Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20010037145 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 09/887,462
Fecha de publicación1 Nov 2001
Fecha de presentación21 Jun 2001
Fecha de prioridad8 Dic 1999
También publicado comoUS6251136
Número de publicación09887462, 887462, US 2001/0037145 A1, US 2001/037145 A1, US 20010037145 A1, US 20010037145A1, US 2001037145 A1, US 2001037145A1, US-A1-20010037145, US-A1-2001037145, US2001/0037145A1, US2001/037145A1, US20010037145 A1, US20010037145A1, US2001037145 A1, US2001037145A1
InventoresJudy Guruwaiya, Deborra Millare, Steven Wu
Cesionario originalGuruwaiya Judy A., Millare Deborra Sanders, Wu Steven Z-H
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Coated stent
US 20010037145 A1
Resumen
A pharmacological agent is applied to a stent in dry, micronized form over a sticky base coating. A membrane forming polymer, selected for its ability to allow the diffusion of the pharmacological agent therethrough, is applied over the entire stent.
Imágenes(1)
Previous page
Next page
Reclamaciones(23)
What is claimed:
1. A method for coating a stent, comprising the steps of:
providing a stent;
applying a base layer of sticky material to selected surfaces of said stent;
applying pharmacological agent in micronized, dry form to selected surfaces coated by said base layer; and
applying a membrane forming polymer coating through which said pharmacological agent is able to diffuse to all surfaces of said stent.
2. The method of
claim 1
, wherein said base layer is applied to all surfaces of said stent.
3. The method of
claim 1
, wherein said stent is masked so as to apply said base layer to only selected surfaces of said stent.
4. The method of
claim 1
, wherein said pharmacological agent is applied to all surfaces having said base layer applied thereto.
5. The method of
claim 1
, wherein said stent is masked so as to apply said pharmacological agent to only selected surfaces coated with said base coat.
6. The method of
claim 1
, wherein a plurality of pharmacological agents are applied to selected surfaces having said base layer applied thereto.
7. The method of
claim 6
, wherein said plurality of pharmacological agents comprises a uniform mixture.
8. The method of
claim 6
, wherein selected pharmacological agents of said plurality of pharmacological agents are applied.
9. The method of
claim 1
, wherein, the base layer is selected from the group consisting of vitronectin, fibronectin, gelatin and collagen.
10. The method of
claim 1
, wherein said base layer is applied by dipping.
11. The method of
claim 1
, wherein said pharmacological agent is applied by rolling said stent in a mass of said pharmacological agent.
12. The method of
claim 1
, wherein said pharmacological agent is applied by blowing said dry, micronized particles onto said stent.
13. The method of
claim 1
, wherein said membrane forming polymer comprises EVa.
14. The method of
claim 1
, wherein said membrane forming polymer comprises a fluoropolymer film.
15. A coated stent, comprising:
an expandable structure;
a base coating of sticky material;
an intermediate coating of pharmacological agent in dry, micronized form; and
an outer coating of membrane forming polymer through which said pharmacological agent is capable of diffusing.
16. The coated stent of
claim 12
, wherein said base coating is present on only selected surfaces of said expandable structure.
17. The coated stent of
claim 12
, wherein said pharmacological agent is present on only selected base coated surfaces.
18. The coated stent of
claim 12
, wherein said intermediate coating comprises a plurality of pharmacological agents.
19. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is homogeneously distributed throughout said intermediate coating.
20. The coated stent of
claim 15
, wherein said plurality of pharmacological agents is heterogeneously distributed throughout said intermediate coating.
21. The coated stent of
claim 17
, wherein said expandable structure has exterior surfaces and interior surfaces and wherein a first of said plurality of pharmacological agents is distributed on said exterior surfaces and a second of said pharmacological agents is distributed on said interior surfaces.
22. The coated stent of
claim 12
, wherein said outer coating comprises EVA.
23. The coated stent of
claim 12
, wherein said outer coating comprises a fluoropolymer film.
Descripción
    BACKGROUND OF THE INVENTION
  • [0001]
    This invention relates generally to expandable intraluminal vascular grafts, commonly referred to as stents, and more particularly pertains to the coating of stents with materials that allow for the controlled release of pharmacological agents.
