US20010018486A1 - Preceramic additives as fire retardants for plastics - Google Patents

Preceramic additives as fire retardants for plastics Download PDF

Info

Publication number
US20010018486A1
US20010018486A1 US09/215,357 US21535798A US2001018486A1 US 20010018486 A1 US20010018486 A1 US 20010018486A1 US 21535798 A US21535798 A US 21535798A US 2001018486 A1 US2001018486 A1 US 2001018486A1
Authority
US
United States
Prior art keywords
polymer
preceramic
blend
polymers
preceramic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/215,357
Other versions
US6362279B2 (en
Inventor
Joseph D. Lichtenhan
Jeffrey W. Gilman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/215,357 priority Critical patent/US6362279B2/en
Publication of US20010018486A1 publication Critical patent/US20010018486A1/en
Application granted granted Critical
Publication of US6362279B2 publication Critical patent/US6362279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • This invention relates to fire retardants for plastics particularly preceramic additives as fire retardants for plastics and fire retardant blends of such additives and plastics.
  • the present invention provides an environmentally friendly (eco) FR for plastics comprising preceramic polymers.
  • the invention also includes combining such preceramic polymers with plastics as additives and in blends therewith to form eco FR materials.
  • Such preceramic polymers can be present in the blend in the amount of 1-80 wt % as discussed below.
  • the invention also provides a method for enhancing the fire resistivity of plastics by adding at least one preceramic polymer to at least one organic plastic to reduce the flammability thereof and form a polymer-plastic blend, wherein the preceramic polymer is selected from the group of polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins and polyhedral oligomeric silsesquioxane (POSS) monomers, polymers and copolymers.
  • PCS polycarbosilanes
  • PS polysilanes
  • PSS polysilsesquioxane
  • PES polyhedral oligomeric silsesquioxane
  • preceramic polymer as used herein, is meant an oligomeric or polymeric material that converts into a ceramic (inorganic char,) when heated above its decomposition point. Listed below are several examples of different types of preceramic oligomers and polymers.
  • oligomer as used herein, is meant low molecular weight polymer chains that are often unentangled and which do not show the same level of desirable mechanical properties as higher molecular weight chains of the same polymer.
  • engineering polymer as used herein, is meant a thermoset plastic or thermoplastic that maintains its dimensional stability and most of its mechanical properties between ⁇ 20° C. to 200° C.
  • these resins include: acetals, polyamides (nylons), polyimides, polyetherimides, polyesters, polycarbonates, polyethers, polysulfides, polysulfones and blends or alloys of them.
  • composition polymer as used herein, is meant a thermoplastic or thermoset plastic that maintains most of its mechanical properties between 0 to 100° C.
  • polymers are called commodity plastics because they are also produced on a large scale industrially and hence often cost less per pound than the above mentioned engineering polymers. Examples include: styrenics, acrylics, polyolefins, polyurethanes, polyvinylchlorides and related chlorinated olefins, acrylonitrile-butadiene-styrene (ABS) and poly(ethylene terephthalate).
  • FIGS. 1, 2 and 3 are graphs relative to heat release of various polymer blends with and without FR additives and
  • FIG. 4 is a decomposition temperature and char yields graph for a preceramic polymer blend of the present invention.
  • the invention provides the addition of preceramic polymers to plastics to reduce the flammability thereof. That is, the use of preceramic inorganic, hybrid (organic-inorganic) and organometallic polymers as additives and in blends with organic polymers reduces polymer flammability without any of the above problems.
  • Typical preceramic polymers such as polysilsesquioxane (PSS) resins and polycarbosilane copolymers (PCS) were blended with common organic polymers such as polypropylene, KratonTM (polystyrene-polybutadiene-polystyrene, SBS) and PebaxTM (a polyether block-polyamide copolymer), including polytetramethylene ether-nylon copolymer).
  • the typical PebaxTM blends exhibit 50% to 70% lower peak heat release rate (HRR) than pure PebaxTM without significantly increasing the smoke or carbon monoxide levels during the combustion. HRR has been shown to be the most important parameter to consider for evaluation of the Fire-Safety of materials.
  • HRR peak heat release rate
  • FIG. 1 shows heat release rate (HRR) data for Pebax, a Pebax/20% PCS blend and a Pebax/5% PSS blend. Per the graph, such data shows a 50% to 70% reduction in the maximum peak HRR and a 100% increase in the ignition time for the blends.
  • the HRR data for polypropylene and polypropylene blended with PSS is shown in FIG. 2 and the HRR data for KratonTM (a styrene-butadiene-styrene triblock polymer), Kraton blended with PCS and PSS respectively, shown in FIG. 3, reveal similar flammability performance advantages using this new FR approach.
  • FIG. 2 shows the heat release rate (HRR) data for polypropylene and a polypropylene/20% PSS blend.
  • the HRR data is plotted for pure Kraton, Kraton/10% PSS blend and Kraton/20% PCS blend. This data shows a 30% to 40% reduction in the peak HRR for the blends.
  • Table 1 shows a more complete set of combustion data for these systems. These blends do not produce toxic compounds such as dioxins and dibenzofurans during the burning as some halogen base fire retardants are alleged to. They also do not increase the amount of carbon monoxide or smoke during the combustion.
  • the mean extinction area and CO yield data in Table 1 show that the average CO and smoke produced on combustion are not significantly increased upon addition of the preceramic materials. Additionally and of significant importance, the preceramic component serves to reduce the overall mass loss rate from the blend during combustion. This reduced mass loss rate results in lowering the rate of smoke and CO evolved during combustion of the blended materials as compared to that of the pure polymer.
  • the data in Table 2 show that the blending of the preceramic polymers can also be used to tailor the mechanical properties of commercial resins. For example the moduli and char yield of these polymer blends can be selectively controlled over a wide range.
  • An additional improvement derived from these systems is that the melt viscosity of the mixtures is higher than that of the pure polymers due to the high melt viscosity of the preceramic polymers.
  • the melt viscosity effect combined with the encapsulating effect of the ceramic char, formed during the burning, reduces dripping during flammability tests such as UL 94 and improves the flammability rating.
  • the high melt viscosity increases the thickness and therefore the performance of the char layer that forms as the preceramic decomposes.
