Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20020000942 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 09/843,474
Fecha de publicación3 Ene 2002
Fecha de presentación26 Abr 2001
Fecha de prioridad23 Sep 1998
También publicado comoDE69935565D1, DE69935565T2, EP0989028A2, EP0989028A3, EP0989028B1, US6259412, US6380902
Número de publicación09843474, 843474, US 2002/0000942 A1, US 2002/000942 A1, US 20020000942 A1, US 20020000942A1, US 2002000942 A1, US 2002000942A1, US-A1-20020000942, US-A1-2002000942, US2002/0000942A1, US2002/000942A1, US20020000942 A1, US20020000942A1, US2002000942 A1, US2002000942A1
InventoresBernard Duroux
Cesionario originalBernard Duroux
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Vehicle exterior mirror with antenna
US 20020000942 A1
Resumen
An exterior rear view mirror for a motor vehicle comprises a case containing a reflective member and an antenna, consisting of an electrically conductive layer on a surface of the case, for transmitting and/or receiving radio frequency electromagnetic radiation. The electrically conductive layer has at least one zone having its periphery shaped in accordance with the frequency of said electromagnetic radiation.
Imágenes(3)
Previous page
Next page
Reclamaciones(17)
1. An exterior rear view mirror for a motor vehicle comprising a case containing a reflective member and an antenna for transmitting and/or receiving radio frequency electromagnetic radiation comprising an electrically conductive layer on a surface of the case, characterized in that the electrically conductive layer comprises a first zone having its periphery shaped in accordance with the frequency of said electromagnetic radiation.
2. A rear view mirror according to claim 1, wherein the length of said first zone is substantially equal to about three tenths of the wavelength of said electromagnetic radiation.
3. A rear view mirror according to claim 2, wherein said first zone is formed on a curved part of the surface of the case so as to form a part-conical antenna, the half cone angle θ of which is related to the length └, the feed-point impedance Zo and the wavelength λ by the formula:
(Zo/π)Ln Cot gθ/2=1500(└/λ)−113,3
4. A rear view mirror according to claim 1, wherein the electrically conductive layer comprises a further zone for receiving electromagnetic radiation of a frequency different from that received by said first zone.
5. A rear view mirror according to claim 1, wherein the electrically conductive layer is located on the inside surface of the case.
6. A rear view mirror according to claim 1, wherein the case has an exterior cover member and the electrically conductive layer is applied to the inner surface of said exterior cover member.
7. A rear view mirror according to claim 1, wherein the case has an exterior cover member and the conductive layer is located on a part of the outer surface of the mirror case, which is enclosed by the cover member.
8. A rear view mirror according to claim 1, wherein the electrically conductive layer comprises foil secured by adhesive.
9. A rear view mirror according to claim 1, wherein the electrically conductive layer comprises an insert moulding formed as part of one of the case and the cover member.
10. A rear view mirror according to claim 1, wherein the case is formed as co-moulding of two different plastics material, only one of which is capable of accepting surface metallisation, and the conductive layer comprises metallisation deposited thereon.
11. A rear view mirror according to claim 1, wherein the electrically conductive mirror comprises first and second zones which are shaped so that the first zone is a mirror image of the second zone.
12. A rear view mirror according to claim 1, having at least one additional antenna formed as self-supporting rigid member located within the mirror case.
13. A rear view mirror according to claim 1, having an antenna for a mobile telephone.
14. A rear view mirror according to claim 1, having an antenna for FM radio reception
15. A rear view mirror according to claim 1, having an antenna for receiving GPS signals.
16. A rear view mirror according to claim 1, having an antenna for a remote operation of the car door locks.
17. A rear view mirror according to claim 1, having an antenna for a for an automatic road toll accounting system.
Descripción
    RELATED APPLICATIONS
  • [0001]
    This application is a continuation of U.S. Ser. No. 09/404,101 filed Sep. 23, 1999.
  • FIELD
  • [0002]
    This invention relates to an exterior rear view mirror for a motor vehicle comprising a case containing a mirror glass or other reflective member and an antenna for transmitting and/or receiving radio frequency electromagnetic radiation comprising an electrically conductive layer on a surface of the case.
  • RELATED ART
  • [0003]
    An exterior mirror of this type is disclosed in GB-A-1590824. The case comprises a body moulded from plastics material having a bright copper layer deposited on substantially the whole of its outer surface for receiving a chromium-plated outer layer. The bright copper layer also serves as an antenna.
  • SUMMARY OF THE INVENTION
  • [0004]
    According to the invention, in a rear-view mirror assembly of the type described above, the antenna comprises an electrically conductive layer on a surface of a rigid member forming part of the mirror assembly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0005]
    [0005]FIG. 1 is a perspective view of a vehicle exterior mirror in accordance with the invention;
  • [0006]
    [0006]FIG. 2 is a perspective view of the case of the mirror shown in FIG. 1;
  • [0007]
    [0007]FIG. 3 is a perspective view of the mirror case shown in FIG. 2, from a different angle;
  • [0008]
    [0008]FIG. 4 is a view into the mirror case of FIGS. 2 and 3 through the opening in which the mirror glass would be mounted;
  • [0009]
    [0009]FIG. 5 is a cross-sectional view taken on the line 5-5 in FIG. 4;
  • [0010]
    [0010]FIG. 6 is a cross-sectional view taken on the line 6-6 in FIG. 4; and
  • [0011]
    [0011]FIG. 7 is a diagram illustration dimensions of a theoretical conical antenna.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0012]
    [0012]FIG. 1 shows a vehicle rear-view mirror comprising a reflective member 10 fitted in a case 11, which is mounted on a bracket 12, which is secured to one of the front doors 14 of a motor car 16. As can be seen from FIG. 2, the case 11 has a clip 18 and guides 20 and 22 by means of which it is secured to an internal frame member (not shown) of the mirror assembly. In accordance with the invention, a first metallic foil element 30 is secured by adhesive to the inside surface of the outboard end of the case 11. As can best be seen from FIG. 4, the element 30 is formed in two symmetrical halves 30 a and 30 b interconnected by a link part 32 which is connected by a coaxial cable 34 to a mobile telephone (not shown). The two symmetrical halves 30 a and 30 b approximate to a conical antenna. FIG. 7 shows a cone of half cone angle θ and length └. Theoretically └ should be equal to wavelength λ of the radio signals (i.e. the speed of light divided by the centre frequency). In practice, acceptable results are achieved if └ is three tenths of the theoretical value.
  • [0013]
    The theoretical formula for the feed-point impedance (Zk) of a conical antenna is:
  • Zk=(Zo/π)Ln cot g(θ/2)
  • [0014]
    where Zo is the free space impedance (377 ohms in air) and “Ln cot g” means “logarithmic cotangent”. 30° is a realistic practical value for θ.
  • [0015]
    The relationship between the angle θ and the impedance of the antenna is linear. Good reception can be obtained if the actual feed-point impedance is between half and twice its optimum value. Provided this condition is met, it can be shown from FIGS. 8-15 on page 355 of John D. Kraus, “Antennas”, published by McGraw Hill, ISBN 0-07-0354-22-7, that, because the curve is practically linear in the area used, a practical optimised value Zo for the actual feed-point impedance is:
  • Zo=1500(└/λ)−113-3
  • [0016]
    It follows that the length └ of the foil elements 30 a and 30 b and the half-cone angle θ is:
  • (Zo/π)Ln Cot gθ/2=1500(└/λ)−113-3
  • [0017]
    In practice, the length └ of foil element may be about three tenths of the wavelength λ.
  • [0018]
    Two other foil elements 36 and 38 that are a mirror image of one another are secured by adhesive to the central and inboard parts of the interior surface of the case 11. These foil elements 36 and 38 are connected by a cable 40 to a radio broadcast receiver, for example an FM radio receiver (not shown).
  • [0019]
    In addition to the above two antennae, a third antenna 42 is connected by a cable 44 to a transponder (not shown) for an automatic road toll charging system; a fourth antenna 46 is connected by a cable 48 to a controller for the central door locking system for the car 16. Another antenna 50, positioned in the centre of the mirror case 11 is connected by a cable 52 to a digital radio receiver (not shown) while a further antenna 54 is connected by a cable 56 to a GPS receiver (also not shown).
  • [0020]
    The antennae 42, 46, 50 and 54 are rigid antennae mounted within the case 11. Although the various cables 34, 40, 44, 48, 52 and 56 are shown as parallel to one another, in practice they are gathered together so as to extend through the interior of the bracket 12 into the interior of the car 16, where they are connected to their respective transmitters and/or receivers.
  • [0021]
    Antennae comprising metal inserts moulded into the case 11 may replace the foil antennae 30, 36 and 38. Another alternative is for the case or cover member to be formed as co-moulding of two different plastics material, only one of which will accept surface metallisation. A layer of metal is then deposited on this part to serve as the antennae.
  • [0022]
    If the case has a separate decorative exterior cover member of the type described in European Patent Application No. 98302674.1, the electrically conductive layer may be formed either on the inner surface of such cover member or on that part of the outer surface of the mirror case which is enclosed by the cover member.
  • [0023]
    Alternatively or additionally one or more antennae may take the form of a conductive layer on part of the mounting for the mirror glass or other reflective member.
  • [0024]
    The mirror assembly may in addition incorporate other antennae for receiving GPS signals, remote operation of the car door locks and transponders for automatic road toll accounting systems. Some of these additional antennae may be formed as self-supporting rigid members.
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US680969217 Oct 200226 Oct 2004Advanced Automotive Antennas, S.L.Advanced multilevel antenna for motor vehicles
US792009722 Ago 20085 Abr 2011Fractus, S.A.Multiband antenna
US79328702 Jun 200926 Abr 2011Fractus, S.A.Interlaced multiband antenna arrays
US800911110 Mar 200930 Ago 2011Fractus, S.A.Multilevel antennae
US815446228 Feb 201110 Abr 2012Fractus, S.A.Multilevel antennae
US81544639 Mar 201110 Abr 2012Fractus, S.A.Multilevel antennae
US822824522 Oct 201024 Jul 2012Fractus, S.A.Multiband antenna
US822825610 Mar 201124 Jul 2012Fractus, S.A.Interlaced multiband antenna arrays
US83306592 Mar 201211 Dic 2012Fractus, S.A.Multilevel antennae
US872374226 Jun 201213 May 2014Fractus, S.A.Multiband antenna
US873810321 Dic 200627 May 2014Fractus, S.A.Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US889649322 Jun 201225 Nov 2014Fractus, S.A.Interlaced multiband antenna arrays
US89415412 Ene 201327 Ene 2015Fractus, S.A.Multilevel antennae
US89760692 Ene 201310 Mar 2015Fractus, S.A.Multilevel antennae
US90009852 Ene 20137 Abr 2015Fractus, S.A.Multilevel antennae
US90544212 Ene 20139 Jun 2015Fractus, S.A.Multilevel antennae
US90997737 Abr 20144 Ago 2015Fractus, S.A.Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US924063227 Jun 201319 Ene 2016Fractus, S.A.Multilevel antennae
US93313823 Oct 20133 May 2016Fractus, S.A.Space-filling miniature antennas
US936261713 Ago 20157 Jun 2016Fractus, S.A.Multilevel antennae
US975531414 Mar 20115 Sep 2017Fractus S.A.Loaded antenna
US976193425 Abr 201612 Sep 2017Fractus, S.A.Multilevel antennae
US20020140615 *18 Mar 20023 Oct 2002Carles Puente BaliardaMultilevel antennae
US20020171601 *23 Abr 200221 Nov 2002Carles Puente BaliardaInterlaced multiband antenna arrays
US20030112190 *17 Oct 200219 Jun 2003Baliarda Carles PuenteAdvanced multilevel antenna for motor vehicles
US20040145526 *15 Oct 200329 Jul 2004Carles Puente BaliardaDual-band dual-polarized antenna array
US20040257285 *13 Abr 200423 Dic 2004Quintero Lllera RamiroMultiband antenna
US20050110688 *12 Oct 200426 May 2005Baliarda Carles P.Multilevel antennae
US20050146481 *12 Nov 20047 Jul 2005Baliarda Carles P.Interlaced multiband antenna arrays
US20050190106 *13 Abr 20041 Sep 2005Jaume Anguera ProsMultifrequency microstrip patch antenna with parasitic coupled elements
US20050231427 *16 Jun 200520 Oct 2005Carles Puente BaliardaSpace-filling miniature antennas
US20050259009 *8 Abr 200524 Nov 2005Carles Puente BaliardaMultilevel antennae
US20060077101 *13 Abr 200413 Abr 2006Carles Puente BaliardaLoaded antenna
US20060290573 *12 Jul 200528 Dic 2006Carles Puente BaliardaMultilevel antennae
US20070132658 *6 Feb 200714 Jun 2007Ramiro Quintero IlleraMultiband antenna
US20090167625 *10 Mar 20092 Jul 2009Fractus, S.A.Multilevel antennae
US20090237316 *24 Abr 200924 Sep 2009Carles Puente BaliardaLoaded antenna
US20090267863 *2 Jun 200929 Oct 2009Carles Puente BaliardaInterlaced multiband antenna arrays
Clasificaciones
Clasificación de EE.UU.343/713, 343/711
Clasificación internacionalB60R11/02, B60R1/06, H01Q1/22, H01Q1/32, B60R1/12
Clasificación cooperativaB60R2001/1261, B60R1/12
Clasificación europeaB60R1/12
Eventos legales
FechaCódigoEventoDescripción
2 Jul 2002CCCertificate of correction
27 Sep 2005FPAYFee payment
Year of fee payment: 4
23 Oct 2009FPAYFee payment
Year of fee payment: 8
19 Jul 2013ASAssignment
Owner name: SMR PATENTS S.A.R.L, LUXEMBOURG
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUROUX, DOMINIQUE MARGUERITE SUZANNE;DUROUX, CLOTILDE SIMONE ANDREE;SIGNING DATES FROM 20130408 TO 20130418;REEL/FRAME:030839/0133
24 Oct 2013FPAYFee payment
Year of fee payment: 12