US20010046604A1 - Touch screen with polarizer and method of making same - Google Patents

Touch screen with polarizer and method of making same Download PDF

Info

Publication number
US20010046604A1
US20010046604A1 US09/776,289 US77628901A US2001046604A1 US 20010046604 A1 US20010046604 A1 US 20010046604A1 US 77628901 A US77628901 A US 77628901A US 2001046604 A1 US2001046604 A1 US 2001046604A1
Authority
US
United States
Prior art keywords
layer
polarizer
topsheet
touch screen
hardcoat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/776,289
Other versions
US6395863B2 (en
Inventor
Bernard Geaghan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
3M Touch Systems Inc
Original Assignee
MicroTouch Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MicroTouch Systems Inc filed Critical MicroTouch Systems Inc
Priority to US09/776,289 priority Critical patent/US6395863B2/en
Assigned to MICRO TOUCH SYSTEMS, INC. reassignment MICRO TOUCH SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEAGHAN, BERNARD O.
Publication of US20010046604A1 publication Critical patent/US20010046604A1/en
Application granted granted Critical
Publication of US6395863B2 publication Critical patent/US6395863B2/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: 3M TOUCH SYSTEMS, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • This invention relates to a touch screen with a polarizer in the top sheet and to such a touch screen integrated with an LCD, with one polarizer of the LCD in the topsheet of the touch screen.
  • Touch screens are widely used in many applications, including computer interfaces, LCDs, and many of today's small portable devices such as personal data assistants and cellular telephones. Touch screen/LCD combinations are especially useful in such portable devices. Touch screens include, but are not limited to, resistive film type and capacitive touch screens.
  • Polarizer layers have been added to touch screens to improve the optical efficiency of touch screen/LCD combinations, however, the polarizer layer was placed above the polycarbonate support layer, i.e., closer to the touch surface of the touch screen. This implementation exposes the polarizer layer to substantial physical contact. Because the polarizer layer is less durable than the polyethylene terephthalate (PET) layer which is near the touch surface of typical touch screens, such a placement of the polarizer layer results in a less durable touch screen.
  • PET polyethylene terephthalate
  • the placement of the polarizer above the support layer requires that the support layer be optically isotropic for the touch screen/LCD combination to function properly.
  • This results in a thicker and more costly touch screen because the polycarbonate support layer cannot be made from a drawn polycarbonate material, which is cheaper and may be drawn to much smaller thicknesses than polycarbonate materials which are cast or formed by other methods. Also, drawn polycarbonate material is not sufficiently optically isotropic for such applications.
  • FIG. 1 One such structure is disclosed in the article “Vanguard of Liquid Crystal and PDP Development” by Y. Mitani, et al. (Japan, 1997) and is shown in FIG. 1.
  • This structure includes a polarizer 56 , comprising polyvinylalcohol (PVA) polarizing layer 50 sandwiched between two cellulose triacetate (CTA) layers 52 , 54 . This is coated on the top surface with a hardcoat 58 , which reduces scratches on the top surface.
  • the polarizer is bonded to polycarbonate support layer 60 coated with indium tin oxide (ITO) layer 62 .
  • ITO indium tin oxide
  • touch screens can benefit greatly from having a polarizer layer below the support layer of the topsheet to provide the optical benefits of a polarizer layer while being more durable, less costly, thinner and lighter than polarizer layers above the support layer.
  • the present invention features a topsheet for a touch screen including a support layer having a touch surface and a second surface opposite the touch surface, a polarizer layer having a first surface and a second surface with the first surface of the polarizer in contact with the second surface of the support layer, and a first conductive layer in contact with the second surface of the polarizer.
  • the support layer may be a polyester sheet or it may be a polycarbonate sheet.
  • the polarizer layer may include a K type polarizer.
  • a first hardcoat layer may be in contact with the second surface of the polarizer layer and the first conductive layer may be in contact with the first hardcoat layer.
  • the first hardcoat layer may have a roughened finish.
  • An adhesion promoting agent may be in contact with the second surface of the polarizer layer.
  • a second hardcoat layer may be in contact with the touch surface of the support layer.
  • the first conductive layer may include a plurality of discrete sections of conductive material.
  • the touch screen may be a resistive film type touch screen, and the first conductive layer may engage a second conductive layer of the touch screen.
  • This invention also features a method for manufacturing a topsheet including providing a support layer having a touch surface and a second surface opposite the touch surface, laminating a polarizer layer to the second surface of the support layer, the polarizer layer having first and second surfaces, and coating the second surface of the polarizer layer with at least a conductive coating.
  • the method may also include applying a first hardcoat layer to the second surface of the polarizer layer prior to the coating step.
  • An adhesion promoting agent may be applied to the second surface of the polarizer layer before applying the first hardcoat layer.
  • the hardcoat layer may include a rough surface.
  • a second hardcoat layer may be applied to the touch surface of the support layer.
  • the coating step may be a vacuum sputtering process.
  • the polarizer layer may be vacuum etched prior to the coating step.
  • the first hardcoat layer may be plasma etched before the vacuum sputtering process.
  • a thin film metal oxide layer may be applied to the second surface of the polarizer layer before the coating step.
  • a thin film metal oxide layer may be applied to the first hardcoat layer before the coating step.
  • FIG. 1 is a cross-sectional view of a prior art topsheet with polarizer
  • FIG. 2 is a cross-sectional view of a topsheet with a polarizer according to the present invention
  • FIG. 3 is a cross-sectional view of a touch screen with a topsheet with a polarizer, combined with an LCD, according to the present invention
  • FIG. 4 is a cross-sectional view of a topsheet with a polarizer and a thin metal oxide film, according to the present invention.
  • FIG. 5 is a flow diagram of a method of manufacturing a topsheet with a polarizer layer according to the present invention.
  • the present invention features a polarizer topsheet as shown in FIG. 2 which overcomes the technology problems found in prior art.
  • the polarizer topsheet in FIG. 2 has a PET or polycarbonate support layer 70 laminated above the polarizer 72 .
  • the thickness of the PET or polycarbonate support layer is between 0.001 and 0.010 inches. This construction with the support layer above the polarizer protects the polarizer material from damage caused by the crushing pressure on the topsheet resulting from finger or stylus contact. It also reduces the potential for damage due to flexing of the topsheet as it is pressed by a finger or stylus, by reducing the radius of flex of the polarizer material.
  • a hardcoat 74 may be coated on the top surface of the topsheet. This protects the topsheet from scratches.
  • Hardcoat is typically a cured acrylic resin, coated onto the surface of a substrate by applying a liquid acrylic material, then evaporating away the solvents in the liquid, then curing the acrylic with UV light.
  • the acrylic may also contain silica particles. These transparent particles give a roughened finish to the cured hardcoat, giving it anti-glare optical properties.
  • Hardcoat materials and coating services such as the Terrapin product from Tekra Advanced Technologies Group in Berlin, Wisconsin have proven suitable for the purposes described herein.
  • a hardcoat 76 may also be coated on the bottom surface of the topsheet, between the polarizer 72 and the conductive coating 78 .
  • This hardcoat protects the polarizer and reduces the dehydration and other effects of vacuum and heat on the polarizer during the conductive coating process.
  • an anti-glare hardcoat under the conductive coating has the effect of diffusing light that is reflected from the adjacent conductive coating layer, reducing glare and also reducing Newton rings which otherwise form due to the proximity of two reflective conductive coating layers separated by an air gap and spacer dots.
  • the hardcoat between the polarizer and the conductive coating also protects the polarizer from physical damage when pressure is put onto the topsheet by finger touch or stylus.
  • Such pressure causes flexing of the topsheet and also can cause damage where the touch screen spacer dots are pressed against the topsheet causing local, severe deformation of the topsheet.
  • the relatively high durometer of the acrylic and silica hardcoat relative to the polarizer material reduces local stresses on the polarizer material under touch or stylus pressure.
  • the conductive coating described herein is typically ITO (indium tin oxide) with a conductivity between 100 ohms per square and 2000 ohms per square. For higher resistance in the range of 1000 to 4000 ohms per square, tin antimony oxide is sometimes used.
  • ITO indium tin oxide
  • tin antimony oxide is sometimes used.
  • These coatings are typically applied onto sheets of organic materials such as PET, using a vacuum sputtering process.
  • the vacuum sputtering process may include plasma etching of the support layer, followed by sputtering of one or more coats of metal oxides.
  • the last layer to be deposited is a conductive layer, so the surface is conductive.
  • Thin film layers of silicon dioxide and/or titanium oxides may be used in combination with the conductive layer in suitable thicknesses to form an anti-reflective stack. Typical thickness of each layer for this purpose is 1 ⁇ 4 wave of visible light.
  • the lower layers of metal oxides may also be selected to serve the purpose of enhancing adhesion of the conductive metal oxide layer. Deposition of such layers of thin film metal oxides is done by Neovac of Santa Rosa, Calif. and others.
  • a resistive film type touch screen 10 with a topsheet 8 including a polarizer layer 6 combined with an LCD 12 is shown in FIG. 3.
  • Touch screen 10 includes substrate 4 , typically glass, coated with a transparent conductor 1 , typically Indium Tin Oxide (ITO).
  • ITO Indium Tin Oxide
  • the ITO is typically applied in a vacuum sputtering process which may also include additional layers of sputtered materials such as silicon dioxide (SiO 2 ) adjacent to the ITO 1 .
  • Topsheet 8 is separated from substrate 4 by spacer dots 2 .
  • Topsheet 8 includes a layer of plastic 3 , typically PET, polarizer layer 6 , and ITO layer 5 .
  • the LCD 12 comprises a layer of liquid crystal material 14 sandwiched between 2 substrates 16 , 18 , typically made of glass. Layers of ITO 20 , 22 are deposited on each substrate adjacent to the liquid crystal material. Electrical signals are selectively applied to specified areas of the liquid crystal material via signal lines patterned in the ITO. Polarizer 26 is laminated onto glass substrate 18 . With polarizer layer 6 in topsheet 8 , there is no need for a polarizer layer on glass substrate 16 , as would be typical of an LCD without topsheet 8 according to the present invention.
  • All materials between the two polarizers of an LCD must be optically isotropic.
  • An LCD functions by orienting light into certain polarities, and any material which diffuses, refracts, or changes polarity of light will reduce the performance of the LCD.
  • Glass and some polycarbonates are optically isotropic.
  • PET is not.
  • the construction of a polarizer topsheet must use all isotropic materials below the polarizer layer. Materials meeting this requirement include some polycarbonates and cellulose triacetate (CTA).
  • polarizing materials including reflective polarizers, dichroic polarizers, and hybrid combinations of reflective and dichroic polarizers, as described in U.S. Pat. No. 6,096,375.
  • Dichroic polarizer types include H type and K type. Both H and K types were invented by Land and Rogers, and are described in U.S. Pat. Nos. 2,173,304; 2,255,940; and 2,306,108. H polarizers are used in many commercial applications, including virtually all current LCD displays.
  • H polarizers are made by linear orientation (stretching) of a polyvinylalcohol (PVA) film, the surface of which is then imbibed with an iodine solution which forms the required chromophores. A boron complex is then used to stabilize the coating. Sheets of cellulose triacetate (CTA) are then laminated on both sides of the film to protect the relatively vulnerable polarizing layer. K polarizers also start with a PVA sheet, but the PVA molecular structure of linked H—C—H and H—C—OH molecules are selectively dehydrated to form a polyvinylene of linked HC molecules. Sufficiently long, oriented chains of the HC structure absorb light in the visible spectrum.
  • PVA polyvinylalcohol
  • CTA cellulose triacetate
  • K polarizers also start with a PVA sheet, but the PVA molecular structure of linked H—C—H and H—C—OH molecules are selectively dehydrated to form a polyvinylene of linked
  • K polarizers are more stable than H polarizers, so K polarizers are more robust for general use issues including temperature range.
  • K polarizers have not gained wide commercial use due to problems including cost, polarizing efficiency, and lack of absorbance in the red region of crossed K polarizers.
  • These disadvantages are balanced however, by the K polarizer's particular advantages in areas that are uniquely important for touch screen applications, including resistance to degradation by flexing, and resistance to degradation by crushing pressure of a stylus tip, and compatibility with chemicals such as acrylics used in hardcoats and with the chemicals used in PSA's (pressure sensitive adhesives).
  • Polarizer touch screens are used to great advantage on LCD displays.
  • the upper polarizer required by an LCD may be laminated with the topsheet of the touch screen 8 , rather than being mounted on the top glass substrate 16 of the LCD.
  • the touch screen may then be placed over the LCD display, or alternatively the touch screen substrate 4 may be eliminated, and transparent conductor 1 may be coated directly onto the LCD substrate 16 , so the LCD substrate 16 serves as the substrate of the touch screen.
  • This fully integrated touch screen/LCD configuration is possible only if the top LCD polarizer is moved to the topsheet 8 .
  • the optical efficiency may be improved, e.g., ambient light reflections can be significantly reduced.
  • the structure allows omission of the touch screen substrate, with the topsheet mounted directly on the LCD. This reduces thickness and weight. Cost may be minimized because of reduced components, and because integration may be done as part of the LCD manufacturing process.
  • topsheet structure 80 is shown in FIG. 4.
  • PET is used for the support layer 82 .
  • PET is lower in cost than polycarbonate.
  • PET is proven structurally and optically appropriate for the topsheet application, and it is available in thinner sheets than polycarbonate.
  • Optically isotropic polycarbonate cannot be made by drawing the material into sheets. This limits the minimum thickness of polycarbonate sheets to the range of 0.010 inches, which is greater than the optimal topsheet thickness of 0.005 to 0.008 inches.
  • Polycarbonate is also more expensive than PET.
  • any polarizer 84 may be laminated to the PET layer, the preferred polarizer material is a K type polarizer.
  • Optically isotropic hardcoat material is used for hardcoat 86 .
  • Cured acrylic hardcoat materials such as the brand name Terrapin from Tekra Advanced Technologies Group in Berlin, Wis. have sufficiently low birefringence to qualify for this purpose.
  • An adhesion promoter 83 may be used to improve the bond between the polyvinylene based K polarizer and the acrylic hardcoat 86 . It was found that silane primer vinyltrimethoxysilane, [Si(OCH 3 ) 3 ] applied to the polarizer surface immediately prior to hardcoating, provided sufficient adhesion to withstand the demanding requirements of a touch screen. The primer that was found best is made by Witco of Greenwich, Conn., USA under the brand name Silquest A- 171 . K polarizers are sufficiently chemically stable to tolerate application of the silane adhesion promoter without degrading optical performance of the polarizer.
  • Second hardcoat 88 may be applied to the touch surface of support layer 82 .
  • Topsheet structure 80 comprising support layer 82 , polarizer 84 , adhesion promoter 83 and first hardcoat 86 is vacuum sputter coated with conductive coating 90 .
  • the design of topsheet structure 80 allows it to withstand the temperatures and high vacuum environment of the sputter coating process, as well as vacuum plasma etching process.
  • Thin film metal oxide layer 92 may be applied to conductive coating 90 .
  • Thin film metal oxide layer 92 may be a multi-layer structure and may be useful as an anti-reflective stack.
  • Method 100 includes the steps of providing a support layer having a touch surface and a second surface opposite the touch surface, step 102 , laminating a polarizer, having a first surface and a second surface, to the second surface of the support layer, step 106 , and coating the second surface of the polarizer with a conductive layer, step 116 .
  • Applying a first hardcoat layer to the polarizer, step 110 may be done prior to coating step 116 .
  • Applying an adhesion promoting agent to the polarizer, step 108 may be done prior to applying step 110 .
  • step 112 plasma etching of the hardcoat layer, step 112 , may be performed.
  • Applying a thin film metal oxide layer, step 114 may be performed before coating step 116 .
  • Step 114 may be performed more than once to that a multi-layer anti-reflective stack is formed.
  • Applying a second hardcoat layer to the touch surface of the support layer, step 104 may also be performed.
  • the improved topsheet of this invention may be used to advantage in several different configurations. These include a resistive polarizer touch screen overlaid on an LCD; a resistive polarizer touch screen, laminated to an LCD; and a fully integrated LCD and resistive polarizer touch screen. These improved configurations can reduce optical reflectance of the touch screen by 15% to 30% while reducing thickness of the touch screen by as much as 85%.
  • polarizer touch screens can be used to greatest cost advantage on LCD's, they are also useful with any type of display including CRT's, OLED's, and plasma displays in applications where minimizing reflections is important. For example, when a display and touch screen are used outdoors, the display must be readable in a wide range of ambient light conditions, including direct sunlight and darkness. Examples of such applications include outdoor ATM machines, ticketing machines, and gasoline pumps. Where sunlight readability is required, a polarizer touch screen's reduced reflections become a major benefit worth the added cost of a polarizer.