  • [0002]
    Stents are implanted within vessels in an effort to maintain the patency thereof by preventing collapse and/or impeding restenosis. Implantation of a stent is typically accomplished by mounting the stent on the expandable portion of a balloon catheter, maneuvering the catheter through the vasculature so as to position the stent at the treatment site within the body lumen, and inflating the balloon to expand the stent so as to engage the lumen wall. The stent deforms in the expanded configuration allowing the balloon to be deflated and the catheter removed to complete the implantation procedure. The use of self-expanding stents obviates the need for a balloon delivery device. Instead, a constraining sheath that is initially fitted about the stent is simply retracted once the stent is in position adjacent the treatment site. Stents and stent delivery catheters are well known in the art.
  • [0003]
    The success of a stent placement can be assessed by evaluating a number of factors, such as thrombosis, neointimal hyperplasia, smooth muscle cell migration and proliferation following implantation of the stent, injury to the artery wall, overall loss of luminal patency, stent diameter in vivo, thickness of the stent, and leukocyte adhesion to the luminal lining of stented arteries. The chief areas of concern are early subacute thrombosis, and eventual restenosis of the blood vessel due to intimal hyperplasia.
  • [0004]
    Therapeutic pharmacological agents have been developed to address some of the concerns associated with the placement of a stent and it is often desirable to provide localized pharmacological treatment of a vessel at the site being supported by the stent. It has been found convenient to utilize the implanted stent for such purpose wherein the stent serves both as a support for the lumen wall as a well as delivery vehicle for the pharmacological agent. However, the metallic materials typically employed in the construction of stents in order to satisfy the mechanical strength requirements are not generally capable of carrying and releasing drugs. On the other hand, while various polymers are known that are quite capable of carrying and releasing drugs, they generally do not have the requisite strength characteristics. Moreover, the structural and mechanical capabilities of a polymer may be significantly reduced as such polymer is loaded with a drug. A previously devised solution to such dilemma has therefore been the coating of a stent's metallic structure with a drug carrying polymer material in order to provide a stent capable of both supporting adequate mechanical loads as well as delivering drugs.
  • [0005]
    Various approaches have previously been employed to join drug-carrying polymers to metallic stents including for example dipping, spraying and conforming processes. Additionally, methods have been disclosed wherein the metallic structure of the stent has been formed or treated so as to create a porous surface that enhances the ability to retain the applied materials. However, such methods have generally failed to provide a quick, easy and inexpensive way of loading drugs onto a stent, have been limited insofar as the maximum amount of drug that can be loaded onto a stent and are limited in terms of their ability to control the rate of release of the drug upon implantation of the stent. Additionally, some of the heretofore known methods are highly specific wherein they are substantially limited in terms of which underlying stent material the coating can be applied to.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention overcomes the shortcomings of the prior art methods for loading a drug onto a stent. The process enables large amounts of one or more drugs to be quickly and easily loaded onto the stent and provides for the subsequent release of such drug at a very controlled rate. A stent constructed in accordance with the present invention is capable of releasing substantially greater dosages of drugs at substantially more controlled release rates than has heretofore been possible. Moreover, the present invention allows for the drug releasing materials to be applied to any stent construction material.
  • [0007]
    The method of the present invention requires the sequential application of three layers of different materials onto a stent's surfaces. A first layer is applied to all or to selected surfaces of a stent and serves as a base or primer coat which readily adheres to the material of which the stent is constructed and in turn, is able to attract and retain the subsequently applied pharmacological agent. Such pharmacological agent, in the form of dry, micronized particles is dusted directly onto all or onto only selected surfaces of the base layer coated stent to form a second layer. A membrane forming polymer is subsequently applied over the coated stent surfaces wherein such polymer is selected for its ability to permit the diffusion of the pharmacological agent therethrough.
  • [0008]
    The base layer material is selected for its ability to form a sticky coating on the particular material used in the construction of the stent. Such first layer may be applied to all or selected surfaces of the stent. The pharmacological material is used in a dry, micronized form which allows the amount of material applied to the base layer to be precisely controlled. The top layer material is selected for its ability to form a membrane over the entire surface of the stent be it the bare stent material, the base layer coat or the pharmacological agent, and for its ability to permit the diffusion of the pharmacological agent therethrough. The amount of pharmacological material deposited in the second layer determines the total dosage that can delivered while the thickness of the top layer determines the rate of delivery.