  • thermoplastic hybrid materials e.g. polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins, polyhedral oligomeric silsesquioxane (POSS) monomers, polymers and copolymers, examples of which are shown below.
  • PCS polycarbosilanes
  • PS polysilanes
  • PSS polysilsesquioxane
  • PES polyhedral oligomeric silsesquioxane
  • halogen or other inorganic groups such as phosphates and amines directly onto these polymers can additionally afford a “dual” fire-retardancy. Dual fire-retardancy can be achieved by the substituent group controlling the gas-phase combustion chemistry and or contributing to the formation of char and hence controlling the solid-state chemistry.
  • the above R substituents on the preceramic polymer of the invention aid in compatabilizing the preceramic polymer with the organic/resin polymer (as indicated in Table 2. hereof).
  • the substitutents can aid in improving the char-forming characteristics and in lowering the heat release from the resulting formulation (per the dual fire retardancy noted above).
  • These polymers can also contain termination points (chain ends) containing reactive or nonreactive functionalities such as silanols, esters, alcohols, amines or R groups as listed above.
  • preceramic polymers are often not sufficient to allow their application alone as engineering plastics.
  • these preceramic materials can be blended in various proportions with thermoplastics such as polypropylene (or other polyolefins or nylons, polyethers, polyesters) and thermoplastic elastomers such as PEBAXTM (a polyether block-polyamide copolymer) or KratonTM (a styrene-butadiene-styrene triblock polymer).
  • PEBAXTM a polyether block-polyamide copolymer
  • KratonTM a styrene-butadiene-styrene triblock polymer
  • PS a polysilane copolymer containing (PhSiMe) 50 (SiMe 2 ) 50 . Char yields determined by thermogravimetric analysis under nitrogen.
  • the mechanical properties (tensile strength, elongation, Youngs modulus) of the resulting polymer blends can be tailored over a wide range and are dependent upon the percentage of the preceramic incorporated.
  • the thermal properties (such as melt and glass transitions) of the resulting blends are similarly controlled through the percentage of preceramic polymer incorporated into the blend composition. Control over the thermal properties of plastics is desirable for enabling the material to be amenable to a variety of plastic fabrication processes (such as compression molding, extrusion, injection molding, and spraying technologies).
  • the flammability properties (such as ignition time, and HRR) of the resulting blends are similarly controlled through the percentage of preceramic polymer incorporated. Therefore the amount of flame retardancy required for a particular application can easily be selected.
  • the process of blending preceramic polymers with organic polymers enables control over the amount of char formed during combustion. It is the formation of this char that is the key to the FR of these polymer blends.
  • Char formation reduces the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat released and feedback to the polymer surface.
  • the char accomplishes this by insulating the underlying virgin polymer from the external combustion radiation, and/or by trapping decomposition products in it's matrix. It may also re-radiate energy away from the polymer.
  • the physical structure of the char is important in these roles. Foamy char structure appears to be more fire resistant than brittle, thin char.
  • FIG. 4 shows that the amount of char formed during pyrolysis increases as the proportion of preceramic polymer blended with the engineering polymer is increased. That is, FIG. 4 shows the decomposition temperature and char yields for a preceramic polymer-engineering polymer blend. In this case the engineering polymer does not contribute to char formation.
  • Combinations of preceramic polymers and organic polymers can be envisioned in which the organic polymer component also combines, in a synergistic manner, with the preceramic component to enhance char formation.
  • the ceramic char from the preceramic polymers appears to increase the amount of carbonaceous char to produce a superior insulation barrier and decreases the amount of fuel for combustion in the gas phase.
  • Blends of polycarbosilane or polysilastyrene with “Pebax” or “Kraton” were prepared with preceramic weight fractions of 0.8, 0.7, 0.6, 0.5, and 0.2. Both components of the blend were weighed into a reactor followed by the addition of dichloromethane and tetrahydrofuran. The mixture was heated to the boiling point of the solvent while being mixed with a high shear emulsifier. The solution was poured into a Teflon mold and the solvent was evaporated for 24 hours at room temperature, then under vacuum at 80° C. for 12 hours. The polymer blends were then hot pressed to make flat sheets for sample analysis. in the manner described in U.S. Pat. No. 5,484,867 (1996) to Lichtenhan et. al, incorporated herein by reference. The results or properties of the sheets so analyzed are shown in Tables 1 and 2 above.
  • Blend preparation without the use of solvents and swelling agents is also possible through the use of dispersive melt mixing equipment such as BandburyTM mixers or twin screw extruders.
  • FR preceramic polymer-polymer blends can be prepared using reactive processing techniques that enable or enhance the homogeneity (mutual compatibility and/or miscibility between the preceramic polymer and organic polymer).
  • non homogeneous preceramic polymer-polymer blends mixtures of preceramic polymers and organic polymer showing incompatibility, immiscibility and phase separation
  • FR plastics can be prepared and employed as effective FR plastics.
  • the preceramic polymers of the invention are enabling components to be blended with common hydrocarbon-based plastics (eg. organic polymers) and that these materials can function as FR plastics.
  • the above preceramic polymers can be blended with the above plastics in a ratio of 1-80 wt % of the preceramic to the combined weight of preceramic and plastic.
  • the above ratio can be 1-50 wt % and/or 62-80 wt %.
  • Preferably such ratio is 5-28 wt % and more preferably 5-25 wt %.
  • the above fire-safe plastics of the invention can be used in any application where improvement of the fire safety of plastics is desired.
  • This includes carpeting, adhesives, wire and cable insulation and building & vehicle interiors. These materials have application in rocket and space vehicle systems as lightweight and low cost structural and thermal components. These materials also have application in aircraft systems as fire-safe plastics for structural and comfort applications and as insulators.
  • the above preceramic polymers and organic polymers which form the FR blends of the invention are generally of thermoplastic and thus can be recycled and re-thermoformed (molded) into other finished articles.

Abstract

An ecological fire retardant blend of thermoplastics is provided. That is, to one or more organic polymers is added one or more preceramic oligomers or preceramic polymers to provide a blend of polymers of reduced flammability which do not significantly increase the levels of smoke, carbon monoxide or other toxics during combustion. In one example a preceramic polymer, eg. a polysilane resin is added to a polyolefin to provide an ecological fire retardant blend per the invention.

Description

    CROSS REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a Continuation-in-Part of prior copending application Ser. No. 08/864,516 of the same title, filed in the USPTO on May 20, 1997. [0001]
  • STATEMENT OF GOVERNMENT INTEREST
  • [0002] The invention described herein may be manufactured and used by or for the Government for governmental purposes without the payment of any royalty thereon.
  • FIELD OF THE INVENTION
  • This invention relates to fire retardants for plastics particularly preceramic additives as fire retardants for plastics and fire retardant blends of such additives and plastics. [0003]
  • BACKGROUND OF THE INVENTION
  • Current fire retardants have a number of problems depending on the system. Halogen based fire retardants (which may produce toxic and corrosive combustion products) and phosphorus based fire retardants increase the amount of carbon monoxide and smoke during combustion (by five to ten times), hydrates (e.g. ATH, aluminum trihydrate) which decompose by an endothermic process to produce water, must be used at such high loadings that (40-70% wt) the physical properties of the base polymer are excessively compromised. New fire retardants are needed that do not have these shortcomings. This is especially important for US companies trying to sell products in Europe, where a negative public opinion exists towards halogen base fire retardants, and a new European environmental law, the “eco-labeling” law, has passed which requires a label on all products that describes the materials used in the product. These issues are forcing companies to look for new, environmentally acceptable fire retardants for their fire retardant (FR) polymer products. [0004]
  • Accordingly there is need and market for fire retardants for plastics including polymers, which overcome the above prior art shortcomings. [0005]
  • There have now been discovered FR additives for polymers and FR blends of additives and polymers which are effective as such FRs and are environmentally suitable or safe. [0006]
  • SUMMARY OF THE INVENTION
  • Broadly the present invention provides an environmentally friendly (eco) FR for plastics comprising preceramic polymers. [0007]
  • The invention also includes combining such preceramic polymers with plastics as additives and in blends therewith to form eco FR materials. [0008]
  • Such preceramic polymers can be present in the blend in the amount of 1-80 wt % as discussed below. [0009]
  • The invention also provides a method for enhancing the fire resistivity of plastics by adding at least one preceramic polymer to at least one organic plastic to reduce the flammability thereof and form a polymer-plastic blend, wherein the preceramic polymer is selected from the group of polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins and polyhedral oligomeric silsesquioxane (POSS) monomers, polymers and copolymers. [0010]
  • Definitions: [0011]
  • By “preceramic polymer” as used herein, is meant an oligomeric or polymeric material that converts into a ceramic (inorganic char,) when heated above its decomposition point. Listed below are several examples of different types of preceramic oligomers and polymers. [0012]
  • By “oligomer” as used herein, is meant low molecular weight polymer chains that are often unentangled and which do not show the same level of desirable mechanical properties as higher molecular weight chains of the same polymer. [0013]
  • By “engineering polymer” as used herein, is meant a thermoset plastic or thermoplastic that maintains its dimensional stability and most of its mechanical properties between −20° C. to 200° C. Generically these resins include: acetals, polyamides (nylons), polyimides, polyetherimides, polyesters, polycarbonates, polyethers, polysulfides, polysulfones and blends or alloys of them. [0014]
  • By “commodity polymer” as used herein, is meant a thermoplastic or thermoset plastic that maintains most of its mechanical properties between 0 to 100° C. Typically such polymers are called commodity plastics because they are also produced on a large scale industrially and hence often cost less per pound than the above mentioned engineering polymers. Examples include: styrenics, acrylics, polyolefins, polyurethanes, polyvinylchlorides and related chlorinated olefins, acrylonitrile-butadiene-styrene (ABS) and poly(ethylene terephthalate). [0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will become more apparent from the following detailed specification and drawings in which; [0016]
  • FIGS. 1, 2 and [0017] 3 are graphs relative to heat release of various polymer blends with and without FR additives and
  • FIG. 4 is a decomposition temperature and char yields graph for a preceramic polymer blend of the present invention. [0018]
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The invention provides the addition of preceramic polymers to plastics to reduce the flammability thereof. That is, the use of preceramic inorganic, hybrid (organic-inorganic) and organometallic polymers as additives and in blends with organic polymers reduces polymer flammability without any of the above problems. Typical preceramic polymers such as polysilsesquioxane (PSS) resins and polycarbosilane copolymers (PCS) were blended with common organic polymers such as polypropylene, Kraton™ (polystyrene-polybutadiene-polystyrene, SBS) and Pebax™ (a polyether block-polyamide copolymer), including polytetramethylene ether-nylon copolymer). The typical Pebax™ blends exhibit 50% to 70% lower peak heat release rate (HRR) than pure Pebax™ without significantly increasing the smoke or carbon monoxide levels during the combustion. HRR has been shown to be the most important parameter to consider for evaluation of the Fire-Safety of materials. The HRR data for the Pebax™ and the Pebax™ blends is shown in FIG. 1. [0019]
  • FIG. 1 shows heat release rate (HRR) data for Pebax, a Pebax/20% PCS blend and a Pebax/5% PSS blend. Per the graph, such data shows a 50% to 70% reduction in the maximum peak HRR and a 100% increase in the ignition time for the blends. The HRR data for polypropylene and polypropylene blended with PSS is shown in FIG. 2 and the HRR data for Kraton™ (a styrene-butadiene-styrene triblock polymer), Kraton blended with PCS and PSS respectively, shown in FIG. 3, reveal similar flammability performance advantages using this new FR approach. [0020]
  • That is. FIG. 2 shows the heat release rate (HRR) data for polypropylene and a polypropylene/20% PSS blend. [0021]
  • Also in FIG. 3, the HRR data is plotted for pure Kraton, Kraton/10% PSS blend and Kraton/20% PCS blend. This data shows a 30% to 40% reduction in the peak HRR for the blends. Table 1 shows a more complete set of combustion data for these systems. These blends do not produce toxic compounds such as dioxins and dibenzofurans during the burning as some halogen base fire retardants are alleged to. They also do not increase the amount of carbon monoxide or smoke during the combustion. The mean extinction area and CO yield data in Table 1 show that the average CO and smoke produced on combustion are not significantly increased upon addition of the preceramic materials. Additionally and of significant importance, the preceramic component serves to reduce the overall mass loss rate from the blend during combustion. This reduced mass loss rate results in lowering the rate of smoke and CO evolved during combustion of the blended materials as compared to that of the pure polymer. [0022]
  • The data in Table 2 show that the blending of the preceramic polymers can also be used to tailor the mechanical properties of commercial resins. For example the moduli and char yield of these polymer blends can be selectively controlled over a wide range. An additional improvement derived from these systems is that the melt viscosity of the mixtures is higher than that of the pure polymers due to the high melt viscosity of the preceramic polymers. The melt viscosity effect combined with the encapsulating effect of the ceramic char, formed during the burning, reduces dripping during flammability tests such as UL [0023] 94 and improves the flammability rating. Furthermore the high melt viscosity increases the thickness and therefore the performance of the char layer that forms as the preceramic decomposes.
  • Cone combustion data for polymers and preceramic polymer-polymer blends are shown in Table 1 below. [0024]
    TABLE 1
    Peak Mean Mean
    Char HRR HRR Heat of Total Heat Mean Mean
    Yield (Δ %) (Δ %) Combustion Released Ext. Area CO yield
    Sample (%) (kW/m2) (kW/m2) (MJ/kg) (MJ/m2) (m2/kg) (kg/kg)
    PP 0 1,466 741 34.7 141 650 0.03
    PP 17  892 432 29.8 106 821 0.03
    w/20% PSS (40%) (42%)
    PEBAX ™ 0 2,020 780 29.0 332 187 0.02
    PEBAX ™ 15  699 419 28.5 272 260 0.02
    w/20% PCS (65%) (46%)
    PEBAX ™ 6  578 437 25.2 301 367 0.02
    w/10% PSS (72%) (44%)
    Kraton ™ 1 1,405 976 29.3 351 1,750 0.08
    Kraton ™ 20  825 362 26.4 266 1,548 0.07
    w/20% PCS (42%) (63%)
    Kraton ™ 6 1,027 755 26.9 324 1,491 0.07
    w/10% PSS (27%) (23%)
  • These new fire retardants can be used with commodity and engineering polymers in any application where a fire retarded polymer is required, i.e., carpeting, adhesives, wire and cable insulation and jacketing, fabrics, furniture, structural plastics, chassis, housings etc. [0025]
  • Thus the inventive approach to developing fire-safe thermoplastic hybrid materials takes advantage of the char forming properties and thermal properties of available preceramic materials, e.g. polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins, polyhedral oligomeric silsesquioxane (POSS) monomers, polymers and copolymers, examples of which are shown below. [0026]
    Figure US20010018486A1-20010830-C00001
  • In such formulas R═H or alkane, alkenyl or alkynl hydrocarbons, cyclic or linear, with 1-28 carbon atoms, substituted hydrocarbons R-X, Aromatics Ar and substituted aromatics Ar-X where X=halogen, phosphorus or nitrogen containing groups. The incorporation of halogen or other inorganic groups such as phosphates and amines directly onto these polymers can additionally afford a “dual” fire-retardancy. Dual fire-retardancy can be achieved by the substituent group controlling the gas-phase combustion chemistry and or contributing to the formation of char and hence controlling the solid-state chemistry. [0027]
  • The above R substituents on the preceramic polymer of the invention, aid in compatabilizing the preceramic polymer with the organic/resin polymer (as indicated in Table 2. hereof). In some cases, the substitutents can aid in improving the char-forming characteristics and in lowering the heat release from the resulting formulation (per the dual fire retardancy noted above). [0028]
  • These polymers can also contain termination points (chain ends) containing reactive or nonreactive functionalities such as silanols, esters, alcohols, amines or R groups as listed above. [0029]
  • The above formulas are representative of the type of blendable preceramic polymer resins employed as additives and in blends with organic polymers for reducing flammability, ie. as a fire retardant for commodity and engineering polymers, per the invention. [0030]
  • The mechanical properties of preceramic polymers are often not sufficient to allow their application alone as engineering plastics. However, these preceramic materials can be blended in various proportions with thermoplastics such as polypropylene (or other polyolefins or nylons, polyethers, polyesters) and thermoplastic elastomers such as PEBAX™ (a polyether block-polyamide copolymer) or Kraton™ (a styrene-butadiene-styrene triblock polymer). The resulting “preceramic polymer-organic polymer” blends have been shown to possess mechanical properties desirable for many engineering applications along with enhanced resistance to combustion and low heat release upon combustion. [0031]
  • Physical properties for preceramic polymer-engineering polymer blends are listed in Table 2 below. [0032]
    TABLE 2
    Brk. Yng. Melt
    Material Pk. Stress Strain Mod. Temp. Char yld
    PEBAX/PCS
    80/20 2313 psi 7.0 in/in  1894 psi 118 C. 18%
    50/50  733 0.67  8333 125 44
    30/70 1022 0.10 46830 216 56
    20/80 200 69
    PEBAX/PS
    80/20 2210 9.4  745 118 15
    50/50  448 3.8  2253 110 43
    30/70  280 5.9  5021  73 43
    20/80  194 1.2 15530  52 50
    PS 148 79
    PCS 199 74
    PEBAX 2778 8.2  617 119  2.0
  • PS=a polysilane copolymer containing (PhSiMe)[0033] 50(SiMe2)50. Char yields determined by thermogravimetric analysis under nitrogen.
  • As shown in Table 2, the mechanical properties (tensile strength, elongation, Youngs modulus) of the resulting polymer blends can be tailored over a wide range and are dependent upon the percentage of the preceramic incorporated. [0034]
  • The thermal properties (such as melt and glass transitions) of the resulting blends are similarly controlled through the percentage of preceramic polymer incorporated into the blend composition. Control over the thermal properties of plastics is desirable for enabling the material to be amenable to a variety of plastic fabrication processes (such as compression molding, extrusion, injection molding, and spraying technologies). The flammability properties (such as ignition time, and HRR) of the resulting blends are similarly controlled through the percentage of preceramic polymer incorporated. Therefore the amount of flame retardancy required for a particular application can easily be selected. An additional benefit of this approach is that since such a wide variety of structures exist for preceramic polymers that an optimal match can be achieved between the preceramic polymer and the organic polymer, allowing optimization of performance for a particular organic polymer. For example PCS appears to be the best preceramic to use for controlling the flammability of non polar polymers like Pebax without sacrificing the desirable range of mechanical properties. In a more polar type organic polymer a preceramic, such as a PSS, with the appropriate level of silanol groups would make a stable high quality blend through favorable (compatibilizing) hydrogen bonding interactions. [0035]
  • The process of blending preceramic polymers with organic polymers enables control over the amount of char formed during combustion. It is the formation of this char that is the key to the FR of these polymer blends. Char formation reduces the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat released and feedback to the polymer surface. The char accomplishes this by insulating the underlying virgin polymer from the external combustion radiation, and/or by trapping decomposition products in it's matrix. It may also re-radiate energy away from the polymer. The physical structure of the char is important in these roles. Foamy char structure appears to be more fire resistant than brittle, thin char. This char enhancing approach is most successful when the polymer chars rapidly and early in the burning process. To be useful the charring process must be designed so that it occurs subsequent to the processing temperature and early in the decomposition of the polymer, i.e., T[0036] processing<<Tcharring˜Tdecomp.. Additives that increase the amount of charcoal-like residue or carbonaceous char that forms during polymer combustion can be very effective fire retardants.
  • In added support that control over char formation can be achieved via blending preceramic and organic polymers, FIG. 4 shows that the amount of char formed during pyrolysis increases as the proportion of preceramic polymer blended with the engineering polymer is increased. That is, FIG. 4 shows the decomposition temperature and char yields for a preceramic polymer-engineering polymer blend. In this case the engineering polymer does not contribute to char formation. Combinations of preceramic polymers and organic polymers can be envisioned in which the organic polymer component also combines, in a synergistic manner, with the preceramic component to enhance char formation. In example we refer to the Kraton™ w/20 wt % PCS blend in Table 1. In this case the ceramic char from the preceramic polymers appears to increase the amount of carbonaceous char to produce a superior insulation barrier and decreases the amount of fuel for combustion in the gas phase. [0037]
  • The following example is given in illustration of the present invention and should not be construed in limitation thereof. [0038]
  • EXAMPLE I
  • Blends of polycarbosilane or polysilastyrene with “Pebax” or “Kraton” were prepared with preceramic weight fractions of 0.8, 0.7, 0.6, 0.5, and 0.2. Both components of the blend were weighed into a reactor followed by the addition of dichloromethane and tetrahydrofuran. The mixture was heated to the boiling point of the solvent while being mixed with a high shear emulsifier. The solution was poured into a Teflon mold and the solvent was evaporated for 24 hours at room temperature, then under vacuum at 80° C. for 12 hours. The polymer blends were then hot pressed to make flat sheets for sample analysis. in the manner described in U.S. Pat. No. 5,484,867 (1996) to Lichtenhan et. al, incorporated herein by reference. The results or properties of the sheets so analyzed are shown in Tables 1 and 2 above. [0039]
  • Blend preparation without the use of solvents and swelling agents is also possible through the use of dispersive melt mixing equipment such as Bandbury™ mixers or twin screw extruders. [0040]
  • The process disclosed herein is not in any way limited to the specific materials used or the processes described to prepare and enable them to function as FR plastics. For example FR preceramic polymer-polymer blends can be prepared using reactive processing techniques that enable or enhance the homogeneity (mutual compatibility and/or miscibility between the preceramic polymer and organic polymer). Likewise, non homogeneous preceramic polymer-polymer blends (mixtures of preceramic polymers and organic polymer showing incompatibility, immiscibility and phase separation) can be prepared and employed as effective FR plastics. [0041]
  • That is, the preceramic polymers of the invention are enabling components to be blended with common hydrocarbon-based plastics (eg. organic polymers) and that these materials can function as FR plastics. [0042]
  • Per the invention, the above preceramic polymers can be blended with the above plastics in a ratio of 1-80 wt % of the preceramic to the combined weight of preceramic and plastic. Suitably the above ratio can be 1-50 wt % and/or 62-80 wt %. Preferably such ratio is 5-28 wt % and more preferably 5-25 wt %. [0043]
  • The above fire-safe plastics of the invention can be used in any application where improvement of the fire safety of plastics is desired. This includes carpeting, adhesives, wire and cable insulation and building & vehicle interiors. These materials have application in rocket and space vehicle systems as lightweight and low cost structural and thermal components. These materials also have application in aircraft systems as fire-safe plastics for structural and comfort applications and as insulators. [0044]
  • The above preceramic polymers and organic polymers which form the FR blends of the invention, are generally of thermoplastic and thus can be recycled and re-thermoformed (molded) into other finished articles. [0045]

Claims (13)

What is claimed is:
1. A method for enhancing the fire resistivity of plastics comprising adding at least one preceramic polymer to at least one organic plastic to reduce the flammability thereof and form a polymer-plastic blend, wherein said preceramic polymer is selected from the group of polycarbosilanes (PCS), polysilanes (PS), polysilsesquioxane (PSS) resins and polyhedral oligomeric silsesquioxane (POSS) monomers, polymers and copolymers.
2. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 1-80 wt %.
3. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 1-50 wt %.
4. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 62-80 wt %.
5. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 5-28 wt %.
6. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 5-25 wt %.
7. The method of
claim 1
wherein the ratio of preceramic polymer/blend is 5-20 wt %.
8. The method of
claim 1
wherein said organ ic polymer is selected from the group of polystyrene, polypropylene, polycarbonate, polyamide, poly(butylene terphthalate), poly(ethylene terphtalate), a polyether block-polyamide copolymer, a styrene-butadiene-styrene triblock polymer, SBS and polyolefin.
9. The method of
claim 1
wherein said preceramic polymer is added to improve the char-forming characteristics of polystyrene, polypropylene, polycarbonate, polyamide, poly(butylene terphthalate), poly(ethylene terphtalate), a polyether block-polyamide copolymer, a styrene-butadiene-styrene triblock polymer, SBS and polyolefin.
10. The method of
claim 1
wherein said preceramic polymer has at least one R—Si unit therein, where R═H, alkane, alkenyl or alknyl, cyclic or linear with 1-28 carbon atoms and where one or more Rs can be substituted hydrocarbons, R-X, aromatics, Ar and sustituted aromatics, Ar-X, where X=halogen, phosphorous or nitrogen containing groups such as primary secondary and tertiary amines and ammonium salts thereof, imides and nitrites for dual fire retardency.
11. The method of
claim 1
wherein said blend is incorporated into products selected from the group of carpeting, adhesives, wire, cable, insulation, building materials and vehicle materials.
12. A method for enhancing the fire resistivity of plastics comprising adding preceramic polymers to organic plastics and mixing same to obtain a blend of reduced flammability.
13. The method of
claim 12
wherein said polymers are mixed by means selected from the group of a mechanical mixer and an extruder fed by one or more screws.
US09/215,357 1996-09-27 1998-12-18 Preceramic additives as fire retardants for plastics Expired - Fee Related US6362279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/215,357 US6362279B2 (en) 1996-09-27 1998-12-18 Preceramic additives as fire retardants for plastics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US2678396P 1996-09-27 1996-09-27
US86451697A 1997-05-28 1997-05-28
US09/215,357 US6362279B2 (en) 1996-09-27 1998-12-18 Preceramic additives as fire retardants for plastics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US86451697A Continuation-In-Part 1996-09-27 1997-05-28

Publications (2)

Publication Number Publication Date
US20010018486A1 true US20010018486A1 (en) 2001-08-30
US6362279B2 US6362279B2 (en) 2002-03-26

Family

ID=26701654

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/215,357 Expired - Fee Related US6362279B2 (en) 1996-09-27 1998-12-18 Preceramic additives as fire retardants for plastics

Country Status (1)

Country Link
US (1) US6362279B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080534A (en) * 2000-09-07 2002-03-19 Asahi Kasei Corp Modified dienic polymer and method for producing the same
WO2003042292A2 (en) * 2001-11-17 2003-05-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Polyolefin compositions, method for the production thereof and the use of these compositions
WO2003097745A1 (en) * 2002-05-16 2003-11-27 Dow Corning Corporation Flame retardant compositions
WO2003102695A1 (en) * 2002-05-30 2003-12-11 National Center For Scientific Research 'demokritos' Lithographic materials based on polymers containing polyhedral oligomeric silsesquioxanes
US6664024B1 (en) * 2000-10-25 2003-12-16 American Dye Source, Inc. Organic-inorganic hybrid photocurable compositions
US20040062888A1 (en) * 2002-09-26 2004-04-01 Casematic, S.A. De C.V. Polymer-based sausage casing
WO2004101653A2 (en) * 2003-05-14 2004-11-25 Degussa Ag Transparent masterbatches for thermoplastics
US20050202131A1 (en) * 2002-09-26 2005-09-15 Casematic S.A. De C.V. Polymer-based sausage casing
US20070080477A1 (en) * 2003-11-06 2007-04-12 Mikko Karttunen Method of producing a porous plastic film, and plastic film
WO2007100794A2 (en) * 2006-02-27 2007-09-07 Union Carbide Chemicals & Plastics Technology Llc Polyolefin-based high dielectric strength (hds) nanocomposites
US20070287774A1 (en) * 2004-09-11 2007-12-13 Kumho European Technical Centre Operating In Europ Rubber Composition Comprising a Polyhedral Oligomeric Silsesquioxane Additive
US20080020213A1 (en) * 1999-08-04 2008-01-24 Lichtenhan Joseph D High use temperature nanocomposite resins
US20110245388A1 (en) * 2009-02-09 2011-10-06 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
CN104693439A (en) * 2013-12-10 2015-06-10 合肥杰事杰新材料股份有限公司 Low-water-absorbing polyadipyl hexamethylenediamine material and preparation method thereof
CN108342087A (en) * 2018-03-06 2018-07-31 哈尔滨理工大学 A kind of highly effective inorganic flame-proof agent and preparation method and application
CN109023590A (en) * 2018-07-18 2018-12-18 中国人民解放军国防科技大学 Silicon carbide hollow fiber and preparation method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127583A1 (en) * 2003-12-18 2006-06-15 Lichtenhan Joseph D Polyhedral oligomeric silsesquioxanes and polyhedral oligomeric silicates barrier materials for packaging
US20060263531A1 (en) * 2003-12-18 2006-11-23 Lichtenhan Joseph D Polyhedral oligomeric silsesquioxanes as glass forming coatings
US7820761B2 (en) 1999-08-04 2010-10-26 Hybrid Plastics, Inc. Metallized nanostructured chemicals as cure promoters
US6518357B1 (en) * 2000-10-04 2003-02-11 General Electric Company Flame retardant polycarbonate-silsesquioxane compositions, method for making and articles made thereby
AU2002230604A1 (en) * 2000-12-19 2002-07-01 Bausch And Lomb Incorporated Polymeric biomaterials containing silsesquixane monomers
US6569932B2 (en) * 2001-07-06 2003-05-27 Benjamin S. Hsiao Blends of organic silicon compounds with ethylene-based polymers
US6809041B2 (en) 2002-07-01 2004-10-26 Rensselaer Polytechnic Institute Low dielectric constant films derived by sol-gel processing of a hyperbranched polycarbosilane
WO2004082611A2 (en) * 2003-03-14 2004-09-30 L'oreal Poss and eposs containing cosmetics and personal care products
US6936663B1 (en) 2003-07-07 2005-08-30 Conano Corporation Powder coating compositions containing POSS compounds
US20050109502A1 (en) * 2003-11-20 2005-05-26 Jeremy Buc Slay Downhole seal element formed from a nanocomposite material
US7013998B2 (en) * 2003-11-20 2006-03-21 Halliburton Energy Services, Inc. Drill bit having an improved seal and lubrication method using same
US20080249275A1 (en) * 2003-12-18 2008-10-09 Lichtenhan Joseph D Radiation shielding with polyhedral oligomeric silsesquioxanes and metallized additives
JP5441084B2 (en) * 2003-12-18 2014-03-12 ハイブリッド・プラスティックス・インコーポレイテッド Polyhedral oligomeric silsesquioxanes and metallized polyhedral oligomeric silsesquioxanes as coatings, composites and additives
US20090085011A1 (en) * 2003-12-18 2009-04-02 Lichtenhan Joseph D Neutron shielding composition
EP1794233A1 (en) * 2004-09-13 2007-06-13 L'oreal Poss containing cosmetic compositions having improved wear and/or pliability and methods of making improved cosmetic compositions
JP4645803B2 (en) * 2004-10-05 2011-03-09 信越化学工業株式会社 Monofunctional monomer having cage oligosiloxane structure and method for producing the same
CN101180404A (en) * 2005-04-22 2008-05-14 杂混复合塑料公司 Biomimetic materials comprising polyhedral oligomeric silsesquioxanes
US20080167440A1 (en) * 2007-01-10 2008-07-10 Pickel Deanna L Use of copolymerizable sulfonate salts to promote char formation in polyesters and copolyesters
US7879123B2 (en) * 2007-09-27 2011-02-01 Pall Corporation Inertial separator
US20090152009A1 (en) * 2007-12-18 2009-06-18 Halliburton Energy Services, Inc., A Delaware Corporation Nano particle reinforced polymer element for stator and rotor assembly
US7915436B2 (en) * 2008-11-03 2011-03-29 3M Innovative Properties Company Phosphorus-containing silsesquioxane derivatives as flame retardants
BRPI0922176A2 (en) * 2008-12-08 2018-05-22 3M Innovative Properties Co halogen free flame retardant for epoxy resin systems.
US10532020B2 (en) 2012-08-22 2020-01-14 Revlon Consumer Products Corporation Nail coatings having enhanced adhesion
CA2909825C (en) 2013-04-22 2022-09-27 Creative Nail Design, Inc. Nail coatings having enhanced adhesion