Abstract

A topsheet for a touch screen includes a support layer having a touch surface and a second surface opposite the touch surface; a polarizer layer having a first surface and a second surface with the first surface of the polarizer in contact with the second surface of said support layer; and a first conductive layer in contact with the second surface of said polarizer.

Description

    RELATED APPLICATIONS
  • This application claims benefit of U.S. Provisional application Ser. No. 60/179,873 filed Feb. 2, 2000 entitled “POLARIZER TOUCH SCREEN FOR A LIQUID CRYSTAL DISPLAY DEVICE.”[0001]
  • FIELD OF INVENTION
  • This invention relates to a touch screen with a polarizer in the top sheet and to such a touch screen integrated with an LCD, with one polarizer of the LCD in the topsheet of the touch screen. [0002]
  • BACKGROUND OF INVENTION
  • Touch screens are widely used in many applications, including computer interfaces, LCDs, and many of today's small portable devices such as personal data assistants and cellular telephones. Touch screen/LCD combinations are especially useful in such portable devices. Touch screens include, but are not limited to, resistive film type and capacitive touch screens. [0003]
  • The optical efficiency of typical resistive film type touch screens is 75 to 85%. LCDs are even less efficient, due to the polarizer layers which are inherent to polarizers, with typical optical efficiencies of only 50% being common. [0004]
  • Polarizer layers have been added to touch screens to improve the optical efficiency of touch screen/LCD combinations, however, the polarizer layer was placed above the polycarbonate support layer, i.e., closer to the touch surface of the touch screen. This implementation exposes the polarizer layer to substantial physical contact. Because the polarizer layer is less durable than the polyethylene terephthalate (PET) layer which is near the touch surface of typical touch screens, such a placement of the polarizer layer results in a less durable touch screen. [0005]
  • Additionally, the placement of the polarizer above the support layer requires that the support layer be optically isotropic for the touch screen/LCD combination to function properly. This results in a thicker and more costly touch screen because the polycarbonate support layer cannot be made from a drawn polycarbonate material, which is cheaper and may be drawn to much smaller thicknesses than polycarbonate materials which are cast or formed by other methods. Also, drawn polycarbonate material is not sufficiently optically isotropic for such applications. [0006]
  • One such structure is disclosed in the article “Vanguard of Liquid Crystal and PDP Development” by Y. Mitani, et al. (Japan, 1997) and is shown in FIG. 1. This structure includes a [0007] polarizer 56, comprising polyvinylalcohol (PVA) polarizing layer 50 sandwiched between two cellulose triacetate (CTA) layers 52, 54. This is coated on the top surface with a hardcoat 58, which reduces scratches on the top surface. The polarizer is bonded to polycarbonate support layer 60 coated with indium tin oxide (ITO) layer 62. The polycarbonate provides physical support required of a topsheet, and is optically isotropic.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of this invention to provide an improved touch screen with a polarizer which is more durable. [0008]
  • It is a further object of this invention to provide such an improved touch screen which is lower in cost. [0009]
  • It is a further object of this invention to provide such an improved touch screen which is lighter in weight. [0010]
  • It is a further object of this invention to provide such an improved touch screen which is thinner. [0011]
  • It is a further object of this invention to provide a method of manufacturing such a polarizing topsheet for a touch screen. [0012]
  • This invention follows from the realization that touch screens can benefit greatly from having a polarizer layer below the support layer of the topsheet to provide the optical benefits of a polarizer layer while being more durable, less costly, thinner and lighter than polarizer layers above the support layer. [0013]
  • The present invention features a topsheet for a touch screen including a support layer having a touch surface and a second surface opposite the touch surface, a polarizer layer having a first surface and a second surface with the first surface of the polarizer in contact with the second surface of the support layer, and a first conductive layer in contact with the second surface of the polarizer. [0014]
  • In a preferred embodiment, the support layer may be a polyester sheet or it may be a polycarbonate sheet. The polarizer layer may include a K type polarizer. A first hardcoat layer may be in contact with the second surface of the polarizer layer and the first conductive layer may be in contact with the first hardcoat layer. The first hardcoat layer may have a roughened finish. [0015]
  • An adhesion promoting agent may be in contact with the second surface of the polarizer layer. A second hardcoat layer may be in contact with the touch surface of the support layer. The first conductive layer may include a plurality of discrete sections of conductive material. [0016]
  • The touch screen may be a resistive film type touch screen, and the first conductive layer may engage a second conductive layer of the touch screen. [0017]
  • This invention also features a method for manufacturing a topsheet including providing a support layer having a touch surface and a second surface opposite the touch surface, laminating a polarizer layer to the second surface of the support layer, the polarizer layer having first and second surfaces, and coating the second surface of the polarizer layer with at least a conductive coating. [0018]
  • In a preferred embodiment, the method may also include applying a first hardcoat layer to the second surface of the polarizer layer prior to the coating step. An adhesion promoting agent may be applied to the second surface of the polarizer layer before applying the first hardcoat layer. The hardcoat layer may include a rough surface. A second hardcoat layer may be applied to the touch surface of the support layer. [0019]
  • The coating step may be a vacuum sputtering process. The polarizer layer may be vacuum etched prior to the coating step. The first hardcoat layer may be plasma etched before the vacuum sputtering process. A thin film metal oxide layer may be applied to the second surface of the polarizer layer before the coating step. A thin film metal oxide layer may be applied to the first hardcoat layer before the coating step. [0020]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which: [0021]
  • FIG. 1 is a cross-sectional view of a prior art topsheet with polarizer; [0022]
  • FIG. 2 is a cross-sectional view of a topsheet with a polarizer according to the present invention; [0023]
  • FIG. 3 is a cross-sectional view of a touch screen with a topsheet with a polarizer, combined with an LCD, according to the present invention; [0024]
  • FIG. 4 is a cross-sectional view of a topsheet with a polarizer and a thin metal oxide film, according to the present invention; and [0025]
  • FIG. 5 is a flow diagram of a method of manufacturing a topsheet with a polarizer layer according to the present invention.[0026]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention features a polarizer topsheet as shown in FIG. 2 which overcomes the technology problems found in prior art. The polarizer topsheet in FIG. 2 has a PET or [0027] polycarbonate support layer 70 laminated above the polarizer 72. The thickness of the PET or polycarbonate support layer is between 0.001 and 0.010 inches. This construction with the support layer above the polarizer protects the polarizer material from damage caused by the crushing pressure on the topsheet resulting from finger or stylus contact. It also reduces the potential for damage due to flexing of the topsheet as it is pressed by a finger or stylus, by reducing the radius of flex of the polarizer material.
  • A [0028] hardcoat 74 may be coated on the top surface of the topsheet. This protects the topsheet from scratches. Hardcoat is typically a cured acrylic resin, coated onto the surface of a substrate by applying a liquid acrylic material, then evaporating away the solvents in the liquid, then curing the acrylic with UV light. The acrylic may also contain silica particles. These transparent particles give a roughened finish to the cured hardcoat, giving it anti-glare optical properties. Hardcoat materials and coating services such as the Terrapin product from Tekra Advanced Technologies Group in Berlin, Wisconsin have proven suitable for the purposes described herein.
  • A [0029] hardcoat 76 may also be coated on the bottom surface of the topsheet, between the polarizer 72 and the conductive coating 78. This hardcoat protects the polarizer and reduces the dehydration and other effects of vacuum and heat on the polarizer during the conductive coating process. In addition, an anti-glare hardcoat under the conductive coating has the effect of diffusing light that is reflected from the adjacent conductive coating layer, reducing glare and also reducing Newton rings which otherwise form due to the proximity of two reflective conductive coating layers separated by an air gap and spacer dots. The hardcoat between the polarizer and the conductive coating also protects the polarizer from physical damage when pressure is put onto the topsheet by finger touch or stylus. Such pressure causes flexing of the topsheet and also can cause damage where the touch screen spacer dots are pressed against the topsheet causing local, severe deformation of the topsheet. The relatively high durometer of the acrylic and silica hardcoat relative to the polarizer material reduces local stresses on the polarizer material under touch or stylus pressure.