  • [0009]
    The particular surface or surfaces on which the pharmacological agent is deposited determines where the agent is delivered upon implantation. More specifically, pharmacological material deposited on the exterior surfaces of the stent causes the agent to pass directly into the lumen wall while deposition of the agent on the interior surfaces of the stent causes the agent to be released directly into the blood flow. Alternatively, coating only the upstream edge or only the downstream edge of the stent may be desirable to achieve a specific effect. By selectively coating the stent surfaces with the base layer, the distribution of the pharmacological agent may be controlled accordingly as the dry particles will only adhere to those areas that have the sticky coating. Alternatively, the entire stent may be base coated while the application of the pharmacological agent is precisely controlled by limiting its distribution to only preselected areas. Well known masking techniques may be used for such purpose. The membrane forming material may be applied by any well known technique such as for example by dipping or spraying while material is in its liquid form. Allowing the material to form a continuous membrane completes the fabrication process.
  • [0010]
    These and other features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments which, taken in conjunction with the accompanying drawings, illustrate by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0011]
    [0011]FIG. 1 is a perspective view of a stent.
  • [0012]
    [0012]FIG. 2 is a greatly enlarged cross-sectional view, such as taken along lines 2-2 of FIG. 1, of a stent fabricated in accordance with the present invention.
  • [0013]
    [0013]FIG. 3 is a greatly enlarged cross-sectional view of an alternative embodiment stent fabricated in accordance with the present invention.
  • [0014]
    [0014]FIG. 4 is a greatly enlarged cross-sectional view of another alternative embodiment stent fabricated in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0015]
    The stent constructed in accordance with the present invention is employed as a drug delivery device which is implanted in the body and may simultaneously serve to support the body lumen at the deployment site. The present invention is not limited to any particular stent configuration or delivery method nor is the construction of the stent structure limited to the use of any particular construction material.
  • [0016]
    [0016]FIG. 1 is a perspective view generally depicting a stent 12. Such view is not intended to represent any particular stent configuration or structure but is merely provided to put into context the cross-sectional views of the various embodiments shown in FIGS. 2-4.
  • [0017]
    [0017]FIG. 2 shows an embodiment 14 of the present invention wherein the underlying structure of the stent 16 has a total of three layers of materials coated onto all of its surfaces. A first layer, or base coat 18 is shown applied directly to the surfaces of the stent upon which a second layer, comprising a pharmacological agent 20, is applied. A third layer, in the form of a continuous membrane 22, encapsulates the entire device.
  • [0018]
    The base coat 18 serves as a primer by readily adhering to the underlying stent's surfaces and then readily accepting and retaining a pharmacological agent applied thereto. The base coat material may consist of vitronectin, fibronectin, gelatin, collagen or the like. Such materials are readily available, are relatively inexpensive and dry to form a sticky coating. The desired stickiness is achieved with the application of a very thin even coating of the base coat on the stent which serves to minimize the overall wall thickness of the device and further has the desirable effect of minimizing the amount of webbing that forms between adjacent structural components of the stent. The base layer may be applied by any of several methods including for example dipping, spraying, sponging or brushing. In the embodiment illustrated in FIG. 2, the underlying stent structure is simply dipped or submerged in the base coat material while in its liquid form to uniformly coat all surfaces of the stent. The dipping solution should not dissolve the drug particles. Upon drying or curing, all exposed surfaces of the stent remain sticky.
  • [0019]
    The pharmacological agent 20 is supplied in the form of dry, micronized particles that readily adhere to the sticky base layer surface. A variety of pharmacological agents are commercially available in such form having a preferred particle size of about 1 to 0.5 microns. Examples of such agents include but are not limited to antibiotic, anti-thrombotic and anti-restenotic drugs. Additionally, any such micronized agents can be combined in any of various combinations in order to dispense a desired cocktail of pharmacological agents to the patient. For example, a number of different pharmacological agents can be combined in each micronized particle. Alternatively, micronized particles of individual pharmacological agents can be intermixed prior to application to the sticky base layer. As a further alternative, different pharmacological agents can be applied to different surfaces of the stent. In the particular embodiment illustrated, the micronized particles are applied to all surfaces of the base coated stent wherein such application may be achieved by any of a number of well known methods. For example, the particles may be blown onto the sticky surface or optionally, may simply be rolled in the powder. The former approach allows the total amount of pharmacological agent that is to be applied to the stent to be precisely controlled.