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2009196B (en) * 1977-10-26 1982-04-15 Res Inst For Special Inorganic Polycarbosilane process for its prudiction and its use as material for producing silicon carbide
US5089552A (en) * 1989-12-08 1992-02-18 The B. F. Goodrich Company High char yield silazane-modified phenolic resins
US5260377A (en) * 1990-12-31 1993-11-09 University Of Southern California Crosslinkable carbosilane polymer formulations
DE69415062T2 (en) * 1993-03-24 1999-05-20 Mitsui Chemicals Inc Polymers with silylene ethynylidene and phenylene ethynylidene groups, process for their preparation and hardened articles
US5750643A (en) * 1993-05-18 1998-05-12 Sri International Dehydrocoupling treatment and hydrosilylation of silicon-containing polymers, and compounds and articles produced thereby
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US5776764A (en) * 1993-10-20 1998-07-07 Nippon Paint Co., Ltd. Polysilane type photosensitive resin composition and method for forming pattern using the same
US5616650A (en) * 1993-11-05 1997-04-01 Lanxide Technology Company, Lp Metal-nitrogen polymer compositions comprising organic electrophiles
JPH11508629A (en) * 1995-07-03 1999-07-27 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Polysilane
US5858544A (en) * 1995-12-15 1999-01-12 Univ Michigan Spherosiloxane coatings
JP3635171B2 (en) * 1996-11-28 2005-04-06 ダウ コーニング アジア株式会社 Polymer compatible polymethylsilsesquioxane
JP3635180B2 (en) * 1997-02-24 2005-04-06 ダウ コーニング アジア株式会社 Silylated polymethylsilsesquioxane, process for producing the same, and composition using the same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553904B2 (en) * 1999-08-04 2009-06-30 Hybrid Plastics, Inc. High use temperature nanocomposite resins
US20080020213A1 (en) * 1999-08-04 2008-01-24 Lichtenhan Joseph D High use temperature nanocomposite resins
JP2002080534A (en) * 2000-09-07 2002-03-19 Asahi Kasei Corp Modified dienic polymer and method for producing the same
US6664024B1 (en) * 2000-10-25 2003-12-16 American Dye Source, Inc. Organic-inorganic hybrid photocurable compositions
WO2003042292A2 (en) * 2001-11-17 2003-05-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Polyolefin compositions, method for the production thereof and the use of these compositions
WO2003042292A3 (en) * 2001-11-17 2003-11-20 Creavis Tech & Innovation Gmbh Polyolefin compositions, method for the production thereof and the use of these compositions
WO2003097745A1 (en) * 2002-05-16 2003-11-27 Dow Corning Corporation Flame retardant compositions
KR100968736B1 (en) 2002-05-16 2010-07-08 다우 코닝 코포레이션 Flame retardant compositions
US7405251B2 (en) 2002-05-16 2008-07-29 Dow Corning Corporation Flame retardant compositions
US20060166128A1 (en) * 2002-05-30 2006-07-27 Ncsr Demokritos Lithographic materials based on polymers containing polyhedral oligomeric silsesquioxanes
WO2003102695A1 (en) * 2002-05-30 2003-12-11 National Center For Scientific Research 'demokritos' Lithographic materials based on polymers containing polyhedral oligomeric silsesquioxanes
GR1004403B (en) * 2002-05-30 2003-12-19 "����������", ���������� ����������������� Lithographic materials based on polymers containing polyhedral oligomeric silsesquioxanes
US20050202131A1 (en) * 2002-09-26 2005-09-15 Casematic S.A. De C.V. Polymer-based sausage casing
US8568638B2 (en) 2002-09-26 2013-10-29 Casematic S.A. De C.V. Polymer-based sausage casing
US7833594B2 (en) 2002-09-26 2010-11-16 Casematic, S.A. De C.V. Polymer based sausage casing
US20040062888A1 (en) * 2002-09-26 2004-04-01 Casematic, S.A. De C.V. Polymer-based sausage casing
WO2004101653A2 (en) * 2003-05-14 2004-11-25 Degussa Ag Transparent masterbatches for thermoplastics
CN100443527C (en) * 2003-05-14 2008-12-17 德古萨公司 Transparent masterbatches for thermoplastics
US7598307B2 (en) 2003-05-14 2009-10-06 Degussa Ag Transparent masterbatches for thermoplastics
US20070072972A1 (en) * 2003-05-14 2007-03-29 Degussa Ag Transparent masterbatches for thermoplastics
JP2006528720A (en) * 2003-05-14 2006-12-21 デグサ アクチエンゲゼルシャフト Transparent masterbatch for thermoplastics
WO2004101653A3 (en) * 2003-05-14 2005-01-20 Degussa Transparent masterbatches for thermoplastics
US7452593B2 (en) 2003-11-06 2008-11-18 Valtion Teknillinen Tutkimuskeskus Method of producing a porous plastic film, and plastic film
US20070080477A1 (en) * 2003-11-06 2007-04-12 Mikko Karttunen Method of producing a porous plastic film, and plastic film
US20070287774A1 (en) * 2004-09-11 2007-12-13 Kumho European Technical Centre Operating In Europ Rubber Composition Comprising a Polyhedral Oligomeric Silsesquioxane Additive
WO2007100794A3 (en) * 2006-02-27 2007-11-08 Union Carbide Chem Plastic Polyolefin-based high dielectric strength (hds) nanocomposites
WO2007100794A2 (en) * 2006-02-27 2007-09-07 Union Carbide Chemicals & Plastics Technology Llc Polyolefin-based high dielectric strength (hds) nanocomposites
US20100230131A1 (en) * 2006-02-27 2010-09-16 Union Carbide Chemicals & Plastics Technology LLC (formerly Union Carbide Chemicals & Plastics Techn Polyolefin-based high dielectric strength (hds) nanocomposites, compositions therefor, and related methods
EP2610309A1 (en) * 2009-02-09 2013-07-03 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
EP2395052B1 (en) * 2009-02-09 2014-03-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and molded object thereof
EP2610308A1 (en) * 2009-02-09 2013-07-03 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8492476B2 (en) * 2009-02-09 2013-07-23 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US20130253109A1 (en) * 2009-02-09 2013-09-26 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US20110245388A1 (en) * 2009-02-09 2011-10-06 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8575263B2 (en) 2009-02-09 2013-11-05 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
EP2395052A1 (en) * 2009-02-09 2011-12-14 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and molded object thereof
US8710129B2 (en) * 2009-02-09 2014-04-29 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8729180B2 (en) 2009-02-09 2014-05-20 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8772385B2 (en) 2009-02-09 2014-07-08 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8785528B2 (en) 2009-02-09 2014-07-22 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8802758B2 (en) 2009-02-09 2014-08-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
CN104693439A (en) * 2013-12-10 2015-06-10 合肥杰事杰新材料股份有限公司 Low-water-absorbing polyadipyl hexamethylenediamine material and preparation method thereof
CN108342087A (en) * 2018-03-06 2018-07-31 哈尔滨理工大学 A kind of highly effective inorganic flame-proof agent and preparation method and application
CN109023590A (en) * 2018-07-18 2018-12-18 中国人民解放军国防科技大学 Silicon carbide hollow fiber and preparation method thereof

Also Published As

Publication number Publication date
US6362279B2 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US6362279B2 (en) Preceramic additives as fire retardants for plastics
Biswas et al. The effect of chemically reactive type flame retardant additives on flammability of PES toughened epoxy resin and carbon fiber‐reinforced composites
Turgut et al. The effects of POSS particles on the flame retardancy of intumescent polypropylene composites and the structure-property relationship
DE69925718T2 (en) FLAME-RESISTANT RESIN, COMPOSITION, AND METHOD FOR THE PRODUCTION THEREOF
US20080290331A1 (en) Composition of glass fiber reinforced flame-retardant engineering plastic and preparation method thereof
CN102030963B (en) Halogen-free fire-retardant thermoplastic elastomer material and preparation method thereof
EP2258754B1 (en) Polyester foam material having flame-resistant behaviour
AU1085999A (en) Compositions of interpolymers of alpha-olefin monomers with one or more vinyl orvinylidene aromatic monomers
CN104987724A (en) Silicone master batch with high silicone content and preparation method of silicone master batch
CN102037071A (en) Thermoplastic halogen-free flame retardant formulations
Liu et al. Flame‐retarded poly (propylene) with melamine phosphate and pentaerythritol/polyurethane composite charring agent
CN102239212A (en) Method for preparing rubber/nanoclay masterbatches, and method for preparing high strength, high impact-resistant polypropylene/nanoclay/rubber composites using same
CN110982240A (en) polycarbonate/ABS (acrylonitrile-butadiene-styrene) composition, preparation method and automobile column guard plate
CN111492010A (en) Flame-retardant polyethylene terephthalate resin composition having improved impact resistance and method for producing same
Azizi et al. Silane crosslinking of polyethylene: The effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE
KR960705877A (en) CARBONATE BLEND POLYMER COMPOSITIONS COMPRISING A HIGH MOLECULAR WEIGHT BRANCHED CARBONATE POLYMER COMPONENT AND METHODS FOR THEIR PREPARATION
CN112029189A (en) Halogen-free flame-retardant polypropylene composite material and preparation method thereof
CN104693629A (en) A flame-retardant polystyrene/polyamide blended alloy material and a preparing method thereof
CN104736635A (en) Heat resistant, flame retardant polylactic acid compounds
CN107345033A (en) Polyvinyl chloride cable composite and its manufacture method, cable
CN111808365A (en) Flat glass fiber reinforced flame-retardant PP (polypropylene) composite material and preparation method thereof
CN110713684A (en) ABS composite material and application thereof
CN110982213A (en) High-oxygen-index low-smoke flame-retardant ABS material and preparation method thereof
JPS6366261A (en) Fire-retardant compound and thermoplastic composition containing the same
CN110628166A (en) Halogen flame-retardant TPE material and preparation method thereof

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100326