  • The conductive coating described herein is typically ITO (indium tin oxide) with a conductivity between 100 ohms per square and 2000 ohms per square. For higher resistance in the range of 1000 to 4000 ohms per square, tin antimony oxide is sometimes used. These coatings are typically applied onto sheets of organic materials such as PET, using a vacuum sputtering process. The vacuum sputtering process may include plasma etching of the support layer, followed by sputtering of one or more coats of metal oxides. For touch screen use, the last layer to be deposited is a conductive layer, so the surface is conductive. Thin film layers of silicon dioxide and/or titanium oxides may be used in combination with the conductive layer in suitable thicknesses to form an anti-reflective stack. Typical thickness of each layer for this purpose is ¼ wave of visible light. The lower layers of metal oxides may also be selected to serve the purpose of enhancing adhesion of the conductive metal oxide layer. Deposition of such layers of thin film metal oxides is done by Neovac of Santa Rosa, Calif. and others. [0030]
  • A resistive film [0031] type touch screen 10 with a topsheet 8 including a polarizer layer 6 combined with an LCD 12 is shown in FIG. 3. Touch screen 10 includes substrate 4, typically glass, coated with a transparent conductor 1, typically Indium Tin Oxide (ITO). The ITO is typically applied in a vacuum sputtering process which may also include additional layers of sputtered materials such as silicon dioxide (SiO2) adjacent to the ITO 1. Topsheet 8 is separated from substrate 4 by spacer dots 2. Topsheet 8 includes a layer of plastic 3, typically PET, polarizer layer 6, and ITO layer 5.
  • The [0032] LCD 12 comprises a layer of liquid crystal material 14 sandwiched between 2 substrates 16, 18, typically made of glass. Layers of ITO 20, 22 are deposited on each substrate adjacent to the liquid crystal material. Electrical signals are selectively applied to specified areas of the liquid crystal material via signal lines patterned in the ITO. Polarizer 26 is laminated onto glass substrate 18. With polarizer layer 6 in topsheet 8, there is no need for a polarizer layer on glass substrate 16, as would be typical of an LCD without topsheet 8 according to the present invention.
  • All materials between the two polarizers of an LCD must be optically isotropic. An LCD functions by orienting light into certain polarities, and any material which diffuses, refracts, or changes polarity of light will reduce the performance of the LCD. Glass and some polycarbonates are optically isotropic. PET is not. Thus, the construction of a polarizer topsheet must use all isotropic materials below the polarizer layer. Materials meeting this requirement include some polycarbonates and cellulose triacetate (CTA). By placing polarizer layer [0033] 6 below support layer 3, it is possible to use non-optically isotropic PET for layer 3.
  • There are several types of polarizing materials, including reflective polarizers, dichroic polarizers, and hybrid combinations of reflective and dichroic polarizers, as described in U.S. Pat. No. 6,096,375. Dichroic polarizer types include H type and K type. Both H and K types were invented by Land and Rogers, and are described in U.S. Pat. Nos. 2,173,304; 2,255,940; and 2,306,108. H polarizers are used in many commercial applications, including virtually all current LCD displays. H polarizers are made by linear orientation (stretching) of a polyvinylalcohol (PVA) film, the surface of which is then imbibed with an iodine solution which forms the required chromophores. A boron complex is then used to stabilize the coating. Sheets of cellulose triacetate (CTA) are then laminated on both sides of the film to protect the relatively vulnerable polarizing layer. K polarizers also start with a PVA sheet, but the PVA molecular structure of linked H—C—H and H—C—OH molecules are selectively dehydrated to form a polyvinylene of linked HC molecules. Sufficiently long, oriented chains of the HC structure absorb light in the visible spectrum. [0034]
  • The molecular structure of K polarizers are more stable than H polarizers, so K polarizers are more robust for general use issues including temperature range. In spite of these advantages, K polarizers have not gained wide commercial use due to problems including cost, polarizing efficiency, and lack of absorbance in the red region of crossed K polarizers. These disadvantages are balanced however, by the K polarizer's particular advantages in areas that are uniquely important for touch screen applications, including resistance to degradation by flexing, and resistance to degradation by crushing pressure of a stylus tip, and compatibility with chemicals such as acrylics used in hardcoats and with the chemicals used in PSA's (pressure sensitive adhesives). [0035]
  • Polarizer touch screens are used to great advantage on LCD displays. The upper polarizer required by an LCD may be laminated with the topsheet of the touch screen [0036] 8, rather than being mounted on the top glass substrate 16 of the LCD. The touch screen may then be placed over the LCD display, or alternatively the touch screen substrate 4 may be eliminated, and transparent conductor 1 may be coated directly onto the LCD substrate 16, so the LCD substrate 16 serves as the substrate of the touch screen. This fully integrated touch screen/LCD configuration is possible only if the top LCD polarizer is moved to the topsheet 8.
  • There are several advantages of such a polarizer touch screen and LCD combination. The optical efficiency may be improved, e.g., ambient light reflections can be significantly reduced. The structure allows omission of the touch screen substrate, with the topsheet mounted directly on the LCD. This reduces thickness and weight. Cost may be minimized because of reduced components, and because integration may be done as part of the LCD manufacturing process. [0037]
  • A preferred embodiment of the [0038] topsheet structure 80 is shown in FIG. 4. PET is used for the support layer 82. PET is lower in cost than polycarbonate. PET is proven structurally and optically appropriate for the topsheet application, and it is available in thinner sheets than polycarbonate. Optically isotropic polycarbonate cannot be made by drawing the material into sheets. This limits the minimum thickness of polycarbonate sheets to the range of 0.010 inches, which is greater than the optimal topsheet thickness of 0.005 to 0.008 inches. Polycarbonate is also more expensive than PET.
  • Though any [0039] polarizer 84 may be laminated to the PET layer, the preferred polarizer material is a K type polarizer. 3M Optical Systems Division in Norwood, Mass., formerly a division of Polaroid, sells a commercially available K polarizer known as “KE”.
  • Optically isotropic hardcoat material is used for [0040] hardcoat 86. Cured acrylic hardcoat materials such as the brand name Terrapin from Tekra Advanced Technologies Group in Berlin, Wis. have sufficiently low birefringence to qualify for this purpose.
  • An [0041] adhesion promoter 83 may be used to improve the bond between the polyvinylene based K polarizer and the acrylic hardcoat 86. It was found that silane primer vinyltrimethoxysilane, [Si(OCH3)3] applied to the polarizer surface immediately prior to hardcoating, provided sufficient adhesion to withstand the demanding requirements of a touch screen. The primer that was found best is made by Witco of Greenwich, Conn., USA under the brand name Silquest A-171. K polarizers are sufficiently chemically stable to tolerate application of the silane adhesion promoter without degrading optical performance of the polarizer.
  • Second hardcoat [0042] 88 may be applied to the touch surface of support layer 82. Topsheet structure 80 comprising support layer 82, polarizer 84, adhesion promoter 83 and first hardcoat 86 is vacuum sputter coated with conductive coating 90. The design of topsheet structure 80 allows it to withstand the temperatures and high vacuum environment of the sputter coating process, as well as vacuum plasma etching process. Thin film metal oxide layer 92 may be applied to conductive coating 90. Thin film metal oxide layer 92 may be a multi-layer structure and may be useful as an anti-reflective stack.
  • A method [0043] 100 for manufacturing a topsheet with a polarizer layer is shown in FIG. 5. Method 100 includes the steps of providing a support layer having a touch surface and a second surface opposite the touch surface, step 102, laminating a polarizer, having a first surface and a second surface, to the second surface of the support layer, step 106, and coating the second surface of the polarizer with a conductive layer, step 116. Applying a first hardcoat layer to the polarizer, step 110, may be done prior to coating step 116. Applying an adhesion promoting agent to the polarizer, step 108, may be done prior to applying step 110. After applying step 110, plasma etching of the hardcoat layer, step 112, may be performed. Applying a thin film metal oxide layer, step 114 may be performed before coating step 116. Step 114 may be performed more than once to that a multi-layer anti-reflective stack is formed. Applying a second hardcoat layer to the touch surface of the support layer, step 104, may also be performed.
  • The improved topsheet of this invention may be used to advantage in several different configurations. These include a resistive polarizer touch screen overlaid on an LCD; a resistive polarizer touch screen, laminated to an LCD; and a fully integrated LCD and resistive polarizer touch screen. These improved configurations can reduce optical reflectance of the touch screen by 15% to 30% while reducing thickness of the touch screen by as much as 85%. [0044]
  • While polarizer touch screens can be used to greatest cost advantage on LCD's, they are also useful with any type of display including CRT's, OLED's, and plasma displays in applications where minimizing reflections is important. For example, when a display and touch screen are used outdoors, the display must be readable in a wide range of ambient light conditions, including direct sunlight and darkness. Examples of such applications include outdoor ATM machines, ticketing machines, and gasoline pumps. Where sunlight readability is required, a polarizer touch screen's reduced reflections become a major benefit worth the added cost of a polarizer. [0045]
  • Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments. [0046]
  • Other embodiments will occur to those skilled in the art and are within the following claims:[0047]

Claims (21)

What is claimed is:
1. A topsheet for a touch screen comprising
a support layer having a touch surface and a second surface opposite the touch surface;
a polarizer layer having a first surface and a second surface with the first surface in contact with the second surface of said support layer; and
a first conductive layer in contact with the second surface of said polarizer.
2. The topsheet structure of
claim 1
wherein the support layer is a polyester sheet.
3. The topsheet structure of
claim 1
wherein the support layer is a polycarbonate sheet.
4. The topsheet structure of
claim 1
wherein the polarizer layer includes a K type polarizer.
5. The topsheet structure of
claim 1
including a first hardcoat layer in contact with the second surface of said polarizer layer and said first conductive layer is in contact with said first hardcoat layer.
6. The topsheet structure of
claim 5
wherein said first hardcoat layer has a roughened finish.
7. The topsheet structure of
claim 5
including an adhesion promoting agent in contact with the second surface of said polarizer layer.
8. The topsheet structure of
claim 1
including a second hardcoat layer in contact with the touch surface of said support layer.
9. The topsheet structure of
claim 1
wherein said first conductive layer includes a plurality of discrete sections of a conductive material.
10. The topsheet structure of
claim 1
wherein the touch screen is a resistive film type touch screen and said first conductive layer engages a second conductive layer of the touch screen.
11. A method of manufacturing a topsheet for a touch screen comprising
providing a support layer having a touch surface and a second surface opposite the touch surface;
laminating a polarizer layer to the touch surface of said support layer, said polarizer layer having a top surface and a bottom surface; and
coating the bottom surface of said polarizer layer with at least a conductive layer.
12. The method of manufacturing a topsheet of
claim 11
further comprising applying a first hardcoat layer to the bottom surface of said polarizer layer prior to said coating step.
13. The method of manufacturing a topsheet of
claim 12
further comprising applying an adhesion promoting agent to the bottom surface of said polarizer prior to the step of applying said first hardcoat layer.
14. The method of manufacturing a topsheet of
claim 12
wherein said hardcoat layer includes a rough surface.
15. The method of manufacturing a topsheet of
claim 11
further comprising coating the touch surface of said support layer with a second hardcoat layer.
16. The method of manufacturing a topsheet of
claim 12
wherein said coating step is a vacuum sputtering process.
17. The method of manufacturing a topsheet of
claim 16
further comprising plasma etching said first hardcoat layer prior to said vacuum sputtering process.
18. The method of manufacturing a topsheet of
claim 11
further comprising applying at least one thin film metal oxide layer to the bottom surface of said polarizer layer prior to said coating step.
19. The method of manufacturing a topsheet of
claim 12
further comprising applying at least one thin film metal oxide layer to said first hardcoat layer prior to the coating step.
20. The method of manufacturing a topsheet of
claim 11
wherein said coating step is a vacuum sputtering process.
21. The method of manufacturing a topsheet of
claim 20
further comprising plasma etching said polarizer layer prior to said coating step.
US09/776,289 2000-02-02 2001-02-02 Touch screen with polarizer and method of making same Expired - Lifetime US6395863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/776,289 US6395863B2 (en) 2000-02-02 2001-02-02 Touch screen with polarizer and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17987300P 2000-02-02 2000-02-02
US09/776,289 US6395863B2 (en) 2000-02-02 2001-02-02 Touch screen with polarizer and method of making same

Publications (2)

Publication Number Publication Date
US20010046604A1 true US20010046604A1 (en) 2001-11-29
US6395863B2 US6395863B2 (en) 2002-05-28

Family

ID=22658343

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/776,289 Expired - Lifetime US6395863B2 (en) 2000-02-02 2001-02-02 Touch screen with polarizer and method of making same

Country Status (5)

Country Link
US (1) US6395863B2 (en)
JP (1) JP2003521790A (en)
KR (1) KR20030043783A (en)
AU (1) AU2001234791A1 (en)
WO (1) WO2001057841A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030150107A1 (en) * 2002-02-08 2003-08-14 Eastman Kodak Company Method for manufacturing an integrated display device including an OLED display and a touch screen
US20040090426A1 (en) * 2002-11-07 2004-05-13 Eastman Kodak Company Transparent flexible sheet for resistive touch screen
US20040212599A1 (en) * 2003-04-24 2004-10-28 Eastman Kodak Company Flexible resistive touch screen
US20060102463A1 (en) * 2004-11-12 2006-05-18 Eastman Kodak Company Flexible sheet for resistive touch screen
US20060105152A1 (en) * 2004-11-12 2006-05-18 Eastman Kodak Company Flexible sheet for resistive touch screen
US7511702B2 (en) * 2006-03-30 2009-03-31 Apple Inc. Force and location sensitive display
US20100309150A1 (en) * 2009-06-08 2010-12-09 Jaedo Lee Organic light emitting diode display
US20110169767A1 (en) * 2010-01-13 2011-07-14 Paul Fredrick Luther Weindorf Polarizer capacitive touch screen
US20120306812A1 (en) * 2006-04-14 2012-12-06 Ritdisplay Corporation Top-emitting oled display having transparent touch panel
TWI396124B (en) * 2006-03-30 2013-05-11 Apple Inc Force and location sensitive display
US20140254013A1 (en) * 2013-03-05 2014-09-11 Samsung Electronics Co., Ltd. Optical member with double rainbow film
US10353230B2 (en) * 2014-02-21 2019-07-16 Lg Chem, Ltd. Electronic blackboard

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US7138984B1 (en) * 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
US6680792B2 (en) * 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US6627918B2 (en) * 2000-09-22 2003-09-30 Donnelly Corporation Spacer elements for interactive information devices and method for making same
US7106307B2 (en) * 2001-05-24 2006-09-12 Eastman Kodak Company Touch screen for use with an OLED display
US7110178B2 (en) * 2001-07-02 2006-09-19 3M Innovative Properties Company Polarizers coated with optically functional layers
US6897916B2 (en) * 2001-09-11 2005-05-24 Nitto Denko Corporation Polarizing plate, optical element, and liquid crystal display
US7369122B2 (en) * 2001-12-14 2008-05-06 3M Innovative Properties Company Touch panel spacer dots and methods of making
KR20030055856A (en) * 2001-12-27 2003-07-04 엘지.필립스 엘시디 주식회사 Fabricated Method Of Liquid Crystal Display Apparatus Integrated Film Type Touch Panel
AU2003216481A1 (en) * 2002-03-01 2003-09-16 Planar Systems, Inc. Reflection resistant touch screens
US20040017362A1 (en) * 2002-07-23 2004-01-29 Mulligan Roger C. Thin face capacitive touch screen
US6996456B2 (en) * 2002-10-21 2006-02-07 Fsi International, Inc. Robot with tactile sensor device
US20040090429A1 (en) * 2002-11-12 2004-05-13 Geaghan Bernard O. Touch sensor and method of making
KR100519370B1 (en) * 2002-12-24 2005-10-07 엘지.필립스 엘시디 주식회사 Method for Forming Touch Panel with Polarizer Layer
US7041365B2 (en) * 2003-05-12 2006-05-09 3M Innovative Properties Company Static dissipative optical construction
US7165323B2 (en) * 2003-07-03 2007-01-23 Donnelly Corporation Method of manufacturing a touch screen
TW594271B (en) * 2003-09-23 2004-06-21 Optimax Tech Corp Polarization plate capable of increasing LCD contrast of large viewing angle
US20050196552A1 (en) * 2003-11-18 2005-09-08 Lehmann Maria J. Anti-reflective optical film for display devices
US20050106333A1 (en) * 2003-11-18 2005-05-19 Lehmann Maria J. Anti-reflective optical film for display devices
US6885157B1 (en) 2003-11-25 2005-04-26 Eastman Kodak Company Integrated touch screen and OLED flat-panel display
US7507438B2 (en) * 2004-09-03 2009-03-24 Donnelly Corporation Display substrate with diffuser coating
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7808703B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US8354143B2 (en) * 2005-05-26 2013-01-15 Tpk Touch Solutions Inc. Capacitive touch screen and method of making same
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7854513B2 (en) * 2006-03-03 2010-12-21 Quach Cang V One-way transparent display systems
US8264466B2 (en) * 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US20070268201A1 (en) * 2006-05-22 2007-11-22 Sampsell Jeffrey B Back-to-back displays
KR102125605B1 (en) 2006-06-09 2020-06-22 애플 인크. Touch screen liquid crystal display
US20080049431A1 (en) * 2006-08-24 2008-02-28 Heather Debra Boek Light emitting device including anti-reflection layer(s)
US9710095B2 (en) 2007-01-05 2017-07-18 Apple Inc. Touch screen stack-ups
US20080174735A1 (en) * 2007-01-23 2008-07-24 Emiscape, Inc. Projection Display with Holographic Screen
WO2009018094A1 (en) * 2007-07-27 2009-02-05 Donnelly Corporation Capacitive sensor and method for manufacturing same
US20090096762A1 (en) * 2007-10-16 2009-04-16 Epson Imaging Devices Corporation Input device, display device with input function, and electronic apparatus
US20090130362A1 (en) * 2007-11-21 2009-05-21 Egan Visual Inc. Multiuse dry erase writing and projection surface
US8284332B2 (en) * 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
CN102017071B (en) 2008-02-28 2013-12-18 3M创新有限公司 Methods of patterning conductor on substrate
CN104090673B (en) 2008-02-28 2018-02-23 3M创新有限公司 Touch screen sensor with low visibility conductor
JP2010032938A (en) * 2008-07-31 2010-02-12 Hitachi Displays Ltd Liquid crystal display
US8610691B2 (en) 2008-08-19 2013-12-17 Tpk Touch Solutions Inc. Resistive touch screen and method for manufacturing same
US9213450B2 (en) * 2008-11-17 2015-12-15 Tpk Touch Solutions Inc. Touch sensor
KR20110037337A (en) * 2009-10-06 2011-04-13 엘지디스플레이 주식회사 Organic light emitting display device and manufacturing method thereof
CN102455832A (en) * 2010-11-02 2012-05-16 高丰有限公司 Capacitive touch structure
US20120127117A1 (en) * 2010-11-24 2012-05-24 Fu-Tien Ku Capacitive touchscreen structure
US8804056B2 (en) 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
US8497852B2 (en) 2011-09-09 2013-07-30 Dreamworks Animation Llc Minimal parallax coincident digital drawing and display surface