  • [0020]
    The outer membrane 22 encapsulates the entire stent to cover all of its surfaces, including any bare stent structure, any exposed base coating or the layer of micronized drug particles. The material is selected for its membrane forming characteristic and its biocompatiblity as well as its permeability to the pharmacological agent. The chemical composition of the membrane forming polymer and that of the pharmacological agent in combination with the thickness of the applied outer layer will determine the diffusion rate of the pharmacological agent. An example of a suitable material is ethylene vinyl alcohol (EVA) into which the base coated and pharmacological agent carrying stent may simply be dipped. The EVA forms the desired membrane upon curing.
  • [0021]
    Alternatively, fluorocarbon films may be employed to serve as the outer layer in the stent of the present invention. Such films have been successfully used as drug-delivery capsules and are capable of serving a similar function when applied about the exterior of the stent of the present invention. A representative example of such film is described in the paper entitled Development of a Model for rf. PE-CVD-Deposited Fluoropolymer Films Using C3F6 by Jason Christos, et al in the Journal of Undergraduate Research in Engineering, page 52.
  • [0022]
    [0022]FIG. 3 illustrates an alternative embodiment 24 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layer are identified by the same reference numerals employed in FIG. 2. In this particular embodiment, the base layer 18 is again applied to all surfaces of the underlying stent structure 16 while the pharmacological agent 20 is applied to only selected surfaces. This is achieved by masking those areas in which no pharmacological agent is to become adhered to the sticky base layer. In the particular embodiment that is illustrated, only the exterior surface has the pharmacological agent adhered thereto. Alternatively, a second, different pharmacological agent may be applied to the interior surface of the stent such that a single stent serves to dispense a first pharmacological agent into the lumen walls while the second agent is simultaneously dispensed into the blood flow. In either embodiment, the outer membrane 22 covers the entire stent.
  • [0023]
    [0023]FIG. 4 illustrates another alternative embodiment 26 of the present invention. The underlying stent structure, base layer, pharmacological agent and outer membrane layers are again identified by the same reference numerals employed in FIGS. 2 and 3. In this particular embodiment the base layer 18 is selectively applied to various surface of the underlying stent structure 16. This achieved by masking those areas were no base layer and consequently no pharmacological agent 20 is to be present. The illustration shows the base layer as being exclusively applied to the exterior surface of the stent. Any of a variety of masking techniques can be employed to achieve the selective coating pattern. The subsequently applied pharmacological agent in the form of dry, micronized particles, only adheres to those surfaces having the sticky base layer coating. The outer membrane forming layer 22 is again applied to all surfaces.
  • [0024]
    In use, the stent is deployed using conventional techniques. Once in position the pharmacological agent gradually diffuses into the adjacent tissue at a rate dictated by the parameters associated with the applied outer membrane. The total dosage that is delivered is of course limited by the total amount of pharmacological agent that had been loaded onto the stent's various surfaces. The pharmacological agent is selected to treat the deployment site and/or locations downstream thereof. For example, deployment in the carotid artery will serve to deliver such agent to the brain.
  • [0025]
    While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the appended claims.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US4278087 *28 Abr 198014 Jul 1981Alza CorporationDevice with integrated operations for controlling release of agent
US4952419 *12 Mar 198928 Ago 1990Eli Lilly And CompanyMethod of making antimicrobial coated implants
US5891420 *21 Abr 19976 Abr 1999Aeropharm Technology LimitedEnvironmentally safe triancinolone acetonide aerosol formulations for oral inhalation
US6129905 *13 Ago 199710 Oct 2000Aeropharm Technology, Inc.Aerosol formulations containing a sugar as a dispersant
US6140355 *13 Ene 199431 Oct 2000Alfa Wassermann S.P.A.Pharmaceutical compositions containing rifaximin for treatment of vaginal infections
US6316018 *26 Ene 200013 Nov 2001Ni DingDrug-releasing coatings for medical devices
US6355058 *30 Dic 199912 Mar 2002Advanced Cardiovascular Systems, Inc.Stent with radiopaque coating consisting of particles in a binder
US6358556 *23 Ene 199819 Mar 2002Boston Scientific CorporationDrug release stent coating
US6368658 *17 Abr 20009 Abr 2002Scimed Life Systems, Inc.Coating medical devices using air suspension
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US679022828 Dic 200014 Sep 2004Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US690862416 Dic 200221 Jun 2005Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US702237212 Nov 20024 Abr 2006Advanced Cardiovascular Systems, Inc.Compositions for coating implantable medical devices
US714765928 Oct 200412 Dic 2006Cordis Neurovascular, Inc.Expandable stent having a dissolvable portion
US7176261 *21 Oct 200513 Feb 2007Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US7258891 *7 Abr 200321 Ago 2007Advanced Cardiovascular Systems, Inc.Stent mounting assembly and a method of using the same to coat a stent
US73352658 Oct 200226 Feb 2008Advanced Cardiovascular Systems Inc.Apparatus and method for coating stents
US75568377 Jul 2009Advanced Cardiovascular Systems, Inc.Method for coating stents
US764547431 Jul 200312 Ene 2010Advanced Cardiovascular Systems, Inc.Method and system of purifying polymers for use with implantable medical devices
US764872519 May 200619 Ene 2010Advanced Cardiovascular Systems, Inc.Clamp mandrel fixture and a method of using the same to minimize coating defects
US764872726 Ago 200419 Ene 2010Advanced Cardiovascular Systems, Inc.Methods for manufacturing a coated stent-balloon assembly
US767814312 Nov 200316 Mar 2010Advanced Cardiovascular Systems, Inc.Ethylene-carboxyl copolymers as drug delivery matrices
US768264723 Mar 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of a drug eluting implantable medical device
US76826483 Nov 200323 Mar 2010Advanced Cardiovascular Systems, Inc.Methods for forming polymeric coatings on stents
US768266923 Mar 2010Advanced Cardiovascular Systems, Inc.Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US769140117 May 20056 Abr 2010Advanced Cardiovascular Systems, Inc.Poly(butylmethacrylate) and rapamycin coated stent
US76998892 May 200820 Abr 2010Advanced Cardiovascular Systems, Inc.Poly(ester amide) block copolymers
US77045447 Oct 200327 Abr 2010Advanced Cardiovascular Systems, Inc.System and method for coating a tubular implantable medical device
US77136373 Mar 200611 May 2010Advanced Cardiovascular Systems, Inc.Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
US773253523 Mar 20058 Jun 2010Advanced Cardiovascular Systems, Inc.Coating for controlled release of drugs from implantable medical devices
US773544928 Jul 200515 Jun 2010Advanced Cardiovascular Systems, Inc.Stent fixture having rounded support structures and method for use thereof
US77492637 Ene 20086 Jul 2010Abbott Cardiovascular Systems Inc.Poly(ester amide) filler blends for modulation of coating properties
US775888020 Jul 2010Advanced Cardiovascular Systems, Inc.Biocompatible polyacrylate compositions for medical applications
US775888120 Jul 2010Advanced Cardiovascular Systems, Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US776688425 May 20073 Ago 2010Advanced Cardiovascular Systems, Inc.Polymers of fluorinated monomers and hydrophilic monomers
US77723599 Sep 200810 Ago 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US777517826 May 200617 Ago 2010Advanced Cardiovascular Systems, Inc.Stent coating apparatus and method
US777692611 Dic 200217 Ago 2010Advanced Cardiovascular Systems, Inc.Biocompatible coating for implantable medical devices
US778551225 May 200431 Ago 2010Advanced Cardiovascular Systems, Inc.Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US778564731 Ago 2010Advanced Cardiovascular Systems, Inc.Methods of providing antioxidants to a drug containing product
US77862499 Sep 200831 Ago 2010Advanced Cardiovascular Systems, Inc.Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
US779474314 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of making the same
US779546714 Sep 2010Advanced Cardiovascular Systems, Inc.Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US780339417 Nov 200628 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide hydrogel coatings for cardiovascular therapy
US780340626 Ago 200528 Sep 2010Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US78072105 Abr 20045 Oct 2010Advanced Cardiovascular Systems, Inc.Hemocompatible polymers on hydrophobic porous polymers
US780721127 May 20045 Oct 2010Advanced Cardiovascular Systems, Inc.Thermal treatment of an implantable medical device
US780772226 Nov 20035 Oct 2010Advanced Cardiovascular Systems, Inc.Biobeneficial coating compositions and methods of making and using thereof
US78201902 Ene 200426 Oct 2010Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
US782073226 Oct 2010Advanced Cardiovascular Systems, Inc.Methods for modulating thermal and mechanical properties of coatings on implantable devices
US78235332 Nov 2010Advanced Cardiovascular Systems, Inc.Stent fixture and method for reducing coating defects
US786754719 Dic 200511 Ene 2011Advanced Cardiovascular Systems, Inc.Selectively coating luminal surfaces of stents
US787528625 Ene 2011Advanced Cardiovascular Systems, Inc.Polycationic peptide coatings and methods of coating implantable medical devices
US788787115 Feb 2011Advanced Cardiovascular Systems, Inc.Method and system for irradiation of a drug eluting implantable medical device
US789259222 Feb 2011Advanced Cardiovascular Systems, Inc.Coating abluminal surfaces of stents and other implantable medical devices
US790170323 Mar 20078 Mar 2011Advanced Cardiovascular Systems, Inc.Polycationic peptides for cardiovascular therapy
US791907520 Mar 20025 Abr 2011Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices
US796799828 Jun 2011Advanced Cardiocasvular Systems, Inc.Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US797689112 Jul 2011Advanced Cardiovascular Systems, Inc.Abluminal stent coating apparatus and method of using focused acoustic energy
US79854407 Sep 200526 Jul 2011Advanced Cardiovascular Systems, Inc.Method of using a mandrel to coat a stent
US79854414 May 200626 Jul 2011Yiwen TangPurification of polymers for coating applications
US798901831 Mar 20062 Ago 2011Advanced Cardiovascular Systems, Inc.Fluid treatment of a polymeric coating on an implantable medical device
US80031564 May 200623 Ago 2011Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US800777530 Ago 2011Advanced Cardiovascular Systems, Inc.Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US801714013 Sep 2011Advanced Cardiovascular System, Inc.Drug-delivery stent formulations for restenosis and vulnerable plaque
US801723713 Sep 2011Abbott Cardiovascular Systems, Inc.Nanoshells on polymers
US80216768 Jul 200520 Sep 2011Advanced Cardiovascular Systems, Inc.Functionalized chemically inert polymers for coatings
US80298164 Oct 2011Abbott Cardiovascular Systems Inc.Medical device coated with a coating containing elastin pentapeptide VGVPG
US804248725 Oct 2011Advanced Cardiovascular Systems, Inc.System for coating stents
US80484411 Nov 2011Abbott Cardiovascular Systems, Inc.Nanobead releasing medical devices
US80484481 Nov 2011Abbott Cardiovascular Systems Inc.Nanoshells for drug delivery
US80529128 Nov 2011Advanced Cardiovascular Systems, Inc.Temperature controlled crimping
US80529888 Nov 2011Advanced Cardiovascular Systems, Inc.Methods for fabricating coatings for drug delivery devices having gradient of hydration
US806235022 Nov 2011Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US806702329 Nov 2011Advanced Cardiovascular Systems, Inc.Implantable medical devices incorporating plasma polymerized film layers and charged amino acids
US806702520 Mar 200729 Nov 2011Advanced Cardiovascular Systems, Inc.Nitric oxide generating medical devices
US80698146 Dic 2011Advanced Cardiovascular Systems, Inc.Stent support devices
US81099047 Feb 2012Abbott Cardiovascular Systems Inc.Drug delivery medical devices
US811021122 Sep 20047 Feb 2012Advanced Cardiovascular Systems, Inc.Medicated coatings for implantable medical devices including polyacrylates
US811024315 May 20087 Feb 2012Advanced Cardiovascular Systems, Inc.Coating for a stent and a method of forming the same
US811415014 Jun 200614 Feb 2012Advanced Cardiovascular Systems, Inc.RGD peptide attached to bioabsorbable stents
US811886321 Feb 200821 Feb 2012Abbott Cardiovascular Systems Inc.RGD peptide attached to bioabsorbable stents
US814776916 May 20073 Abr 2012Abbott Cardiovascular Systems Inc.Stent and delivery system with reduced chemical degradation
US81731998 May 2012Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US818252722 May 2012Cordis CorporationHeparin barrier coating for controlled drug release
US81927525 Jun 2012Advanced Cardiovascular Systems, Inc.Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US819787912 Jun 2012Advanced Cardiovascular Systems, Inc.Method for selectively coating surfaces of a stent
US823196231 Jul 2012Advanced Cardiovascular Systems, Inc.Coatings for drug delivery devices having gradient of hydration
US823604827 Abr 20047 Ago 2012Cordis CorporationDrug/drug delivery systems for the prevention and treatment of vascular disease
US82779262 Oct 2012Advanced Cardiovascular Systems, Inc.Methods for fabricating coatings for drug delivery devices having gradient of hydration
US829336715 Jul 201123 Oct 2012Advanced Cardiovascular Systems, Inc.Nanoshells on polymers
US829389030 Abr 200423 Oct 2012Advanced Cardiovascular Systems, Inc.Hyaluronic acid based copolymers
US830360928 Sep 20016 Nov 2012Cordis CorporationCoated medical devices
US83036516 Nov 2012Advanced Cardiovascular Systems, Inc.Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US83040126 Nov 2012Advanced Cardiovascular Systems, Inc.Method for drying a stent
US830911213 Nov 2012Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same
US835739122 Ene 2013Advanced Cardiovascular Systems, Inc.Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US836153929 Ene 2013Advanced Cardiovascular Systems, Inc.Methods of forming microparticle coated medical device
US84355507 May 2013Abbot Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US844990528 May 2013Covidien LpLiquid and low melting coatings for stents
US846578918 Jul 201118 Jun 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US850661721 Jun 200213 Ago 2013Advanced Cardiovascular Systems, Inc.Micronized peptide coated stent
US855151222 Mar 20048 Oct 2013Advanced Cardiovascular Systems, Inc.Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS
US856302523 Ene 200622 Oct 2013Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices
US856876431 May 200629 Oct 2013Advanced Cardiovascular Systems, Inc.Methods of forming coating layers for medical devices utilizing flash vaporization
US858606929 Dic 200519 Nov 2013Abbott Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US858607527 Nov 201219 Nov 2013Abbott Cardiovascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US859203620 Sep 201226 Nov 2013Abbott Cardiovascular Systems Inc.Nanoshells on polymers
US859621518 Jul 20113 Dic 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US859767313 Dic 20063 Dic 2013Advanced Cardiovascular Systems, Inc.Coating of fast absorption or dissolution
US860353014 Jun 200610 Dic 2013Abbott Cardiovascular Systems Inc.Nanoshell therapy
US860353615 Sep 200310 Dic 2013Advanced Cardiovascular Systems, Inc.Microparticle coated medical device
US860363423 Mar 200910 Dic 2013Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US860912329 Nov 200417 Dic 2013Advanced Cardiovascular Systems, Inc.Derivatized poly(ester amide) as a biobeneficial coating
US8616152 *6 Ago 201231 Dic 2013Abbott Cardiovascular Systems Inc.Stent coating apparatus
US863711018 Jul 201128 Ene 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US864765518 Jun 201011 Feb 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US867333419 Sep 200718 Mar 2014Abbott Cardiovascular Systems Inc.Stent coatings comprising hydrophilic additives
US868543013 Jul 20071 Abr 2014Abbott Cardiovascular Systems Inc.Tailored aliphatic polyesters for stent coatings
US868543116 Mar 20041 Abr 2014Advanced Cardiovascular Systems, Inc.Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US87031675 Jun 200622 Abr 2014Advanced Cardiovascular Systems, Inc.Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US87031698 Ago 200722 Abr 2014Abbott Cardiovascular Systems Inc.Implantable device having a coating comprising carrageenan and a biostable polymer
US874137823 Dic 20043 Jun 2014Advanced Cardiovascular Systems, Inc.Methods of coating an implantable device
US874137918 Jul 20113 Jun 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US875880127 Nov 201224 Jun 2014Abbott Cardiocascular Systems Inc.Coatings for implantable devices comprising poly(hydroxy-alkanoates) and diacid linkages
US877801431 Mar 200415 Jul 2014Advanced Cardiovascular Systems, Inc.Coatings for preventing balloon damage to polymer coated stents
US877837529 Abr 200515 Jul 2014Advanced Cardiovascular Systems, Inc.Amorphous poly(D,L-lactide) coating
US87783769 Jun 200615 Jul 2014Advanced Cardiovascular Systems, Inc.Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US880834223 Abr 201319 Ago 2014Abbott Cardiovascular Systems Inc.Nanoshell therapy
US88712366 Jun 201328 Oct 2014Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US887188327 Jul 201028 Oct 2014Abbott Cardiovascular Systems Inc.Biocompatible coating for implantable medical devices
US890061815 Mar 20132 Dic 2014Covidien LpLiquid and low melting coatings for stents
US896158826 Sep 200624 Feb 2015Advanced Cardiovascular Systems, Inc.Method of coating a stent with a release polymer for 40-O-(2-hydroxy)ethyl-rapamycin
US89867266 Jun 201324 Mar 2015Abbott Cardiovascular Systems Inc.Biocompatible polyacrylate compositions for medical applications
US90288597 Jul 200612 May 2015Advanced Cardiovascular Systems, Inc.Phase-separated block copolymer coatings for implantable medical devices
US905615529 May 200716 Jun 2015Abbott Cardiovascular Systems Inc.Coatings having an elastic primer layer
US906700018 Nov 201330 Jun 2015Abbott Cardiovascular Systems Inc.End-capped poly(ester amide) copolymers
US908467115 Jul 201321 Jul 2015Advanced Cardiovascular Systems, Inc.Methods of forming a micronized peptide coated stent
US910169711 Abr 201411 Ago 2015Abbott Cardiovascular Systems Inc.Hyaluronic acid based copolymers
US911419819 Nov 200325 Ago 2015Advanced Cardiovascular Systems, Inc.Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US917516219 Sep 20073 Nov 2015Advanced Cardiovascular Systems, Inc.Methods for forming stent coatings comprising hydrophilic additives
US933327912 Nov 201410 May 2016Covidien LpCoated stent comprising an HMG-CoA reductase inhibitor
US93395929 Abr 200717 May 2016Abbott Cardiovascular Systems Inc.Polymers of fluorinated monomers and hydrocarbon monomers
US936449822 Jun 200914 Jun 2016Abbott Cardiovascular Systems Inc.Heparin prodrugs and drug delivery stents formed therefrom
US20040054104 *5 Sep 200218 Mar 2004Pacetti Stephen D.Coatings for drug delivery devices comprising modified poly(ethylene-co-vinyl alcohol)
US20040086542 *16 Dic 20026 May 2004Hossainy Syed F.A.Coating for implantable devices and a method of forming the same
US20040138695 *5 Jun 200315 Jul 2004Shu-Tung LiCoatings of implants
US20050187376 *23 Mar 200525 Ago 2005Pacetti Stephen D.Coating for controlled release of drugs from implantable medical devices
US20060088572 *21 Oct 200527 Abr 2006Medtronic, Inc.Angiotensin-(1-7) eluting polymer-coated medical device to reduce restenosis and improve endothelial cell function
US20060095112 *28 Oct 20044 May 2006Jones Donald KExpandable stent having a dissolvable portion
US20070026131 *26 Sep 20061 Feb 2007Advanced Cardiovascular Systems, Inc.40-O-(2-hydroxy)ethyl-rapamycin coated stent
US20070073381 *7 Nov 200629 Mar 2007Jones Donald KExpandable stent having a dissolvable portion
US20080107795 *14 Ene 20088 May 2008Hossainy Syed FMethod for Coating Stents
US20080110396 *14 Ene 200815 May 2008Hossainy Syed FSystem for Coating Stents
US20080281394 *18 Jul 200813 Nov 2008Jones Donald KCovered stent having a dissolvable portion
US20120291703 *22 Nov 2012Advanced Cardiovascular Systems, Inc.Stent coating apparatus
USRE457447 Nov 201313 Oct 2015Abbott Cardiovascular Systems Inc.Temperature controlled crimping
EP1652495A1 *28 Oct 20053 May 2006Cordis Neurovascular, Inc.Expandable stent having a dissolvable portion
WO2002058753A2 *21 Dic 20011 Ago 2002Advanced Cardiovascular Systems, Inc.Coating for implantable devices and a method of forming the same
WO2002058753A3 *21 Dic 200116 Ene 2003Advanced Cardiovascular SystemCoating for implantable devices and a method of forming the same
Clasificaciones
Clasificación de EE.UU.623/1.15, 623/1.46
Clasificación internacionalA61L31/16, A61F2/06, A61L31/10, A61F2/90
Clasificación cooperativaA61F2002/91533, A61F2002/072, A61L31/16, A61L2420/08, A61F2/915, A61L2300/608, A61L31/10, A61F2/91, A61F2230/0013
Clasificación europeaA61F2/915, A61F2/91, A61L31/10, A61L31/16