US20010051229A1 - Abrasion resistant urethane coatings - Google Patents

Abrasion resistant urethane coatings Download PDF

Info

Publication number
US20010051229A1
US20010051229A1 US09/850,375 US85037501A US2001051229A1 US 20010051229 A1 US20010051229 A1 US 20010051229A1 US 85037501 A US85037501 A US 85037501A US 2001051229 A1 US2001051229 A1 US 2001051229A1
Authority
US
United States
Prior art keywords
composition
resins
oligomer
formula
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/850,375
Inventor
Alvin Witt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Permagrain Products Inc
Original Assignee
Permagrain Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permagrain Products Inc filed Critical Permagrain Products Inc
Priority to US09/850,375 priority Critical patent/US20010051229A1/en
Assigned to PERMAGRAIN PRODUCTS, INC, reassignment PERMAGRAIN PRODUCTS, INC, ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WITT, ALVIN
Publication of US20010051229A1 publication Critical patent/US20010051229A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31591Next to cellulosic

Definitions

  • This invention relates to improved coatings which provide increased wear in commercial applications.
  • This invention further relates to coating compositions and a coating system which forms a highly abrasion resistant, chemical resistant, impact resistant protective finish for a substrate.
  • the present invention also relates to polyurethane coatings containing metal oxide fillers which are particularly useful for imparting abrasion resistance to wood floors.
  • the instant invention also provides substrates coated with UV curable acrylated urethane coatings containing fillers which impart abrasion resistance to said substrates.
  • the flooring as thus produced had these drawbacks:
  • the first coat did not adhere satisfactorily. It was a 40% urethane glaze in hydrocarbon solvent and thus dissolved hydrocarbon soluble stains which were invariably present on the floor, and these stains migrated through to the top of the flooring. Furthermore, the urethane composition invariably turned brown after prolonged exposure to ultraviolet light. Finally the many coats required a great deal of labor, could not be applied in a single day, and the large quantities of solvent such as xylene caused considerable toxicity and odor.
  • a sealer coat was applied to keep out stains, give adhesion to any substrate, and bond to the next coat. This was either a 100%-solids epoxy or an epoxy emulsion.
  • a chip-binding coat or intermediate coat was applied to bind the very hydrophilic chips to each other and to harden them up enough so that they could be sanded. In most cases one or more coats of a polyurethane glaze was used for this purpose, but in some instances a polymeric latex or a clear epoxy emulsion was used.
  • the multi-layer system thus proposed is much superior to the original system, it still has many problems.
  • the epoxy emulsion or 100% solids epoxy is used for both sealer and chip coats, it becomes brittle, shrinks and cracks. This is permissible in a sealer coat, but not a chip coat, which must bridge cracks.
  • the cure rate of the epoxies is very temperature dependent. Being two package materials, a material with a reasonably long pot life has an inordinately long cure time on a cold floor.
  • Another problem peculiar to the epoxies, when used in urethane systems, is “purpling”. The cause is not well understood, but in a significant number of cases the interface between the epoxy and an unpigmented urethane develops an unsightly purple color.
  • HMDI Hydrogenated MDI
  • IPDI Isophorone diisocyanate
  • IPDI seems to be the best isocyanate available. It is the lowest-priced aliphatic diisocyanate. Its two isocyanate groups are of unequal reactivity so that it gives lower-viscosity prepolymers containing less free monomer vis-a-vis HMDI.
  • IPDI has serious drawbacks: although less toxic than HMDI or hexamethylene diisocyanate, it can still cause serious harm via skin absorption. Clear films from IPDI prepolymers degrade to liquid in strong sunlight. Prepolymers formed from the more reactive aliphatic isocyanate group of IPDI are terminated by the less-reactive cycloaliphatic isocyanate groups which moisture cures slowly.
  • Abrasion resistance problem is probably the most serious. Abrasion resistance is the property which is sought by the purchaser of a floor. None of the solutions mentioned above helped to improve this property. The aliphatic isocyanates, rather than helping improve abrasion resistance, made it worse.
  • Coating compositions have been developed which, when applied to a substrate and cured, impart a highly abrasion resistant surface to the substrate. Coating compositions of this type have been widely used to impart abrasion resistance to plastic lenses such as eyeglass lenses, to plastic panels and films, to wood surfaces such as furniture, and many other applications where an abrasion resistant or scratch resistant surface finish is of importance.
  • Abrasion resistant coatings of this type are typically based upon acrylate monomers which are cured or crosslinked after application of the coating, typically by radiation curing. Radiation curable coatings offer the advantage of being rapidly cured and polymerized without requiring curing ovens and they can be applied and processed without having to remove solvents and deal with solvent vapors in the workplace environment.
  • Prior abrasion resistant coatings have sought to deal with the brittleness and cracking problem by using a softening comonomer (a monomer with a low second order transition temperature) to impart some degree of flexibility to the coating.
  • a softening comonomer a monomer with a low second order transition temperature
  • the abrasion resistance of the coating is sacrificed.
  • U.S. Pat. No. 4,319,811 describes an abrasion resistant radiation curable coating based upon tri- and tetraacrylate monomers, such as pentaerythritol triacrylate with a comonomer such as vinyl pyrrolidone or vinyl caprolactam.
  • U.S. Pat. No. 4,557,980 discloses a radiation curable coating composition based upon a mixture of a triacrylate or tetraacrylate, such as pentaerythritol tetraacrylate, with acrylic acid.
  • the resistance of a coating to scratching abrasion is typically measured by the rotary steel wool test, which involves subjecting the coating to five revolutions of a pad of 0000 grade steel wool at a defined pressure, usually 12 or 24 psi.
  • the scratching abrasion resistance is rated by measuring the increase in haze from the abrasion. Test methods such as ASTM D-1044 have been developed for optically measuring the resistance of transparent plastic materials to abrasion. Other standard tests for abrasion resistance are the Taber abrasion test described in ASTM D-1004-56.
  • the protective finish needs not only to be “hard” and thus resistant to scratching, but also must have excellent toughness and resistance to impact.
  • the toughness or impact abrasion resistance of a coating is commonly measured by the “falling sand” test (ASTM D968-51). A coating which has good scratch abrasion resistance may not necessarily have good impact abrasion resistance.
  • ASTM D968-51 The falling sand test, sand is poured onto a coating from a predetermined height, while the thickness of the coating is observed. The results are expressed in terms of the number of liters of sand required to abrade away one tenth of a mil of the coating thickness.
  • FIG. 1 illustrates the performance of the preferred formulations of the inventions as number of cycles to wear.
  • a further object of the present invention to provide a polyurethane-base coating system that may be applied to suitably prepared vinyl tile, vinyl asbestos tile, wood, and the like that will provide a clear, highly abrasion resistant coating which will not require expensive stripping and waxing.
  • the present invention relates to a coating composition
  • a coating composition comprising: (a) a synthetic resin; and (b) fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns.
  • the present invention is also directed to a a radiation curable coating composition
  • a radiation curable coating composition comprising: (a) an oligomer of the formula
  • R 1 is hydrogen or methyl
  • Y is a divalent urethane residue
  • fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns.
  • the invention is further directed to a radiation curable coating composition
  • a radiation curable coating composition comprising:
  • R 1 is hydrogen or methyl
  • Y is a divalent urethane residue
  • the instant invention also relates to substrates such as wood, plastics, and the like coated with a radiation curable coating composition comprising: (a) 70% to 98% by weight of an oligomer of the formula
  • R 1 is hydrogen or methyl
  • Y is a divalent urethane residue
  • the present invention is also directed to an article of manufacture comprising a substrate coated with a UV curable composition comprising: (a) an oligomer of the formula
  • R 1 is hydrogen or methyl
  • Y is a divalent urethane residue
  • fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns.
  • the invention also features a method for imparting abrasion resistance to wood floors by applying to said floors a UV curable composition containing a urethane-acrylate and a filler having a particle size in the range of 1-20 microns.
  • the novel coating compositions of the present invention contain two basic components.
  • the first component is a resinous component which is typically a synthetic resin or mixtures of syhthetic resins or an oligomeric component which is further polymerized into a resin.
  • the second component is a filler which imparts abrasion resistance to the resulting coating once is applied to a surface and cured.
  • the resins of the present invention are typically synthetic resins capable of forming a film upon curing.
  • a resin precursor such as an oligomer may be used which is then cured by UV radiation or other wave energy means.
  • Polyurethane oligomers or resins having terminal acrylyl or methacrylyl groups are useful in the practice of the present invention. These are generally produced by the reaction of one or more organic polyisocyanates with one or more organic polyols, wherein at least a portion of the polyisocyanate or polyol reactant has, in addition to its isocyanate or hydroxyl functionality, acrylyl or methacrylyl groups.
  • the prior art discloses acrylate or methacrylate capped polyurethanes wherein the organic polyol used in their production is a polyester polyol. For example, U.S. Pat. No.
  • 3,700,643 discloses a number of acrylate capped polyurethanes based on polycaprolactone polyols.
  • the prior art also discloses acrylate or methacrylate capped polyurethanes based on polyether polyols (see, e.g. U.S. Pat. Nos. 3,782,961 and 3,955,584).
  • a particularly preferred acrylate-urethane oligomer is Raycron UV400 sold by PPG Industries, Inc.
  • the acrylate or methacrylate capped polyurethane employed in the radiation curable coating composition have a sufficiently low viscosity that the coating compositions based thereon are easily applied to a substrate using conventional coating techniques without the excessive use of diluents.
  • low molecular weight acrylate or methacrylate monomers such as 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, N-vinyl pyrrolidone etc.
  • Useful oligomers that can be used in the present invention include acrylate or methacrylate capped polyurethanes based on polyether polyols which exhibit desirable low viscosity. Also, acrylate or methacrylate capped polyurethanes based on polyester polyols may be used but they have relatively high viscosities so that undesirably high amounts of the aforementioned diluents must be used in order to achieve the desired application viscosity.
  • the preferred coatings of the invention are based on an oligomer of the formula I
  • R 1 is hydrogen or methyl; and Y is a divalent urethane residue.
  • a vinyl monomer such N-vinylpyrrolidone or other monomers having ethylenic unsaturation are included which are copolymerizable with the oligomer.
  • Oligomers of the above formula with an acrylic or methacrylic component are well known in the art. Oligomers of this type are shown in U.S. Pat. Nos. 3,907,574; 3,874,906; 3,989,609; and 3,895,171.
  • a preferred type of oligomer contains both an acrylic component and a urethane portion in the Y radical. Examples of these compounds are found in U.S. Pat. Nos. 3,912,516; 3,891,523; 3,864,133; and 3,850,770.
  • R 1 hydrogen or methyl
  • R 2 is lower alkylene
  • R 3 is aliphatic or cycloaliphatic
  • X is —O—or —NH—
  • n is an integer from 2 to 50 inclusive.
  • oligomers are produced by reacting polytetrahydrofuran, polycaprolactone polyols and other polyols with a diisocyanate to produce an isocyanate terminated prepolymer.
  • the isocyanate terminated prepolymer is then capped with a capping agent to produce the oligomer of Formula II and Formula III.
  • the preferred oligomers of Formula II are those of the Formula V
  • n is an integer from 5 to 20 inclusive.
  • the polytetrahydrofuran is commercially available from the Du Pont Company under the tradenames “TERRECOL-650”, “TERRECOL-1000”, and “TERRECOL-2000”, and from the Quaker Oats Company under the tradenames “POLYMEG-650”, “POLYMEG-1000”, and “POLYMEG-2000”.
  • the number indicates the approximate molecular weight of the polytetrahydrofuran.
  • the most preferred polytetrahydrofuran is that having a molecular weight of 650 which is consistent with the definition of “n” in Formulas II and V herein. At higher molecular weights wherein “n” exceeds about 50 the resultant oligomer has too high a viscosity.
  • the caprolactone polyols are commercially available from Union Carbide Corp. under the tradenames “NIAX CAPROLACTONE POLYOLS”-PCP-0200, PCP-0210, PCP-0230, PCP-0240, PCP-0300, PCP-0301 and PCP-0310.
  • the 0200 series are diols with molecular weights 530, 830, 1250 and 2000 respectively.
  • the 0300 series are triols with molecular weights 540, 300 and 900 respectively.
  • the oligomers of Formula II, III, V, and VI can be produced in accordance with U.S. Pat. No. 4,129,709.
  • the capping agents useful in the present invention are those that will react with the isocyanate terminated prepolymer to produce the oligomers of Formula II.
  • any capping agent having a terminal amine or hydroxyl group and also having an acrylic acid or methacrylic acid moiety is suitable.
  • Suitable capping agents include among others hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, hydroxypentyl acrylate, hydroxypentyl methacrylate, hydroxyhexyl acrylate, hydroxyhexyl methacrylate, aminoethyl acrylate, and aminoethyl methacrylate.
  • the diisocyanates useful to produce oligomers of Formula II are aliphatic and cycloaliphatic diisocyanates that will react with terminal hydroxyl groups present on the polytetrahydrofuran. Of course, aromatic diisocyanates undergo the same reaction but do not yield a product as satisfactory as that obtained by the use of aliphatic diisocyanates.
  • diisocyanates examples include among others, isophorone diisocyanate, 4,4′-dicyclohexylmethane-diisocyanate available commercially from the Du Pont Company under the trade name “Hylene W”, and trimethyl-hexamethylene-diisocyanate, 1,6 hexamethylene diisocyanate, 2,4,4 trimethyl 1,6 hexylene diisocyanate, octadecylene diisocyanate and 1,4 cyclohexylene diisocyanate.
  • the preferred diisocyanates are isophorone diisocyanate (3-isocyanatomethyl 3,5,5 trimethyl cyclohexyl isocyanate) and 4,4′ dicyclohexylmethane-diisocyanate.
  • the vinyl monomer copolymerizable with the oligomer may be one or more monomers compatible with the oligomer selected.
  • N-vinyl-2 pyrrolidone and acrylic acid esters having a boiling point of at least 200° C. at 760 mm Hg are preferred. These monomers allow adjustment of the viscosity for ease of coating operations and N-vinyl-2-pyrrolidones also enhance the rate of curing.
  • the weight ratio of oligomer to N-vinyl-2-pyrrolidone can vary widely as long as the properties of the resultant cured coating composition are not adversely affected, however, they are generally present in a weight ratio of 1:9 to 9:1 and preferably 1:3 and 3:1.
  • the uncured coating composition tends to have too high a viscosity. This high viscosity makes it difficult to apply the uncured coating composition to the substrate. At lower ratios the resultant cured coating composition tends to be too hard and inflexible.
  • the above oligomers can be further combined with others resins such as acrylic resins, vinyl resins, melamine and acrylated melamine resins, polyester resins, alkyd resins, epoxy resins, cellulose resins, amino resins and silicone resins.
  • resins such as acrylic resins, vinyl resins, melamine and acrylated melamine resins, polyester resins, alkyd resins, epoxy resins, cellulose resins, amino resins and silicone resins.
  • vinyl resins may be used when blended with the acrylated urethane oligomer.
  • Carboxyl modified vinyl chloride/vinyl acetate copolymers are particularly useful because they show excellent adhesion to various substrates such as metals, cellulosics and plastics.
  • the preferred vinyl resins are terpolymers containing approxiamtely 80-86% vinyl chloride, 13-19% vinyl acetate and 1-2% maleic acid.
  • the resins are usually dissolved in relatively strong solvent/diluent combinations, such as 50% ketone/50% aromatic hydrocarbon, to produce solutions of 20 to 22% solids.
  • the epoxy modifed versions of the above terpolymers may be used in the practice of the present invention.
  • VMCH is a high molecular weight resin containing approxiamtely 86% vinyl chloride, 13% vinyl acetate and 1% maleic acid.
  • VMCH is usually dissolved in relatively strong solvent/diluent combinations, such as 50% ketone/50% aromatic hydrocarbon, to produce solutions of 20 to 22% solids.
  • VMCC is a medium molecular weight resin containing approximately 83% vinyl chloride, 16% vinyl acetate, and 1% maleic acid.
  • Vinyl VMCC is more soluble than VMCH in ketones, esters, and other solvents used to dissolve vinyl resins.
  • VMCC also has a higher tolerance for aromatic hyrocarbon diluents.
  • a suitable solvent system such as a 50% ketone/50% aromatic hydrocarbon
  • resin solutions of 23 to 25% solids can be achieved.
  • VMCA is a low molecular weight resin containing approximately 81% vinyl chloride, 17% vinyl acetate and 2% maleic acid.
  • Vinyl VMCA is characterized by a high degree of solubility in solvent systems having a high aromatic hyrocarbo content.
  • resin solutions of 30% solids can be achieved.
  • VMCA yields good balance of solubility and viscosity properties needed for high-build, air-dry maintenance finishes.
  • VERR-40 is a low molecular weight epoxy-modified Vinyl Chloride/Vinyl Acetate Copolymer copolymer available as a solution at 40% solids in MEK/toluene (3/2 by weight).
  • VERR-40 can be blended with carboxyl-modified vinyls (VMCH, VMCC, and VMCA) to provide an all-vinyl reactive coating system that, when cured by baking, yields coatings with enhanced toughness, flexibility, and solvent resistance.
  • Another type of resins which can be blended with the acrylated urethane oligomer are those derived from the condensation of melamine with formaldehyde which have further etherified.
  • a particular useful melamine resin is CYMEL 1100.
  • CYMEL 1100 resins of mixed ether and butylated resins are highly alkylated melamine-formaldehyde resins whose properties are modified due to the nature of their alkylating alcohols.
  • Suitable CYMEL resins include CYMEL 300, 301, 303, 303LF and 350.
  • This series of melamine resins are four grades of hexamethoxymethylmelamine (HMMM) marketed by Cytec. They differ primarily in their degree of alkylation and monomer content. The HMMM resins are efficient crosslinking agents for hydroxyl, carboxyl and amide functional polymers.
  • HMMM resins are efficient crosslinking agents for hydroxyl, carboxyl and amide functional polymers.
  • CYMEL 300 provides exceptionally fast cure response on low bake schedules in highly catalyzed systems.
  • CYMEL 300 resin also has outstanding stability in water-borne systems that are pH buffered on the alkaline side.
  • CYMEL 301 resin has a slighly lower degree of alkylation than CYMEL 300 resin and is liquid under normal conditions. It is more water soluble due to its higher free methylol content and is preferred in some emulsion because of its ease of incorporation.
  • CYMEL 303 resin is a liquid grade of HMMM and is the most versatile and economical melamine crosslinking agent available. Unline CYMEL 301 resin, CYMEL 303 has a very low free methylol content.
  • CYMEL 303 resin provides excellent stability in water-borne systems. CYMEL 303 resin provides better catalyzed stability in organo-soluble systems than less highly alkylated melamine resins.
  • CYMEL 350 resin is a very unusual crosslinking agent in that its composition is very similar to the series of CYMEL 370 melamine resins except that it is more monomeric. Its performance properties approach those of CYMEL 303 resin.
  • CYMEL 350 like CYMEL 303 resin, responds best to strong acid catalysis. It is completely water soluble and finds wide application as a crosslinking agent for emulsion systems. CYMEL 350 resin provides very fast cure response on high temperature cure schedules.
  • Santolink AM129 (Monsanto Co.) which is is a reactive solution of acrylated melamine resin in tripropylene glycol diacrylate.
  • Santolink AM 129 imparts a high degree of hardness and gloss, as well as stain and chemical resistance, to the coating.
  • Santolink AM 129 can be cured by free radical polymerization initiated by UV or thermal processing. The ether functionality on this crosslinker may also undergo thermally induced condensation reactions allowing it to be copolymerized with polyols.
  • the cellulosic resins that can be blended with the urethane-(meth)acrylate component is typically selected from the group consisting of a cellulosic ester, a cellulosic ether, a cellulosic ether ester and mixtures thereof.
  • the preferred material is a cellulose acetate butyrate sold by Eastman under the tradename designation of CAB-551-0.01 which has an average butyryl content of 53% by weight, 2% acetyl content by weight and hysroxyl content of 1.5% by weight.
  • the coating compositions of this invention optionally contain zero to about five percent by weight of an energy-activatable source of free radicals, i.e., a free-radical polymerization initiator which generates or liberates free radicals upon addition to the compositions of energy such as thermal energy, actinic radiation, or electron beam radiation.
  • a free-radical polymerization initiator which generates or liberates free radicals upon addition to the compositions of energy such as thermal energy, actinic radiation, or electron beam radiation.
  • Curing techniques such as thermal energy and actinic radiation ordinarily require the use of positive amounts (i.e., more than zero percent by weight) of polymerization initiator.
  • No polymerization initiator i.e., zero percent by weight
  • Useful free-radical polymerization initiators are further described, for example, in Chapter II of “Photochemistry” by Calvert and Pitts, John Wiley & Sons (1966).
  • Thermally-activated free-radical polymerization initiators include organic peroxides, organic hydroperoxides, and other known initiators, such as benzoyl peroxide, tertiary-butyl perbenzoate, cumene hydroperoxide, isopropyl peroxydicarbonate, azobis(isobutyronitrile), and the like.
  • the preferred free-radical polymerization initiators for use in this invention are photopolymerization initiators which release free-radicals when the compositions of this invention are irradiated with suitable electromagnetic radiation.
  • Useful photopolymerization initiators include acyloin and derivatives thereof such as methyl benzoyl formate, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and alpha-methylbenzoin, diketones such as benzil and diacetyl, organic sulfides such as diphenyl monosulfide, diphenyl disulfide, decyl phenyl sulfide, and tetramethylthiuram monosulfide, S-acyl dithiocarbamates such as S-benzoyl-N,N-dimethyldithiocarbamate, phenones such as acetophenone, alpha,alpha,alpha-tribromoacetophenone, alpha, alpha-diethoxyacetophenone, ortho-nitro-alpha, alpha,alpha-tribrom
  • the free-radical polymerization initiator is ordinarily used in amounts ranging from about 0.01 to 5 percent by weight compared to the total weight of the coating composition.
  • the polymerization initiator quantity is less than about 0.01 percent by weight, the polymerization rate of the composition is slowed.
  • the polymerization initiator is used in amounts greater than about five percent by weight, no appreciable increase in polymerization rate is observed compared to compositions containing about five percent by weight of polymerization initiator.
  • about 0.05 to 1.0 percent by weight of polymerization initiator is used in the polymerizable coating compositions of this invention cured by thermal energy or actinic radiation.
  • Preferred photoinitiation energy sources emit actinic radiation, i.e., radiation having a wavelength of 700 nanometers or less which is capable of producing, either directly or indirectly, free radicals capable of initiating addition polymerization of the coating compositions of this invention.
  • Particularly preferred photoinitiation energy sources emit ultraviolet radiation, i.e., radiation having a wavelength between about 180 and 460 nanometers, including photoinitiation energy sources such as mercury arc lights, carbon arc lights, low, medium, or high pressure mercury vapor lamps, swirl-flow plasma arc lamps, ultraviolet light emitting diodes, and ultraviolet light emitting lasers.
  • Particularly preferred ultraviolet light sources are “black lights” and medium or high pressure mercury vapor lamps, such as Models 60-2032, 60-0393, 60-0197 and 50-2031 (commercially available from PPG Industries, Inc.), and Models 6512A431, 6542A431, 6565A431, and 6577A431 (commercially available from Hanovia, Inc.).
  • Ionizing radiation can also be used to cure the coating compositions of this invention.
  • Ionizing radiation is radiation possessing an energy at least sufficient to produce ions either directly or indirectly and includes ionizing particle radiation and ionizing electromagnetic radiation.
  • Ionizing particle radiation designates the emission of electrons (i.e., “E-beam” radiation) or accelerated nuclear particles such as protons, alpha particles, deuterons, beta particles, neutrons or their analogs. Charged particles can be accelerated using such devices as resonance chamber accelerators, DC potential gradient accelerators, betatrons, synchrotrons, cyclotrons, and the like.
  • Uncharged particles i.e., neutrons
  • a selected light metal such as beryllium
  • Ionizing particle radiation can also be obtained by the use of an atomic pile, radioactive isotopes or other natural or synthetic radioactive materials. Ionizing electromagnetic radiation transmits high energy photons by means such as X-rays and gamma rays.
  • the radiation curable coating composition can contain a reactive crosslinking agent.
  • the suitable crosslinking agents are known to those skilled in the art and preferably are chosen from the low molecular weight polyfunctional acrylate or methacrylate esters having molecular weights below about 1,200, preferably below about 600.
  • the low molecular weight polyfunctional acrylate or methacrylate esters are any of the di-, tri-, or tetraacrylate esters of acrylic acid or methacrylic acid with the di-, tri-, or tetra-alcohols.
  • neopentyl glycol diacrylate 3′-acryloxy-2′, 2′-dimethylpropyl 3-acryloxy-2, 2-dimethylpropionate, 1,6-hexanediol diacrylate, pentaerythritol triacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, pentaerythritol tetraacrylate, and the like, the reaction product of 2 moles of a hydroxyalkyl acrylate, e.g. 2-hydroxyethyl acrylate, and 1 mole of an organic diisocyanate, or the corresponding methacrylates.
  • a hydroxyalkyl acrylate e.g. 2-hydroxyethyl acrylate
  • an organic diisocyanate or the corresponding methacrylates.
  • the filler of the invention capable of imparting abrasion resistance is typically a solid material having a particle size in the range of about 1-20 microns and more prefereably in the range of 1-5 microns.
  • the solid material may be organic or inorganic. Typical organic materials that can be used include diamond particles, polytetrafluoroethylene and polyethylene and mixtures thereof.
  • the inorganic material capable of imparting abrasion resistance is typically a metal oxide of aluminum, magnesium or silicon or mixtures thereof with the preferred material being aluminum trihydrate having a particle size in the range of 3-5 microns. Other materials which are suitable include metal particles, metal carbides, refractory oxides of zirconium, ytrium.
  • the metal oxide filler such as aluminum trihydrate (ATH) which imparts abrasion resistance to the coatings of the present invention may also be surface modified to impart further improved properties to the resulting coating of the present invention.
  • the surface modifications are particularly useful to aid processing or to improve physical, electrical, flame or chemical resistant properties. Selected surface modifications can aid in rapid and complete ATH dispersion by increasing the compatibility of the ATH for the polymer matrix. This effect can be observed in both liquid and solid polymers. With increased compatibility, a significant reduction in polymer viscosity can result in improved processability or increased loading levels of ATH, while maintaining acceptable processability.
  • Surface modification can be accomplished by treating the ATH with surfactants such as nonionics, anionics and cationics.
  • Surface modification can also be accomplished by treating with a metal stearate suh as magnesium stearate.
  • the surface modification can also be made by chemical coupling such as with organofunctional silanes such as the aminoalkyl trialkoxysilanes which can result in improvements in certain physical properties by increasing interfacial adhesion between the ATH and polymer matrix.
  • specific improvements in physical properties can include: enhanced mechnical properties such as tensile, flexural, impact or elongation improvements can be achieved.
  • Increased resistance to water permeation may be observed with certain surface modifications.
  • the preferred alumina trihydrate used in the coating compositions of the present invention are purchased from J. M. Huber and sold under the tradenames of SOLEM®, MICRAL® and HYMOD®.
  • a particulalrly preferred ATH is one having an avrage particle size in the range of 1-5 microns.
  • Another filler additive that can be used to improve the abrasion resistance of the coatings of the present invention is a product known as Super Taber 5509 which is a blend of polytetrafluoroethylene and polyethylene and sold by Shamrock Technologies, Inc. The product is sold under two grades, SPS (average particle size—18 microns) and NI (average particle size—5 microns).
  • super Taber 5509 is a combination of P117E and a range of polyethylenes.
  • the SuperTaber improves the surface slip of coatings.
  • SuperTaber 5509 can be easily incorporated into coatings by simple stirring. The use of speed mixing and dispersion equipment will not adversely affect the intercoat adhesion and physical characteristics of the coating.
  • the content of SuperTaber in the formulation is typically 1-3% based on total formula weight.
  • inorganic particles of interest include materials such as alpha-alumina, silica, chromium oxide, iron oxide, diamond or graphite, or organic resin particles, for instance, beads of a synthetic resin such as crosslinked acrylic resin can be used as particles.
  • Other particles of interest include alpha-alumina particles. Because alpha-alumina has an extremely high hardness and can impart high abrasion resistance to the resulting coating layer, and because alpha-alumina which is spherical in shape is readily obtainable.
  • the coatings of the present invention can be applied by conventional means, including spraying, curtain coating, dip padding, roll coating and brushing procedures.
  • the coatings can be applied to any acceptable substrate, such as wood, metal, glass, fabric, paper, fiber, plastic, etc.
  • the abrasion resistant coatings of the present invention are best used as coatings upon a substrate i.e, wood substrates. Materials which are able to provide useful functions but do not have satisfactory abrasion resistance can be improved by the addition of coatings according to the present invention. Especially those materials which heretofore have not been coated to improve their resistance with any great success because of heat sensitivity (low melting point, destruction of heat unstable materials, etc.) can be readily improved according to the present invention because of the ability of the present composition to bond with essentially room temperature curing.
  • Solid substrates that can be coated are the surfaces of fibers, sheets, and shaped solid objects.
  • the solid substrates particularly useful according to the present invention are ceramic materials (e.g., glass, fused ceramic sheeting and fibers), metals (e.g. sheets, fibers, aluminum, iron, silver, chromium and other metals), metal oxides, thermoplastic resins (e.g. polyesters, polyamides, polyolefins, polycarbonates, acrylic resins, polyvinyl chloride, cellulose acetate butyrate etc.), thermoset resins (e.g., epoxy resins, polysilanes, polysiloxanes, etc.) paper, wood, natural resins (e.g. rubber, gelatin), and, in general, any solid surface which needs protection from abrasion.
  • ceramic materials e.g., glass, fused ceramic sheeting and fibers
  • metals e.g. sheets, fibers, aluminum, iron, silver, chromium and other metals
  • metal oxides e
  • primers may be used on the substrate.
  • Many primers are known in the art, and their purpose is to provide a layer to which the coating more readily adheres than to the original surface of the substrate.
  • primers are generally used on the polyethyleneterephthalate base to improve adhesion of subsequent layers thereto.
  • primers and other known primers, would be useful in the practice of the present invention.
  • the surface of the substrate may itself be treated to improve adherence such as by abrasion or corona discharge to enhance bonding of the abrasion resistant layer thereto.
  • a large number of primers can find utility in the practice of this invention and do not affect the proportion of the top abrasion resistant coating.
  • the ratio of the components of the terpolymer can be varied over a wide range to attain the optimum primary properties for a given substrate.
  • This primer when used in appropriate solvents such as isopropylacetate, isopropanol, toluene-methanol mixtures or other mixed solvents find utility in priming a variety of substrates; such as polycarbonates, polymethylmethacrylates, cellulose acetate butyrate, polystyrene, aluminum, polyvinylchloride, silver halide—gelatin emulsions and a host of other organic and inorganic substrates. As far as the polyester is concerned, titania, silica, or polyvinylidene chloride are the best primers. A host of other commercial primers such as various aliphatic or aromatic urethanes, caprolactones, epoxies, and siloxanes can also find utility as primers for the coatings of the invention.
  • Example 2 Using the procedure of Example 2 and a one gallon pail, 180 grams of a terpolymer of 81% vinyl chloride, 17% vinyl acetate and 2% maleic anhydride (Union Carbide VMCA) are throroughly blended in 420 grams of methyl isobutyl ketone.
  • a terpolymer of 81% vinyl chloride, 17% vinyl acetate and 2% maleic anhydride (Union Carbide VMCA) are throroughly blended in 420 grams of methyl isobutyl ketone.
  • Example 2 The resulting blends from Example 2 and Example 3 are added to the resulting blend of Example 4 and mixed thoroughly.
  • Example 2 Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 360 grams of acrylated melamine resin in tripropylene glycol diacrylate (SantoLink AM-129—supplied by Monsanto Company); 540 grams of silica gel (Everymatte UV640—Shamrock Technologies) and 180 grams of a mixed ether and butylated Melamine resin (from Cytec Industries).
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 360 grams of acrylated melamine resin in tripropylene glycol diacrylate (SantoLink AM-129—supplied by Monsanto Company); 540 grams of silica gel (Everymatte UV640—Shamrock Technologies
  • Example 2 Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 18 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.).
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 18 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.).
  • a base mix is prepared containing 9,404 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.) and 540 grams of aluminum trihydrate (ATH-632-SH1—J. M. Huber Corp. ) having a particle size range of about 3-5 ⁇ .
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.) and 540 grams of aluminum trihydrate (ATH-632-SH1—J. M. Huber Corp. ) having a particle size range of about 3-5 ⁇ .
  • Example 8 Using a Bridgeport milling machine, the base mix of Example 8, is thoroughly blended and mixed for about 30 minutes with the blends of Examples 5, 6 and 7.
  • Example 2 Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 13 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.).
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 13 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.).
  • Example 2 Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.) (2) 540 grams of polytetrafluoroethylene having a particle size of 13 microns.
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.)
  • PPG Industries, Inc Oak Creek, Wis.
  • Example 2 Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of polyethylene having a particle size of 15 microns.
  • a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.);
  • polyethylene having a particle size of 15 microns.
  • Example 8 Using a Bridgeport milling machine, the base mix of Example 8, is thoroughly blended and mixed for about 30 minutes with the blends of Examples 35, 36 and 37.

Abstract

A radiation curable and abrasion resistant coating composition is provided comprising: (a) 70% to 98% by weight of an urethane-acrylate oligomer; (b) 2% to 30% of fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns; (c) optionally a reactive diluent; and (d) optionally an synthetic resin. The coatings when applied to wood floorings impart superior abrasion resistance.

Description

  • This application is a continuation of pending application U.S. Ser. No. 09/071,952 filed May 4, 1998, which depends from No. 60/045,516 filed May 2, 1997.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to improved coatings which provide increased wear in commercial applications. This invention further relates to coating compositions and a coating system which forms a highly abrasion resistant, chemical resistant, impact resistant protective finish for a substrate. The present invention also relates to polyurethane coatings containing metal oxide fillers which are particularly useful for imparting abrasion resistance to wood floors. The instant invention also provides substrates coated with UV curable acrylated urethane coatings containing fillers which impart abrasion resistance to said substrates. [0002]
  • BACKGROUND OF THE INVENTION AND DESCRIPTION OF THE PRIOR ART
  • Polyurethane compositions have been proposed for and used for coating hardwood floors for many years. In the flooring as earlier used, a coating of moisture curing polyurethane (about 40% solids) in a solvent such as xylene or other solvent, was applied to the substrate to saturate it and provide adhesion. After the first coat had at least partially cured, a second coat was applied, and while the second coat was still wet, chips of colored dry paint were scattered over and pressed through the surface. When this layer had dried, the chips which had not adhered were swept away, the surface sanded and vacuumed, and another coat of clear urethane glaze was applied thereover. While that coat was still wet, chips were again scattered over the surface, pressed therein, and when the coating had hardened, the floor was again swept and vacuumed, and a further clear coat of urethane glaze (40% solids) applied. As soon as that coating had hardened, many more coats of 40% solids urethane glaze were applied thereover, each one after the former had hardened. [0003]
  • The flooring as thus produced had these drawbacks: The first coat did not adhere satisfactorily. It was a 40% urethane glaze in hydrocarbon solvent and thus dissolved hydrocarbon soluble stains which were invariably present on the floor, and these stains migrated through to the top of the flooring. Furthermore, the urethane composition invariably turned brown after prolonged exposure to ultraviolet light. Finally the many coats required a great deal of labor, could not be applied in a single day, and the large quantities of solvent such as xylene caused considerable toxicity and odor. [0004]
  • Consequently, the industry evolved the following system: [0005]
  • 1. A sealer coat was applied to keep out stains, give adhesion to any substrate, and bond to the next coat. This was either a 100%-solids epoxy or an epoxy emulsion. [0006]
  • 2. A chip coat was developed to hold the chips, bridge cracks in the floor, and bond to the next coat. Ordinarily this was the same as the sealer coat. [0007]
  • 3. A chip-binding coat or intermediate coat was applied to bind the very hydrophilic chips to each other and to harden them up enough so that they could be sanded. In most cases one or more coats of a polyurethane glaze was used for this purpose, but in some instances a polymeric latex or a clear epoxy emulsion was used. [0008]
  • 4. Finally, glaze coats of curing polyurethane in solvent were applied to provide the wearing surface and to give abrasion resistance, stain resistance, and leveling. For each of the coats, an obvious requirement is rapid cure. Without it the job would take too long to be practical. [0009]
  • While the multi-layer system thus proposed is much superior to the original system, it still has many problems. When the epoxy emulsion or 100% solids epoxy is used for both sealer and chip coats, it becomes brittle, shrinks and cracks. This is permissible in a sealer coat, but not a chip coat, which must bridge cracks. In addition, the cure rate of the epoxies is very temperature dependent. Being two package materials, a material with a reasonably long pot life has an inordinately long cure time on a cold floor. Another problem peculiar to the epoxies, when used in urethane systems, is “purpling”. The cause is not well understood, but in a significant number of cases the interface between the epoxy and an unpigmented urethane develops an unsightly purple color. [0010]
  • While the currently available base and chip coats present problems, they are more satisfactory than the currently available glazes which have the following faults: [0011]
  • A. The very high xylene content is unsatisfactory for two reasons—the large amount of xylene is unpleasant and dangerous, and the solids content of the glaze is so low that several coats must be applied leading to high labor costs. [0012]
  • B. The glaze yellows badly because of the aromatic isocyanates used. Ultraviolet absorbers effectively halt yellowing only temporarily—a few months to a year —before the film yellows as much as if the absorber were not there. [0013]
  • C. The film formed from the glaze abrades rather quickly. [0014]
  • The obvious solution to the high xylene content, to use less, did not work: Bubbles formed, which eventually broke and collected dirt. Apparently, reducing the xylene content permitted the surface skin to form. This stopped outward diffusion of carbon dioxide which, being entrapped, formed bubbles. [0015]
  • A solution to the yellowing problem is the use of the non-yellowing aliphatic isocyanates used to make polyurethanes. All of these have certain disadvantages. For example, hexamethylene diisocyanate is extremely expensive, is highly toxic, and rather slow to cure. Hydrogenated MDI (HMDI) has two isocyanate groups with equal reactivity. Consequently, it forms highly viscous prepolymers which have a high percentage of free HMDI, which is extremely allergenic via skin absorption. [0016]
  • Isophorone diisocyanate, IPDI, seems to be the best isocyanate available. It is the lowest-priced aliphatic diisocyanate. Its two isocyanate groups are of unequal reactivity so that it gives lower-viscosity prepolymers containing less free monomer vis-a-vis HMDI. However, IPDI has serious drawbacks: although less toxic than HMDI or hexamethylene diisocyanate, it can still cause serious harm via skin absorption. Clear films from IPDI prepolymers degrade to liquid in strong sunlight. Prepolymers formed from the more reactive aliphatic isocyanate group of IPDI are terminated by the less-reactive cycloaliphatic isocyanate groups which moisture cures slowly. [0017]
  • The abrasion resistance problem is probably the most serious. Abrasion resistance is the property which is sought by the purchaser of a floor. None of the solutions mentioned above helped to improve this property. The aliphatic isocyanates, rather than helping improve abrasion resistance, made it worse. [0018]
  • Floor surfaces, particularly those in public buildings, require not only abrasion resistance, but resistance to contamination or staining caused by tar or asphalt brought in by foot traffic from road or parking lot surface. To be a successful floor coating composition, the resulting coating must adhere strongly to the base, must dry or cure bubble free, must produce in a single application a heavy coating that is highly resistant to both abrasion and asphalt staining. [0019]
  • Coating compositions have been developed which, when applied to a substrate and cured, impart a highly abrasion resistant surface to the substrate. Coating compositions of this type have been widely used to impart abrasion resistance to plastic lenses such as eyeglass lenses, to plastic panels and films, to wood surfaces such as furniture, and many other applications where an abrasion resistant or scratch resistant surface finish is of importance. [0020]
  • Abrasion resistant coatings of this type are typically based upon acrylate monomers which are cured or crosslinked after application of the coating, typically by radiation curing. Radiation curable coatings offer the advantage of being rapidly cured and polymerized without requiring curing ovens and they can be applied and processed without having to remove solvents and deal with solvent vapors in the workplace environment. [0021]
  • It is known that radiation cured acrylate polymers can produce very hard (glass hard) protective coatings which exhibit superior abrasion and chemical resistance properties. Although the coatings are quite hard and resistant to abrasion and scratching, they are brittle and have a tendency to crack and peel from the substrate, especially when applied to relatively flexible substrates or when subjected to impact. [0022]
  • Prior abrasion resistant coatings have sought to deal with the brittleness and cracking problem by using a softening comonomer (a monomer with a low second order transition temperature) to impart some degree of flexibility to the coating. However, in achieving increased flexibility and reduced brittleness, the abrasion resistance of the coating is sacrificed. Thus, for example, U.S. Pat. No. 4,319,811 describes an abrasion resistant radiation curable coating based upon tri- and tetraacrylate monomers, such as pentaerythritol triacrylate with a comonomer such as vinyl pyrrolidone or vinyl caprolactam. U.S. Pat. No. 4,308,119 teaches an abrasion resistant radiation curable coating composition comprised of a pentaerythritol tetraacrylate with a cellulose ester such as cellulose acetate butyrate. U.S. Pat. No. 4,557,980 discloses a radiation curable coating composition based upon a mixture of a triacrylate or tetraacrylate, such as pentaerythritol tetraacrylate, with acrylic acid. [0023]
  • The resistance of a coating to scratching abrasion is typically measured by the rotary steel wool test, which involves subjecting the coating to five revolutions of a pad of 0000 grade steel wool at a defined pressure, usually 12 or 24 psi. The scratching abrasion resistance is rated by measuring the increase in haze from the abrasion. Test methods such as ASTM D-1044 have been developed for optically measuring the resistance of transparent plastic materials to abrasion. Other standard tests for abrasion resistance are the Taber abrasion test described in ASTM D-1004-56. [0024]
  • In many applications, the protective finish needs not only to be “hard” and thus resistant to scratching, but also must have excellent toughness and resistance to impact. The toughness or impact abrasion resistance of a coating is commonly measured by the “falling sand” test (ASTM D968-51). A coating which has good scratch abrasion resistance may not necessarily have good impact abrasion resistance. With the falling sand test, sand is poured onto a coating from a predetermined height, while the thickness of the coating is observed. The results are expressed in terms of the number of liters of sand required to abrade away one tenth of a mil of the coating thickness. The radiation cured abrasion resistance coatings noted in the aforementioned prior patents have a relatively poor resistance to impact abrasion which renders these types of coatings unacceptable for applications requiring both good resistance to scratching abrasion an good resistance to impact abrasion. [0025]
  • The prior art is silent regarding coatings which incorporate a filler having a particle size in the range of 1-20 microns capable of imparting abrasion resistance to a coated substrate. [0026]
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 illustrates the performance of the preferred formulations of the inventions as number of cycles to wear. [0027]
  • OBJECTS OF THE INVENTION
  • With the foregoing in mind, it is an important object of the present invention to provide a coating system which provides good resistance to scratching abrasion and resistance to impact abrasion. [0028]
  • It is another object of the present invention to provide a polyurethane-base coating composition of high solids content that may be applied over a suitably prepared base to provide a glaze layer of high wear resistance that resists staining by asphalt to a much greater extent than coatings previously proposed. [0029]
  • A further object of the present invention to provide a polyurethane-base coating system that may be applied to suitably prepared vinyl tile, vinyl asbestos tile, wood, and the like that will provide a clear, highly abrasion resistant coating which will not require expensive stripping and waxing. [0030]
  • It is a further object of the present invention to provide relatively low cost polyurethane-base coating composition of high solids content containing a filler having a particle size in the range of 1-20 microns. [0031]
  • It is still an object of the invention to provide UV curable coating compositions having good abrasion resistance. [0032]
  • It is another object of the invention to provide UV curable polyurethane coating compostions having fillers that impart good abrasion resistance. [0033]
  • It is an additional object of the invention to provide wood floors having good abrasion resistance using the UV curable polyurethane coatings of the present invention. [0034]
  • It is yet another object of the invention to provide articles of manufacture having good abrasion resistance by incorporating the coating compositions of the present invention. [0035]
  • It is still a further object of the invention to provide UV curable polyurethane coating compostions having fillers that impart good abrasion resistance wherein said fillers have a particle size in the range of 1-20 microns. [0036]
  • SUMMARY OF THE INVENTION
  • Briefly, the present invention relates to a coating composition comprising: (a) a synthetic resin; and (b) fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns. [0037]
  • The present invention is also directed to a a radiation curable coating composition comprising: (a) an oligomer of the formula [0038]
    Figure US20010051229A1-20011213-C00001
  • wherein R[0039] 1 is hydrogen or methyl; and Y is a divalent urethane residue; and (b) fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns.
  • The invention is further directed to a radiation curable coating composition comprising: A radiation curable coating composition comprising: [0040]
  • (a) 70% to 98% by weight of an oligomer of the formula [0041]
    Figure US20010051229A1-20011213-C00002
  • wherein R[0042] 1 is hydrogen or methyl; and Y is a divalent urethane residue;
  • (b) 2% to 30% of fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns; [0043]
  • (c) optionally a reactive diluent; and [0044]
  • (d) optionally an synthetic resin. [0045]
  • The instant invention also relates to substrates such as wood, plastics, and the like coated with a radiation curable coating composition comprising: (a) 70% to 98% by weight of an oligomer of the formula [0046]
    Figure US20010051229A1-20011213-C00003
  • wherein R[0047] 1 is hydrogen or methyl; and Y is a divalent urethane residue; and
  • (b) 2% to 30% of fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns. [0048]
  • The present invention is also directed to an article of manufacture comprising a substrate coated with a UV curable composition comprising: (a) an oligomer of the formula [0049]
    Figure US20010051229A1-20011213-C00004
  • wherein R[0050] 1 is hydrogen or methyl; and Y is a divalent urethane residue; and (b) fine particles of a filler capable of imparting abrasion resistance having an average particle size in the range of 1-20 microns.
  • The invention also features a method for imparting abrasion resistance to wood floors by applying to said floors a UV curable composition containing a urethane-acrylate and a filler having a particle size in the range of 1-20 microns. [0051]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The objects of the present invention and many of the expected advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description. [0052]
  • The novel coating compositions of the present invention contain two basic components. The first component is a resinous component which is typically a synthetic resin or mixtures of syhthetic resins or an oligomeric component which is further polymerized into a resin. The second component is a filler which imparts abrasion resistance to the resulting coating once is applied to a surface and cured. [0053]
  • The resins of the present invention are typically synthetic resins capable of forming a film upon curing. In some cases, a resin precursor such as an oligomer may be used which is then cured by UV radiation or other wave energy means. [0054]
  • Polyurethane oligomers or resins having terminal acrylyl or methacrylyl groups are useful in the practice of the present invention. These are generally produced by the reaction of one or more organic polyisocyanates with one or more organic polyols, wherein at least a portion of the polyisocyanate or polyol reactant has, in addition to its isocyanate or hydroxyl functionality, acrylyl or methacrylyl groups. The prior art discloses acrylate or methacrylate capped polyurethanes wherein the organic polyol used in their production is a polyester polyol. For example, U.S. Pat. No. 3,700,643 discloses a number of acrylate capped polyurethanes based on polycaprolactone polyols. The prior art also discloses acrylate or methacrylate capped polyurethanes based on polyether polyols (see, e.g. U.S. Pat. Nos. 3,782,961 and 3,955,584). A particularly preferred acrylate-urethane oligomer is Raycron UV400 sold by PPG Industries, Inc. [0055]
  • It is desirable that the acrylate or methacrylate capped polyurethane employed in the radiation curable coating composition have a sufficiently low viscosity that the coating compositions based thereon are easily applied to a substrate using conventional coating techniques without the excessive use of diluents. Although low molecular weight acrylate or methacrylate monomers, such as 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, N-vinyl pyrrolidone etc., can be used as reactive diluents in conjunction with the oligomer or resin, it is desirable to use as little of these monomers as possible, since these monomers are somewhat toxic and special care must be taken to avoid skin contact with them. [0056]
  • Useful oligomers that can be used in the present invention include acrylate or methacrylate capped polyurethanes based on polyether polyols which exhibit desirable low viscosity. Also, acrylate or methacrylate capped polyurethanes based on polyester polyols may be used but they have relatively high viscosities so that undesirably high amounts of the aforementioned diluents must be used in order to achieve the desired application viscosity. [0057]
  • The preferred coatings of the invention are based on an oligomer of the formula I [0058]
    Figure US20010051229A1-20011213-C00005
  • wherein R[0059] 1 is hydrogen or methyl; and Y is a divalent urethane residue. Preferably a vinyl monomer such N-vinylpyrrolidone or other monomers having ethylenic unsaturation are included which are copolymerizable with the oligomer. Oligomers of the above formula with an acrylic or methacrylic component are well known in the art. Oligomers of this type are shown in U.S. Pat. Nos. 3,907,574; 3,874,906; 3,989,609; and 3,895,171. A preferred type of oligomer contains both an acrylic component and a urethane portion in the Y radical. Examples of these compounds are found in U.S. Pat. Nos. 3,912,516; 3,891,523; 3,864,133; and 3,850,770.
  • Preferred novel types of acryl urethane are shown by Formulas II and III: [0060]
    Figure US20010051229A1-20011213-C00006
  • wherein R[0061] 1 hydrogen or methyl; R2 is lower alkylene;R3 is aliphatic or cycloaliphatic; X is —O—or —NH—; n is an integer from 2 to 50 inclusive.
  • These oligomers are produced by reacting polytetrahydrofuran, polycaprolactone polyols and other polyols with a diisocyanate to produce an isocyanate terminated prepolymer. The isocyanate terminated prepolymer is then capped with a capping agent to produce the oligomer of Formula II and Formula III. [0062]
  • The preferred oligomers of Formula II are those of the Formula V [0063]
    Figure US20010051229A1-20011213-C00007
  • and the preferred oligomers of Formula III are those of Formula VI [0064]
    Figure US20010051229A1-20011213-C00008
  • wherein “n” is an integer from 5 to 20 inclusive. [0065]
  • The polytetrahydrofuran is commercially available from the Du Pont Company under the tradenames “TERRECOL-650”, “TERRECOL-1000”, and “TERRECOL-2000”, and from the Quaker Oats Company under the tradenames “POLYMEG-650”, “POLYMEG-1000”, and “POLYMEG-2000”. In the above tradenames the number indicates the approximate molecular weight of the polytetrahydrofuran. The most preferred polytetrahydrofuran is that having a molecular weight of 650 which is consistent with the definition of “n” in Formulas II and V herein. At higher molecular weights wherein “n” exceeds about 50 the resultant oligomer has too high a viscosity. [0066]
  • The caprolactone polyols are commercially available from Union Carbide Corp. under the tradenames “NIAX CAPROLACTONE POLYOLS”-PCP-0200, PCP-0210, PCP-0230, PCP-0240, PCP-0300, PCP-0301 and PCP-0310. The 0200 series are diols with molecular weights 530, 830, 1250 and 2000 respectively. The 0300 series are triols with [0067] molecular weights 540, 300 and 900 respectively.
  • The oligomers of Formula II, III, V, and VI can be produced in accordance with U.S. Pat. No. 4,129,709. The capping agents useful in the present invention are those that will react with the isocyanate terminated prepolymer to produce the oligomers of Formula II. In general, any capping agent having a terminal amine or hydroxyl group and also having an acrylic acid or methacrylic acid moiety is suitable. Examples of suitable capping agents include among others hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, hydroxypentyl acrylate, hydroxypentyl methacrylate, hydroxyhexyl acrylate, hydroxyhexyl methacrylate, aminoethyl acrylate, and aminoethyl methacrylate. [0068]
  • The diisocyanates useful to produce oligomers of Formula II are aliphatic and cycloaliphatic diisocyanates that will react with terminal hydroxyl groups present on the polytetrahydrofuran. Of course, aromatic diisocyanates undergo the same reaction but do not yield a product as satisfactory as that obtained by the use of aliphatic diisocyanates. Examples of suitable diisocyanates include among others, isophorone diisocyanate, 4,4′-dicyclohexylmethane-diisocyanate available commercially from the Du Pont Company under the trade name “Hylene W”, and trimethyl-hexamethylene-diisocyanate, 1,6 hexamethylene diisocyanate, 2,4,4 [0069] trimethyl 1,6 hexylene diisocyanate, octadecylene diisocyanate and 1,4 cyclohexylene diisocyanate. The preferred diisocyanates are isophorone diisocyanate (3- isocyanatomethyl 3,5,5 trimethyl cyclohexyl isocyanate) and 4,4′ dicyclohexylmethane-diisocyanate.
  • The vinyl monomer copolymerizable with the oligomer may be one or more monomers compatible with the oligomer selected. N-vinyl-2 pyrrolidone and acrylic acid esters having a boiling point of at least 200° C. at 760 mm Hg are preferred. These monomers allow adjustment of the viscosity for ease of coating operations and N-vinyl-2-pyrrolidones also enhance the rate of curing. The weight ratio of oligomer to N-vinyl-2-pyrrolidone can vary widely as long as the properties of the resultant cured coating composition are not adversely affected, however, they are generally present in a weight ratio of 1:9 to 9:1 and preferably 1:3 and 3:1. At higher ratios, e.g., those rich in oligomer, the uncured coating composition tends to have too high a viscosity. This high viscosity makes it difficult to apply the uncured coating composition to the substrate. At lower ratios the resultant cured coating composition tends to be too hard and inflexible. [0070]
  • The above oligomers can be further combined with others resins such as acrylic resins, vinyl resins, melamine and acrylated melamine resins, polyester resins, alkyd resins, epoxy resins, cellulose resins, amino resins and silicone resins. [0071]
  • Many different types of vinyl resins may be used when blended with the acrylated urethane oligomer. Carboxyl modified vinyl chloride/vinyl acetate copolymers are particularly useful because they show excellent adhesion to various substrates such as metals, cellulosics and plastics. The preferred vinyl resins are terpolymers containing approxiamtely 80-86% vinyl chloride, 13-19% vinyl acetate and 1-2% maleic acid. The resins are usually dissolved in relatively strong solvent/diluent combinations, such as 50% ketone/50% aromatic hydrocarbon, to produce solutions of 20 to 22% solids. Also the epoxy modifed versions of the above terpolymers may be used in the practice of the present invention. The vinyl resins used in the coatings of the present invention are sold by Union Carbide. Resisn under the trade designation of VMCH, VMCC, VMCA and VERR-40. VMCH is a high molecular weight resin containing approxiamtely 86% vinyl chloride, 13% vinyl acetate and 1% maleic acid. VMCH is usually dissolved in relatively strong solvent/diluent combinations, such as 50% ketone/50% aromatic hydrocarbon, to produce solutions of 20 to 22% solids. VMCC is a medium molecular weight resin containing approximately 83% vinyl chloride, 16% vinyl acetate, and 1% maleic acid. Vinyl VMCC is more soluble than VMCH in ketones, esters, and other solvents used to dissolve vinyl resins. VMCC also has a higher tolerance for aromatic hyrocarbon diluents. When dissolved in a suitable solvent system, such as a 50% ketone/50% aromatic hydrocarbon, resin solutions of 23 to 25% solids can be achieved. VMCA is a low molecular weight resin containing approximately 81% vinyl chloride, 17% vinyl acetate and 2% maleic acid. Vinyl VMCA is characterized by a high degree of solubility in solvent systems having a high aromatic hyrocarbo content. When dissolved in a suitable solvent/diluent combination, such as 25% ketone/75% aromatic hyrocarbon, resin solutions of 30% solids can be achieved. VMCA yields good balance of solubility and viscosity properties needed for high-build, air-dry maintenance finishes. VERR-40 is a low molecular weight epoxy-modified Vinyl Chloride/Vinyl Acetate Copolymer copolymer available as a solution at 40% solids in MEK/toluene (3/2 by weight). VERR-40 can be blended with carboxyl-modified vinyls (VMCH, VMCC, and VMCA) to provide an all-vinyl reactive coating system that, when cured by baking, yields coatings with enhanced toughness, flexibility, and solvent resistance. Another type of resins which can be blended with the acrylated urethane oligomer are those derived from the condensation of melamine with formaldehyde which have further etherified. A particular useful melamine resin is CYMEL 1100. [0072]
  • The series of CYMEL 1100 resins of mixed ether and butylated resins are highly alkylated melamine-formaldehyde resins whose properties are modified due to the nature of their alkylating alcohols. [0073]
  • Other suitable CYMEL resins include [0074] CYMEL 300, 301, 303, 303LF and 350. This series of melamine resins are four grades of hexamethoxymethylmelamine (HMMM) marketed by Cytec. They differ primarily in their degree of alkylation and monomer content. The HMMM resins are efficient crosslinking agents for hydroxyl, carboxyl and amide functional polymers. CYMEL 300 resins in the most highly alkylated and most monomeric grade. In its most normal state, CYMEL 3000 resin is a waxy solid with a melting point of 30°-35° C. CYMEL 300 provides exceptionally fast cure response on low bake schedules in highly catalyzed systems. This suggests its use in paper coatings and catalyzed wood finishes. CYMEL 300 resin also has outstanding stability in water-borne systems that are pH buffered on the alkaline side. CYMEL 301 resin has a slighly lower degree of alkylation than CYMEL 300 resin and is liquid under normal conditions. It is more water soluble due to its higher free methylol content and is preferred in some emulsion because of its ease of incorporation. CYMEL 303 resin is a liquid grade of HMMM and is the most versatile and economical melamine crosslinking agent available. Unline CYMEL 301 resin, CYMEL 303 has a very low free methylol content. As a result, CYMEL 303 resin provides excellent stability in water-borne systems. CYMEL 303 resin provides better catalyzed stability in organo-soluble systems than less highly alkylated melamine resins. CYMEL 350 resin is a very unusual crosslinking agent in that its composition is very similar to the series of CYMEL 370 melamine resins except that it is more monomeric. Its performance properties approach those of CYMEL 303 resin. CYMEL 350, like CYMEL 303 resin, responds best to strong acid catalysis. It is completely water soluble and finds wide application as a crosslinking agent for emulsion systems. CYMEL 350 resin provides very fast cure response on high temperature cure schedules.
  • An additional material that can be blended with the urethane acrylate is Santolink AM129 (Monsanto Co.) which is is a reactive solution of acrylated melamine resin in tripropylene glycol diacrylate. Santolink AM 129 imparts a high degree of hardness and gloss, as well as stain and chemical resistance, to the coating. Santolink AM 129 can be cured by free radical polymerization initiated by UV or thermal processing. The ether functionality on this crosslinker may also undergo thermally induced condensation reactions allowing it to be copolymerized with polyols. [0075]
  • The cellulosic resins that can be blended with the urethane-(meth)acrylate component is typically selected from the group consisting of a cellulosic ester, a cellulosic ether, a cellulosic ether ester and mixtures thereof. The preferred material is a cellulose acetate butyrate sold by Eastman under the tradename designation of CAB-551-0.01 which has an average butyryl content of 53% by weight, 2% acetyl content by weight and hysroxyl content of 1.5% by weight. [0076]
  • The coating compositions of this invention optionally contain zero to about five percent by weight of an energy-activatable source of free radicals, i.e., a free-radical polymerization initiator which generates or liberates free radicals upon addition to the compositions of energy such as thermal energy, actinic radiation, or electron beam radiation. Curing techniques such as thermal energy and actinic radiation ordinarily require the use of positive amounts (i.e., more than zero percent by weight) of polymerization initiator. No polymerization initiator (i.e., zero percent by weight) is ordinarily required when curing techniques such as electron beam energy are used. Useful free-radical polymerization initiators are further described, for example, in Chapter II of “Photochemistry” by Calvert and Pitts, John Wiley & Sons (1966). [0077]
  • Thermally-activated free-radical polymerization initiators include organic peroxides, organic hydroperoxides, and other known initiators, such as benzoyl peroxide, tertiary-butyl perbenzoate, cumene hydroperoxide, isopropyl peroxydicarbonate, azobis(isobutyronitrile), and the like. The preferred free-radical polymerization initiators for use in this invention are photopolymerization initiators which release free-radicals when the compositions of this invention are irradiated with suitable electromagnetic radiation. [0078]
  • Useful photopolymerization initiators include acyloin and derivatives thereof such as methyl benzoyl formate, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and alpha-methylbenzoin, diketones such as benzil and diacetyl, organic sulfides such as diphenyl monosulfide, diphenyl disulfide, decyl phenyl sulfide, and tetramethylthiuram monosulfide, S-acyl dithiocarbamates such as S-benzoyl-N,N-dimethyldithiocarbamate, phenones such as acetophenone, alpha,alpha,alpha-tribromoacetophenone, alpha, alpha-diethoxyacetophenone, ortho-nitro-alpha, alpha,alpha-tribromoacetophenone, benzophenone, and 4,4′-bis(dimethylamino)benzophenone, and sulfonyl halides such as p-toluenesulfonyl chloride, 1-naphthalenesulfonyl chloride, 2-naphthalenesulfonyl chloride, 1,3-benzenedisulfonyl chloride, 2,4-dinitrobenzenesulfonyl bromide and p-acetamidobenzenesulfonyl chloride. Methyl benzoyl formate is a preferred photopolymerization initiator, as it provides products having low yellow color. [0079]
  • For curing techniques such as thermal energy and actinic radiation, the free-radical polymerization initiator is ordinarily used in amounts ranging from about 0.01 to 5 percent by weight compared to the total weight of the coating composition. When the polymerization initiator quantity is less than about 0.01 percent by weight, the polymerization rate of the composition is slowed. When the polymerization initiator is used in amounts greater than about five percent by weight, no appreciable increase in polymerization rate is observed compared to compositions containing about five percent by weight of polymerization initiator. Preferably, about 0.05 to 1.0 percent by weight of polymerization initiator is used in the polymerizable coating compositions of this invention cured by thermal energy or actinic radiation. [0080]
  • Preferred photoinitiation energy sources emit actinic radiation, i.e., radiation having a wavelength of 700 nanometers or less which is capable of producing, either directly or indirectly, free radicals capable of initiating addition polymerization of the coating compositions of this invention. Particularly preferred photoinitiation energy sources emit ultraviolet radiation, i.e., radiation having a wavelength between about 180 and 460 nanometers, including photoinitiation energy sources such as mercury arc lights, carbon arc lights, low, medium, or high pressure mercury vapor lamps, swirl-flow plasma arc lamps, ultraviolet light emitting diodes, and ultraviolet light emitting lasers. Particularly preferred ultraviolet light sources are “black lights” and medium or high pressure mercury vapor lamps, such as Models 60-2032, 60-0393, 60-0197 and 50-2031 (commercially available from PPG Industries, Inc.), and Models 6512A431, 6542A431, 6565A431, and 6577A431 (commercially available from Hanovia, Inc.). [0081]
  • Ionizing radiation can also be used to cure the coating compositions of this invention. Ionizing radiation is radiation possessing an energy at least sufficient to produce ions either directly or indirectly and includes ionizing particle radiation and ionizing electromagnetic radiation. Ionizing particle radiation designates the emission of electrons (i.e., “E-beam” radiation) or accelerated nuclear particles such as protons, alpha particles, deuterons, beta particles, neutrons or their analogs. Charged particles can be accelerated using such devices as resonance chamber accelerators, DC potential gradient accelerators, betatrons, synchrotrons, cyclotrons, and the like. Uncharged particles (i.e., neutrons) can be produced by bombarding a selected light metal such as beryllium with positive particles of high energy. Ionizing particle radiation can also be obtained by the use of an atomic pile, radioactive isotopes or other natural or synthetic radioactive materials. Ionizing electromagnetic radiation transmits high energy photons by means such as X-rays and gamma rays. [0082]
  • If desired, the radiation curable coating composition can contain a reactive crosslinking agent. The suitable crosslinking agents are known to those skilled in the art and preferably are chosen from the low molecular weight polyfunctional acrylate or methacrylate esters having molecular weights below about 1,200, preferably below about 600. [0083]
  • The low molecular weight polyfunctional acrylate or methacrylate esters are any of the di-, tri-, or tetraacrylate esters of acrylic acid or methacrylic acid with the di-, tri-, or tetra-alcohols. One can mention, as being merely illustrative thereof, neopentyl glycol diacrylate, 3′-acryloxy-2′, 2′-dimethylpropyl 3-acryloxy-2, 2-dimethylpropionate, 1,6-hexanediol diacrylate, pentaerythritol triacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, pentaerythritol tetraacrylate, and the like, the reaction product of 2 moles of a hydroxyalkyl acrylate, e.g. 2-hydroxyethyl acrylate, and 1 mole of an organic diisocyanate, or the corresponding methacrylates. [0084]
  • The filler of the invention capable of imparting abrasion resistance is typically a solid material having a particle size in the range of about 1-20 microns and more prefereably in the range of 1-5 microns. The solid material may be organic or inorganic. Typical organic materials that can be used include diamond particles, polytetrafluoroethylene and polyethylene and mixtures thereof. The inorganic material capable of imparting abrasion resistance is typically a metal oxide of aluminum, magnesium or silicon or mixtures thereof with the preferred material being aluminum trihydrate having a particle size in the range of 3-5 microns. Other materials which are suitable include metal particles, metal carbides, refractory oxides of zirconium, ytrium. [0085]
  • The metal oxide filler such as aluminum trihydrate (ATH) which imparts abrasion resistance to the coatings of the present invention may also be surface modified to impart further improved properties to the resulting coating of the present invention. The surface modifications are particularly useful to aid processing or to improve physical, electrical, flame or chemical resistant properties. Selected surface modifications can aid in rapid and complete ATH dispersion by increasing the compatibility of the ATH for the polymer matrix. This effect can be observed in both liquid and solid polymers. With increased compatibility, a significant reduction in polymer viscosity can result in improved processability or increased loading levels of ATH, while maintaining acceptable processability. Surface modification can be accomplished by treating the ATH with surfactants such as nonionics, anionics and cationics. Surface modification can also be accomplished by treating with a metal stearate suh as magnesium stearate. The surface modification can also be made by chemical coupling such as with organofunctional silanes such as the aminoalkyl trialkoxysilanes which can result in improvements in certain physical properties by increasing interfacial adhesion between the ATH and polymer matrix. Also specific improvements in physical properties can include: enhanced mechnical properties such as tensile, flexural, impact or elongation improvements can be achieved. Also, Increased resistance to water permeation may be observed with certain surface modifications. The preferred alumina trihydrate used in the coating compositions of the present invention are purchased from J. M. Huber and sold under the tradenames of SOLEM®, MICRAL® and HYMOD®. A particulalrly preferred ATH is one having an avrage particle size in the range of 1-5 microns. [0086]
  • Another filler additive that can be used to improve the abrasion resistance of the coatings of the present invention is a product known as Super Taber 5509 which is a blend of polytetrafluoroethylene and polyethylene and sold by Shamrock Technologies, Inc. The product is sold under two grades, SPS (average particle size—18 microns) and NI (average particle size—5 microns). super Taber 5509 is a combination of P117E and a range of polyethylenes. The SuperTaber improves the surface slip of coatings. SuperTaber 5509 can be easily incorporated into coatings by simple stirring. The use of speed mixing and dispersion equipment will not adversely affect the intercoat adhesion and physical characteristics of the coating. The content of SuperTaber in the formulation is typically 1-3% based on total formula weight. [0087]
  • Other inorganic particles of interest include materials such as alpha-alumina, silica, chromium oxide, iron oxide, diamond or graphite, or organic resin particles, for instance, beads of a synthetic resin such as crosslinked acrylic resin can be used as particles. Other particles of interest include alpha-alumina particles. because alpha-alumina has an extremely high hardness and can impart high abrasion resistance to the resulting coating layer, and because alpha-alumina which is spherical in shape is readily obtainable. [0088]
  • The coatings of the present invention can be applied by conventional means, including spraying, curtain coating, dip padding, roll coating and brushing procedures. The coatings can be applied to any acceptable substrate, such as wood, metal, glass, fabric, paper, fiber, plastic, etc. [0089]
  • The abrasion resistant coatings of the present invention are best used as coatings upon a substrate i.e, wood substrates. Materials which are able to provide useful functions but do not have satisfactory abrasion resistance can be improved by the addition of coatings according to the present invention. Especially those materials which heretofore have not been coated to improve their resistance with any great success because of heat sensitivity (low melting point, destruction of heat unstable materials, etc.) can be readily improved according to the present invention because of the ability of the present composition to bond with essentially room temperature curing. [0090]
  • Solid substrates that can be coated are the surfaces of fibers, sheets, and shaped solid objects. Among the solid substrates particularly useful according to the present invention are ceramic materials (e.g., glass, fused ceramic sheeting and fibers), metals (e.g. sheets, fibers, aluminum, iron, silver, chromium and other metals), metal oxides, thermoplastic resins (e.g. polyesters, polyamides, polyolefins, polycarbonates, acrylic resins, polyvinyl chloride, cellulose acetate butyrate etc.), thermoset resins (e.g., epoxy resins, polysilanes, polysiloxanes, etc.) paper, wood, natural resins (e.g. rubber, gelatin), and, in general, any solid surface which needs protection from abrasion. [0091]
  • Where the substrate is not naturally adherent with the compositions of the present invention, primers may be used on the substrate. Many primers are known in the art, and their purpose is to provide a layer to which the coating more readily adheres than to the original surface of the substrate. For example, in the photographic art, primers are generally used on the polyethyleneterephthalate base to improve adhesion of subsequent layers thereto. Such primers, and other known primers, would be useful in the practice of the present invention. The surface of the substrate may itself be treated to improve adherence such as by abrasion or corona discharge to enhance bonding of the abrasion resistant layer thereto. [0092]
  • A large number of primers can find utility in the practice of this invention and do not affect the proportion of the top abrasion resistant coating. Some of the most useful ones, however, are the acrylic based primers such as terpolymers of butylmethacrylate, methylmethacrylate, and methacryloxy propyltrimethoxy silane, dissolved in appropriate solvents. The ratio of the components of the terpolymer can be varied over a wide range to attain the optimum primary properties for a given substrate. This primer when used in appropriate solvents such as isopropylacetate, isopropanol, toluene-methanol mixtures or other mixed solvents find utility in priming a variety of substrates; such as polycarbonates, polymethylmethacrylates, cellulose acetate butyrate, polystyrene, aluminum, polyvinylchloride, silver halide—gelatin emulsions and a host of other organic and inorganic substrates. As far as the polyester is concerned, titania, silica, or polyvinylidene chloride are the best primers. A host of other commercial primers such as various aliphatic or aromatic urethanes, caprolactones, epoxies, and siloxanes can also find utility as primers for the coatings of the invention. [0093]
  • EXAMPLES
  • The following examples are set forth for the purpose of illustrating the invention in more detail. The examples are intended to be illustrative and should not be construed as limiting the invention in any way. Persons skilled in the applicable arts will appreciate from these examples that this invention can be embodied in many different forms other than as is specifically disclosed. All parts, ratios, percentage, etc. in the examples and the rest of the specification, are by weight unless otherwise noted. [0094]
  • The chemicals and their ratio are listed as shown in the following examples: [0095]
  • Example 1
  • Commercially available products were tested using ASTM D-1044 and Table I lists the results of the test. [0096]
    TABLE 1
    PRODUCT WT LOSS 10−5 grams/cycle
    Fine Wood 4.4
    Hickory 4.3
    Oak 3.7
    Maple 4.3
    5000 7.2
    Pattern Plus 7.3
    Oak 6.0
  • Example 2
  • Using a beaker and vigorous magnetic (or other type of agitation) stirring, 89.89 grams of cellulose acetate butyrate (Eastman CAB-551-0.01) containing 53% by weight butyryl content, 2% by weight acetyl and 1.5% by weight hydroxyl are throoughly blended with 134.8 grams of N-vinyl-pyrrolidone. [0097]
  • Example 3
  • Using the same procedure as in Example 2, 180 grams of microTeflon powder (Zonyl MP1100 sold by Dupont) are throughly blended with 270 grams of N-vinyl-pyrrolidone. [0098]
  • Example 4
  • Using the procedure of Example 2 and a one gallon pail, 180 grams of a terpolymer of 81% vinyl chloride, 17% vinyl acetate and 2% maleic anhydride (Union Carbide VMCA) are throroughly blended in 420 grams of methyl isobutyl ketone. [0099]
  • Example 5
  • The resulting blends from Example 2 and Example 3 are added to the resulting blend of Example 4 and mixed thoroughly. [0100]
  • Example 6
  • Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 360 grams of acrylated melamine resin in tripropylene glycol diacrylate (SantoLink AM-129—supplied by Monsanto Company); 540 grams of silica gel (Everymatte UV640—Shamrock Technologies) and 180 grams of a mixed ether and butylated Melamine resin (from Cytec Industries). [0101]
  • Example 7
  • Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 18 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.). [0102]
  • Example 8
  • Using a Bridgeport milling machine, a base mix is prepared containing 9,404 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.) and 540 grams of aluminum trihydrate (ATH-632-SH1—J. M. Huber Corp. ) having a particle size range of about 3-5μ. [0103]
  • Example 9
  • Using a Bridgeport milling machine, the base mix of Example 8, is thoroughly blended and mixed for about 30 minutes with the blends of Examples 5, 6 and 7. [0104]
  • Example 10
  • To the resulting blend prepared in Example 9, there is added 5% by weight of the total mixture of Lovel HSF. The viscosity of the resulting mix is measured and adjusted to between 900-12,200 cp. [0105]
  • Example 11
  • Coating compositions were prepared as shown above containing the [0106] Raycron UV 400 component and different amounts of alumina trihydrate (ATH) of different sizes were prepared and tested for abrasion resistance. The results of those experiments are summarized in Table II.
    TABLE II
    ABRASION TESTS FOR COMPOSITIONS CONTAINING
    ATH
    PARTICLE SIZE - 1μ PARTICLE SIZE 3-5μ
    WT % ATH WT. LOSS 10−5 g/cycle WT. LOSS 10−5 g/cycle
    0 4.4 4.4
    1 3.8 3.1
    2 3.6 3.1
    3 3.8 2.9
    4 4.3 3.1
    5 4.4 2.8
    6 4.4 3.9
    7 4.3
    8 4.7
    9 4.4
    10 5.6
  • Example 12
  • Compositions containing the acrylated [0107] urethane Raycron UV 400 and filler particles of a mixture of polytetrafluoroethylene and polyethylene (SuperTaber identified above) with particle sizes of 18 and 5 microns were evaluated and the results are summarized in Table III.
    TABLE III
    EFFECT OF SUPERTABER MATERIAL ON ABRASION
    PARTICLE SIZE - 18μ PARTICLE SIZE 5μ
    WT % ADDITIVE WT. LOSS 10−5 g/cycle WT. LOSS 10−5 g/cycle
    1 2.8 2.9
    2 5.3-2.7 2.8
    3 2.9-2.4 2.1
  • The following Examples summarized in Table IV illustrate the effect of additives on the performance of the polyurethane coatings of the instant invention. [0108]
    1%
    3% 3% 3% 05% Cymel 1% Wt Loss
    Example ATH Taber 2% 129 EUV640 CAB 1135 1% VMCA Zalon 10−5 g/cycl2
    13 x x 1.75
    14 x x x 1.92
    15 x x x 1.70
    16 x x x x 1.55
    17 x x x 1.72
    18 x x x x 1.80
    19 x x x x 1.67
    20 x x x x x 1.54
    21 x x x x x 1.20
    22 x x x x x 1.45
    23 x x x x x x 1.18
    24 x x x x x x 1.10
    25 x x x x x x 1.29
    26 x x x x x x 1.28
    27 x x x x x x x 1.48
    28 x x x x x x x 1.77
    29 x x x x x x x x 1.84
    30 x x x x
    31 x x x
    32 x x x x
    33 x x x x
    34 x x x x x
  • Example 35
  • Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of a mixture of polytetrafluoroethylene and polyethylene having a particle size of 13 microns (Supertaber 5509-SP5—Shamrock Technologies, Inc.). [0109]
  • Example 36
  • Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.) (2) 540 grams of polytetrafluoroethylene having a particle size of 13 microns. [0110]
  • Example 37
  • Using the procedure of Example 2, except a one gallon pail is used, the following ingredients are thoroughly blended: (1) 2500 grams of a UV curable polyurethane acrylate known by the tradename of Raycron UV 400 (supplied by PPG Industries, Inc (Oak Creek, Wis.); (2) 540 grams of polyethylene having a particle size of 15 microns. [0111]
  • Example 38
  • Using a Bridgeport milling machine, the base mix of Example 8, is thoroughly blended and mixed for about 30 minutes with the blends of Examples 35, 36 and 37. [0112]
  • The following Examples summarized in Tables V and VI further illustrate the polyurethane coatings of the instant invention. [0113]
    TABLE V
    Example Example Example Example Example Example Example
    Formulation Components 39 40 41 42 43 44 45
    Hard Oligomer/EOTMPTA* Mix 42.13 42.13 39.13 40.38 40.38
    Flexible Oligomer 21.06 21.06 19.56 20.19 20.19
    EOTMPTA* Monomer 21.06 21.06 19.56 20.19 20.19
    Hard/Flexible/EOTMPTA* Blend 40.38 80.76
    Silica Suspended in EOTMPTA* 40.38
    Photoinitiator 5.25 5.25 5.25 5.25 5.25 5.25 5.25
    Air Release 0.5 0.5 0.5 0.5 0.5 0.5 0.5
    Silica Matting Agent 6.5 6.5 6.5 6.5 6.5
    Polyethylene 2 2 2 2 2
    100% Polyethylene Matting 5
    Polyethylene Coated Silica 5
    Matting
    Aluminum Oxide
    5 5 5 5 2.5
    Diamonds 2.5 2.5 5 5
  • [0114]
    TABLE VI
    Example Example Example Example Example Example
    Formulation Components 46 47 48 49 50 51
    Hard Oligomer/EOTMPTA* Mix 40.38 40.57 40.57 42.13
    Flexible Oligomer 20.19 20.28 20.28 21.06
    EOTMPTA Monomer 20.19 20.28 20.28 21.06
    Hard/Flexible/EOTMPTA* Blend 81.13 81.13
    Silica Suspended in EOTMPTA* 2.75 2.75 2.75 2.75
    Photoinitiator 5.25 5.25 5.25 5.25 5.25 5.25
    Benzophenone Photoinitiator 0.5
    Air Release 0.5 0.5 0.5 0.5 0.5
    Silica Matting Agent 6.5 4 4 4 4
    Polyethylene 2 1.87 1.87 1.87 1.87
    100% Polyethylene Matting
    Polyethylene Coated Silica
    Matting
    Aluminum Oxide
    5 5 5
    Diamonds 5 5 5 5
  • The cycles to wear-through are illustrated in FIG. 1. [0115]
  • It will be apparent from the foregoing that many other variations and modifications may be made regarding the hydrophobic polyester resins described herein, without departing substantially from the essential features and concepts of the present invention. Accordingly, it should be clearly understood that the forms of the inventions described herein are exemplary only and are not intended as limitations on the scope of the present invention as defined in the appended claims. [0116]

Claims (32)

What is claimed is:
1. A coating composition comprising:
(a) a synthetic resin; and
(b) fine particles of a filler blend capable of imparting abrasion resistance, said filler blend comprising a mixture of inorganic and organic particles wherein said inorganic particles have an average particle size in the range of 1-20 microns and wherein said organic particles have an average particle size in the range of 1-20 microns.
2. The composition of
claim 1
further including a curing agent.
3. The composition of
claim 1
wherein said synthetic resin is an (meth)acrylate terminated polyurethane.
4. The composition of
claim 1
wherein said inorganic filler is selected from the group consisting of oxides of aluminum, magnesium and silicon, and said organic filler is selected from the group consisting of a synthetic resin and diamond particles.
5. The composition of
claim 3
further including at least one member selected from the group consisting of acrylic resins, vinyl resins, melamine and acrylated melamine resins, polyester resins, alkyd resins, epoxy resins, cellulose resins, amino resins and silicone resins.
6. The composition of
claim 2
wherein said curing agent is a peroxide.
7. The composition of
claim 2
wherein said curing agent is a azo material.
8. A radiation curable coating composition comprising:
(a) an oligomer of the formula
Figure US20010051229A1-20011213-C00009
wherein R1 is hydrogen or methyl; and Y is a divalent urethane residue; and
(b) fine particles of a filler blend capable of imparting abrasion resistance, said filler blend comprising a mixture of inorganic and organic particles wherein said inorganic particles have an average particle size in the range of 1-20 microns and wherein said organic particles have an average particle size in the range of 1-20 microns.
9. The coating composition of
claim 8
, further comprising a vinyl monomer selected from the group consisting of N-vinyl-2-pyrrolidone, multifunctional acrylic acid esters and mixtures thereof.
10. The coating composition of
claim 8
further comprising an addition polymerization inhibitor present in an amount sufficient to avoid the auto-polymerization of the composition during storage.
11. The composition of
claim 8
wherein said inorganic filler is selected from the group consisting of oxides of aluminum, magnesium and silicon, and said organic filler is a synthetic resin.
12. The composition of
claim 11
wherein said filler is aluminum trihydrate having a particle size in the range of 3-5 microns.
13. The composition of
claim 12
further including at least one member selected from the group consisting of acrylic resins, vinyl resins, melamine and acrylated melamine resins, polyester resins, alkyd resins, epoxy resins, cellulose resins, amino resins and silicone resins.
14. A radiation curable coating composition comprising:
(a) 70% to 98% by weight of an oligomer of the formula
Figure US20010051229A1-20011213-C00010
wherein R1 is hydrogen or methyl; and Y is a divalent urethane residue;
(b) 2% to 30% by weight of fine particles of a filler blend capable of imparting abrasion resistance, said filler blend comprising a mixture of inorganic and organic particles, wherein said inorganic particles have an average particle size in the range of 1-20 microns and wherein said organic particles have an average particle size in the range of 1-20 microns;
(c) optionally a reactive diluent; and
(d) optionally an synthetic resin.
15. The radiation curable composition of
claim 14
wherein said urethane oligomer has the formula:
Figure US20010051229A1-20011213-C00011
wherein R1 hydrogen or methyl; R2 is lower alkylene; R3 is aliphatic or cycloaliphatic; X is —O—or —NH—; n is an integer from 2 to 50 inclusive.
16. The radiation curable composition of
claim 14
wherein said urethane oligomer has the formula:
Figure US20010051229A1-20011213-C00012
wherein R1 hydrogen or methyl; R2 is lower alkylene; R3 is aliphatic or cycloaliphatic; X is —O—or —NH—; n is an integer from 2 to 50 inclusive.
17. The radiation curable composition of
claim 15
wherein said urethane oligomer has the formula:
Figure US20010051229A1-20011213-C00013
R1 is hydrogen or methyl.
18. The radiation curable composition of
claim 16
wherein said urethane oligomer has the formula:
Figure US20010051229A1-20011213-C00014
R1 is hydrogen or methyl.
19. The radiation curable composition of
claim 14
wherein said reactive diluent is N-vinyl pyrrolidone.
20. A cellulosic article coated with the composition of
claim 1
.
21. A wood article coated with the composition of
claim 1
.
22. A cellulosic article coated with the composition of
claim 8
.
23. A wood article coated with the composition of
claim 8
.
24. A cellulosic article coated with the composition of
claim 14
.
25. A wood article coated with the composition of
claim 14
.
26. A method of imparting abrasion resistance to wood floorings, which method comprises applying to said floorings a radiation curable coating composition comprising:
(a) 70% to 98% by weight of an oligomer of the formula
Figure US20010051229A1-20011213-C00015
wherein R1 is hydrogen or methyl; and Y is a divalent urethane residue;
(b) 2% to 30% by weight of fine particles of a filler blend capable of imparting abrasion resistance, said filler blend comprising a mixture of inorganic and organic particles, wherein said inorganic particles have an average particle size in the range of 1-20 microns and wherein said organic particles have an average particle size in the range of 1-20 microns;
(c) optionally a reactive diluent; and
(d) optionally an synthetic resin.
27. The method of
claim 26
wherein said UV curable oligomer has the formula:
Figure US20010051229A1-20011213-C00016
wherein R1 hydrogen or methyl; R2 is lower alkylene; R3 is aliphatic or cycloaliphatic; X is —O—or —NH—; n is an integer from 2 to 50 inclusive.
28. The method of
claim 26
wherein said UV curable oligomer has the formula:
Figure US20010051229A1-20011213-C00017
wherein R1 is hydrogen or methyl; R2 is lower alkylene; R3 is aliphatic or cycloaliphatic; X is —O—or —NH—; n is an integer from 2 to 50 inclusive.
29. The method of
claim 28
wherein said oligomer has the formula:
Figure US20010051229A1-20011213-C00018
wherein R1 is hydrogen or methyl.
30. The method of
claim 28
wherein said oligomer has the formula:
Figure US20010051229A1-20011213-C00019
R1 is hydrogen or methyl.
31. The method of
claim 26
wherein said reactive diluent is N-vinyl-pyrrolidone.
32. An article obtained by ultraviolet curing of an article according to
claim 25
.
US09/850,375 1997-05-02 2001-05-07 Abrasion resistant urethane coatings Abandoned US20010051229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/850,375 US20010051229A1 (en) 1997-05-02 2001-05-07 Abrasion resistant urethane coatings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US4551697P 1997-05-02 1997-05-02
US09/071,952 US6228433B1 (en) 1997-05-02 1998-05-04 Abrasion resistant urethane coatings
US09/850,375 US20010051229A1 (en) 1997-05-02 2001-05-07 Abrasion resistant urethane coatings

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/071,952 Continuation US6228433B1 (en) 1997-05-02 1998-05-04 Abrasion resistant urethane coatings

Publications (1)

Publication Number Publication Date
US20010051229A1 true US20010051229A1 (en) 2001-12-13

Family

ID=26722870

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/071,952 Expired - Fee Related US6228433B1 (en) 1997-05-02 1998-05-04 Abrasion resistant urethane coatings
US09/850,375 Abandoned US20010051229A1 (en) 1997-05-02 2001-05-07 Abrasion resistant urethane coatings

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/071,952 Expired - Fee Related US6228433B1 (en) 1997-05-02 1998-05-04 Abrasion resistant urethane coatings

Country Status (1)

Country Link
US (2) US6228433B1 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030162045A1 (en) * 2002-02-25 2003-08-28 Erwin Behr Automotive Gmbh Method of producing an interior fitment for vehicles, and interior fitment produced accordingly
US20040013815A1 (en) * 2000-05-08 2004-01-22 Georg Gros Method for coating sheet metals
US20040058089A1 (en) * 2001-10-10 2004-03-25 Sport Court, Inc. Floor tile coating method and system
US20050170280A1 (en) * 2004-02-04 2005-08-04 Encology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions for coating thermally sensitive surfaces and/or rusted surfaces and methods, processes and assemblages for coating thereof
US20050171227A1 (en) * 2004-02-04 2005-08-04 Ecology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof
US20050170100A1 (en) * 2004-02-04 2005-08-04 Weine Ramsey Sally J. Process for applying an opaque, corrosion resistant, 100% solids, UV curable finish to parts for underhood use in motor vehicles
US20050196605A1 (en) * 2004-03-08 2005-09-08 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof
US20050203205A1 (en) * 2004-03-13 2005-09-15 Weine Ramsey Sally J. Composition of matter comprising UV curable materials incorporating nanotechnology for the coating of fiberglass
US20050203202A1 (en) * 2004-03-13 2005-09-15 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating composites, coated composites therefrom, and methods, processes and assemblages for coating thereof
US20050234152A1 (en) * 2004-04-16 2005-10-20 Ecology Coatings, Inc. Enviromentally friendly, 100% solids, actinic radiation curable coating compositions for coating surfaces of wooden objects and methods, processes and assemblages for coating thereof
US20060041047A1 (en) * 2004-03-08 2006-02-23 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom and methods, processes and assemblages for coating thereof
US20060093755A1 (en) * 2000-09-25 2006-05-04 Klaus Bittner Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of the substrates thus coated
US20070065757A1 (en) * 2005-09-20 2007-03-22 Masahiko Ogino Photo-curable resin composition and a method for forming a pattern using the same
US20070082964A1 (en) * 2004-02-04 2007-04-12 Ecology Coating, Inc. Environmentally Friendly, 100% Solids, Actinic Radiation Curable Coating Compositions and Coated Surfaces and Coated Articles Thereof
US20090197036A1 (en) * 2006-01-26 2009-08-06 Lg Chem, Ltd. Wood Flooring With Laminated Wood And HDF Using Symmetric Structure And Process For Manufacturing The Same
CN101928492A (en) * 2010-09-01 2010-12-29 浙江阳阳包装有限公司 Specific coloring agent for electric aluminum coating and preparation method thereof
US20100330359A1 (en) * 2007-09-26 2010-12-30 Sony Chemical & Information Device Corporation Hard coat film
US20120034396A1 (en) * 2010-03-12 2012-02-09 Los Alamos National Security, Llc Method to manufacture bit patterned magnetic recording media
CN102604459A (en) * 2012-03-09 2012-07-25 上海大学 UV (ultraviolet) cured high-rigidity wear-resistant flame-retardant coating material and preparation method
US20140106080A1 (en) * 2010-07-19 2014-04-17 Armstrong World Industries, Inc. Ultraviolet curable coating
CN103937400A (en) * 2013-01-17 2014-07-23 合众(佛山)化工有限公司 Preparation method of scratch and yellowing resistant polyurethane woodenware glossy white finish paint
CN104449393A (en) * 2014-09-16 2015-03-25 天长市银狐漆业有限公司 Super temperature-difference resistant and salt-mist corrosion resistant asphalt varnish and preparation method thereof
CN106084651A (en) * 2016-07-29 2016-11-09 神盾防火科技有限公司 A kind of sports buildings floor glue and preparation method and application
CN107001856A (en) * 2014-12-04 2017-08-01 佩什托普公司 Radiation curable coating composition
WO2018067650A1 (en) 2016-10-05 2018-04-12 Afi Licensing Llc Led curable coatings for flooring comprising diamond particles and methods for making the same
WO2018067670A1 (en) 2016-10-05 2018-04-12 Afi Licensing Llc Uv curable abrasion resistant coating
WO2018067661A1 (en) * 2016-10-05 2018-04-12 Afi Licensing Llc Abrasion resistant coating
EP3277760B1 (en) 2015-04-03 2019-02-27 Armstrong World Industries, Inc. Scratch resistant coating
EP3277759B1 (en) 2015-04-03 2019-02-27 Armstrong World Industries, Inc. Scratch resistant coating composition with a combination of hard particles
US10450480B2 (en) 2013-03-13 2019-10-22 Hentzen Coatings, Inc. Water-reducible single-component moisture-curing polyurethane coatings
US20200055084A1 (en) * 2016-10-05 2020-02-20 Afi Licensing Llc Wood substrate including an abrasion resistant coating
EP3523386A4 (en) * 2016-10-05 2020-06-10 AFI Licensing LLC Floor coatings comprising a resin, a cure system and diamond particles and methods of making the same
TWI826591B (en) * 2018-11-16 2023-12-21 日商住友電氣工業股份有限公司 Resin composition, optical fiber and method of manufacturing optical fiber

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014481A1 (en) * 1999-08-25 2001-03-01 Ecolab Inc. Method for removing an ultraviolet light cured floor finish, removable ultraviolet light curable floor finish and strippable finished floor
US8258225B2 (en) * 2000-12-08 2012-09-04 Ppg Industries Ohio, Inc Coating compositions providing improved mar and scratch resistance and methods of using the same
EP1377635A4 (en) * 2001-02-26 2005-06-01 Tandem Prod Inc Anti-abrasive fire retardant composition
US20080063844A1 (en) * 2001-06-29 2008-03-13 Mannington Mills, Inc. Surface coverings containing aluminum oxide
DE10144531B4 (en) * 2001-09-11 2006-01-19 Henkel Kgaa UV-curable anti-fingerprint coatings, methods for coating and using a solvent-free coating agent
US6844374B2 (en) * 2001-10-03 2005-01-18 Lord Corporation Enhanced scratch resistant coatings using inorganic fillers
US6942924B2 (en) 2001-10-31 2005-09-13 Chemat Technology, Inc. Radiation-curable anti-reflective coating system
GB2383332B (en) * 2001-12-20 2005-08-17 Whitford Plastics Ltd Coating system for flexible extrusions
ITTO20020069A1 (en) * 2002-01-24 2003-07-24 Metlac Spa PAINT FOR PLASTIC MATERIALS AND PAINTING METHOD USING SUCH PAINT.
US20040260003A1 (en) * 2002-02-26 2004-12-23 Tweet David E. Anti-abrasive fire retardant composition
US6833186B2 (en) * 2002-04-10 2004-12-21 Ppg Industries Ohio, Inc. Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same
US6822063B2 (en) 2002-08-27 2004-11-23 Ecolab Inc. Highly durable waterborne radiation cured coating
US20040071978A1 (en) * 2002-10-15 2004-04-15 Omnova Solutions Inc. Laminate and method of production
US6869675B2 (en) * 2002-11-12 2005-03-22 Eastman Kodak Company Durable overcoat material
US8124676B2 (en) * 2003-03-14 2012-02-28 Eastman Chemical Company Basecoat coating compositions comprising low molecular weight cellulose mixed esters
US7893138B2 (en) 2003-03-14 2011-02-22 Eastman Chemical Company Low molecular weight carboxyalkylcellulose esters and their use as low viscosity binders and modifiers in coating compositions
US8039531B2 (en) * 2003-03-14 2011-10-18 Eastman Chemical Company Low molecular weight cellulose mixed esters and their use as low viscosity binders and modifiers in coating compositions
US8461234B2 (en) * 2003-03-14 2013-06-11 Eastman Chemical Company Refinish coating compositions comprising low molecular weight cellulose mixed esters
CN100543073C (en) * 2003-08-08 2009-09-23 优泊公司 Thermoplastic resin film
US20050154109A1 (en) * 2004-01-12 2005-07-14 Minyu Li Floor finish with lightening agent
US20050154108A1 (en) * 2004-01-12 2005-07-14 Minyu Li Floor finish with lightening agent
US20050154084A1 (en) * 2004-01-12 2005-07-14 Ecolab Inc. Floor finish with lightening agent
US7748177B2 (en) 2004-02-25 2010-07-06 Connor Sport Court International, Inc. Modular tile with controlled deflection
DK1722947T3 (en) * 2004-03-11 2011-03-28 Akzo Nobel Coatings Int Bv Repair of natural damage during the production of wood items
US8397466B2 (en) 2004-10-06 2013-03-19 Connor Sport Court International, Llc Tile with multiple-level surface
US20090235605A1 (en) * 2004-10-06 2009-09-24 Thayne Haney Method of Making A Modular Synthetic Floor Tile Configured For Enhanced Performance
US8407951B2 (en) 2004-10-06 2013-04-02 Connor Sport Court International, Llc Modular synthetic floor tile configured for enhanced performance
US7498061B2 (en) * 2004-12-17 2009-03-03 Ppg Industries Ohio, Inc. Method for reducing face checking of a wood product
EP1831020A4 (en) * 2004-12-21 2010-07-21 Mitsubishi Polyester Film Inc In-line thermally curable coating with peroxide curing agent
US7402536B2 (en) * 2005-01-21 2008-07-22 Anji Mountain Bamboo Rug Co. Flexible bamboo chair pad
US9061482B2 (en) * 2005-01-21 2015-06-23 Gfh Enterprises, Inc. Flexible chair pad
US20110143615A1 (en) * 2005-01-21 2011-06-16 Gold Darryl S Foldable and flexible laminated mat
US20080280092A1 (en) * 2005-01-21 2008-11-13 Gold Darryl S Indoor and outdoor bamboo area rug
USD656250S1 (en) 2005-03-11 2012-03-20 Connor Sport Court International, Llc Tile with wide mouth coupling
US20060222829A1 (en) * 2005-04-01 2006-10-05 E Dean Roy Substrates coated with coating systems that include a treatment layer
US7365046B2 (en) * 2005-04-15 2008-04-29 Ecolab Inc. Method for stripping floor finishes using composition that thickens upon dilution with water
US7588645B2 (en) * 2005-04-15 2009-09-15 Ecolab Inc. Stripping floor finishes using composition that thickens following dilution with water
US7786183B2 (en) * 2005-06-20 2010-08-31 Dow Global Technologies Inc. Coated glass articles
US7781493B2 (en) * 2005-06-20 2010-08-24 Dow Global Technologies Inc. Protective coating for window glass
US7674760B2 (en) * 2005-10-18 2010-03-09 Ecolab Inc. Floor stripper/cleaner containing organic acid-base pair
US7900416B1 (en) 2006-03-30 2011-03-08 Connor Sport Court International, Inc. Floor tile with load bearing lattice
US20070282038A1 (en) * 2006-06-05 2007-12-06 Deepanjan Bhattacharya Methods for improving the anti-sag, leveling, and gloss of coating compositions comprising low molecular weight cellulose mixed esters
US20080085953A1 (en) * 2006-06-05 2008-04-10 Deepanjan Bhattacharya Coating compositions comprising low molecular weight cellulose mixed esters and their use to improve anti-sag, leveling, and 20 degree gloss
WO2008050304A2 (en) * 2006-10-24 2008-05-02 Ecolab Inc. System and method for treating floors
ATE423175T1 (en) * 2006-12-05 2009-03-15 Dsm Ip Assets Bv RADIATION CURED COATING COMPOSITION
US7955696B2 (en) * 2006-12-19 2011-06-07 Dow Global Technologies Llc Composites and methods for conductive transparent substrates
EP2094463B1 (en) 2006-12-19 2016-07-27 Dow Global Technologies LLC Encapsulated panel assemblies and method for making same
BRPI0719411B1 (en) * 2006-12-19 2018-07-31 Dow Global Technologies Inc. Additive for a coating composition, method for improving the performance of a coating composition, method for coating a substrate, article, coating composition and kit for preparing a coating composition.
CN101547953B (en) * 2007-04-24 2012-06-13 陶氏环球技术公司 One component glass primer including oxazoladine
ATE544797T1 (en) * 2007-04-24 2012-02-15 Dow Global Technologies Llc ADDITIVE TO PRIMER COMPOSITIONS
WO2008144535A2 (en) * 2007-05-17 2008-11-27 Johnsondiversey, Inc. Surface coating system and method
JP5680410B2 (en) * 2007-07-12 2015-03-04 ダウ グローバル テクノロジーズ エルエルシー Colored primer composition and method
WO2009020782A2 (en) * 2007-08-06 2009-02-12 Oft Labs Llc Oral fluid assays for the detection of heavy metal exposure
US20090148654A1 (en) * 2007-12-06 2009-06-11 E. I. Du Pont De Nemours And Company Fluoropolymer compositions and treated substrates
CN101903483B (en) * 2007-12-18 2014-09-10 陶氏环球技术公司 Protective coating for window glass having enhanced adhesion to glass bonding adhesives
AU2009241730B2 (en) * 2008-04-30 2014-06-26 Armstrong World Industries, Inc. Biobased resilient floor tile
CN102203194B (en) * 2008-10-29 2013-08-14 陶氏环球技术有限责任公司 Low energy surface bonding system containing a primer with long open time
JP5756604B2 (en) 2009-07-21 2015-07-29 リー ヘイル ダニー Compositions for removable gel applications for nails and methods for their use
US8881482B2 (en) 2010-01-22 2014-11-11 Connor Sport Court International, Llc Modular flooring system
CN102231998B (en) 2010-01-22 2015-09-09 康纳尔运动场国际有限责任公司 Modular sub-flooring system
US8505256B2 (en) 2010-01-29 2013-08-13 Connor Sport Court International, Llc Synthetic floor tile having partially-compliant support structure
CA2755151C (en) * 2010-10-18 2014-06-17 Valspar Sourcing, Inc. Anti-graffiti coatings
BR112013016979A2 (en) 2011-02-02 2016-10-25 Ashland Licensing & Intellectu scratch resistant gel coating
US9868862B2 (en) 2011-05-25 2018-01-16 Diversey, Inc. Surface coating system and method of using surface coating system
ES2896408T3 (en) * 2015-10-12 2022-02-24 Ppg Coatings Tianjin Co Ltd Finishing composition, method of coating substrates with it and substrate
US9975314B1 (en) * 2017-08-31 2018-05-22 Chase Corporation Fire resistant coatings for wood veneer panels
US20210179887A1 (en) 2019-12-16 2021-06-17 Illinois Tool Works Inc. Filled composition with rapid uv cure to form thick coating
CN113045820B (en) * 2019-12-28 2022-08-19 合肥杰事杰新材料股份有限公司 High-hardness scratch-resistant polypropylene composition and preparation method thereof
CN113773741B (en) * 2021-09-17 2022-05-06 广东希贵光固化材料有限公司 EB solidified aluminum substrate wear-resistant coating

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059551A (en) 1972-11-08 1977-11-22 Tile Council Of America, Inc. Mortar compositions
US3897372A (en) 1974-04-17 1975-07-29 Grace W R & Co Smoke-flame retardant hydrophilic urethane and method
GB1527668A (en) 1975-10-30 1978-10-04 Burns & Russell Co Smoke and fire resistant compositions
US4216130A (en) 1978-11-13 1980-08-05 Kaiser Aluminum & Chemical Corporation Bauxite as flame-retardant filler for polymer compositions
US4457766A (en) * 1980-10-08 1984-07-03 Kennecott Corporation Resin systems for high energy electron curable resin coated webs
DE3113385A1 (en) 1981-04-02 1982-10-21 Bayer Ag, 5090 Leverkusen LOW-HALOGEN, THERMOPLASTIC POLYURETHANE ELASTOMER IMPROVED FLAME RESISTANCE THROUGH THE ADDITION OF A 4-SUBSTANCE ADDITIVE COMBINATION, ITS PRODUCTION AND USE
US4426488A (en) 1982-05-20 1984-01-17 Wyman Ransome J Elastomeric composition
JPS6172071A (en) 1984-09-17 1986-04-14 Yuuhoo Chem Kk Coating agent composition
US5418271A (en) 1985-07-05 1995-05-23 The Dow Chemical Company Coating composition comprising solids having reversible stress-induced fluidity
US5306739A (en) 1987-12-16 1994-04-26 Mlt/Micro-Lite Technology Corporation Highly filled polymeric compositions
US5198521A (en) 1988-08-29 1993-03-30 Armstrong World Industries, Inc. Conductive polyurethane-urea/polyethylene oxide polymer
US5077330A (en) 1988-08-29 1991-12-31 Armstrong World Industries, Inc. Conductive polyurethane-urea/polyethylene oxide
DE3903537A1 (en) 1989-02-07 1990-08-09 Basf Ag REFRIGERANT IMPACT TOE, FLOWABLE, THERMOPLASTIC POLYURETHANE ELASTOMER COMPOSITIONS, METHOD FOR THEIR PRODUCTION AND THEIR USE
US5014468A (en) * 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
DE4137139A1 (en) 1991-11-12 1993-05-13 Basf Lacke & Farben THERMOPLASTIC PLASTIC FILM CONTAINING INORGANIC FILLERS, METAL-PLASTIC COMPOSITE CONTAINING INORGANIC FILLERS, AND METHOD FOR PRODUCING THE SAME
DE4142816C1 (en) 1991-12-23 1993-03-04 Herberts Gmbh, 5600 Wuppertal, De
DE4231874A1 (en) 1992-09-23 1994-03-24 Martinswerk Gmbh Process for the production of an aluminum hydroxide Al (OH) ¶3¶ with a rounded grain surface
US5725960A (en) * 1992-12-28 1998-03-10 Nippon Zeon Co., Ltd. Molded articles having hard coat layer and method for producing same
JPH07266511A (en) * 1994-03-31 1995-10-17 Dainippon Printing Co Ltd Matte decorative sheet having scratch resistance
JP2974576B2 (en) * 1994-05-25 1999-11-10 リンテック株式会社 Slippery hard coat film and method for producing the same
GB9410867D0 (en) * 1994-05-31 1994-07-20 Ucb Sa Radiation curable compositions
US5567763A (en) 1994-08-15 1996-10-22 Bayer Corporation Polyurethane spray systems having improved flame-retardant properties
JP2740943B2 (en) * 1994-10-31 1998-04-15 大日本印刷株式会社 Cosmetic material with wear resistance
US5600089A (en) 1994-12-07 1997-02-04 The United States Of America As Represented By The Secretary Of The Navy Highly plasticized elastomers

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040013815A1 (en) * 2000-05-08 2004-01-22 Georg Gros Method for coating sheet metals
US20080305274A1 (en) * 2000-05-08 2008-12-11 Georg Gros Process for coating metal sheets
US20060093755A1 (en) * 2000-09-25 2006-05-04 Klaus Bittner Method for pretreating and coating metal surfaces, prior to forming, with a paint-like coating and use of the substrates thus coated
US20040058089A1 (en) * 2001-10-10 2004-03-25 Sport Court, Inc. Floor tile coating method and system
US6800325B2 (en) * 2002-02-25 2004-10-05 Erwin Behr Automotive Gmbh Method of producing an interior fitment for vehicles, and interior fitment produced accordingly
US20030162045A1 (en) * 2002-02-25 2003-08-28 Erwin Behr Automotive Gmbh Method of producing an interior fitment for vehicles, and interior fitment produced accordingly
US7192992B2 (en) 2004-02-04 2007-03-20 Ecology Coating, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions for coating thermally sensitive surfaces and/or rusted surfaces and methods, processes and assemblages for coating thereof
US20070082964A1 (en) * 2004-02-04 2007-04-12 Ecology Coating, Inc. Environmentally Friendly, 100% Solids, Actinic Radiation Curable Coating Compositions and Coated Surfaces and Coated Articles Thereof
US20050170280A1 (en) * 2004-02-04 2005-08-04 Encology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions for coating thermally sensitive surfaces and/or rusted surfaces and methods, processes and assemblages for coating thereof
US20050171227A1 (en) * 2004-02-04 2005-08-04 Ecology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof
US20080300337A1 (en) * 2004-02-04 2008-12-04 Ecology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof
US7425586B2 (en) 2004-02-04 2008-09-16 Ecology Coatings, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof
US20050170100A1 (en) * 2004-02-04 2005-08-04 Weine Ramsey Sally J. Process for applying an opaque, corrosion resistant, 100% solids, UV curable finish to parts for underhood use in motor vehicles
US7151123B2 (en) 2004-02-04 2006-12-19 Ecology Coating, Inc. Environmentally friendly, 100% solids, actinic radiation curable coating compositions and coated surfaces and coated articles thereof
US7238731B2 (en) 2004-03-08 2007-07-03 Ecology Coating, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof
US20060041047A1 (en) * 2004-03-08 2006-02-23 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom and methods, processes and assemblages for coating thereof
US7498362B2 (en) 2004-03-08 2009-03-03 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom and methods, processes and assemblages for coating thereof
US20050196605A1 (en) * 2004-03-08 2005-09-08 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating metal objects, coated objects therefrom, and methods, processes and assemblages for coating thereof
US20050203202A1 (en) * 2004-03-13 2005-09-15 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating composites, coated composites therefrom, and methods, processes and assemblages for coating thereof
US7323248B2 (en) 2004-03-13 2008-01-29 Ecology Coatings, Inc. Environmentally friendly coating compositions for coating composites, coated composites therefrom, and methods, processes and assemblages for coating thereof
US20050203205A1 (en) * 2004-03-13 2005-09-15 Weine Ramsey Sally J. Composition of matter comprising UV curable materials incorporating nanotechnology for the coating of fiberglass
US20050234152A1 (en) * 2004-04-16 2005-10-20 Ecology Coatings, Inc. Enviromentally friendly, 100% solids, actinic radiation curable coating compositions for coating surfaces of wooden objects and methods, processes and assemblages for coating thereof
US20070065757A1 (en) * 2005-09-20 2007-03-22 Masahiko Ogino Photo-curable resin composition and a method for forming a pattern using the same
US7935472B2 (en) * 2005-09-20 2011-05-03 Hitachi Chemical Company, Ltd. Photo-curable resin composition and a method for forming a pattern using the same
US20090197036A1 (en) * 2006-01-26 2009-08-06 Lg Chem, Ltd. Wood Flooring With Laminated Wood And HDF Using Symmetric Structure And Process For Manufacturing The Same
US20160208130A1 (en) * 2007-09-26 2016-07-21 Dexerials Corporation Hard coat film
US20100330359A1 (en) * 2007-09-26 2010-12-30 Sony Chemical & Information Device Corporation Hard coat film
US20140147662A1 (en) * 2007-09-26 2014-05-29 Sony Chemical & Information Device Corporation Hard coat film
US8722155B2 (en) * 2010-03-12 2014-05-13 Los Alamos National Security, Llc Method to manufacture bit patterned magnetic recording media
US20120034396A1 (en) * 2010-03-12 2012-02-09 Los Alamos National Security, Llc Method to manufacture bit patterned magnetic recording media
US20140106080A1 (en) * 2010-07-19 2014-04-17 Armstrong World Industries, Inc. Ultraviolet curable coating
CN101928492A (en) * 2010-09-01 2010-12-29 浙江阳阳包装有限公司 Specific coloring agent for electric aluminum coating and preparation method thereof
CN102604459A (en) * 2012-03-09 2012-07-25 上海大学 UV (ultraviolet) cured high-rigidity wear-resistant flame-retardant coating material and preparation method
CN103937400A (en) * 2013-01-17 2014-07-23 合众(佛山)化工有限公司 Preparation method of scratch and yellowing resistant polyurethane woodenware glossy white finish paint
US10450480B2 (en) 2013-03-13 2019-10-22 Hentzen Coatings, Inc. Water-reducible single-component moisture-curing polyurethane coatings
CN104449393A (en) * 2014-09-16 2015-03-25 天长市银狐漆业有限公司 Super temperature-difference resistant and salt-mist corrosion resistant asphalt varnish and preparation method thereof
CN107001856A (en) * 2014-12-04 2017-08-01 佩什托普公司 Radiation curable coating composition
US10167359B2 (en) * 2014-12-04 2019-01-01 Perstorp Ab Radiation curing coating composition
EP3277759B2 (en) 2015-04-03 2021-11-24 Armstrong World Industries, Inc. Scratch resistant coating composition with a combination of hard particles
EP3277760B2 (en) 2015-04-03 2021-11-03 Armstrong World Industries, Inc. Scratch resistant coating
EP3277760B1 (en) 2015-04-03 2019-02-27 Armstrong World Industries, Inc. Scratch resistant coating
EP3277759B1 (en) 2015-04-03 2019-02-27 Armstrong World Industries, Inc. Scratch resistant coating composition with a combination of hard particles
CN106084651A (en) * 2016-07-29 2016-11-09 神盾防火科技有限公司 A kind of sports buildings floor glue and preparation method and application
CN110023416A (en) * 2016-10-05 2019-07-16 Afi特许有限责任公司 Wear-resistant paint
CN110023417A (en) * 2016-10-05 2019-07-16 Afi特许有限责任公司 The curable wear-resistant paint of UV
US20190225822A1 (en) * 2016-10-05 2019-07-25 Afi Licensing Llc Abrasion resistant coating
WO2018067661A1 (en) * 2016-10-05 2018-04-12 Afi Licensing Llc Abrasion resistant coating
US20200055084A1 (en) * 2016-10-05 2020-02-20 Afi Licensing Llc Wood substrate including an abrasion resistant coating
EP3523379A4 (en) * 2016-10-05 2020-05-13 AFI Licensing LLC Uv curable abrasion resistant coating
EP3523378A4 (en) * 2016-10-05 2020-05-13 AFI Licensing LLC Abrasion resistant coating
EP3523377A4 (en) * 2016-10-05 2020-05-20 AFI Licensing LLC Wood substrate including an abrasion resistant coating
EP3523386A4 (en) * 2016-10-05 2020-06-10 AFI Licensing LLC Floor coatings comprising a resin, a cure system and diamond particles and methods of making the same
US11033931B2 (en) * 2016-10-05 2021-06-15 Ahf, Llc Wood substrate including an abrasion resistant coating
WO2018067670A1 (en) 2016-10-05 2018-04-12 Afi Licensing Llc Uv curable abrasion resistant coating
WO2018067650A1 (en) 2016-10-05 2018-04-12 Afi Licensing Llc Led curable coatings for flooring comprising diamond particles and methods for making the same
TWI826591B (en) * 2018-11-16 2023-12-21 日商住友電氣工業股份有限公司 Resin composition, optical fiber and method of manufacturing optical fiber

Also Published As

Publication number Publication date
US6228433B1 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US6228433B1 (en) Abrasion resistant urethane coatings
JP3747065B2 (en) Abrasion-resistant film-forming coating composition and film-coated article
EP0687713B1 (en) Radiation-curable oligomer-based coating composition
JP3298891B2 (en) Paint composition, method for producing paint composition, and method for producing dispersion of inorganic oxide sol
US9512322B2 (en) Radiation curable liquid composition for low gloss coatings
US6174977B1 (en) Cold curable resin composition and base material coated with the same
KR20100072003A (en) Photocurable resin composition
US5569498A (en) Process for the preparation of shaped articles based on acrylic polymers coated with an antiscratch and antiabrasion film
JP5722210B2 (en) Ultraviolet shielding laminated coating, substrate with laminated coating, and method for producing the same
JP3477701B2 (en) Paint composition
CN112063290A (en) Ultraviolet-curing matte clear-surface woodenware coating and preparation method thereof
EP0864618A2 (en) UV curable hardcoat compositions and processes
JPH11505881A (en) Coating materials based on hydroxyl-containing polyacrylate resins and their use in processes for the production of multilayer coatings
JP2019006897A (en) Photocurable resin composition and sheet
MX2007010479A (en) Radiation curable putty compositions and methods for refinishing a substrate using such compositions.
KR0154868B1 (en) The method of preparation for urethane acrylate digomer and ultraviolet rays -hardening coating composition
JP2002038056A (en) Coating composition curable by actinic radiation
JPH01282174A (en) Covering method for base surface of concrete
KR20180030705A (en) Coating composition
JP2002363483A (en) Acrylic resin for coating material, acrylic urethane resin composition for coating material and acrylic melamine resin composition for coating material
JP3828398B2 (en) Painting method
JPH05209031A (en) Resin composition
CN114456687B (en) Photo-curing matte clean-surface wood coating and preparation method thereof
JP3892933B2 (en) Active energy ray-curable resin composition and film forming method using the same
JP4256119B2 (en) Light-shielding application film, UV curable adhesive film, and application method using the film

Legal Events

Date Code Title Description
AS Assignment

Owner name: PERMAGRAIN PRODUCTS, INC,, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WITT, ALVIN;REEL/FRAME:011881/0361

Effective date: 20010515

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION