the balloon 40 is in its unexpanded state, or is not fully occluding the aorta, pressure can be applied via one lumen of catheter 10 to inflate the balloon 40 until the pressure reading indicates the passageway is fully occluded. Pressure at the aortic base should fall from 70 mm to 0 for a properly occluded aorta since blood will seep through the coronaries after occlusion.
  • a suitable aortic pressure is not sensed via this lumen 44 when delivering cardioplegia, this could indicate that the aortic valve 38 is not sufficiently closing and thus, any delivery of cardioplegia solution would could trickle down into the left ventricle of the heart.
  • a proper aortic root pressure is sensed via opening 44 between the expanded balloon 40 and the aortic valve 38 , then, cardioplegia solution can be continued to be delivered via openings 42 .
  • Aortic root pressure should increase from 0 mm to a pressure that corresponds with the flow rate during delivery of cardioplegia. If pressure is not sensed to increase via opening 44 while delivering cardioplegia via openings 42 , this is an indication of a defective aortic valve.
  • cardioplegia delivery should be ceased immediately and other means of performing cardioplegia to the heart muscle must be undertaken.
  • Pressure should be sensed to increase from 0 to about 70 mm for a good flow rate of cardioplegia. Too high a flow rate, and thus too high a pressure, could cause damage to the coronaries.
  • the openings 42 of catheter 10 also allow venting of the left ventricle of excess cardioplegia to protect the endocardium when the apex of the heart is elevated. Venting is normally performed intermittently between cardioplegia infusions.
  • the catheter 10 is connected to an oxygenated blood source to infuse oxygenated blood out opening 46 at the distal end of the catheter into the ascending aorta 12 .
  • the balloon 40 is inflated with air or a saline solution until the aorta is determined to be fully occluded by sensing pressure in the aortic root via opening 44 .
  • the cardioplegia is delivered to the aortic root to arrest the heart. Pressure is sensed in the aortic root during delivery of cardioplegia via opening 44 to ensure the aortic valve is functioning properly.
  • FIG. 2 there is shown a side sectional view of the integral catheter 10 which is suited for achieving the first insertion method of the present invention shown in FIG. 1.
  • Catheter 10 includes an elongated catheter body 50 extending between a proximal end 52 and the distal end 32 .
  • the inflatable balloon 40 which is secured circumferentially about the catheter body 50 by an adhesive or other suitable affixing means.
  • the balloon 40 may be filled with a foam or other resilient material, as will be described below, or simply left empty.
  • the balloon may also have varying thickness walls, as will also be described below.
  • a first smaller lumen 60 extends longitudinally through catheter 10 and is in fluid communication within the interior 62 of balloon 40 via an opening 64 defined through catheter body 50 .
  • a larger, second lumen 70 extends longitudinally from the catheter proximal end through catheter 10 and opens at the distal opening 46 at distal end 32 .
  • Lumen 70 delivers oxygenated blood to the ascending aorta.
  • a smaller third lumen 80 extends from the proximal end of catheter 10 and terminates via a plurality of openings 42 defined through catheter body 50 to deliver cardioplegia solution.
  • the openings 42 are provided closely adjacent to the expandable balloon 40 , but on the proximal side of the balloon. Thus, openings 42 and 46 are provided on opposite sides of balloon 40 .
  • the inflated balloon 40 sealingly isolates openings 42 and 46 from one another for infusing blood out one side (opening 46 ), and delivering cardioplegia solution out the other (through openings 42 ).
  • a fourth lumen 90 extends through catheter body 10 and is in fluid communication with pressure sensing opening 44 located proximal of balloon 40 and distal of openings 42 .
  • Pressure sensing lumen 90 facilitates remotely sensing pressure in the aortic base via opening 44 as previously described with reference to the insertion method shown in FIG. 1.
  • a pressure sensing meter 92 is typically connected to the proximal end of lumen 90 , as shown in FIG. 2, to sense aortic root pressure.
  • the pressure sensing meter 92 provides a means for sensing aortic root pressure to determine the effectiveness of the balloon occlusion, and also the means to sense aortic root pressure when delivering cardioplegia.
  • Catheter body 50 is preferably comprised of suitable flexible plastic material, such as silicone, PVC or other thermoplastics according to well-known techniques.
  • suitable flexible plastic material such as silicone, PVC or other thermoplastics according to well-known techniques.
  • the diameter of the main infusion lumen 70 is 0.250 inches.
  • the diameter of the smaller inflating lumen 60 is about 0.030 inches, and the cardioplegia lumen 80 has a diameter of about 0.100 inches, and the pressure sensing lumen 90 has a diameter of about 0.100 inches.
  • the overall diameter of catheter body 50 is about 0.312 inches. These dimensions are provided by way of example and clearly other catheter and lumen dimensions are also contemplated.
  • the relative diameters and locations of the four lumens are shown, again, with the main infusion lumen 70 having the largest diameter for delivering oxygenated blood to the ascending aorta at a rate sufficient to perfuse a human body.
  • the main infusion lumen 70 is offset from an axial center of the catheter, and can be formed using conventional extrusion manufacturing techniques.
  • the surgeon may find it necessary to perfuse oxygenated blood to the heart muscle and the coronary artery instead of delivering cardioplegia.
  • This can be accomplished using catheter 10 according to the present invention by selectively administering oxygenated blood to the heart muscle and coronary artery through the cardioplegia lumen 80 via openings 42 .
  • Cardioplegia and oxygenated blood can be alternately administered above the aortic base to control the response of the heart muscle to the cardioplegia during surgery, and assisting the heart in resuming a normal beat after surgery.
  • FIGS. 4 - 6 there is shown an alternative catheter and method of insertion.
  • the orientation of a catheter 100 in the aorta is reversed as compared to FIG. 1. That is, the catheter 100 is transthoracically inserted into incision 30 of the ascending aorta 12 , but at a location further upward than that shown in FIG. 1, closer to the Brachiocephalie artery 22 such that the catheter 100 extends downwardly, as shown.
  • the distal end 32 of the catheter 100 is advanced downward into the aortic root 34 and delivers cardioplegia solution therefrom. Openings 102 proximate balloon 40 are positioned above i.e.
  • Cardioplegia is delivered into the aortic root 34 via cardioplegia opening 104
  • aortic root pressure is ascertained by pressure meter 92 via pressure sensing opening 106 .
  • Both openings 104 and 106 are located at the distal most end of the catheter 100 distal of balloon 40 , and are positioned in the aortic root.
  • the diameter of the lumen 110 for infusing blood into the ascending aorta is designed to have a much larger diameter than either lumen 120 delivering cardioplegia solution to the distal end of the catheter to opening 104 , lumen 130 communicating with opening 64 for inflating balloon 40 , or lumen 140 communicating with opening 106 for sensing aortic root pressure.
  • the diameter of the lumen 110 of catheter 100 has a diameter of between 0.250 and 0.350 inches for delivering oxygenated blood via openings 102 to the ascending aorta at a flow rate sufficient to perfuse a human body.
  • the diameter of the second lumen 120 delivering the cardioplegia solution out distal opening 104 is preferably about 0.100 inches, which is suitable to deliver the necessary quantity of cardioplegia at a desired flow rate to the heart.
  • the diameter of the third lumen 130 is preferably 0.030 inches for inflating balloon 40 .
  • the diameter of the fourth lumen 140 is about 0.100 inches.
  • the catheter body 50 is sufficiently flexible to allow maneuverability without kinking in the ascending aorta, allowing easy manipulation of the catheter within the aorta as shown in FIG. 1 and FIG. 4. If desired, the catheter could be designed to be extra resilient between the proximal end and openings 102 to further allow maneuverability of the catheter without kinking at the cannulation site.
  • the longitudinal compactness of the operative features of both catheters 10 and 100 facilitate the effective use of the single catheter.
  • the inflated balloon 40 typically has a diameter of about 1 inch, with the several openings being provided adjacent the balloon 40 .
  • the overall distance between the openings proximal of balloon 40 and the distal end 32 of catheters is preferably less than about 2 inches for a use in the typical human heart. However, it should be understood that other distances between the openings are also contemplated in alternate embodiments.
  • catheter 100 of FIG. 5 can also be inserted femorally into the ascending aorta 12 according to a third insertion method of the invention.
  • the distal end of the catheter is positioned proximate the aortic valve, and the pressure sensing opening 106 is positioned between the expanded balloon 40 and the aortic valve.
  • Oxygenated blood is delivered via openings 102 , and the diameter of lumen 110 is sufficient to deliver oxygenated blood at a sufficient flow rate for perfusing the human body.
  • FIGS. 8 - 10 there is shown generally at 200 a catheter with a uniquely designed balloon generally shown at 202 . Except for the balloon 202 , catheter 200 is identical to catheter 100 shown in FIG. 5, wherein like numerals refer to like elements. Balloon 202 is designed to allow more control of the overall balloon diameter.
  • the nominal state of the balloon 202 is shown in FIG. 8, wherein a resilient material 204 , such as foam, determines the nominal diameter.
  • a pressure is applied to lumen 60 , the overall diameter of the balloon can be increased approximately 20% beyond the nominal diameter, as shown in FIG. 10.
  • the catheter 200 is ideally suitable for occluding an aorta, however, it can be used for occluding other body passageways, such as the trachea, and limitation to use in a vessel of the heart is not to be inferred.
  • the catheter is discussed with reference to occluding the aorta for illustration and clarity.
  • catheter 200 has a catheter body 50 extending to a distal end 32 , similar to catheter 100 in FIG. 5.
  • Balloon 202 has a first resilient inner shell 206 disposed about the catheter body 50 and covering the opening 64 of lumen 60 .
  • lumen 60 communicates with the region of the balloon defined internally by the inner shell 206 .
  • the inner shell 206 is secured and sealed to catheter body 50 at each end thereof using a suitable adhesive, although heat could also be used to fuse the balloon shell 206 to the body of catheter 50 .
  • Disposed about the inner shell 206 is an oval or generally egg-shaped unitary piece of resilient material 204 , such as foam.
  • An outer resilient shell 210 encapsulates the foam material 204 , the foam material 204 residing between the inner shell 206 and the outer shell 210 .
  • the resilient foam material 204 is preferably comprised of an open-cell foam material, such as polyurethane.
  • the resilient material 204 may also comprise a get or other form changing material.
  • the outer shell 210 is comprised of a resilient material such as silicon or polyurethane similar to that of inner shell 206 , and overlaps the sealed edges of inner shell 206 .
  • Outer shell 210 is slipped over and sealed to both the distal ends of inner shell 206 and also to the catheter body 50 using a suitable adhesive, although heat or other suitable attachment means is appropriate.
  • a coating such as a closed cell polythelene may be applied to the foam material in place of outer shell 210 if desired.
  • the outer curvature of resilient material 204 defines the shape and diameter of the balloon 202 .
  • the foam material could also comprise of a closed-cell non-absorbing material such as polyethylene if desired to eliminate the need for the outer shell 210 .
  • a closed-cell non-absorbing material such as polyethylene if desired to eliminate the need for the outer shell 210 .
  • Each end of the non-absorbing foam material 204 is sealed to the catheter body 50 to allow inner balloon 206 to expand under the closed-cell material.
  • FIG. 9 shows a cross section of the balloon 202 taken along line 9 - 9 in FIG. 8.
  • the resilient material 204 is preferably harder and less resilient than the inner shell 206 and the outer shell 210 to facilitate expansion of the outer shell 210 .
  • Catheter 200 includes four lumens.
  • Lumen 110 provides a passageway for fluid to inflate balloon 62 .
  • the second lumen 120 extends the length of the catheter 200 and terminates at opening 104 to facilitate delivering cardioplegia.
  • the third lumen 130 terminates at openings 102 to deliver oxygenated blood, and fourth lumen 140 provides pressure sensing via opening 106 .
  • catheter 200 with the balloon 202 in the expanded state when positive pressure is applied to the inner balloon shell 206 via the lumen 110 .
  • the inner balloon shell 206 expands and defines a cavity 216 .
  • Due to the resiliency of the resilient material 204 the resilient material 204 will compress slightly.
  • a 25% expansion of the inner shell 206 causes about a 20% expansion of the outer shell 210 , and thus a 20% increase of the diameter of the balloon 202 .
  • the overall expansion of the balloon 202 is a function of the pressure applied to the balloon lumen 110 .
  • the expansion of balloon 202 is generally linear with respect to the pressure applied to lumen 110 .
  • the further expansion of the balloon 202 beyond its nominal diameter is especially useful for fully occluding a body passageway, such as an aorta, when the nominal diameter of the balloon is not quite sufficient to occlude the vessel, but wherein further expansion of the balloon does suitably occlude the vessel to prevent fluid flow therethrough.
  • the present invention finds technical advantages by allowing the balloon 202 to custom fit to the inner diameter of a body passageway needed to be occluded, such as the aorta, a trachea, etc.
  • FIG. 11 there is shown an alternative embodiment of a balloon having inner shell 206 and outer shell 210 with a resilient foam material disposed therebetween, and is designated generally by reference numeral 220 .
  • Balloon 220 differs from balloon 202 in FIG. 8, in that the resilient foam material 204 is radially partitioned into a plurality of segments 222 circumferentially about the catheter body 50 .
  • the interfacing edges 224 of the sections 222 engage one another, with the overall diameter of the resilient material 204 being the same as that shown in FIG. 8.
  • the interfacing edges 224 of sections 222 extend in the radial direction, as shown, with the width of each section 222 illustratively being approximately equal.
  • FIG. 12 shows balloon 220 in the expanded state, whereby each of the resilient foam sections 222 are separated from one another by corresponding gaps 228 .
  • the resilient foam section 204 By partitioning the resilient foam section 204 into modular sections 222 , the expansion of the foam material 204 in the radial direction is facilitated when a pressure is applied via lumen 110 .
  • the overall expansion of the foam material 204 is increased from that of the embodiment in FIG. 8.
  • the balloon 202 of the embodiment of FIG. 8 may increase 10%, but the overall diameter of balloon 220 in the embodiment of FIG. 11 may increase about 20%.
  • Each of the resilient material sections 222 remain encapsulated between the inner shell 206 and the outer shell 210 , as described with regard to balloon 202 in FIG. 8.
  • the modular sections 222 in FIG. 11 allow the diameter of the balloon to conform to the body passageway to fully occlude the passageway and prevent flow.
  • Catheter 230 is generally the same as catheter 200 in FIG. 8 except for the balloon configuration. That is, the resilient foam material 204 of balloon 231 is partitioned into annular sections 232 . Each of the annular sections 232 abut each other along section edges 234 , and each of the sections 232 is also concentric with each other about the catheter body 50 , as shown. A cross section of the modified balloon 231 taken along line 14 - 14 is shown in FIG. 14.
  • balloon 231 is shown in its expanded state, whereby the inner shell 206 is expanded by applying a pressure through lumen 110 .
  • the inner shell 206 expands to define the inner cavity 216 .
  • each of the annular sections 232 expands outwardly, and separate from one another to define gaps 236 .
  • the expanding annular sections 232 expand radially outward to expand the outer shell 210 , as shown to further increase the overall diameter of the balloon 231 .
  • the resilient material 204 Similar to the partitioned foam material shown in FIG. 11, by partitioning the resilient material 204 to provide modular resilient sections, the resilient material 204 will compress and expand more easily to increase the outer diameter of shell 210 for a given pressure to lumen 110 .
  • the modular annular sections 232 further ensure that the curvature of the outer shell 210 will conform to the inner curvature of the body passageway that the balloon 231 is inserted into. For instance, if the inner wall of the aorta is curved, the outer diameter of the balloon 231 will conform to this curvature to fully occlude the passageway when inflated. Thus, the balloon 231 adapts to the particular patient into which it is inserted.
  • FIG. 16 another alternative embodiment of the balloon is shown for use with a catheter 260 .
  • Catheter 260 is identical to the catheter of FIG. 2, wherein like numerals refer to like elements except for balloon 262 .
  • Catheter 260 has a balloon member 262 having a varying thickness wall. Particularly, the balloon member 262 is elongated and has a thin wall at a midsection 264 thereof, and a thicker proximal portion 266 and distal portion 268 . This design provides two features.
  • the balloon member 262 will inflate radially at a midsection thereof since the wall thickness is thin and more resilient than the proximal and distal sidewall portions 266 and 268 . This increases the radial force exerted by the balloon 262 against the lining of the body vessel the catheter is inserted within, such as the aorta. Since the proximal and distal sidewalls 266 and 268 are thicker than the midsection 264 of the balloon member 262 , these sidewalls will tend not to stretch. This balloon design helps to provide an improved seal with the body vessel walls of the vessel to be occluded.
  • a second feature of the balloon member 262 is that the balloon is elongated, and in combination with the thinner wall 264 at the midsection thereof, will reduce the tendency to slip or shift within the body vessel once inflated. This helps to maintain the balloon 264 securely in place to provide an effective seal even if the catheter should be shifted slightly by the physician.
  • the improved radial force provided by the varying thickness balloon, and the elongated length of the balloon provides an effective and secure seal to occlude the body vessel.
  • the catheter 260 shown in FIG. 16 like the catheter of FIG. 2 has a fourth lumen 90 terminating at a fourth lumen port 44 for sensing pressure that is proximal the balloon 262 , and is adapted to be inserted upwardly into the aorta such as shown in FIG. 1.
  • the function of the other three lumens is discussed above in the description of catheter 10 of FIG. 2.
  • FIG. 17 there is shown another embodiment of the catheter of the present invention.
  • Catheter 270 is identical to catheter 100 of FIG. 5 except for balloon 262 .
  • Balloon 262 of FIG. 17 is identical to the balloon 262 of FIG. 16.
  • the fourth lumen 140 of catheter 270 for sensing pressure terminates at opening 106 at a distal most end of the catheter, as shown.
  • Catheter 270 can be inserted downwardly into the aorta as in FIG. 4.
  • Catheter 270 is also suited to be inserted femorally into the aorta, as shown in FIG. 18.
  • the balloon 262 once inflated, is elongated and provides an increased radial force against the inner walls of the aorta 12 to provide an effective occlusion of the aorta. Since the proximal and distal portions 266 and 268 of the balloon 262 are thicker than the midsection 264 thereof, the sidewall portions 266 and 268 will tend not to expand, and thus, an improved radial force is exerted along the interface of the elongated balloon and the body vessel wall.
  • the balloon 262 is generally cylindrical, with tapered sidewalls 266 and 268 .
  • the outer surface of the balloon member 262 may also be provided with protrusions to facilitate gripping of the body vessel inner lining if desired.
  • FIG. 19 illustrates a catheter 280 having a specially shaped balloon to enhance the i 5 visibility during the surgery.
  • Balloon 282 of catheter 280 has two bulbs or lobes 284 creating two seals 286 with the adjacent wall 288 of the aorta 12 .
  • the area 290 in between these two bulbs 284 creates a bloodless area for the surgeon to perform the anastomosis in a clear field.
  • a vessel is attached to this clear field as shown at 291 .
  • the two lobes or bulbs 284 are formed in balloon 282 by securing an annular constriction, such as a ring 292 about the midsection of the balloon 282 , allowing the two lobes 284 to remain in fluid communication with each other for inflation by a single inflation lumen 130 .
  • the ring 292 is preferably secured to balloon 282 with a suitable adhesive.
  • the balloon 282 could simply be formed to have two lobes without the need for a ring, by varying the contour of the balloon during manufacture.

