US20010054680A1 - Process and system for the optical inspection of transparent containers - Google Patents

Process and system for the optical inspection of transparent containers Download PDF

Info

Publication number
US20010054680A1
US20010054680A1 US09/826,284 US82628401A US2001054680A1 US 20010054680 A1 US20010054680 A1 US 20010054680A1 US 82628401 A US82628401 A US 82628401A US 2001054680 A1 US2001054680 A1 US 2001054680A1
Authority
US
United States
Prior art keywords
container
transparency
light
light field
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/826,284
Other versions
US6452156B2 (en
Inventor
Peter Lindner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Assigned to KRONES AG reassignment KRONES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINDNER, PETER
Publication of US20010054680A1 publication Critical patent/US20010054680A1/en
Application granted granted Critical
Publication of US6452156B2 publication Critical patent/US6452156B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9036Investigating the presence of flaws or contamination in a container or its contents using arrays of emitters or receivers

Definitions

  • the invention pertains to a process according to the introductory clause of claim 1 and to a system according to the introductory clause of claim 2 .
  • the intensity of the light at the two-dimensional opening of the diffuser is the same for all of the bottles passing in front of it and because the bottles can have different degrees of transparency as a result the material of which they are made and/or the wear to which they have been subjected, the brightness of the images produced necessarily varies also, which considerably impairs the quality of the inspection results. Overexposed images are almost impossible to evaluate.
  • LED screens are now also being used as illuminating units for the optical inspection of at least partially transparent containers.
  • the LEDs of the light screen are activated jointly and produce light of a certain intensity.
  • An upline measuring device determines the degree of transparency of each container, and the light intensity is adjusted if necessary. If the degrees of transparency of the individual containers differ significantly from each other, however, this adjustment represents only a compromise applicable to the few containers passing through the inspection area.
  • the invention is based on the task of providing a process of the general type indicated above and a system suitable for implementing the process, by means of which the containers can be inspected with uniformly high quality regardless of variations in their degrees of transparency.
  • a traveling light field which is configured for each individual container, travels along with the container.
  • each container can be inspected more effectively than it can be with a stationary light field, which is the same for all of the containers being inspected simultaneously.
  • variations in the degrees of transparency can be compensated in such a way that the image used for the evaluation of one container will be essentially equal in brightness to the image used for the evaluation of another container with a different degree of transparency.
  • the influence of the individual degree of transparency on the quality of the evaluation is eliminated, and the accuracy of the inspection remains on a uniformly high level.
  • the LED light screen in the device has LEDs which can be activated either individually or in groups, it is possible for a control unit to configure the light field so that it is adapted to each container to be inspected, this light field then traveling synchronously with the container through the inspection area.
  • the measuring unit determines the individual degree of transparency of each container.
  • the light intensity in the traveling light field can be adjusted so that variations in the degrees of transparency between containers are compensated. This leads to the situation that the camera used for inspection produces images of equal brightness for all containers, regardless of their individual degrees of transparency. There are no longer any significant differences in brightness between the images. Dirt or damage is thus detected with uniformly high quality.
  • the individually activated or group-activated LEDs configure a different light field for each container in front of the light screen and because this field travels along with the container, it is easy for several containers to be inspected simultaneously, even though the illumination is adapted individually to each one.
  • the device is especially suitable for the inspection of upright bottles of plastic or glass, the light being either transmitted through the side walls of the container or incident upon them.
  • the bottles can also be rotated around their longitudinal axes during the inspection process if desired. This does not exclude the possibility that the bottom surfaces of the containers or the areas around the mouth are also inspected in the same way.
  • the brightness of the images is selected so that even opaque layers of dirt are recognized, whereas no containers are rejected in error as a result of insufficient brightness.
  • the light intensity in the traveling light field and/or the imaging sensitivity over the height of the image is adjusted to a uniform value for the individual overall degree of transparency of the container. This alone is enough to provide high inspection quality in practical applications in which the degrees of transparency of the containers do not fluctuate significantly in the height direction.
  • the concomitant motion of the traveling light field and its associated container and the adjustment of the light intensity of this traveling light field to the individual degree of transparency of the container can be easily implemented in terms of the process technology involved by means of an LED light screen consisting of a plurality of LEDs, which can be activated either individually or in groups. It is advisable for the LEDs to be activated in rows parallel to the axis of the container. It is especially favorable for the illumination to be continuous.
  • the adaptation of the light intensity in the traveling light field for the purpose of equalizing the variations in the degree of transparency or for adapting the intensity to the individual degree of transparency can be easily accomplished in terms of the process technology involved by adjusting the current strength and/or the flash time and/or the number or distribution of the activated LEDs.
  • the actual distance between the container and the camera can be a parameter of such variation, or, in the case of a container which is not round, the rotational position during imaging in relationship to the camera can be used as a parameter.
  • the information required to take these parameters into account can be easily defined in terms of the process technology involved by appropriate sensors or stored programs.
  • control device is designed in such a way that it configures the light field on the LED light screen for each container and moves it through the inspection area together with the container.
  • the compensation device uses the information it receives from the measuring device to adjust the light intensity in the traveling light field accordingly.
  • the control device and the compensation device work together to ensure that the images are uniformly bright regardless of the variations in the degrees of transparency.
  • control device and the compensation device are combined into a common electronic control unit, to which the measurement results of the measuring device and, for example, the position and velocity of each container in the inspection area are transmitted in the form of signals.
  • a measuring device in the form of a linear measuring array with several measuring cells and measuring sections and possibly several light sources can be favorable.
  • different brightnesses in the measuring cells for example, or different light intensities of the light sources required to achieve equal brightnesses at the measuring cells are taken into account.
  • the LEDs in the LED light screen can be activated in rows parallel to the axis of the container.
  • the traveling light field can be configured by one or more rows; all the LEDs in one row do not necessarily have to be activated.
  • the light intensity of the traveling light field can be adjusted to the measured degree of transparency or to the transparency profile by making the appropriate changes to the current strength and/or the flash time. It is also possible, however, to vary the number and/or the distribution of the activated LEDs.
  • the microprocessor can have a program memory section, where parameters used repeatedly during the adjustment of the light intensity and/or of the imaging sensitivity can be stored for a certain type of container. This is an especially effective measure in cases where a simple measuring device is provided to determine merely an average degree of transparency and where an average container transparency profile is known.
  • the device is especially suitable for the inspection of the side walls of glass or plastic bottles according to the transmitted light or incident light principle. It is also conceivable, however, that the bottoms or mouths of the bottles could also be inspected.
  • FIG. 1 is a schematic diagram of a vertical cross section through a system for the optical inspection of containers, extending longitudinally with respect to the transport direction, and
  • FIG. 2 is a schematic view of the system according to FIG. 1, looking down from above.
  • a system V shown schematically in FIGS. 1 and 2 in vertical cross section and a top view, respectively, for the optical inspection of containers B, has an inspection area A, through which a straight transport device F passes, which can be driven in the direction of the arrow 9 in what amounts essentially to continuous motion.
  • a sensor 1 Upstream of the inspection area A there is a sensor 1 , which measures the transport distance traveled or the transport velocity, and which is connected to a control unit C and to a CCD camera 11 , which is aimed at the inspection area A, so that it can transmit signals to them.
  • a measuring device M is provided upstream of the inspection area or even in this area, which, in the embodiment shown here, consists of a constant light source 19 and, facing it, a linear measuring array 7 , consisting of several measuring cells 8 , arranged in a vertical stack.
  • the measuring device M is also connected to the control unit C.
  • the containers B are bottles of plastic or glass, for example, and are therefore at least partially transparent. With a sufficient distance allowed between them, they are transported at a sufficient transport velocity through the inspection area A. In the embodiment shown here, at least two containers are present at any one time in the inspection area A. It would also be possible, however, for more than two containers to be inspected simultaneously or possibly for only one to be inspected at a time.
  • the containers 8 are rotated around their longitudinal axis by means of, for example, two conveyor belts 16 , 15 of the transport device, which travel at different speeds.
  • the CCD camera 11 Opposite the CCD camera 11 is at least one stationary LED light screen D, which serves as the illumination device. It consists of a plurality of LEDs L, which can be activated either individually or in groups.
  • An auxiliary device 10 (not shown in detail) can be set up in front of the lens of the CCD camera 11 so that the CCD camera 11 can generate images of the containers along the entire inspection area A, as is standard practice.
  • control unit C there is a control device 2 , by means of which a light field can be generated from a specific number of activated LEDs L, this field being configured for a specific container B.
  • a driver device 14 shifts this field across the LED light screen D, thus creating a traveling light field which moves at the same speed as the container.
  • control unit C also includes a compensation device 3 , which adapts the light intensity in the traveling light field to the degree of transparency of the specific container B in question, this transparency having been determined previously by the measuring device M.
  • the control unit C also comprises at least one microprocessor 4 and a memory unit 5 , into which certain parameters can be programmed. An input or display field 6 for the control unit C can also be provided.
  • the CCD camera 11 is connected to an evaluation circuit 12 , in which the images derived from the containers are evaluated in order to determine whether any of the containers are damaged and/or dirty.
  • a stored reference image can be used for this purpose, for example. If a damaged or dirty container B is found, it is separated from the other containers downstream of the inspection area A.
  • the evaluation circuit 12 is connected, for example, to an ejector 13 , which it can actuate.
  • the light field which has been assigned to each container B and configured individually for it is, for example, formed by at least one row R 1 , R 2 of LEDs L, parallel to the axis of the container in question (FIG. 1). It would also be possible, however, for the LEDs to be activated in some other pattern such as a group conforming to the contours of the container.
  • the row R 1 , R 2 of activated LEDs L configuring the light field travels in the transport direction in synchrony with the container B.
  • the CCD camera 11 generates partial images of each container B, which is rotated at least once around its longitudinal axis as it passes by. The partial images are combined into a single image for each container and then evaluated.
  • the light intensity of the concomitantly moving light field is adapted to the degree of transparency of the container in such a way that the images produced by the CCD camera are of approximately equal brightness, regardless of variations among the measured degrees of transparency of the individual containers. For example, for a container which is darker than the others, that is, which is less transparent, the light intensity is increased and vice versa. This can be accomplished by the automatic control of the current strength and/or of the flash time and/or of the change in the number (per unit of area) of groups of activated LEDs L.
  • the measuring device M shown here is made up of separate measuring cells 8 , it measures a transparency profile for the container in question.
  • This profile could show, for example, a lower degree of transparency in the shoulder and mouth area of the container and a higher degree of transparency in the main body area of the container.
  • the compensation device 3 varies the light intensity over the height of the container in such a way that the container, through which light has been transmitted or upon which light has fallen, appears equally bright to the CCD camera 11 over its entire height. It is conceivable that the measuring device could be designed in such a way that it measures variations in the degree of transparency in the transport direction, so that the light intensity in the traveling light field can also be varied in the transport direction.
  • a previously determined transparency profile can be stored in the program of the microprocessor 4 or in the memory unit 5 ; the automatic control of the light intensity of the light field is then based on this stored profile.
  • FIG. 2 shows in broken line another control unit C′, which is connected to the measuring device M and also to the CCD camera 11 .
  • the control unit C′ can be designed in the same way as the control unit C.
  • this second unit it is possible to vary the imaging sensitivity for each container B on the camera side in correspondence with the measured degree of transparency, so that images of approximately equal brightness are produced even for containers with different degrees of transparency.
  • the regions of pixels assigned to the individual containers can be varied in their sensitivity in correspondence with the movement of the container.
  • the two measures i.e., adapting the light intensity of the LEDs L and modulating the imaging sensitivity for each container, can be taken in combination either alternatively or additively.
  • the system V shown here serves, for example, to inspect the containers (bottles) B either by means of light which is transmitted through or incident upon the side walls.
  • the system can also be used to inspect the bottoms or the mouths or the sealing surfaces or to inspect only these areas.
  • the transport direction F is shown proceeding in a straight line.
  • the transport device could also be circular, etc.
  • the LEDs L are preferably activated row by row, the vertical rows thus succeeding each other in the transport direction in order to generate the traveling light field moving together with the container.
  • the traveling light field could also be generated, however, by the actuation of individual LEDs L.
  • the adjustment of the light intensity and/or of the imaging sensitivity is accomplished in such a way that images of approximately equal brightness are generated, the brightness of which is so high that even the smallest possible areas of damage or opaque areas or dirt on or in the containers can be reliably detected.
  • each camera is assigned to an individual container and follows its movement by means of controlled pivoting mirrors (DE 3,407,386 C2).
  • the measuring device M measures the individual degree of transparency of each container B, either as an average degree of transparency or in the form of a transparency profile.
  • the information thus obtained is used in the control unit C to control the light intensity of the light field which has been configured for this container upon its arrival in the inspection area A in such a way that the CCD camera 11 sees all the containers at one selected brightness level, which is independent of the individual degrees of transparency.
  • the light field configured for the container moves as a traveling light field across the LED light screen D in synchrony with the container in question.
  • the container is rotated around its longitudinal axis as it travels.
  • the CCD camera 11 produces partial images of each container at certain intervals as the container travels through the inspection area A.
  • the partial images are combined into a single image of the container and evaluated in the evaluation unit 12 and compared with a reference. If the evaluation indicates the presence of damage or dirt, the ejector 13 is actuated to remove the container in question at the proper moment and to transfer it to a discharge conveyor belt or to a collection bin 17 .
  • the images can also be automatically controlled so that they are all of approximately the same brightness by the auxiliary use of the control unit C′ on the imaging side, or they can be controlled only by the use of traveling light field on the imaging side.
  • each container to be inspected or each of several containers to be inspected simultaneously has its own individually configured light field, which travels along with it, a high degree of freedom for managing the inspection process by both open-loop and feedback control techniques is inherent in the process, so that the effects of different degrees of transparency or transparency profiles on the brightness of the images can be eliminated and the inspection quality can be increased.
  • the changeover from a stationary light field to individual traveling light fields for the containers as they are being inspected assumes that an illumination device with precise open-loop and feedback controls is available.
  • At least one LED light screen which has LEDs D, which can be activated either individually, in groups, or in rows, the light intensity of which can be varied quickly enough by adjustment of the current strength and/or the flash time and/or the distribution of the activated LEDs L.
  • Microprocessor control and the performance capacity of the LED light screen make it possible to conduct the inspection process at the high frequency absolutely necessary for modern systems of this type, especially when they are integrated into high-speed container handling processes and/or work together with other high-speed systems.

Abstract

In a process for the optical inspection of at least partially transparent containers in an inspection area with an illuminating device and a camera for producing images to be evaluated, the degree of transparency of each container is determined, and a light field is configured for this specific container. The light intensity of the light field and/or the imaging sensitivity is adapted to the determined degree of transparency, and the traveling light field is shifted through the inspection area in synchrony with the container. The system for implementing the process has an LED light screen with a plurality of LEDs, which can be activated individually or in groups, and a device upstream of the inspection area for measuring the individual degree of transparency of each container. These components are connected to a control unit, which produces the traveling light field for each container and shifts it in synchrony with the container. The control unit also adapts the light intensity of the traveling light field to the degree of transparency found for the container in question.

Description

    SPECIFICATION
  • The invention pertains to a process according to the introductory clause of claim [0001] 1 and to a system according to the introductory clause of claim 2.
  • According to DE 3,532,068 C, several bottles a certain space apart are simultaneously inspected optically as they are being conveyed continuously through an inspection area. Each bottle is rotated at least 360° around its longitudinal axis within the inspection area. A single video camera takes partial pictures of the side walls of the bottles at a certain rate and combines them into a single image for each bottle. These images are then examined in an evaluation unit to determine the presence of damage or dirt. The stationary illuminating unit has a light source with a diffuser in front of it. Because the intensity of the light at the two-dimensional opening of the diffuser is the same for all of the bottles passing in front of it and because the bottles can have different degrees of transparency as a result the material of which they are made and/or the wear to which they have been subjected, the brightness of the images produced necessarily varies also, which considerably impairs the quality of the inspection results. Overexposed images are almost impossible to evaluate. [0002]
  • In practice, LED screens are now also being used as illuminating units for the optical inspection of at least partially transparent containers. The LEDs of the light screen are activated jointly and produce light of a certain intensity. An upline measuring device determines the degree of transparency of each container, and the light intensity is adjusted if necessary. If the degrees of transparency of the individual containers differ significantly from each other, however, this adjustment represents only a compromise applicable to the few containers passing through the inspection area. [0003]
  • The invention is based on the task of providing a process of the general type indicated above and a system suitable for implementing the process, by means of which the containers can be inspected with uniformly high quality regardless of variations in their degrees of transparency. [0004]
  • The task thus defined is accomplished with respect to the process by the features of claim [0005] 1 and with respect to the system by the features of claim 8.
  • According to the process, a traveling light field, which is configured for each individual container, travels along with the container. As a result, each container can be inspected more effectively than it can be with a stationary light field, which is the same for all of the containers being inspected simultaneously. By adapting either the light intensity of the light field on the illumination side and/or the imaging sensitivity on the imaging side to the individual transparency of the container while the container is moving together with its own light field, variations in the degrees of transparency can be compensated in such a way that the image used for the evaluation of one container will be essentially equal in brightness to the image used for the evaluation of another container with a different degree of transparency. As a result, the influence of the individual degree of transparency on the quality of the evaluation is eliminated, and the accuracy of the inspection remains on a uniformly high level. [0006]
  • Because the LED light screen in the device has LEDs which can be activated either individually or in groups, it is possible for a control unit to configure the light field so that it is adapted to each container to be inspected, this light field then traveling synchronously with the container through the inspection area. The measuring unit determines the individual degree of transparency of each container. Under consideration of the measurement results, the light intensity in the traveling light field can be adjusted so that variations in the degrees of transparency between containers are compensated. This leads to the situation that the camera used for inspection produces images of equal brightness for all containers, regardless of their individual degrees of transparency. There are no longer any significant differences in brightness between the images. Dirt or damage is thus detected with uniformly high quality. Because the individually activated or group-activated LEDs configure a different light field for each container in front of the light screen and because this field travels along with the container, it is easy for several containers to be inspected simultaneously, even though the illumination is adapted individually to each one. The device is especially suitable for the inspection of upright bottles of plastic or glass, the light being either transmitted through the side walls of the container or incident upon them. The bottles can also be rotated around their longitudinal axes during the inspection process if desired. This does not exclude the possibility that the bottom surfaces of the containers or the areas around the mouth are also inspected in the same way. The brightness of the images is selected so that even opaque layers of dirt are recognized, whereas no containers are rejected in error as a result of insufficient brightness. [0007]
  • Because variations in the degrees of transparency are compensated on the illumination side and/or on the receiving side, at least two or more containers traveling in the transport direction a certain distance apart can be inspected simultaneously in the inspection area on a high level of inspection quality. [0008]
  • In a simple process variant, the light intensity in the traveling light field and/or the imaging sensitivity over the height of the image is adjusted to a uniform value for the individual overall degree of transparency of the container. This alone is enough to provide high inspection quality in practical applications in which the degrees of transparency of the containers do not fluctuate significantly in the height direction. [0009]
  • It can also be advisable, however, to determine the variations in the transparency of each container in the height direction and to adapt the light intensity and/or the imaging sensitivity in correspondence with these detected variations. [0010]
  • Under certain conditions, variations in the degree of transparency in the transport direction are also determined and equalized on the illumination and/or on the reception side. [0011]
  • The concomitant motion of the traveling light field and its associated container and the adjustment of the light intensity of this traveling light field to the individual degree of transparency of the container can be easily implemented in terms of the process technology involved by means of an LED light screen consisting of a plurality of LEDs, which can be activated either individually or in groups. It is advisable for the LEDs to be activated in rows parallel to the axis of the container. It is especially favorable for the illumination to be continuous. [0012]
  • The adaptation of the light intensity in the traveling light field for the purpose of equalizing the variations in the degree of transparency or for adapting the intensity to the individual degree of transparency can be easily accomplished in terms of the process technology involved by adjusting the current strength and/or the flash time and/or the number or distribution of the activated LEDs. [0013]
  • To increase the inspection quality even more, it can be advisable to vary the light intensity and/or the imaging sensitivity also as a function of the transport position and/or the rotational position of each container in the inspection area. For example, the actual distance between the container and the camera can be a parameter of such variation, or, in the case of a container which is not round, the rotational position during imaging in relationship to the camera can be used as a parameter. The information required to take these parameters into account can be easily defined in terms of the process technology involved by appropriate sensors or stored programs. [0014]
  • With respect to the system, the control device is designed in such a way that it configures the light field on the LED light screen for each container and moves it through the inspection area together with the container. The compensation device uses the information it receives from the measuring device to adjust the light intensity in the traveling light field accordingly. The control device and the compensation device work together to ensure that the images are uniformly bright regardless of the variations in the degrees of transparency. [0015]
  • It is advisable for the control device and the compensation device to be combined into a common electronic control unit, to which the measurement results of the measuring device and, for example, the position and velocity of each container in the inspection area are transmitted in the form of signals. [0016]
  • If the automatic control is based on an average degree of transparency, a simple measuring device with essentially only a single light source and a measurement signal receiver is all that is required. [0017]
  • In the case that the transparency profile of the container is measured and factored into the adjustment of the light intensity or imaging sensitivity, a measuring device in the form of a linear measuring array with several measuring cells and measuring sections and possibly several light sources can be favorable. To obtain this profile information, different brightnesses in the measuring cells, for example, or different light intensities of the light sources required to achieve equal brightnesses at the measuring cells are taken into account. [0018]
  • In a simple embodiment, the LEDs in the LED light screen can be activated in rows parallel to the axis of the container. The traveling light field can be configured by one or more rows; all the LEDs in one row do not necessarily have to be activated. [0019]
  • The light intensity of the traveling light field can be adjusted to the measured degree of transparency or to the transparency profile by making the appropriate changes to the current strength and/or the flash time. It is also possible, however, to vary the number and/or the distribution of the activated LEDs. [0020]
  • Because of the demand for uniformly high inspection quality and because of the high container transport velocities normally used in modem machines, it is advisable for at least one microprocessor with appropriate programmability to be present in the control unit. [0021]
  • The microprocessor can have a program memory section, where parameters used repeatedly during the adjustment of the light intensity and/or of the imaging sensitivity can be stored for a certain type of container. This is an especially effective measure in cases where a simple measuring device is provided to determine merely an average degree of transparency and where an average container transparency profile is known. [0022]
  • The device is especially suitable for the inspection of the side walls of glass or plastic bottles according to the transmitted light or incident light principle. It is also conceivable, however, that the bottoms or mouths of the bottles could also be inspected.[0023]
  • An exemplary embodiment of the object of the invention is explained below on the basis of the drawings: [0024]
  • FIG. 1 is a schematic diagram of a vertical cross section through a system for the optical inspection of containers, extending longitudinally with respect to the transport direction, and [0025]
  • FIG. 2 is a schematic view of the system according to FIG. 1, looking down from above.[0026]
  • A system V, shown schematically in FIGS. 1 and 2 in vertical cross section and a top view, respectively, for the optical inspection of containers B, has an inspection area A, through which a straight transport device F passes, which can be driven in the direction of the [0027] arrow 9 in what amounts essentially to continuous motion. Upstream of the inspection area A there is a sensor 1, which measures the transport distance traveled or the transport velocity, and which is connected to a control unit C and to a CCD camera 11, which is aimed at the inspection area A, so that it can transmit signals to them. In addition, a measuring device M is provided upstream of the inspection area or even in this area, which, in the embodiment shown here, consists of a constant light source 19 and, facing it, a linear measuring array 7, consisting of several measuring cells 8, arranged in a vertical stack. The measuring device M is also connected to the control unit C.
  • The containers B are bottles of plastic or glass, for example, and are therefore at least partially transparent. With a sufficient distance allowed between them, they are transported at a sufficient transport velocity through the inspection area A. In the embodiment shown here, at least two containers are present at any one time in the inspection area A. It would also be possible, however, for more than two containers to be inspected simultaneously or possibly for only one to be inspected at a time. During the inspection, the containers [0028] 8 are rotated around their longitudinal axis by means of, for example, two conveyor belts 16, 15 of the transport device, which travel at different speeds.
  • Opposite the [0029] CCD camera 11 is at least one stationary LED light screen D, which serves as the illumination device. It consists of a plurality of LEDs L, which can be activated either individually or in groups. An auxiliary device 10 (not shown in detail) can be set up in front of the lens of the CCD camera 11 so that the CCD camera 11 can generate images of the containers along the entire inspection area A, as is standard practice.
  • In the control unit C there is a [0030] control device 2, by means of which a light field can be generated from a specific number of activated LEDs L, this field being configured for a specific container B. In correspondence with the signals being received from the sensor 1, a driver device 14, for example, shifts this field across the LED light screen D, thus creating a traveling light field which moves at the same speed as the container. In addition, the control unit C also includes a compensation device 3, which adapts the light intensity in the traveling light field to the degree of transparency of the specific container B in question, this transparency having been determined previously by the measuring device M. The control unit C also comprises at least one microprocessor 4 and a memory unit 5, into which certain parameters can be programmed. An input or display field 6 for the control unit C can also be provided.
  • The [0031] CCD camera 11 is connected to an evaluation circuit 12, in which the images derived from the containers are evaluated in order to determine whether any of the containers are damaged and/or dirty. A stored reference image can be used for this purpose, for example. If a damaged or dirty container B is found, it is separated from the other containers downstream of the inspection area A. For this purpose, the evaluation circuit 12 is connected, for example, to an ejector 13, which it can actuate.
  • The light field which has been assigned to each container B and configured individually for it is, for example, formed by at least one row R[0032] 1, R2 of LEDs L, parallel to the axis of the container in question (FIG. 1). It would also be possible, however, for the LEDs to be activated in some other pattern such as a group conforming to the contours of the container. By successive activation in the transport direction 9, e.g., of one row in each case, the row R1, R2 of activated LEDs L configuring the light field travels in the transport direction in synchrony with the container B. At uniform intervals the CCD camera 11 generates partial images of each container B, which is rotated at least once around its longitudinal axis as it passes by. The partial images are combined into a single image for each container and then evaluated.
  • The light intensity of the concomitantly moving light field is adapted to the degree of transparency of the container in such a way that the images produced by the CCD camera are of approximately equal brightness, regardless of variations among the measured degrees of transparency of the individual containers. For example, for a container which is darker than the others, that is, which is less transparent, the light intensity is increased and vice versa. This can be accomplished by the automatic control of the current strength and/or of the flash time and/or of the change in the number (per unit of area) of groups of activated LEDs L. [0033]
  • Because the measuring device M shown here is made up of separate measuring cells [0034] 8, it measures a transparency profile for the container in question. This profile could show, for example, a lower degree of transparency in the shoulder and mouth area of the container and a higher degree of transparency in the main body area of the container. In accordance with this transparency profile, the compensation device 3 varies the light intensity over the height of the container in such a way that the container, through which light has been transmitted or upon which light has fallen, appears equally bright to the CCD camera 11 over its entire height. It is conceivable that the measuring device could be designed in such a way that it measures variations in the degree of transparency in the transport direction, so that the light intensity in the traveling light field can also be varied in the transport direction. If a measuring device is provided with a light source and only one measuring cell, which means that the measuring device measures only an average degree of transparency for the container in question, then a previously determined transparency profile can be stored in the program of the microprocessor 4 or in the memory unit 5; the automatic control of the light intensity of the light field is then based on this stored profile.
  • FIG. 2 shows in broken line another control unit C′, which is connected to the measuring device M and also to the [0035] CCD camera 11. The control unit C′ can be designed in the same way as the control unit C. With this second unit, it is possible to vary the imaging sensitivity for each container B on the camera side in correspondence with the measured degree of transparency, so that images of approximately equal brightness are produced even for containers with different degrees of transparency. In the case of CCD cameras with a 2-dimensional array, the regions of pixels assigned to the individual containers can be varied in their sensitivity in correspondence with the movement of the container. The two measures, i.e., adapting the light intensity of the LEDs L and modulating the imaging sensitivity for each container, can be taken in combination either alternatively or additively.
  • The system V shown here serves, for example, to inspect the containers (bottles) B either by means of light which is transmitted through or incident upon the side walls. In modified form, the system can also be used to inspect the bottoms or the mouths or the sealing surfaces or to inspect only these areas. The transport direction F is shown proceeding in a straight line. As an alternative, the transport device could also be circular, etc. The LEDs L are preferably activated row by row, the vertical rows thus succeeding each other in the transport direction in order to generate the traveling light field moving together with the container. The traveling light field could also be generated, however, by the actuation of individual LEDs L. The adjustment of the light intensity and/or of the imaging sensitivity is accomplished in such a way that images of approximately equal brightness are generated, the brightness of which is so high that even the smallest possible areas of damage or opaque areas or dirt on or in the containers can be reliably detected. In a departure from the exemplary embodiment just described, it is also possible to use several cameras, in which case each camera is assigned to an individual container and follows its movement by means of controlled pivoting mirrors (DE 3,407,386 C2). [0036]
  • If the equalization or compensation of the degrees of transparency is accomplished by adjusting the light intensity of the traveling light field for each container, then it is possible to work with a fixed exposure time and a fixed exposure setting of the CCD camera. [0037]
  • The sequence of events according to the process of the invention is as follows: [0038]
  • The measuring device M measures the individual degree of transparency of each container B, either as an average degree of transparency or in the form of a transparency profile. The information thus obtained is used in the control unit C to control the light intensity of the light field which has been configured for this container upon its arrival in the inspection area A in such a way that the [0039] CCD camera 11 sees all the containers at one selected brightness level, which is independent of the individual degrees of transparency. The light field configured for the container moves as a traveling light field across the LED light screen D in synchrony with the container in question. The container is rotated around its longitudinal axis as it travels. The CCD camera 11 produces partial images of each container at certain intervals as the container travels through the inspection area A. The partial images are combined into a single image of the container and evaluated in the evaluation unit 12 and compared with a reference. If the evaluation indicates the presence of damage or dirt, the ejector 13 is actuated to remove the container in question at the proper moment and to transfer it to a discharge conveyor belt or to a collection bin 17. The images can also be automatically controlled so that they are all of approximately the same brightness by the auxiliary use of the control unit C′ on the imaging side, or they can be controlled only by the use of traveling light field on the imaging side.
  • Because each container to be inspected or each of several containers to be inspected simultaneously has its own individually configured light field, which travels along with it, a high degree of freedom for managing the inspection process by both open-loop and feedback control techniques is inherent in the process, so that the effects of different degrees of transparency or transparency profiles on the brightness of the images can be eliminated and the inspection quality can be increased. The changeover from a stationary light field to individual traveling light fields for the containers as they are being inspected assumes that an illumination device with precise open-loop and feedback controls is available. This requirement can be satisfied in optimum fashion by at least one LED light screen, which has LEDs D, which can be activated either individually, in groups, or in rows, the light intensity of which can be varied quickly enough by adjustment of the current strength and/or the flash time and/or the distribution of the activated LEDs L. Microprocessor control and the performance capacity of the LED light screen, at least one of which is provided, make it possible to conduct the inspection process at the high frequency absolutely necessary for modern systems of this type, especially when they are integrated into high-speed container handling processes and/or work together with other high-speed systems. [0040]

Claims (19)

1. Process for the optical inspection of a succession of at least partially transparent containers, especially bottles, traveling through an inspection area, in which process the containers are exposed to light from an illuminating device and images of at least parts of the container are produced and evaluated, characterized by the following steps:
the individual degree of transparency of each container is determined;
a light field is configured for this container;
the light intensity of the light field and/or the imaging sensitivity is adjusted to suit the determined degree of transparency of the container; and
the light field is shifted as a traveling light field through the inspection area synchronously with the container so that images of essentially uniform brightness are produced for containers with different degrees of transparency.
2. Process according to
claim 2
, characterized in that at least two containers a certain distance apart in the transport direction are inspected simultaneously in each case, and in that each of the containers is illuminated by a traveling light field individually adapted to its degree of transparency.
3. Process according to
claim 1
, characterized in that the light intensity in the light field and/or the imaging sensitivity over the height of the image is adjusted to a uniform value to represent the overall transparency of the individual container.
4. Process according to
claim 1
, characterized in that variations in the degree of transparency present over the height of the container are also determined, and in that the light intensity in the light field and/or the imaging sensitivity is adjusted variably in correspondence with the variations over the height of the container thus found.
5. Process according to
claim 1
, characterized in that variations in the degree of transparency of the container which are present in the transport direction are determined or taken into account, and in that the light intensity in the light field and/or the imaging sensitivity within the width of the configured light field looking in the transport direction is adjusted in correspondence with the determined variations.
6. Process according to
claim 1
, characterized in that, in the illuminating device, which is designed as an LED light screen with a plurality of LEDs, the traveling light field in question is configured by the activation of a succession of LEDs proceeding in the transport direction, preferably by the activation of rows of LEDs parallel to the axis of the container or of selected groups of LEDs, and in that the configured field, made into a traveling light field by the successive activation of the LEDs, is shifted across the LED light screen in synchrony with the assigned container.
7. Process according to
claim 8
, characterized in that the light intensity in the light field is adapted to the degree of transparency by adjustment of the current strength and/or the flash time and/or the number or distribution of the activated LEDs in the group.
8. Process according to at least one of the preceding claims, characterized in that the light intensity in the light field and/or the imaging sensitivity is also varied as a function of the transport position or as a function of the rotational position of the container in the inspection area.
9. System (V) for the optical inspection of at least partially transparent containers (B), especially bottles of glass or plastic, with a continuously operating container transport device (F) passing through the inspection area (A), with an illuminating device directed at the containers (B) in the inspection area (A), and with at least one electronic camera (11), which is connected to an image evaluation device (12), characterized in that the illuminating device has an LED light screen (D) with a plurality of LEDs (L), which can be activated individually or in groups; in that, upstream of the inspection area (A), a measuring device (M) is installed to measure the individual degree of transparency of each container (B); and in that the LED light screen (D) is connected to a device (2) for controlling the traveling light field and to a device (3) for compensating for differences in transparency.
10. System according to
claim 9
, characterized in that individual LEDs or groups of LEDs (L) can be activated in succession in the transport direction (9) by the control device (2) to configure a traveling light field moving in synchrony with each container (B), and in that the light intensity of the activated LEDs (L) can be adjusted by the compensation device (3) in correspondence with the measured degree of transparency of the container in order to obtain images of essentially the same brightness for containers of different degrees of transparency.
11. System according to
claim 9
, characterized in that the containers (B) are a certain distance apart in the transport direction (9); in that the inspection area (A) is at least as long as the distance marked out by two successive containers (B) so that at least two containers (B), which are following each other in the transport direction (9) and which are being rotated during the inspection, can be inspected simultaneously; in that the control device (2) can control as many traveling light fields as there are containers (B); and in that the compensation device (3) can adjust the light intensity of each traveling light field assigned to a container individually to the degree of transparency of that container.
12. System according to
claim 9
, characterized in that the control device (2) and the compensation device (3) are combined into a control unit (C), which is connected to the measuring device (M) and to a position and transport speed sensor (1) so that it can receive signals from them.
13. System according to
claim 9
, characterized in that the measuring device (M) has a light sensor with an essentially point source of light (19) and a measurement receiver (7) for determining an average degree of transparency of the container in question.
14. System according to
claim 9
, characterized in that the measuring device (M) has a linear brightness measuring array (7) oriented approximately in the direction of the container axis and consisting of several separate measuring sections (8) and/or several light sources for determining a transparency profile.
15. System according to
claim 9
, characterized in that the LEDs (L) in the LED light screen (D) can be activated in rows parallel to the container axis.
16. System according to
claim 9
, characterized in that the current strength and/or the flash time for the activation of the LEDs (L) can be changed.
17. System according to
claim 12
, characterized in that the control unit (C) contains at least one microprocessor (4).
18. System according to
claim 17
and
claim 12
, characterized in that the microprocessor (M) is associated with a program memory unit (5), in which parameters corresponding to a transparency profile of the containers can be stored.
19. System according to at least one of
claim 9
-18, characterized in that it is a system (V) for inspecting bottles by the light transmitted through the side walls.
US09/826,284 2000-04-06 2001-04-04 Process and system for the optical inspection of transparent containers Expired - Lifetime US6452156B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10017126A DE10017126C1 (en) 2000-04-06 2000-04-06 Transparent container optical checking method, has illumination light field intensity and/or imaging sensitivity matched to individual container transparency
DE10017126 2000-04-06
DE10017126.5 2000-04-06

Publications (2)

Publication Number Publication Date
US20010054680A1 true US20010054680A1 (en) 2001-12-27
US6452156B2 US6452156B2 (en) 2002-09-17

Family

ID=7637792

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/826,284 Expired - Lifetime US6452156B2 (en) 2000-04-06 2001-04-04 Process and system for the optical inspection of transparent containers

Country Status (5)

Country Link
US (1) US6452156B2 (en)
EP (1) EP1143237B1 (en)
JP (1) JP2001356097A (en)
AT (1) ATE239915T1 (en)
DE (1) DE10017126C1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050013473A1 (en) * 2003-07-18 2005-01-20 Furnas William J. Container inspection machine
US7148961B1 (en) 2004-11-10 2006-12-12 Owens-Brockway Glass Container Inc. Container sidewall inspection
WO2007128316A1 (en) * 2006-05-08 2007-11-15 Tórshavnar Skipasmiðja P/F A method and apparatus for transilluminating objects
US7379177B1 (en) * 2005-08-04 2008-05-27 Applied Vision Company, Llc System and method for performing hard glass inspection
US20080164430A1 (en) * 2004-03-23 2008-07-10 Carsten Diederichs Optical System for Forming an Illuminated Pattern
WO2009007333A1 (en) * 2007-07-10 2009-01-15 Boehringer Ingelheim International Gmbh Optical filling control of pharmaceutical capsules in capsule filling machines
US20090278286A1 (en) * 2006-09-01 2009-11-12 Agr International, Inc. (A Pennsylvania Corporation) In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
US20110064266A1 (en) * 2009-09-11 2011-03-17 Krones Ag Device and method for checking container closures
CN102539444A (en) * 2010-11-09 2012-07-04 克朗斯股份公司 Method and device for inspecting containers
US20140015960A1 (en) * 2011-02-23 2014-01-16 Krones Ag Method and Apparatus for Detecting Bubbles and/or Creases on Labeled Containers
CN105492894A (en) * 2013-07-01 2016-04-13 德国克朗斯公司 Container-inspection device and container-inspection method with controlled, anti-epilepsy flash system
CN107076680A (en) * 2014-10-10 2017-08-18 克朗斯股份公司 Inspection apparatus and method for container transmit optical test
US20210178431A1 (en) * 2019-12-16 2021-06-17 Applied Vision Corporation Sequential imaging for container sidewall inspection
US11193893B2 (en) 2017-09-07 2021-12-07 Heuft Systemtechnik Gmbh Inspection device with colour lighting
EP3465167B1 (en) * 2016-06-07 2022-08-10 TPL Vision UK Ltd Lighting device and method for industrial vision
EP3208782B1 (en) 2016-02-22 2022-10-19 Wincor Nixdorf International GmbH Empties returning device
WO2023222298A1 (en) * 2022-05-19 2023-11-23 Syntegon Technology Gmbh Method and device for inspecting cylindrical containers

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221747A (en) * 2000-02-03 2001-08-17 Suntory Ltd Imaging method of liquid filling container and device
DE10027226C1 (en) * 2000-05-31 2001-10-18 Krones Ag Transparent drinks bottle inspection method has single camera used to provide 2 images evaluated separately with variation of exposure timing between images
DE10065290C2 (en) * 2000-12-29 2003-05-15 Krones Ag Method and device for the optical inspection of bottles
DE10140010A1 (en) * 2001-08-16 2003-03-13 Krones Ag Method and device for inspecting filled and closed bottles
DE10257749B4 (en) 2002-12-10 2006-05-04 Krones Ag Device for inspecting filled and closed vessels
US6945662B2 (en) * 2003-06-30 2005-09-20 Emhart Glass S.A. Container inspection machine
FR2873206B1 (en) 2004-07-13 2007-11-23 Iris Inspection Machines Sa MACHINE FOR DETECTING DEFECTS OF A TRANSPARENT OR TRANSLUCENT OBJECT
US20060237349A1 (en) * 2005-04-21 2006-10-26 Solomon Michael T Secure collection of rejected articles
DE102008029661A1 (en) * 2008-06-24 2009-12-31 Khs Ag Redundant inspection
EP2148205B1 (en) * 2008-07-25 2013-01-02 F. Hoffmann-La Roche AG A method and laboratory system for handling sample tubes and an image analysing unit
DE102009020919A1 (en) * 2009-05-12 2010-11-18 Krones Ag Device for detecting elevations and / or depressions on bottles, in particular in a labeling machine
JP5577504B2 (en) * 2009-07-09 2014-08-27 キリンテクノシステム株式会社 Container label inspection equipment
DE102009039254A1 (en) 2009-08-28 2013-05-08 Krones Aktiengesellschaft Apparatus and method for inspecting tagged vessels
US8614788B2 (en) * 2009-11-04 2013-12-24 Practical engineering, LLC Ophthalmic lens scanner
DE102010032166B4 (en) * 2010-07-23 2016-03-10 Khs Gmbh Detection system and inspection method for bottle seam and embossing alignment
DE102010046461B4 (en) * 2010-09-24 2020-06-18 Symplex Vision Systems Gmbh Inspection procedure, inspection station and exposure and evaluation device
DE102011083377A1 (en) * 2011-09-26 2013-03-28 Krones Aktiengesellschaft Apparatus and method for aligning containers
JP5833413B2 (en) * 2011-11-18 2015-12-16 株式会社エヌテック Container inspection equipment
JP5966704B2 (en) * 2012-07-11 2016-08-10 株式会社島津製作所 Substrate inspection device and transmission illumination device for substrate inspection device
EP2851677B1 (en) * 2013-09-23 2020-02-05 Gerresheimer Bünde GmbH Multi-line scanning method
DE102015106013B4 (en) 2015-04-20 2024-02-08 Krones Ag Container inspection device and container inspection method for inspecting containers
US11308601B2 (en) 2015-04-29 2022-04-19 Emhart Glass S.A. Container inspection system with individual light control
ITUA20162513A1 (en) * 2016-04-12 2017-10-12 Antares Vision S R L DEVICE AND PROCEDURE FOR ORIENTATION AND QUALITY CONTROL OF CONTAINERS
FR3056297B1 (en) 2016-09-19 2018-10-05 Tiama DEVICE FOR THE OPTICAL INSPECTION OF GLASS CONTAINERS AT THE OUTPUT OF A FORMING MACHINE
KR102187406B1 (en) * 2016-09-30 2020-12-08 도요 가라스 가부시키가이샤 Small wound inspection device for glass containers
US20180105294A1 (en) * 2016-10-13 2018-04-19 Bourjois Abboud Methods and systems for prefilling syringes
JP2020008319A (en) * 2018-07-03 2020-01-16 東京エレクトロン株式会社 Inspection device, coating system, inspection method, and coating method
DE102019208299A1 (en) * 2019-06-06 2020-12-10 Krones Ag Method and device for the optical inspection of containers
DE102019208295A1 (en) * 2019-06-06 2020-12-10 Krones Ag Method and device for the optical inspection of containers
FR3113131B1 (en) 2020-07-29 2023-03-31 Tiama Device and method for transmission inspection of containers comprising at least one light emitting diode light source

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE47919B1 (en) * 1979-02-26 1984-07-25 Udaras Na Gaeltachta Apparatus for inspecting translucent articles for faults
US4378493A (en) * 1980-11-03 1983-03-29 Owens-Illinois, Inc. Glass container sidewall defect detection system with a diffused and controlled light source
DE3233919C2 (en) * 1982-09-13 1984-07-12 V. Klir GmbH, 8000 München Procedure for side inspection of bottles
DE3407386A1 (en) * 1984-02-29 1985-09-05 Hermann 8404 Wörth Kronseder BOTTLE INSPECTION MACHINE
JPS61100604A (en) * 1984-10-24 1986-05-19 Hajime Sangyo Kk Apparatus for inspecting surface
JPH0627717B2 (en) * 1988-04-13 1994-04-13 株式会社キリンテクノシステム Bottle body inspection device
JPH0416349U (en) * 1990-05-29 1992-02-10
US5668887A (en) * 1992-05-29 1997-09-16 Eastman Kodak Company Coating density analyzer and method using non-synchronous TDI camera
DE19512124C2 (en) * 1995-04-04 2000-04-06 Kettner Gmbh Device for checking bottles for deviations from the norm in the form of damage and / or foreign bodies, in particular for detecting residual liquids
US7781723B1 (en) * 1998-02-19 2010-08-24 Emhart Glass S.A. Container inspection machine using light source having spatially cyclically continuously varying intensity
US6618495B1 (en) * 1998-02-19 2003-09-09 Emhart Glass, S.A. Container inspection machine
US6031221A (en) * 1998-02-19 2000-02-29 Emhart Glass S.A. Container inspection machine

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120284B2 (en) * 2003-07-18 2006-10-10 Emhart Glass S.A. Container inspection machine
US20050013473A1 (en) * 2003-07-18 2005-01-20 Furnas William J. Container inspection machine
US20080164430A1 (en) * 2004-03-23 2008-07-10 Carsten Diederichs Optical System for Forming an Illuminated Pattern
US7635830B2 (en) * 2004-03-23 2009-12-22 Koenig & Bauer Aktiengesellschaft Optical system for forming an illuminated pattern on a material in motion and which illuminated pattern is synchronized with a detection device
US7148961B1 (en) 2004-11-10 2006-12-12 Owens-Brockway Glass Container Inc. Container sidewall inspection
US7379177B1 (en) * 2005-08-04 2008-05-27 Applied Vision Company, Llc System and method for performing hard glass inspection
WO2007128316A1 (en) * 2006-05-08 2007-11-15 Tórshavnar Skipasmiðja P/F A method and apparatus for transilluminating objects
US7924421B2 (en) * 2006-09-01 2011-04-12 Agr International, Inc. In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
US20090278286A1 (en) * 2006-09-01 2009-11-12 Agr International, Inc. (A Pennsylvania Corporation) In-line inspection system for vertically profiling plastic containers using multiple wavelength discrete spectral light sources
US8208141B2 (en) 2006-09-01 2012-06-26 Agr International, Inc. Inspection systems and methods for blow-molded containers
WO2009007333A1 (en) * 2007-07-10 2009-01-15 Boehringer Ingelheim International Gmbh Optical filling control of pharmaceutical capsules in capsule filling machines
US20100192523A1 (en) * 2007-07-10 2010-08-05 Boehringer Ingelheim International Gmbh Optical Filling Control of Pharmaceutical Capsules in Capsule Filling Machines
US8584715B2 (en) 2007-07-10 2013-11-19 Boehringer Ingelheim International Gmbh Optical filling control of pharmaceutical capsules in capsule filling machines
US20110064266A1 (en) * 2009-09-11 2011-03-17 Krones Ag Device and method for checking container closures
CN102539444A (en) * 2010-11-09 2012-07-04 克朗斯股份公司 Method and device for inspecting containers
US20140015960A1 (en) * 2011-02-23 2014-01-16 Krones Ag Method and Apparatus for Detecting Bubbles and/or Creases on Labeled Containers
US10074169B2 (en) * 2011-02-23 2018-09-11 Krones Ag Method and apparatus for detecting bubbles and/or creases on labeled containers
US10067066B2 (en) * 2013-07-01 2018-09-04 Krones Ag Container inspection device and container inspection method for inspecting containers
US20160370299A1 (en) * 2013-07-01 2016-12-22 Krones Ag Container inspection device and container inspection method for inspecting containers
CN105492894A (en) * 2013-07-01 2016-04-13 德国克朗斯公司 Container-inspection device and container-inspection method with controlled, anti-epilepsy flash system
CN107076680A (en) * 2014-10-10 2017-08-18 克朗斯股份公司 Inspection apparatus and method for container transmit optical test
EP3208782B1 (en) 2016-02-22 2022-10-19 Wincor Nixdorf International GmbH Empties returning device
EP3465167B1 (en) * 2016-06-07 2022-08-10 TPL Vision UK Ltd Lighting device and method for industrial vision
US11193893B2 (en) 2017-09-07 2021-12-07 Heuft Systemtechnik Gmbh Inspection device with colour lighting
US20210178431A1 (en) * 2019-12-16 2021-06-17 Applied Vision Corporation Sequential imaging for container sidewall inspection
US11633763B2 (en) * 2019-12-16 2023-04-25 Applied Vision Corporation Sequential imaging for container sidewall inspection
WO2023222298A1 (en) * 2022-05-19 2023-11-23 Syntegon Technology Gmbh Method and device for inspecting cylindrical containers

Also Published As

Publication number Publication date
EP1143237B1 (en) 2003-05-07
DE10017126C1 (en) 2001-06-13
EP1143237A1 (en) 2001-10-10
ATE239915T1 (en) 2003-05-15
US6452156B2 (en) 2002-09-17
JP2001356097A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
US6452156B2 (en) Process and system for the optical inspection of transparent containers
US8285029B2 (en) Device and method for optically sorting bulk material
US5127737A (en) Cigarette end group inspection system
US5085510A (en) Pharmaceutical tablet vision inspection system
EP0789633B1 (en) Sorting apparatus
US4776466A (en) Surface inspection apparatus
CN107076680B (en) Inspection apparatus and method for transmission light inspection of containers
JP5565936B2 (en) Inspection equipment
CZ9901862A3 (en) Process and apparatus for checking vessels by making use a sensor with a flat system of sensing elements and alternately activated luminous sources
US20100193332A1 (en) Conveying system for transporting materials, in particular bulk material
EP2726221B1 (en) Inspection apparatus with alternate side illumination
US6859270B2 (en) Method and device for inspecting transparent containers
CA2064250C (en) Engineered video inspection lighting array
US20220236193A1 (en) Method and device for optically inspecting containers
US5223915A (en) Cigarette end group inspection system
MX2014000972A (en) Method and device for the reliable detection of material defects in transparent material.
JP2006234744A (en) Granular material selector
RU2403100C2 (en) Sorter to grade grain to colour
JP4076414B2 (en) Defective object detection device and separation device using the same
RU83436U1 (en) DEVICE FOR SORTING GRAIN BY COLOR
JPH1190345A (en) Inspection apparatus of granular bodies
JP3505027B2 (en) Defective device
CN112106351A (en) Method and device for inspecting containers
JPH1194749A (en) Defect detecting apparatus and defective-product removal device
JP6745622B2 (en) Granule sorter

Legal Events

Date Code Title Description
AS Assignment

Owner name: KRONES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LINDNER, PETER;REEL/FRAME:011794/0479

Effective date: 20010412

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12