WO2013063183A1 (en) * 2011-10-25 2013-05-02 Unipixel Displays, Inc. Polarizer capacitive touch screen
TW201337705A (en) * 2011-10-25 2013-09-16 Unipixel Displays Inc Polarizer resistive touch screen
US20130148197A1 (en) * 2011-12-12 2013-06-13 Nokia Corporation Apparatus and a Method of Manufacturing an Apparatus
US8937604B2 (en) 2012-02-28 2015-01-20 Eastman Kodak Company Touch-responsive capacitor with polarizing dielectric structure
US8773395B2 (en) 2012-04-24 2014-07-08 Eastman Kodak Company Touch-responsive capacitor with polarizing dielectric method
TWI494806B (en) 2013-01-22 2015-08-01 Ind Tech Res Inst Touch sensing film structure
US9547395B2 (en) 2013-10-16 2017-01-17 Microsoft Technology Licensing, Llc Touch and hover sensing with conductive polarizer
US10168811B2 (en) 2017-05-01 2019-01-01 Microsoft Technology Licensing, Llc Reflective display

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810826B2 (en) 1986-09-10 1996-01-31 富士通株式会社 Receiving machine
JPH0319228A (en) 1989-06-15 1991-01-28 Nec Corp Manufacture of semiconductor integrated circuit device
JP3124768B2 (en) 1989-10-04 2001-01-15 シャープ株式会社 Touch panel integrated liquid crystal display
JP3287581B2 (en) 1991-01-18 2002-06-04 セイコーエプソン株式会社 Display device with input function and electronic device using the same
JP2788133B2 (en) 1991-04-26 1998-08-20 シャープ株式会社 Display-integrated coordinate input device
JP3160323B2 (en) 1991-08-20 2001-04-25 京セラミタ株式会社 Post-processing device
JPH05127822A (en) 1991-10-30 1993-05-25 Daicel Chem Ind Ltd Touch panel
US5396351A (en) 1991-12-20 1995-03-07 Apple Computer, Inc. Polarizing fiber-optic faceplate of stacked adhered glass elements in a liquid crystal display
JPH0883515A (en) 1994-09-13 1996-03-26 Fujimori Kogyo Kk Transparent conductive sheet
JP3287442B2 (en) 1994-10-26 2002-06-04 シャープ株式会社 Liquid crystal display with input function
JP3542838B2 (en) 1994-12-01 2004-07-14 藤森工業株式会社 Transparent conductive sheet for transparent touch panel
JP3569557B2 (en) 1994-12-09 2004-09-22 藤森工業株式会社 Transparent conductive sheet for transparent touch panel
JPH08166849A (en) 1994-12-15 1996-06-25 Kanegafuchi Chem Ind Co Ltd Plastic laminated sheet for touch panel and plastic substrate touch panel
JPH096533A (en) 1995-06-21 1997-01-10 Teijin Ltd Transparent tablet
JPH0916329A (en) 1995-06-27 1997-01-17 Teijin Ltd Transparent touch panel
JP3696661B2 (en) 1995-07-10 2005-09-21 藤森工業株式会社 Transparent conductive sheet for inner touch panel
JP3486263B2 (en) 1995-07-17 2004-01-13 藤森工業株式会社 Optical laminated sheet
JP3406126B2 (en) 1995-07-27 2003-05-12 藤森工業株式会社 Optical laminated sheet
JPH0957894A (en) 1995-08-29 1997-03-04 Fujimori Kogyo Kk Optical sheet with transparent electrode
JPH09156051A (en) 1995-12-08 1997-06-17 Fujimori Kogyo Kk Manufacture of laminated sheet
JPH09231002A (en) 1996-02-27 1997-09-05 Sharp Corp Touch panel integrated type liquid crystal display element
JP3629333B2 (en) 1996-03-27 2005-03-16 帝人株式会社 Transparent conductive laminate for touch panel and manufacturing method thereof
JPH09262926A (en) 1996-03-27 1997-10-07 Teijin Ltd Transparent conductive laminate for touch panel and its production
JP3833296B2 (en) 1996-03-27 2006-10-11 帝人株式会社 Transparent conductive laminate for touch panel
JPH09262928A (en) 1996-03-29 1997-10-07 Teijin Ltd Transparent conductive laminate and its manufacture
JP3388099B2 (en) 1996-07-10 2003-03-17 帝人株式会社 Transparent conductive laminate and transparent tablet
JPH1029261A (en) 1996-07-15 1998-02-03 Fujimori Kogyo Kk Transparent conductive sheet for inner touch panel
JPH1069355A (en) 1996-08-27 1998-03-10 Fujimori Kogyo Kk Transparent electrically conductive sheet for inner touch panel
JP3844816B2 (en) 1996-08-27 2006-11-15 藤森工業株式会社 Optical sheet and optical sheet with transparent electrode
JPH1069352A (en) 1996-08-28 1998-03-10 Fujimori Kogyo Kk Transparent electrically conductive sheet for inner touch panel
JP3874849B2 (en) 1996-08-29 2007-01-31 帝人株式会社 Transparent touch panel
JP3987147B2 (en) 1996-10-30 2007-10-03 セイコーエプソン株式会社 Liquid crystal display element with input function and electronic device
JP3854392B2 (en) 1996-11-11 2006-12-06 同和鉱業株式会社 Optical filter
JP3317172B2 (en) 1997-01-08 2002-08-26 セイコーエプソン株式会社 Liquid crystal display device with input function and electronic equipment
JPH10260395A (en) 1997-03-19 1998-09-29 Nissha Printing Co Ltd Liquid crystal display integrated type transparent touch panel
JP3996675B2 (en) 1997-08-07 2007-10-24 藤森工業株式会社 Laminate sheet for polarizing plate integrated inner touch panel

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030150107A1 (en) * 2002-02-08 2003-08-14 Eastman Kodak Company Method for manufacturing an integrated display device including an OLED display and a touch screen
US20040090426A1 (en) * 2002-11-07 2004-05-13 Eastman Kodak Company Transparent flexible sheet for resistive touch screen
US20040212599A1 (en) * 2003-04-24 2004-10-28 Eastman Kodak Company Flexible resistive touch screen
US7081888B2 (en) * 2003-04-24 2006-07-25 Eastman Kodak Company Flexible resistive touch screen
US20060102463A1 (en) * 2004-11-12 2006-05-18 Eastman Kodak Company Flexible sheet for resistive touch screen
US20060105152A1 (en) * 2004-11-12 2006-05-18 Eastman Kodak Company Flexible sheet for resistive touch screen
US7067756B2 (en) 2004-11-12 2006-06-27 Eastman Kodak Company Flexible sheet for resistive touch screen
TWI396124B (en) * 2006-03-30 2013-05-11 Apple Inc Force and location sensitive display
US7511702B2 (en) * 2006-03-30 2009-03-31 Apple Inc. Force and location sensitive display
US9069404B2 (en) 2006-03-30 2015-06-30 Apple Inc. Force imaging input device and system
TWI554925B (en) * 2006-03-30 2016-10-21 蘋果公司 Force and location sensitive display
US20120306812A1 (en) * 2006-04-14 2012-12-06 Ritdisplay Corporation Top-emitting oled display having transparent touch panel
US9335855B2 (en) * 2006-04-14 2016-05-10 Ritdisplay Corporation Top-emitting OLED display having transparent touch panel
US20100309150A1 (en) * 2009-06-08 2010-12-09 Jaedo Lee Organic light emitting diode display
EP2261986A3 (en) * 2009-06-08 2012-08-01 LG Display Co., Ltd. Organic light emitting diode touch screen
US8599149B2 (en) 2009-06-08 2013-12-03 Lg Display Co., Ltd. Organic light emitting diode display
US20110169767A1 (en) * 2010-01-13 2011-07-14 Paul Fredrick Luther Weindorf Polarizer capacitive touch screen
US20140254013A1 (en) * 2013-03-05 2014-09-11 Samsung Electronics Co., Ltd. Optical member with double rainbow film
US10353230B2 (en) * 2014-02-21 2019-07-16 Lg Chem, Ltd. Electronic blackboard

Also Published As

Publication number Publication date
AU2001234791A1 (en) 2001-08-14
JP2003521790A (en) 2003-07-15
WO2001057841A1 (en) 2001-08-09
US6395863B2 (en) 2002-05-28
KR20030043783A (en) 2003-06-02

Similar Documents

Publication Publication Date Title
US6395863B2 (en) Touch screen with polarizer and method of making same
US7589798B2 (en) Touch panel having upper electrode plate including electrode, polarizing plate, quarter wave plate and heat-resistant transparent resin plate
EP3224827B1 (en) Flexible display device
US8228306B2 (en) Integration design for capacitive touch panels and liquid crystal displays
KR100595106B1 (en) Glare-resistant touch panel
US6707450B2 (en) Touch panel with polarizer, flat panel display with the touch panel and manufacturing method thereof
CN100447625C (en) Polarizers for use with liquid crystal displays
TW200912720A (en) Interactive display system
JP3802842B2 (en) Upper transparent electrode plate for touch panel and apparatus including the same
WO1999035531A1 (en) Liquid crystal display of touch input type, and method of manufacture
US20020154250A1 (en) Touch panel with light guide and manufacturing method thereof
JP2003036143A (en) Inner touch panel
JP3313337B2 (en) Low reflection touch panel
JP3354521B2 (en) Upper transparent electrode plate for touch panel and device including the same
JP2000112663A (en) Transparent touch panel and liquid crystal cell with transparent touch panel
JP2003157149A (en) Touch panel having high durability
JP2001324707A (en) Touch panel for liquid crystal display
US11550176B2 (en) Display device comprising an electronically controlled phase retardation module having a conductive layer formed directly on a substrate of a polarizing film
JPH1153118A (en) Stack sheet for polarizing plate-integrated inner touch panel
JP3038028B2 (en) Transparent touch panel
CN220491076U (en) Circular polarizer and display device
JPH096533A (en) Transparent tablet
TWI393938B (en) Thin, high-visibility anti-reflective touch panel
JP3153970U (en) Touch panel stag layer combination structure
CN201025497Y (en) Optical compound slice

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRO TOUCH SYSTEMS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GEAGHAN, BERNARD O.;REEL/FRAME:011527/0891

Effective date: 20010202

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:3M TOUCH SYSTEMS, INC.;REEL/FRAME:012846/0784

Effective date: 20020626

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12