Abstract

An improved catheter and method for infusing blood to the heart, clamping the aorta and delivering a cardioplegia solution. A single catheter (10, 100) is used having a unique balloon (102, 162, 172) for ccluding the aorta 12 In a first embodiment, a single catheter (10) is transthoracically inserted upwardly in the aorta to infuse oxygenated blood into the ascending aorta via an infusion opening (46) terminating at the distal end (32), with cardioplegia solution being delivered via openings (42) defined closely adjacent the balloon (40) on the proximal side of the balloon. In a second and third embodiment, a single catheter (100) is transthoracically and femorally inserted, respectively, inserted into the aorta to infuse blood via openings (102) into the ascending aorta proximate the Brachiocephalie Artery, and deliver cardioplegia solution via the distal opening (104) downward toward the aortic base. A fourth lumen (90,140) is provided in both catheters for sensing aortic root pressure in combination with a pressure meter (92) to first ascertain if the balloon is sufficiently inflated and properly occluding the aorta, and second to ascertain proper function of the aortic valve during cardioplegia delivery. The balloon (202, 231) is preferably filled with a partitioned resilient material (204) to permit varying diameters of the balloon and occlude body passageways having varying diameters and curvatures, and may be elongated (262) to improve occlusion.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part application of U.S. patent application Ser. No. 08/846,666 entitled INTEGRAL AORTIC ARCH INFUSION CLAMP CATHETER filed May 1, 1997. [0001]
  • FIELD OF THE INVENTION
  • The present invention is generally related to cardiac catheters including venous perfusion and arterial perfusion cardiac catheters for providing cardiopulmonary bypass support and isolation of the heart while performing open heart surgery, and more particularly to an improved apparatus and method for providing infusion of oxygenated blood, aortic clamping, and delivery of a cardioplegia solution. [0002]
  • BACKGROUND OF THE INVENTION
  • Use of catheters to administer fluids to and draw out of the body has been a standard practice in medical procedures for years. Multiple catheters may be used to connect an extracorporeal circuit to the body during open-heart procedures. The various catheters are simultaneously used to provide different functions, for instance, one catheter for delivering a cardioplegia solution, with another catheter being inserted into the heart to infuse oxygenated blood to the ascending aorta. [0003]
  • In a typical open-heart procedure, blood is bypassed from the heart and lungs to a heart lung machine. When bypassing the heart, the blood is siphoned away from the superior vena cava and inferior vena cava, oxygenated, and then returned to the ascending aorta. The primary reason for using the extracorporeal circuit is to provide an empty and bloodless heart for the surgeon to effectively perform repair. In spite of bypassing the blood from the heart, the heart muscle will still beat, primarily for two reasons. First, the heart muscle is still receiving oxygenated blood from the extracorporeal circuit. Secondly, the heart's electrochemical activity is still functioning normally. [0004]
  • In a typical open-heart procedure, the aorta is cannulated in up to three locations. In a first location, the aorta is cannulated with a first catheter for returning oxygenated blood to the body from the extracorporeal circuit. Oxygenated blood is delivered to the heart with a catheter through the coronary arteries from the base of the aorta, known as the aortic base. To stop the flow of oxygenated blood to the heart, the ascending aorta is typically clamped distal to the coronary ostia, known as the opening for coronary arteries, with a large stainless steel aortic cross clamp. Clamping the ascending aorta isolates the coronary arteries from the extracorporeal circuit. [0005]
  • The aorta is cannulated in a second location proximal to the cross clamp using a second catheter to deliver cardioplegia. The electrochemical action of the heart can be stopped by infusing the heart muscle with a cardioplegia solution. Cardioplegia solution is typically rich in potassium ions. The potassium ions interrupt the heart's electrical signals, resulting in a still heart. Stopping the heart gives a stable platform to effectively conduct the necessary repairs to the heart. The cardioplegia solution is delivered to the heart muscle through the coronary arteries. This is typically accomplished by infusing the cardioplegia solution into the ascending aorta with the second catheter between the large cross clamp and the aortic valve located at the base of the aorta. The cross clamp keeps the cardioplegia and the oxygenated blood separated from one another. [0006]
  • The aorta may be cannulated in a third location proximal to the cross clamp using a third catheter. During surgery air may collect in the aortic arch proximal to the aortic cross clamp. Prior to removal of the cross clamp, the conventional third catheter is used to vent the trapped air. [0007]
  • There are three areas of concern in performing surgery in this conventional, multi-cannulation approach. First, clamping the aorta exerts tremendous force on the aortic walls, and there is a potential for the arteriosclerotic plaque deposits on the aortic walls to dislodge. Due to the proximity of the cross clamp to the carotid artery, this poses a special threat since the dislodged plaque can potentially go straight to the brain, resulting in a stroke to the patient. Secondly, the clamping pressure also causes damage to the delicate endothelial lining of the aorta, which is the inner surface of the artery. Postoperative scaring of the endothelial lining can provide an irregular surface causing increased arteriosclerotic plaque build up. Finally, the catheter suture sites tend to scar the aorta and make it very difficult to find suitable cannulation sites for open-heart procedures in the future, if necessary. [0008]
  • U.S. Pat. No. 5,312,344 to Grinfeld et al. discloses an arterial perfusion catheter inserted into the ascending aorta to provide extracorporeal circulation. Grinfeld, et al '344 teaches a three lumen catheter with one lumen for blood perfusion, another lumen for delivering cardioplegia solution, and a third lumen for inflating a balloon at the distal end of the catheter. The inflatable balloon functions to occlude the aorta to avoid cross clamping the aorta and the aforementioned disadvantages. However, Grinfeld, et al fails to teach a method or apparatus monitoring aortic root pressure. It would be advantageous, however, to monitor arotic root pressure so that the surgeon can ensure the balloon is properly occluding the vessel and ensure the effective application of cardioplegia solution. [0009]
  • Therefore, the need exists for a multi-lumen catheter and method of use thereof which not only allows delivery of cardioplegia and utilizes a balloon to occlude the vessel, but provides effective perfusion of blood into the arterial system as well as pressure monitoring of the aortic root at various times during a medical procedure. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention achieves technical advantages as a singular catheter and methods of use thereof to accomplish all four functions of 1) infusing blood, 2) delivering cardioplegia solution, 3) monitoring pressure in the aortic base; and 4) occluding the aorta. The catheter is adapted to be inserted into the ascending aorta and has a balloon at the distal end thereof which inflates to occlude the aorta and act as a clamp. The catheter includes a multi-lumen tube body wherein the largest lumen is used for delivering the oxygenated blood to the ascending aorta. A first lumen is used for infusing the oxygenated blood, a second lumen is used to inflate or deflate the balloon, the third lumen is used to infuse the cardioplegia solution and to selectively vent the aorta when needed, and the fourth lumen is used to ascertain pressure at the aortic root to determine if the aortic valve is functionally operative during cardioplegia delivery, and to monitor aortic root pressure to determine if the balloon is adequately occluding the aorta. The lumen openings are all located at the catheter distal end to achieve the specific intended use of the catheter. [0011]
  • According to one method of the present invention, the catheter is inserted transthoracically into the ascending aorta such that the catheter distal end extends upwardly into the ascending aorta to infuse oxygenated blood out the distal end of the catheter proximate the expanded balloon. The fourth lumen is used to ascertain the pressure in the aorta proximate the aortic valve, prior to delivery of a cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon. Pressure is subsequently ascertained in the aorta via the fourth lumen to check if the aortic valve is competent during delivery of cardioplegia. The cardioplegia solution is delivered via an opening closely proximate and at the other side of the balloon, the opening being defined on the proximal side of the balloon. The cardioplegia opening may also be used to intermittently administer oxygenated blood to the heart muscle and coronary artery. Preferably, the balloon is positioned in the ascending aorta such that the balloon resides above the aortic base with oxygenated blood being infused into the aortic arch. More specifically, the balloon is preferably positioned between the aortic base and the Brachiocephalie artery. [0012]
  • In an alternative method of the present invention, the catheter is transthoracically inserted into the ascending aorta in the reverse orientation. That is, the distal end of the catheter can be directed downwardly toward the aortic base. The fourth lumen opens at the distal end of the catheter for sensing pressure proximate the aortic valve prior to delivery of cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon, and then subsequently to check if the aortic valve is competent during delivery of cardioplegia. The cardioplegia solution is dispensed out the distal end of the catheter. The opening on the other side of the balloon, which is defined between the balloon and the catheter proximal end, is used to infuse oxygenated blood into the ascending aorta. [0013]
  • In another alternative method of the present invention, the catheter is inserted femorally into the ascending aorta. The fourth lumen opens at the distal end of the catheter for sensing pressure proximate the aortic valve prior to delivery of cardioplegia solution to ascertain the effectiveness of the occlusion by the balloon, and then subsequently to check if the aortic valve is competent during delivery of cardioplegia. [0014]
  • In yet a further alternative embodiment, the balloon is designed to be filled with, or encompassed by, a resilient material such as a foam or gel to provide a nominal diameter when no pressure is applied. The balloon foam or gel provides a gentle atraumatic force that expands inside the aorta, reducing the potential for any arteriosclerotic plaque to dislodge from the aorta. The resilient material is preferably partitioned into sections to facilitate further expansion of the balloon in a body vessel having a varying diameter or curvature. [0015]
  • In a further alternate embodiment, a balloon is provided having walls of varying thickness to facilitate the balloon expanding radially to increase the radial force and effect a seal with the body vessel wall. The balloon is elongated to prevent shifting within the body vessel after inflation. [0016]
  • In still yet a further alternate embodiment of the invention the balloon may have 2 lobes defining a cavity therebetween when inflated in the aorta to create a bloodless region. This bloodless region facilitates performing an anastomosis in a clear field when attaching a saphenous vein to the aorta. [0017]
  • Regardless of which method is utilized, a single multi-lumen catheter is utilized which requires only one incision in the ascending aorta, or which can be inserted femorally. The catheter provides the four necessary functions of occluding the aorta, infusing oxygenated blood, delivering the cardioplegia solution, and sensing pressure in the aorta to determine if the aorta is properly occluded, and to determine if the aortic valve is competent. [0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an illustration of a single four lumen catheter transthoracically inserted into the ascending aorta according to a first insertion method of the present invention; [0019]
  • FIG. 2 is a sectional side view of the catheter utilized to conduct the insertion method in FIG. 1, the catheter shown as having four lumens, the first for inflating the balloon, the second for infusing oxygenated blood out the distal end of the catheter proximate the balloon, the third for dispensing a cardioplegia solution closely proximate the balloon and proximal of the balloon, and the fourth for sensing pressure at the aortic root; [0020]
  • FIG. 3 is a cross section of the catheter taken along lines [0021] 3-3 in FIG. 2 illustrating the location and relative diameters of the four lumens;
  • FIG. 4 is an illustration of a second insertion method of the present invention whereby a single four lumen catheter is transthoracically inserted into the ascending aorta with the catheter distal end and fourth lumen opening oriented toward the aortic base for sensing pressure in the aortic base, with the oxygenated blood being infused via catheter openings closely proximate the balloon and proximal of the balloon, as shown; [0022]
  • FIG. 5 is a sectional side view of the catheter utilized to conduct the insertion method in FIG. 4, wherein the larger lumen terminates proximal of the balloon; [0023]
  • FIG. 6 is a cross section of the catheter taken along lines [0024] 6-6 in FIG. 5 illustrating the location and relative diameters of the four lumens;
  • FIG. 7 is an illustration of the four-lumen catheter of FIG. 5 femorally inserted into the ascending aorta according to a third insertion method of the invention; [0025]
  • FIG. 8 is a sectional side view of a catheter according to another alternative embodiment of the present invention suitable for occluding any body passageway, such as the aorta, having a balloon with an inner shell with a resilient material disposed thereabout; [0026]
  • FIG. 9 is a cross section of the balloon taken along line [0027] 9-9 in FIG. 8 to illustrate the resilient foam material encapsulated between the inner balloon shell and the outer balloon shell;
  • FIG. 10 is an illustration of the catheter of FIG. 8 with the balloon in the expanded state by a pressure applied to the inner balloon shell, compressing the resilient foam material to further expand the overall diameter of the balloon; [0028]
  • FIG. 11 is a sectional view of an alternative embodiment of the catheter shown in FIG. 8 whereby the resilient foam material of the balloon is partitioned into sections, each section being separated by radially extending opposing edges about the catheter body; [0029]
  • FIG. 12 is a sectional view illustrating the embodiment of FIG. 11 in the expanded state, with the resilient foam sections expanding radially outward and away from one another to further increase the diameter of the balloon when pressure is applied to the balloon via the associated lumen; [0030]
  • FIG. 13 is yet another alternative embodiment of the catheter of the present invention wherein the resilient foam material of the balloon is partitioned in the transverse direction with respect to the catheter body; [0031]
  • FIG. 14 is a cross-sectional view taken along line [0032] 14-14 in FIG. 13 illustrating the annular resilient foam sections;
  • FIG. 15 is a sectional side view of the catheter of FIG. 13 illustrating the balloon in the expanded state, whereby the annular resilient foam sections expand outwardly and away from one another as pressure is applied via the associated lumen to expand the outer balloon shell and increase the overall diameter of the balloon as a function of the pressure applied; [0033]
  • FIG. 16 is a sectional side view of an alternate embodiment of the catheter of FIG. 2 having a balloon with a varying thickness wall; [0034]
  • FIG. 17 is a sectional side view of an alternate embodiment of the catheter of FIG. 5 having a balloon with a varying thickness wall; [0035]
  • FIG. 18 is an illustration of the four lumen catheter of FIG. 17 femorally inserted into the ascending aorta; and [0036]
  • FIG. 19 is a cross section of an alternative embodiment of a catheter having a double lobe balloon for creating a bloodless region in the aorta to perform an anastomosis of an artery. [0037]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE PRESENT INVENTION
  • First with reference to FIG. 1, there is shown the first preferred insertion method of the present invention. As shown in FIG. 1, a single four [0038] lumen catheter 10 is utilized for cannulating the ascending aorta 12 of a human heart 14. For reference purposes, the right atrium is shown at 16, with the inferior vena cava shown at 18 and superior vena cava shown at 20. The Brachiocephalie artery is shown at 22. When bypassing the heart, the blood is siphoned away from the superior vena cava and inferior vena cava, oxygenated, and then returned to the ascending aorta.
  • [0039] Catheter 10 is upwardly positioned within the ascending aorta 12, as shown, by first creating a suitable incision in the aorta proximate the aortic base, shown at 30. The distal end 32 of catheter 10 is transthoracically inserted into the incision 30 of the aorta just above the aortic base 34, with the distal end 32 being advanced upwardly into the ascending aorta 12 until a reference marker 36 of catheter 10 is located adjacent incision 30. As shown in FIG. 1, the distal end 32 is oriented upwardly proximate the Brachiocephalie artery 22. An inflatable balloon 40 of catheter 10 is carefully positioned above the aortic base but ahead of the left Brachiocephalie artery 22. In this orientation, a plurality of cardioplegia delivery openings 42 and a pressure sensing opening 44 are oriented in the aortic root 34 and above an aortic valve 38 of the heart. An infusion opening 46 is oriented proximate the left Brachiocephalie artery 22. Opening 44 is used to sense pressure in the aortic root when used in the orientation shown in FIG. 1, both during inflation of balloon 40, and then during delivery of cardioplegia solution.
  • One lumen of [0040] catheter 10 communicates pressure from opening 44 to remote pressure sensing equipment. There is a clinical benefit to sense pressure in the aortic root between the inflated balloon 40 and the aortic valve 38 to ensure that the balloon 40 is properly occluding the aorta 12. This is particularly true since monitoring an inflation pressure in the balloon is not necessarily indicative of the effectiveness of the arterial occlusion. If the aortic base pressure detected via this opening 44 indicates that the balloon 40 is in its unexpanded state, or is not fully occluding the aorta, pressure can be applied via one lumen of catheter 10 to inflate the balloon 40 until the pressure reading indicates the passageway is fully occluded. Pressure at the aortic base should fall from 70 mm to 0 for a properly occluded aorta since blood will seep through the coronaries after occlusion.
  • There is also a clinical benefit to sense pressure in the [0041] aortic root 34 when delivering cardioplegia via openings 42 to ensure that the aortic valve 38 is functioning properly. The electrochemical action of the heart is stopped by infusing the heart muscle with the cardioplegia solution. This cardioplegia solution is typically rich in potassium ions, which potassium ions interrupt the heart electrical signals resulting in a still heart. Stopping the heart gives a stable platform to effectively conduct the necessary procedures to the heart.
  • If a suitable aortic pressure is not sensed via this [0042] lumen 44 when delivering cardioplegia, this could indicate that the aortic valve 38 is not sufficiently closing and thus, any delivery of cardioplegia solution would could trickle down into the left ventricle of the heart. If a proper aortic root pressure is sensed via opening 44 between the expanded balloon 40 and the aortic valve 38, then, cardioplegia solution can be continued to be delivered via openings 42. Aortic root pressure should increase from 0 mm to a pressure that corresponds with the flow rate during delivery of cardioplegia. If pressure is not sensed to increase via opening 44 while delivering cardioplegia via openings 42, this is an indication of a defective aortic valve. In this case, cardioplegia delivery should be ceased immediately and other means of performing cardioplegia to the heart muscle must be undertaken. Pressure should be sensed to increase from 0 to about 70 mm for a good flow rate of cardioplegia. Too high a flow rate, and thus too high a pressure, could cause damage to the coronaries. The openings 42 of catheter 10 also allow venting of the left ventricle of excess cardioplegia to protect the endocardium when the apex of the heart is elevated. Venting is normally performed intermittently between cardioplegia infusions.
  • In summary, when the surgeon is prepared to put the patient on the extracorporeal circuit, the [0043] catheter 10 is connected to an oxygenated blood source to infuse oxygenated blood out opening 46 at the distal end of the catheter into the ascending aorta 12. Then, the balloon 40 is inflated with air or a saline solution until the aorta is determined to be fully occluded by sensing pressure in the aortic root via opening 44. When the balloon is determined to be properly inflated, and the aorta effectively occluded, the cardioplegia is delivered to the aortic root to arrest the heart. Pressure is sensed in the aortic root during delivery of cardioplegia via opening 44 to ensure the aortic valve is functioning properly.
  • It is particularly noted according to the present invention that only one [0044] moderate incision 30 is required to cannulate the ascending aorta 12 to achieve all four functions. This reduces the trauma to the aorta as compared to other conventional and alternative approaches. Since the inflatable balloon is utilized to occlude the ascending aorta, the need for a cross clamp is eliminated, and the possibility of dislodging plaque is reduced. In addition, the delicate endothelial lining of the aorta is gently engaged.
  • Referring now to FIG. 2, there is shown a side sectional view of the [0045] integral catheter 10 which is suited for achieving the first insertion method of the present invention shown in FIG. 1. Catheter 10 includes an elongated catheter body 50 extending between a proximal end 52 and the distal end 32. Provided at the distal end of catheter 10 is the inflatable balloon 40 which is secured circumferentially about the catheter body 50 by an adhesive or other suitable affixing means. The balloon 40 may be filled with a foam or other resilient material, as will be described below, or simply left empty. The balloon may also have varying thickness walls, as will also be described below.
  • A first [0046] smaller lumen 60 extends longitudinally through catheter 10 and is in fluid communication within the interior 62 of balloon 40 via an opening 64 defined through catheter body 50. A larger, second lumen 70 extends longitudinally from the catheter proximal end through catheter 10 and opens at the distal opening 46 at distal end 32. Lumen 70 delivers oxygenated blood to the ascending aorta. A smaller third lumen 80 extends from the proximal end of catheter 10 and terminates via a plurality of openings 42 defined through catheter body 50 to deliver cardioplegia solution. The openings 42 are provided closely adjacent to the expandable balloon 40, but on the proximal side of the balloon. Thus, openings 42 and 46 are provided on opposite sides of balloon 40. In use, as illustrated and described with reference to FIG. 1, the inflated balloon 40 sealingly isolates openings 42 and 46 from one another for infusing blood out one side (opening 46), and delivering cardioplegia solution out the other (through openings 42). A fourth lumen 90 extends through catheter body 10 and is in fluid communication with pressure sensing opening 44 located proximal of balloon 40 and distal of openings 42. Pressure sensing lumen 90 facilitates remotely sensing pressure in the aortic base via opening 44 as previously described with reference to the insertion method shown in FIG. 1. A pressure sensing meter 92 is typically connected to the proximal end of lumen 90, as shown in FIG. 2, to sense aortic root pressure. The pressure sensing meter 92 provides a means for sensing aortic root pressure to determine the effectiveness of the balloon occlusion, and also the means to sense aortic root pressure when delivering cardioplegia.
  • [0047] Catheter body 50 is preferably comprised of suitable flexible plastic material, such as silicone, PVC or other thermoplastics according to well-known techniques. Preferably, the diameter of the main infusion lumen 70 is 0.250 inches. Preferably, the diameter of the smaller inflating lumen 60 is about 0.030 inches, and the cardioplegia lumen 80 has a diameter of about 0.100 inches, and the pressure sensing lumen 90 has a diameter of about 0.100 inches. The overall diameter of catheter body 50 is about 0.312 inches. These dimensions are provided by way of example and clearly other catheter and lumen dimensions are also contemplated.
  • Referring to FIG. 3, the relative diameters and locations of the four lumens are shown, again, with the [0048] main infusion lumen 70 having the largest diameter for delivering oxygenated blood to the ascending aorta at a rate sufficient to perfuse a human body. The main infusion lumen 70 is offset from an axial center of the catheter, and can be formed using conventional extrusion manufacturing techniques.
  • Sometimes the surgeon may find it necessary to perfuse oxygenated blood to the heart muscle and the coronary artery instead of delivering cardioplegia. This can be accomplished using [0049] catheter 10 according to the present invention by selectively administering oxygenated blood to the heart muscle and coronary artery through the cardioplegia lumen 80 via openings 42. Cardioplegia and oxygenated blood can be alternately administered above the aortic base to control the response of the heart muscle to the cardioplegia during surgery, and assisting the heart in resuming a normal beat after surgery.
  • Turning now to FIGS. [0050] 4-6, there is shown an alternative catheter and method of insertion. The orientation of a catheter 100 in the aorta is reversed as compared to FIG. 1. That is, the catheter 100 is transthoracically inserted into incision 30 of the ascending aorta 12, but at a location further upward than that shown in FIG. 1, closer to the Brachiocephalie artery 22 such that the catheter 100 extends downwardly, as shown. The distal end 32 of the catheter 100 is advanced downward into the aortic root 34 and delivers cardioplegia solution therefrom. Openings 102 proximate balloon 40 are positioned above i.e. proximal of, the balloon 40, toward Brachiocephalie artery 22 for infusion of oxygenated blood into the ascending aorta 12. Cardioplegia is delivered into the aortic root 34 via cardioplegia opening 104, and aortic root pressure is ascertained by pressure meter 92 via pressure sensing opening 106. Both openings 104 and 106 are located at the distal most end of the catheter 100 distal of balloon 40, and are positioned in the aortic root.
  • Referring to FIGS. 5 and 6, the diameter of the [0051] lumen 110 for infusing blood into the ascending aorta is designed to have a much larger diameter than either lumen 120 delivering cardioplegia solution to the distal end of the catheter to opening 104, lumen 130 communicating with opening 64 for inflating balloon 40, or lumen 140 communicating with opening 106 for sensing aortic root pressure. Preferably the diameter of the lumen 110 of catheter 100 has a diameter of between 0.250 and 0.350 inches for delivering oxygenated blood via openings 102 to the ascending aorta at a flow rate sufficient to perfuse a human body. The diameter of the second lumen 120 delivering the cardioplegia solution out distal opening 104 is preferably about 0.100 inches, which is suitable to deliver the necessary quantity of cardioplegia at a desired flow rate to the heart. The diameter of the third lumen 130 is preferably 0.030 inches for inflating balloon 40. The diameter of the fourth lumen 140 is about 0.100 inches. These lumen sizes are provided by way of example since it is clearly contemplated that other dimensions can be utilized. FIG. 6 shows the relative orientation and diameters of the lumens of FIG. 5, taken along line 6-6.
  • In both insertion methods of the present invention shown in FIGS. 1 and 4, only one [0052] moderate incision 30 of approximately 0.5 inches in length is required to be provided in the ascending aorta 12 for insertion of catheter 10 and catheter 100. This reduces the overall trauma to the aorta as compared to other alternative and conventional approaches. Moreover, use of balloon 40 to occlude the aorta reduces trauma to the aorta, and reduces the chance that plaque will be dislodged which could result in a stroke to the patient. The endothelial lining of the aorta is maintained. The methods of the present invention can be performed relatively quick by the surgeon, which reduces cost and the possibility of further complications as compared to multiple cannulation of the aorta.
  • The [0053] catheter body 50 is sufficiently flexible to allow maneuverability without kinking in the ascending aorta, allowing easy manipulation of the catheter within the aorta as shown in FIG. 1 and FIG. 4. If desired, the catheter could be designed to be extra resilient between the proximal end and openings 102 to further allow maneuverability of the catheter without kinking at the cannulation site.
  • The longitudinal compactness of the operative features of both [0054] catheters 10 and 100 facilitate the effective use of the single catheter. The inflated balloon 40 typically has a diameter of about 1 inch, with the several openings being provided adjacent the balloon 40. The overall distance between the openings proximal of balloon 40 and the distal end 32 of catheters is preferably less than about 2 inches for a use in the typical human heart. However, it should be understood that other distances between the openings are also contemplated in alternate embodiments.
  • Referring now to FIG. 7 [0055] catheter 100 of FIG. 5 can also be inserted femorally into the ascending aorta 12 according to a third insertion method of the invention. The distal end of the catheter is positioned proximate the aortic valve, and the pressure sensing opening 106 is positioned between the expanded balloon 40 and the aortic valve. Oxygenated blood is delivered via openings 102, and the diameter of lumen 110 is sufficient to deliver oxygenated blood at a sufficient flow rate for perfusing the human body.
  • Referring now to FIGS. [0056] 8-10, there is shown generally at 200 a catheter with a uniquely designed balloon generally shown at 202. Except for the balloon 202, catheter 200 is identical to catheter 100 shown in FIG. 5, wherein like numerals refer to like elements. Balloon 202 is designed to allow more control of the overall balloon diameter. The nominal state of the balloon 202 is shown in FIG. 8, wherein a resilient material 204, such as foam, determines the nominal diameter. When a pressure is applied to lumen 60, the overall diameter of the balloon can be increased approximately 20% beyond the nominal diameter, as shown in FIG. 10. The catheter 200 is ideally suitable for occluding an aorta, however, it can be used for occluding other body passageways, such as the trachea, and limitation to use in a vessel of the heart is not to be inferred. The catheter is discussed with reference to occluding the aorta for illustration and clarity.
  • Still referring to FIG. 8, [0057] catheter 200 has a catheter body 50 extending to a distal end 32, similar to catheter 100 in FIG. 5. Balloon 202 has a first resilient inner shell 206 disposed about the catheter body 50 and covering the opening 64 of lumen 60. Thus, lumen 60 communicates with the region of the balloon defined internally by the inner shell 206. The inner shell 206 is secured and sealed to catheter body 50 at each end thereof using a suitable adhesive, although heat could also be used to fuse the balloon shell 206 to the body of catheter 50. Disposed about the inner shell 206 is an oval or generally egg-shaped unitary piece of resilient material 204, such as foam. An outer resilient shell 210 encapsulates the foam material 204, the foam material 204 residing between the inner shell 206 and the outer shell 210. The resilient foam material 204 is preferably comprised of an open-cell foam material, such as polyurethane. The resilient material 204 may also comprise a get or other form changing material. The outer shell 210 is comprised of a resilient material such as silicon or polyurethane similar to that of inner shell 206, and overlaps the sealed edges of inner shell 206. Outer shell 210 is slipped over and sealed to both the distal ends of inner shell 206 and also to the catheter body 50 using a suitable adhesive, although heat or other suitable attachment means is appropriate. A coating such as a closed cell polythelene may be applied to the foam material in place of outer shell 210 if desired. The outer curvature of resilient material 204 defines the shape and diameter of the balloon 202.
  • Alternatively, the foam material could also comprise of a closed-cell non-absorbing material such as polyethylene if desired to eliminate the need for the [0058] outer shell 210. Each end of the non-absorbing foam material 204 is sealed to the catheter body 50 to allow inner balloon 206 to expand under the closed-cell material.
  • FIG. 9 shows a cross section of the [0059] balloon 202 taken along line 9-9 in FIG. 8. The resilient material 204 is preferably harder and less resilient than the inner shell 206 and the outer shell 210 to facilitate expansion of the outer shell 210.
  • [0060] Catheter 200 includes four lumens. Lumen 110, as mentioned above, provides a passageway for fluid to inflate balloon 62. The second lumen 120 extends the length of the catheter 200 and terminates at opening 104 to facilitate delivering cardioplegia. The third lumen 130 terminates at openings 102 to deliver oxygenated blood, and fourth lumen 140 provides pressure sensing via opening 106.
  • Referring now to FIG. 10, there is shown [0061] catheter 200 with the balloon 202 in the expanded state when positive pressure is applied to the inner balloon shell 206 via the lumen 110. The inner balloon shell 206 expands and defines a cavity 216. As the inner shell 206 expands, this compresses the resilient foam material 204 outwardly, as shown, further stretching the outer shell 210 to increase the overall diameter of the balloon 202. Due to the resiliency of the resilient material 204, the resilient material 204 will compress slightly. As an example, a 25% expansion of the inner shell 206 causes about a 20% expansion of the outer shell 210, and thus a 20% increase of the diameter of the balloon 202. The overall expansion of the balloon 202 is a function of the pressure applied to the balloon lumen 110. The expansion of balloon 202 is generally linear with respect to the pressure applied to lumen 110. The further expansion of the balloon 202 beyond its nominal diameter is especially useful for fully occluding a body passageway, such as an aorta, when the nominal diameter of the balloon is not quite sufficient to occlude the vessel, but wherein further expansion of the balloon does suitably occlude the vessel to prevent fluid flow therethrough. Since the diameter of a body passageway, such as the aorta, can vary significantly from one patient to another, the present invention finds technical advantages by allowing the balloon 202 to custom fit to the inner diameter of a body passageway needed to be occluded, such as the aorta, a trachea, etc.
  • Referring now to FIG. 11, there is shown an alternative embodiment of a balloon having [0062] inner shell 206 and outer shell 210 with a resilient foam material disposed therebetween, and is designated generally by reference numeral 220. Balloon 220 differs from balloon 202 in FIG. 8, in that the resilient foam material 204 is radially partitioned into a plurality of segments 222 circumferentially about the catheter body 50. In the nonexpanded state, as shown in FIG. 11, the interfacing edges 224 of the sections 222 engage one another, with the overall diameter of the resilient material 204 being the same as that shown in FIG. 8. The interfacing edges 224 of sections 222 extend in the radial direction, as shown, with the width of each section 222 illustratively being approximately equal.
  • FIG. 12 shows [0063] balloon 220 in the expanded state, whereby each of the resilient foam sections 222 are separated from one another by corresponding gaps 228. By partitioning the resilient foam section 204 into modular sections 222, the expansion of the foam material 204 in the radial direction is facilitated when a pressure is applied via lumen 110. For a given pressure to lumen 110, the overall expansion of the foam material 204, and thus the outer shell 210, is increased from that of the embodiment in FIG. 8. By way of example, depending on the materials chosen for the resilient material and the shells, for a given pressure, the balloon 202 of the embodiment of FIG. 8 may increase 10%, but the overall diameter of balloon 220 in the embodiment of FIG. 11 may increase about 20%. Each of the resilient material sections 222 remain encapsulated between the inner shell 206 and the outer shell 210, as described with regard to balloon 202 in FIG. 8. The modular sections 222 in FIG. 11 allow the diameter of the balloon to conform to the body passageway to fully occlude the passageway and prevent flow.
  • Referring now to FIG. 13, yet another alternative embodiment of a balloon having inner and outer shells is illustrated. [0064] Catheter 230 is generally the same as catheter 200 in FIG. 8 except for the balloon configuration. That is, the resilient foam material 204 of balloon 231 is partitioned into annular sections 232. Each of the annular sections 232 abut each other along section edges 234, and each of the sections 232 is also concentric with each other about the catheter body 50, as shown. A cross section of the modified balloon 231 taken along line 14-14 is shown in FIG. 14.
  • Referring to FIG. 14, [0065] balloon 231 is shown in its expanded state, whereby the inner shell 206 is expanded by applying a pressure through lumen 110. The inner shell 206 expands to define the inner cavity 216. As the inner shell 206 expands, each of the annular sections 232 expands outwardly, and separate from one another to define gaps 236. The expanding annular sections 232 expand radially outward to expand the outer shell 210, as shown to further increase the overall diameter of the balloon 231. Similar to the partitioned foam material shown in FIG. 11, by partitioning the resilient material 204 to provide modular resilient sections, the resilient material 204 will compress and expand more easily to increase the outer diameter of shell 210 for a given pressure to lumen 110. The modular annular sections 232 further ensure that the curvature of the outer shell 210 will conform to the inner curvature of the body passageway that the balloon 231 is inserted into. For instance, if the inner wall of the aorta is curved, the outer diameter of the balloon 231 will conform to this curvature to fully occlude the passageway when inflated. Thus, the balloon 231 adapts to the particular patient into which it is inserted.
  • Referring now to FIG. 16, another alternative embodiment of the balloon is shown for use with a [0066] catheter 260. Catheter 260 is identical to the catheter of FIG. 2, wherein like numerals refer to like elements except for balloon 262. Catheter 260 has a balloon member 262 having a varying thickness wall. Particularly, the balloon member 262 is elongated and has a thin wall at a midsection 264 thereof, and a thicker proximal portion 266 and distal portion 268. This design provides two features. First, upon injection of a fluid pressure via lumen 60 into cavity 62, the balloon member 262 will inflate radially at a midsection thereof since the wall thickness is thin and more resilient than the proximal and distal sidewall portions 266 and 268. This increases the radial force exerted by the balloon 262 against the lining of the body vessel the catheter is inserted within, such as the aorta. Since the proximal and distal sidewalls 266 and 268 are thicker than the midsection 264 of the balloon member 262, these sidewalls will tend not to stretch. This balloon design helps to provide an improved seal with the body vessel walls of the vessel to be occluded.
  • A second feature of the [0067] balloon member 262 is that the balloon is elongated, and in combination with the thinner wall 264 at the midsection thereof, will reduce the tendency to slip or shift within the body vessel once inflated. This helps to maintain the balloon 264 securely in place to provide an effective seal even if the catheter should be shifted slightly by the physician. In combination, the improved radial force provided by the varying thickness balloon, and the elongated length of the balloon, provides an effective and secure seal to occlude the body vessel.
  • The [0068] catheter 260 shown in FIG. 16 like the catheter of FIG. 2 has a fourth lumen 90 terminating at a fourth lumen port 44 for sensing pressure that is proximal the balloon 262, and is adapted to be inserted upwardly into the aorta such as shown in FIG. 1. The function of the other three lumens is discussed above in the description of catheter 10 of FIG. 2.
  • Referring now to FIG. 17, there is shown another embodiment of the catheter of the present invention. [0069] Catheter 270 is identical to catheter 100 of FIG. 5 except for balloon 262. Balloon 262 of FIG. 17 is identical to the balloon 262 of FIG. 16. The fourth lumen 140 of catheter 270 for sensing pressure terminates at opening 106 at a distal most end of the catheter, as shown. Catheter 270 can be inserted downwardly into the aorta as in FIG. 4.
  • [0070] Catheter 270 is also suited to be inserted femorally into the aorta, as shown in FIG. 18. The balloon 262, once inflated, is elongated and provides an increased radial force against the inner walls of the aorta 12 to provide an effective occlusion of the aorta. Since the proximal and distal portions 266 and 268 of the balloon 262 are thicker than the midsection 264 thereof, the sidewall portions 266 and 268 will tend not to expand, and thus, an improved radial force is exerted along the interface of the elongated balloon and the body vessel wall.
  • The [0071] balloon 262 is generally cylindrical, with tapered sidewalls 266 and 268. The outer surface of the balloon member 262 may also be provided with protrusions to facilitate gripping of the body vessel inner lining if desired.
  • Typically during a bypass surgery the blocked artery is bypassed by attaching a saphenous vein graft to the artery distal to the occlusion while the other end of the graft is attached to the aorta. The surgeon typically performs an anastomosis to the artery first, followed by the anastamosis to the aorta. Since the aorta is filled with blood or cardioplegia, the surgeon may not have good visibility when an incision is made in the aorta. FIG. 19 illustrates a [0072] catheter 280 having a specially shaped balloon to enhance the i5 visibility during the surgery. Balloon 282 of catheter 280 has two bulbs or lobes 284 creating two seals 286 with the adjacent wall 288 of the aorta 12. The area 290 in between these two bulbs 284 creates a bloodless area for the surgeon to perform the anastomosis in a clear field. A vessel is attached to this clear field as shown at 291.
  • With continued reference to FIG. 19, wherein like numerals refer to like elements, the two lobes or [0073] bulbs 284 are formed in balloon 282 by securing an annular constriction, such as a ring 292 about the midsection of the balloon 282, allowing the two lobes 284 to remain in fluid communication with each other for inflation by a single inflation lumen 130. The ring 292 is preferably secured to balloon 282 with a suitable adhesive. Alternatively, the balloon 282 could simply be formed to have two lobes without the need for a ring, by varying the contour of the balloon during manufacture.
  • It should be appreciated that each of the balloon designs discussed above can be used with any of the aforementioned catheters. Though the invention has been described with respect to a specific preferred embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present application. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications. [0074]

Claims (33)

We claim:
1. A method of providing cardiopulmonary bypass pump support during heart surgery, wherein the heart has an ascending aorta, an aortic base, an aortic valve, an aortic arch, a coronary artery, and a Brachiocephalie Artery, comprising the steps of:
a) inserting an infusion catheter having a proximal end and a distal end into the ascending aorta, the catheter having a first lumen, a second lumen, and an expandable balloon near said distal end, said catheter having a cardioplegia opening in fluid communication with said first lumen and located adjacent said balloon between said balloon and said catheter proximal end, said catheter having a pressure sensing opening in fluid communication with said second lumen and located between said balloon and said catheter proximal end;
b) advancing said infusion catheter upwardly into said ascending aorta such that said balloon is positioned above the aortic base and said catheter distal end is positioned toward said aortic arch, said cardioplegia opening and said pressure sensing opening being positioned near said aortic valve;
c) expanding said balloon to occlude said aorta; and
d) sensing pressure in said aorta via said pressure sensing opening after expanding said balloon in said step c) to ascertain the effectiveness of occlusion by said balloon.
2. The method as specified in
claim 1
further comprising the step of delivering cardioplegia solution to said heart via said catheter first lumen while sensing pressure proximate said aortic valve via said pressure sensing opening.
3. The method as specified in
claim 1
wherein said balloon is positioned in said step b) such that said balloon is positioned between the aortic base and the Brachiocephalie Artery.
4. The method as specified in
claim 1
, wherein said infusion catheter further comprises a third lumen having an infusion opening located at said catheter distal end and distal of said balloon, further comprising the step of infusing oxygenated blood into said aorta via said third lumen through said infusion opening.
5. A method of providing cardiopulmonary bypass pump support during heart surgery, wherein the heart has an ascending aorta, an aortic base, an aortic valve, an aortic arch and a Brachiocephalie Artery, comprising the steps of:
a) inserting an infusion catheter having a proximal end and a distal end into the ascending aorta, the catheter having a first lumen, a second lumen, and an expandable balloon near said distal end, said catheter having a cardioplegia opening in fluid communication with said first lumen and located at said catheter distal end, said catheter having a pressure sensing opening in fluid communication with said second lumen and located between said balloon and said catheter distal end;
b) advancing said infusion catheter downwardly into said ascending aorta such that said balloon is positioned above the aortic base and said catheter distal end including said pressure sensing opening is positioned near said aortic valve, said infusion opening being positioned toward said aortic arch;
c) expanding said balloon to occlude said aorta; and
d) sensing pressure in said aorta between said expanded balloon and said aortic valve via said pressure sensing opening to ascertain the effectiveness of occlusion by said balloon.
6. The method as specified in
claim 5
further comprising the step of delivering said cardioplegia solution to said heart via said catheter first lumen while sensing pressure proximate said aortic valve via said pressure sensing opening.
7. The method as specified in
claim 5
wherein said balloon is positioned in said step b) between the aortic base and the Brachiocephalie Artery.
8. The method as specified in
claim 5
wherein said catheter further comprises a third lumen and an infusion opening in fluid communication with said third lumen and located proximal said balloon, further comprising the step of infusing oxygenated blood into said aorta via said third lumen through said infusion opening.
9. The method as specified in
claim 8
wherein said catheter is inserted femorally into the aorta.
10. An infusion catheter having a catheter body extending between a proximal end and a distal end, said catheter body having a first lumen, a second lumen, a third lumen, and a fourth lumen, said catheter body having a balloon disposed near said distal end and in communication with said first lumen, said second lumen extending to a distal opening located distal of said balloon, said third lumen having at least one opening disposed adjacent said balloon and positioned between said balloon and said catheter proximal end, said fourth lumen terminating at a pressure sensing opening disposed adjacent said balloon.
11. An infusion catheter as specified in
claim 10
further comprising, in combination, a pressure meter coupled to said fourth lumen.
12. The infusion catheter as specified in
claim 10
wherein said pressure sensing opening is disposed between said balloon and said catheter distal end.
13. The infusion catheter as specified in
claim 10
wherein said pressure sensing opening is disposed between said balloon and said catheter proximal end.
14. The infusion catheter as specified in
claim 10
wherein said pressure sensing opening is defined less than 3 inches from said catheter distal end.
15. The infusion catheter as specified in
claim 12
wherein said third lumen has a diameter sufficiently large to accommodate blood flow therethrough at a rate sufficient to perfuse a human body.
16. The infusion catheter as specified in
claim 13
wherein said second lumen has a diameter sufficiently large to accommodate blood flow therethrough at a rate sufficient to perfuse a human body.
17. The infusion catheter as specified in
claim 10
wherein said balloon is defined by a balloon member disposed about said catheter body, and having a midsection and proximal and distal sidewalls, said balloon member midsection being more resilient than the sidewalls of the balloon member.
18. The infusion catheter as specified in
claim 17
wherein said balloon member sidewalls have a greater thickness than said balloon member midsection.
19. The infusion catheter as specified in
claim 18
wherein said balloon member midsection is elongated.
20. A catheter having a catheter body and a balloon member disposed thereabout to form a balloon, said balloon member having a midsection and proximal and distal portions disposed about said catheter body, said balloon member midsection being more resilient than said balloon member proximal and distal portions.
21. The infusion catheter as specified in
claim 20
wherein said balloon member distal and proximal portions have a greater thickness than said balloon member midsection.
22. The infusion catheter as specified in
claim 20
wherein said balloon member midsection is elongated.
23. An infusion catheter having a catheter body extending between a proximal end and a distal end, said catheter body having a first lumen, a second lumen, a third lumen, and a fourth lumen, said catheter body having a balloon disposed near said distal end and in communication with said first lumen, said second lumen extending to a distal opening located distal of said balloon, said third lumen having at least one opening disposed proximal and adjacent said balloon, said fourth lumen terminating at a pressure sensing opening disposed proximal of said balloon.
24. An infusion catheter as specified in
claim 23
further comprising, in combination, a pressure meter coupled to said fourth lumen.
25. The infusion catheter as specified in
claim 23
wherein said second lumen has a diameter sufficiently large to perfuse a human body.
26. An infusion catheter having a catheter body extending between a proximal end and a distal end, said catheter body having a first lumen, a second lumen, a third lumen, and a fourth lumen, said catheter body having a balloon disposed near said distal end and in communication with said first lumen, said second lumen extending to a distal opening located distal of said balloon, said third lumen having at least one opening disposed proximal said balloon and having a diameter sufficiently large to perfuse a human body, said fourth lumen having a pressure sensing opening disposed distal said balloon.
27. An infusion catheter as specified in
claim 26
further comprising, in combination, a pressure meter coupled to said fourth lumen.
28. An infusion catheter having a catheter body extending between a proximal end and a distal end, said catheter body having a first lumen, a second lumen, a third lumen, and a fourth lumen, said catheter body having a balloon disposed near said distal end and in communication with said first lumen, said second lumen extending to a distal opening located distal of said balloon, said third lumen having at least one opening positioned between said balloon and said catheter proximal end, said fourth lumen terminating at a pressure sensing opening disposed near said balloon, wherein one of said second lumen or said third lumen is sufficiently large to perfuse a human body and is offset from an axial center of said catheter.
29. An infusion catheter as specified in
claim 28
further comprising, in combination, a pressure meter coupled to said fourth lumen.
30. An infusion catheter for use with a body vessel, comprising:
a catheter body extending between a proximal end and a distal end, said catheter body having a first lumen, a second lumen, a third lumen, and a fourth lumen, said catheter body having a balloon disposed near said distal end and in communication with said first lumen, said second lumen having a diameter sufficiently large to perfuse a human heart, said fourth lumen terminating at a pressure sensing opening, and
means coupled to said fourth lumen for detecting the effectiveness of occlusion of the vessel by said balloon while inflating said balloon.
31. The infusion catheter as specified in
claim 31
wherein said second lumen extends to an infusion opening disposed distal of said balloon, said third lumen extending to an opening proximal of said balloon, said pressure sensing opening being located proximal said balloon.
32. The infusion catheter as specified in
claim 31
wherein said second lumen extends to an infusion opening disposed proximal said balloon, said third lumen extending to an opening distal said balloon, said pressure sensing opening being located distal said balloon.
33. A device for use with a body vessel, comprising:
a catheter body;
a balloon disposed about said catheter body;
a pressure sensing lumen extending within said catheter body to a pressure sensing opening; and
means coupled to said pressure sensing lumen for detecting the effectiveness of occlusion of the vessel by said balloon via said pressure sensing opening.
US09/070,696 1997-05-01 1998-04-30 Integral aortic arch infusion clamp having pressure ports Abandoned US20010016724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/070,696 US20010016724A1 (en) 1997-05-01 1998-04-30 Integral aortic arch infusion clamp having pressure ports

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/846,666 US6132397A (en) 1997-05-01 1997-05-01 Integral aortic arch infusion clamp catheter
US09/070,696 US20010016724A1 (en) 1997-05-01 1998-04-30 Integral aortic arch infusion clamp having pressure ports

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/846,666 Continuation-In-Part US6132397A (en) 1997-05-01 1997-05-01 Integral aortic arch infusion clamp catheter

Publications (1)

Publication Number Publication Date
US20010016724A1 true US20010016724A1 (en) 2001-08-23

Family

ID=25298595

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/846,666 Expired - Fee Related US6132397A (en) 1997-05-01 1997-05-01 Integral aortic arch infusion clamp catheter
US09/070,696 Abandoned US20010016724A1 (en) 1997-05-01 1998-04-30 Integral aortic arch infusion clamp having pressure ports

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/846,666 Expired - Fee Related US6132397A (en) 1997-05-01 1997-05-01 Integral aortic arch infusion clamp catheter

Country Status (6)

Country Link
US (2) US6132397A (en)
EP (1) EP0979121A2 (en)
JP (1) JP2000513625A (en)
AU (1) AU730284B2 (en)
CA (1) CA2287867A1 (en)
WO (1) WO1998048884A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102845A (en) * 2001-09-28 2003-04-08 Kanegafuchi Chem Ind Co Ltd Stent delivery catheter
US20040092787A1 (en) * 1998-12-22 2004-05-13 Novoste Corporation Automated system for the radiation treatment of a desired area within the body of a patient
US20040267280A1 (en) * 2001-09-28 2004-12-30 Takuji Nishide Stent delivery catheter
US20070295337A1 (en) * 2006-06-22 2007-12-27 Nelson Donald S Endotracheal cuff and technique for using the same
US20080000482A1 (en) * 2006-06-22 2008-01-03 Seamus Maguire Endotracheal cuff and technique for using the same
US20080236593A1 (en) * 2006-06-22 2008-10-02 Nellcor Puritan Bennett Llc Endotracheal cuff and technique for using the same
US8434487B2 (en) 2006-06-22 2013-05-07 Covidien Lp Endotracheal cuff and technique for using the same
US8795236B2 (en) * 2011-09-28 2014-08-05 Kimberly-Clark Worldwide, Inc. One step cecostomy
CN104001259A (en) * 2014-06-11 2014-08-27 常州市久虹医疗器械有限公司 Balloon and balloon catheter installing method
IT201800003071A1 (en) * 2018-02-27 2019-08-27 Calogera Pisano New distal perfusion system in cardiac surgery
WO2020198376A1 (en) * 2019-03-26 2020-10-01 Nectero Medical, Inc. Methods and devices for treatments associated with endovascular grafts
CN112955088A (en) * 2018-09-20 2021-06-11 法拉普尔赛股份有限公司 Systems, devices, and methods for delivering pulsed electric field ablation energy to endocardial tissue
US11331102B2 (en) 2018-08-03 2022-05-17 Nectero Medical, Inc. Purified pentagalloyl glucose and devices for delivery

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029056A2 (en) * 1998-11-19 2000-05-25 Corvascular, Inc. Coronary infusion catheter and intra-coronary drug administration methods
US6506180B1 (en) * 1998-12-28 2003-01-14 Banning G. Lary Passive perfusion sleeve/placement catheter assembly
US6210363B1 (en) * 1999-02-23 2001-04-03 Cardeon Corporation Methods and devices for occluding a vessel and performing differential perfusion
US6743196B2 (en) * 1999-03-01 2004-06-01 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6231551B1 (en) 1999-03-01 2001-05-15 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
AU3749400A (en) * 1999-03-16 2000-10-04 Chase Medical Inc. Catheter having varying resiliency balloon
US6319244B2 (en) 1999-03-16 2001-11-20 Chase Medical, L.P. Catheter with flexible and rigid reinforcements
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
AU781760B2 (en) * 1999-06-14 2005-06-09 W.L. Gore & Associates, Inc. Methods and low profile apparatus for reducing embolization during treatment of carotid artery disease
ATE495785T1 (en) * 1999-06-14 2011-02-15 Gore Enterprise Holdings Inc APPARATUS FOR REDUCING THE RISK OF EMBOLISM DURING THE TREATMENT OF CARDIAC DISEASES
US6679861B2 (en) * 1999-10-04 2004-01-20 K.K. Vayu Occlusion catheter for the ascending aorta
AU2001233244A1 (en) * 2000-02-04 2001-08-14 Endoscopic Technologies, Inc. Aortic balloon catheter with improved positioning and balloon stability
EP1159984B1 (en) * 2000-05-29 2004-07-28 Kabushiki Kaisha Vayu Occlusion catheter for the ascending aorta
JP4955154B2 (en) * 2000-05-29 2012-06-20 株式会社ヴァーユ Balloon catheter
US7179251B2 (en) * 2001-01-17 2007-02-20 Boston Scientific Scimed, Inc. Therapeutic delivery balloon
US6517524B2 (en) 2001-02-15 2003-02-11 Genesse Biomedical, Inc. Occlusive cannula for aortic blood flow and air venting
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
CA2476263C (en) * 2002-02-01 2012-08-21 Robert J. Goldman Multi-function catheter and use thereof
US8062251B2 (en) 2002-02-01 2011-11-22 Vascular Designs, Inc. Multi-function catheter and use thereof
WO2004014455A2 (en) * 2002-08-13 2004-02-19 Daniel Rogers Burnett Anti-reflux feeding tube
US20030130610A1 (en) * 2002-12-09 2003-07-10 Mager Larry F. Aortic balloon catheter with improved positioning and balloon stability
US20050165427A1 (en) * 2004-01-22 2005-07-28 Jahns Scott E. Vessel sealing devices
JP2006247309A (en) * 2005-03-07 2006-09-21 Shozo Fujiwara Catheter for retaining intragastric pressure constant
WO2009089427A1 (en) 2008-01-11 2009-07-16 Boston Scientific Scimed, Inc. Ablation devices and methods of use
US10039907B2 (en) * 2008-04-14 2018-08-07 Innoventions Ltd. Device, system, and method for releasing substances in a body cavity
US8992517B2 (en) 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
AU2009243079A1 (en) 2008-04-29 2009-11-05 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US10155099B2 (en) 2009-09-21 2018-12-18 Cook Regentec Llc Method for infusing stem cells
US9089314B2 (en) * 2010-01-27 2015-07-28 Medtronic Cryocath Lp Partially compliant balloon device
US9445859B2 (en) 2010-01-29 2016-09-20 Medtronic Cryocath Lp Multifunctional ablation device
US8425455B2 (en) 2010-03-30 2013-04-23 Angiodynamics, Inc. Bronchial catheter and method of use
AU2011248886B2 (en) * 2010-05-03 2016-05-12 Convatec Technologies Inc. Drainage appliance for body waste
ES2667059T3 (en) * 2010-08-17 2018-05-09 St. Jude Medical, Llc Tip for medical implant delivery system
US9700368B2 (en) 2010-10-13 2017-07-11 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
JP5873281B2 (en) * 2011-09-29 2016-03-01 日本コヴィディエン株式会社 Fistula catheter
WO2013184782A2 (en) * 2012-06-05 2013-12-12 Muffin Incorporated Catheter systems and methods useful for cell therapy
US20140277387A1 (en) * 2013-03-15 2014-09-18 Alon S. Aharon Endovascular perfusion stent graft
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
JP6461539B2 (en) * 2014-09-29 2019-01-30 テルモ株式会社 balloon
WO2016100325A1 (en) 2014-12-15 2016-06-23 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
JP6488133B2 (en) * 2015-01-22 2019-03-20 テルモ株式会社 balloon
US10739138B2 (en) * 2015-06-15 2020-08-11 Sony Corporation Information processing apparatus and control method
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
JP2023503038A (en) 2019-11-19 2023-01-26 アーテリカ, インコーポレイテッド Vascular closure device and method

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US35459A (en) * 1862-06-03 Improvement in bird-cages
US35352A (en) * 1862-05-20 Improved hay-rigging
US2701559A (en) * 1951-08-02 1955-02-08 William A Cooper Apparatus for exfoliating and collecting diagnostic material from inner walls of hollow viscera
US3640282A (en) * 1970-08-06 1972-02-08 Jack M Kamen Tracheal tube with normally expanded balloon cuff
US4129129A (en) * 1977-03-18 1978-12-12 Sarns, Inc. Venous return catheter and a method of using the same
GB1547328A (en) * 1978-01-19 1979-06-13 Celestin L R Apparatus for insertion into a body cavity
CA1159356A (en) * 1979-10-25 1983-12-27 Kurt Skoog Method and device for producing microdroplets of fluid
US4328056A (en) * 1980-07-09 1982-05-04 Sherwood Medical Industries Inc. Method of making a cuffed tube
US4413989A (en) * 1980-09-08 1983-11-08 Angiomedics Corporation Expandable occlusion apparatus
US4531936A (en) * 1981-01-29 1985-07-30 Gordon Robert T Device and method for the selective delivery of drugs to the myocardium
DE3235974A1 (en) * 1981-11-24 1983-06-01 Volkmar Dipl.-Ing. Merkel (FH), 8520 Erlangen DEVICE FOR REMOVAL OR FOR THE EXPANSION OF CONSTRAINTS IN BODY LIQUID LEADING VESSELS
US4417576A (en) * 1982-02-25 1983-11-29 Baran Ostap E Double-wall surgical cuff
US4423725A (en) * 1982-03-31 1984-01-03 Baran Ostap E Multiple surgical cuff
US4596552A (en) * 1983-06-10 1986-06-24 Dlp Inc. Cardioplegia cannula
US4689041A (en) * 1984-01-20 1987-08-25 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US5033998A (en) * 1984-01-20 1991-07-23 Eliot Corday Retrograde delivery of pharmacologic and diagnostic agents via venous circulation
US4592340A (en) * 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US4648384A (en) * 1984-11-21 1987-03-10 Schmukler Robert E Retrograde coronary sinus perfusion device and method
US4601706A (en) * 1984-12-03 1986-07-22 Rene Aillon Central venous pressure catheter for preventing air embolism and method of making
US4741328A (en) * 1985-03-14 1988-05-03 Shlomo Gabbay Means for intraaortic assist and method of positioning a catheter therefor
NL8502382A (en) * 1985-08-30 1987-03-16 Martinus Jacobus Antonius Joha CATHETER SUITABLE FOR MULTIPLE PURPOSES.
JPH0741067B2 (en) * 1985-12-28 1995-05-10 正文 小出 Treatment device
US4676778A (en) * 1986-10-27 1987-06-30 Nelson Jr Richard L Long intestinal catheter with sump
IN171253B (en) * 1986-11-04 1992-08-22 Bard Inc C R
US5024668A (en) * 1987-01-20 1991-06-18 Rocky Mountain Research, Inc. Retrograde perfusion system, components and method
US4781682A (en) * 1987-08-13 1988-11-01 Patel Piyush V Catheter having support flaps and method of inserting catheter
US4988515A (en) * 1988-01-28 1991-01-29 The Regents Of The Univ. Of Calif. Cardioplegic solution
US5021045A (en) * 1988-04-28 1991-06-04 Research Medical, Inc. Retrograde venous cardioplegia catheters and methods of use and manufacture
US5423745A (en) * 1988-04-28 1995-06-13 Research Medical, Inc. Irregular surface balloon catheters for body passageways and methods of use
DE68917895T2 (en) * 1988-06-06 1995-02-02 Sumitomo Electric Industries CATHETER.
DE3821544C2 (en) * 1988-06-25 1994-04-28 H Prof Dr Med Just Dilatation catheter
US5451204A (en) * 1988-07-22 1995-09-19 Yoon; Inbae Multifunctional devices for endoscopic surgical procedures
US5011469A (en) * 1988-08-29 1991-04-30 Shiley, Inc. Peripheral cardiopulmonary bypass and coronary reperfusion system
US4927412A (en) * 1988-12-08 1990-05-22 Retroperfusion Systems, Inc. Coronary sinus catheter
US4943277A (en) * 1989-03-24 1990-07-24 Bolling Steven F Retrograde coronary sinus cardioplegia cannula and method for using same in heart surgery
DE69017567T2 (en) * 1989-09-14 1995-07-06 Terumo Corp Cardiac output catheter.
US5013296A (en) * 1989-09-21 1991-05-07 Research Medical, Inc. Antegrade cardioplegia cannula
US5090960A (en) * 1990-01-12 1992-02-25 Don Michael T Anthony Regional perfusion dissolution catheter
US5135484A (en) * 1990-05-09 1992-08-04 Pioneering Technologies, Inc. Method of removing plaque from vessels
US5360403A (en) * 1990-05-16 1994-11-01 Lake Region Manufacturing Co., Inc. Balloon catheter with lumen occluder
US5395330A (en) * 1990-06-13 1995-03-07 Dlp, Inc. Auto-inflating catheter cuff
US5197952A (en) * 1990-06-13 1993-03-30 Dlp, Inc. Auto-inflating catheter cuff
US5196024A (en) * 1990-07-03 1993-03-23 Cedars-Sinai Medical Center Balloon catheter with cutting edge
US5135474A (en) * 1990-08-03 1992-08-04 University Of Medicine And Dentistry Of New Jersey Hepatic bypass catheter
US5192290A (en) * 1990-08-29 1993-03-09 Applied Medical Resources, Inc. Embolectomy catheter
JP2555298B2 (en) * 1990-11-10 1996-11-20 テルモ株式会社 CATHETER BALLOON, CATHETER BALLOON MANUFACTURING METHOD, AND BALLOON CATHETER
US5149330A (en) * 1991-01-10 1992-09-22 The Kendall Company Catheter convertible from single to multilumen
US5221258A (en) * 1991-01-22 1993-06-22 Shturman Technologies, Inc. Introduction balloon catheter
US5308325A (en) * 1991-01-28 1994-05-03 Corpak, Inc. Retention balloon for percutaneous catheter
US5439444A (en) * 1991-01-28 1995-08-08 Corpak, Inc. Pre-formed member for percutaneous catheter
AR245376A1 (en) * 1991-02-25 1994-01-31 Liliana Rosa Grinfeld Y Robert Arterial profusion nozzle, for extra-corporal circulation and other uses.
US5167628A (en) * 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5213576A (en) * 1991-06-11 1993-05-25 Cordis Corporation Therapeutic porous balloon catheter
US5433700A (en) * 1992-12-03 1995-07-18 Stanford Surgical Technologies, Inc. Method for intraluminally inducing cardioplegic arrest and catheter for use therein
US5584803A (en) * 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5571215A (en) * 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5766151A (en) * 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5558644A (en) * 1991-07-16 1996-09-24 Heartport, Inc. Retrograde delivery catheter and method for inducing cardioplegic arrest
US5458574A (en) * 1994-03-16 1995-10-17 Heartport, Inc. System for performing a cardiac procedure
US5452733A (en) * 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5151087A (en) * 1991-08-30 1992-09-29 Dlp, Inc. Aortic root cannula
US5334142A (en) * 1991-09-09 1994-08-02 New York University Selective aortic perfusion system
US5246016A (en) * 1991-11-08 1993-09-21 Baxter International Inc. Transport catheter and multiple probe analysis method
US5171218A (en) * 1992-01-02 1992-12-15 Trustees Of Boston University Bidirectional femoral arterial cannula
US5324260A (en) * 1992-04-27 1994-06-28 Minnesota Mining And Manufacturing Company Retrograde coronary sinus catheter
US5395331A (en) * 1992-04-27 1995-03-07 Minnesota Mining And Manufacturing Company Retrograde coronary sinus catheter having a ribbed balloon
US5344399A (en) * 1992-05-26 1994-09-06 Dlp, Inc. Dual flexible introducer and cannula
US5342305A (en) * 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
US5487730A (en) * 1992-12-30 1996-01-30 Medtronic, Inc. Balloon catheter with balloon surface retention means
US5403280A (en) * 1993-02-16 1995-04-04 Wang; James C. Inflatable perfusion catheter
US5425705A (en) * 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
WO1994021320A1 (en) * 1993-03-15 1994-09-29 Advanced Cardiovascular Systems, Inc. Fluid delivery catheter
US5338298A (en) * 1993-06-04 1994-08-16 C. R. Bard, Inc. Double-tapered balloon
US5378230A (en) * 1993-11-01 1995-01-03 Mahurkar; Sakharam D. Triple-lumen critical care catheter
US5795331A (en) * 1994-01-24 1998-08-18 Micro Therapeutics, Inc. Balloon catheter for occluding aneurysms of branch vessels
US5501667A (en) * 1994-03-15 1996-03-26 Cordis Corporation Perfusion balloon and method of use and manufacture
US5451207A (en) * 1994-04-25 1995-09-19 The Regents Of The University Of California Method of coronary plaque removal with bypass and perfusion
US5597377A (en) * 1994-05-06 1997-01-28 Trustees Of Boston University Coronary sinus reperfusion catheter
US5478309A (en) * 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5505598A (en) * 1994-07-29 1996-04-09 Wirtgen America, Inc. Milling machine with multi-width cutter
US5609571A (en) * 1995-01-26 1997-03-11 Sorin Biomedical Inc. Apparatus and method of cardioplegia delivery
JPH08215312A (en) * 1995-02-09 1996-08-27 Terumo Corp Balloon catheter
NL9500468A (en) * 1995-03-08 1996-10-01 Cordis Europ Balloon catheter and method of making it.
AU708976B2 (en) * 1995-03-30 1999-08-19 Edwards Lifesciences Ag System and methods for performing endovascular procedures
US5658311A (en) * 1996-07-05 1997-08-19 Schneider (Usa) Inc. High pressure expander bundle for large diameter stent deployment

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092787A1 (en) * 1998-12-22 2004-05-13 Novoste Corporation Automated system for the radiation treatment of a desired area within the body of a patient
US20040097777A1 (en) * 1998-12-22 2004-05-20 Novoste Corporation Automated system for the radiation treatment of a desired area within the body of a patient
US20040097778A1 (en) * 1998-12-22 2004-05-20 Novoste Corporation Automated system for the radiation treatment of a desired area within the body of a patient
US7066873B2 (en) * 1998-12-22 2006-06-27 Best Vascular, Inc. Automated system for the radiation treatment of a desired area within the body of a patient
US7311656B2 (en) 1998-12-22 2007-12-25 Best Vascular, Inc. Automated system for the radiation treatment of a desired area within the body of a patient
JP2003102845A (en) * 2001-09-28 2003-04-08 Kanegafuchi Chem Ind Co Ltd Stent delivery catheter
US20040267280A1 (en) * 2001-09-28 2004-12-30 Takuji Nishide Stent delivery catheter
US8636010B2 (en) 2006-06-22 2014-01-28 Covidien Lp Endotracheal cuff and technique for using the same
US10485942B2 (en) 2006-06-22 2019-11-26 Covidien Lp Endotracheal cuff and technique for using the same
US20080236593A1 (en) * 2006-06-22 2008-10-02 Nellcor Puritan Bennett Llc Endotracheal cuff and technique for using the same
US8196584B2 (en) * 2006-06-22 2012-06-12 Nellcor Puritan Bennett Llc Endotracheal cuff and technique for using the same
US8434487B2 (en) 2006-06-22 2013-05-07 Covidien Lp Endotracheal cuff and technique for using the same
US20070295337A1 (en) * 2006-06-22 2007-12-27 Nelson Donald S Endotracheal cuff and technique for using the same
US10888677B2 (en) 2006-06-22 2021-01-12 Covidien Lp Endotracheal cuff and technique for using the same
US20080000482A1 (en) * 2006-06-22 2008-01-03 Seamus Maguire Endotracheal cuff and technique for using the same
US9032957B2 (en) 2006-06-22 2015-05-19 Covidien Lp Endotracheal cuff and technique for using the same
US10076623B2 (en) 2006-06-22 2018-09-18 Covidien Lp Endotracheal cuff and technique for using the same
US9289567B2 (en) 2006-06-22 2016-03-22 Covidien Lp Endotracheal cuff and technique for using the same
AU2012313911B2 (en) * 2011-09-28 2015-07-16 Avent, Inc. One step cecostomy
US8795236B2 (en) * 2011-09-28 2014-08-05 Kimberly-Clark Worldwide, Inc. One step cecostomy
CN104001259A (en) * 2014-06-11 2014-08-27 常州市久虹医疗器械有限公司 Balloon and balloon catheter installing method
IT201800003071A1 (en) * 2018-02-27 2019-08-27 Calogera Pisano New distal perfusion system in cardiac surgery
US11331102B2 (en) 2018-08-03 2022-05-17 Nectero Medical, Inc. Purified pentagalloyl glucose and devices for delivery
CN112955088A (en) * 2018-09-20 2021-06-11 法拉普尔赛股份有限公司 Systems, devices, and methods for delivering pulsed electric field ablation energy to endocardial tissue
WO2020198376A1 (en) * 2019-03-26 2020-10-01 Nectero Medical, Inc. Methods and devices for treatments associated with endovascular grafts
EP3946173A4 (en) * 2019-03-26 2023-04-12 Nectero Medical, Inc. Methods and devices for treatments associated with endovascular grafts

Also Published As

Publication number Publication date
JP2000513625A (en) 2000-10-17
AU7270498A (en) 1998-11-24
WO1998048884A3 (en) 1999-01-28
AU730284B2 (en) 2001-03-01
CA2287867A1 (en) 1998-11-05
WO1998048884A2 (en) 1998-11-05
US6132397A (en) 2000-10-17
EP0979121A2 (en) 2000-02-16

Similar Documents

Publication Publication Date Title
AU730284B2 (en) Aortic arch occlusion and perfusion balloon catheter having pressure ports
US5707358A (en) Dual concentric balloon catheter for retrograde cardioplegia perfusion
US6248121B1 (en) Blood vessel occlusion device
US6835188B2 (en) Aortic catheter with porous aortic root balloon and methods for inducing cardioplegic arrest
US6045531A (en) Catheter having a lumen occluding balloon and method of use thereof
US5423745A (en) Irregular surface balloon catheters for body passageways and methods of use
JP4334022B2 (en) Method and apparatus for occluding a patient's ascending aorta
US6090096A (en) Antegrade cardioplegia catheter and method
EP0853954B1 (en) Retrograde coronary sinus catheter
AU723379B2 (en) Endovascular system for arresting the heart
US5879499A (en) Method of manufacture of a multi-lumen catheter
US5324260A (en) Retrograde coronary sinus catheter
US5505698A (en) Cardioplegia catheter with elongated cuff
US4581017A (en) Catheter systems
US5863366A (en) Method of manufacture of a cannula for a medical device
US20010001812A1 (en) Methods and apparatus for anchoring an occluding member
CA2253315A1 (en) Multi-lumen catheter and method of manufacture
US6068608A (en) Method of using integral aortic arch infusion clamp
US20040162519A1 (en) Aortic occlusion balloon cannula
US20050203564A1 (en) Blood vessel occlusion device
US20030158571A1 (en) Aortic flow divider for cerebral and coronary embolic protection
US20030120206A1 (en) Balloon cannulae

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHASE MEDICAL INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIS, ALBERT;LLOYD, WENDEL;DRAPER, CHRISTINA;AND OTHERS;REEL/FRAME:009148/0065

Effective date: 19980430

AS Assignment

Owner name: UNITED STATES SURGICAL CORPORATION, CONNECTICUT

Free format text: PROMISSORY NOTE;ASSIGNOR:CHASE MEDICAL INC.;REEL/FRAME:010606/0137

Effective date: 19991208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION