US20020004260A1 - Thin film transistor manufacturing method and thin film transistor - Google Patents

Thin film transistor manufacturing method and thin film transistor Download PDF

Info

Publication number
US20020004260A1
US20020004260A1 US09/941,980 US94198001A US2002004260A1 US 20020004260 A1 US20020004260 A1 US 20020004260A1 US 94198001 A US94198001 A US 94198001A US 2002004260 A1 US2002004260 A1 US 2002004260A1
Authority
US
United States
Prior art keywords
thin film
film transistor
insulation film
film
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/941,980
Other versions
US6420760B2 (en
Inventor
Mamoru Furuta
Koji Soma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Mamoru Furuta
Koji Soma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mamoru Furuta, Koji Soma filed Critical Mamoru Furuta
Priority to US09/941,980 priority Critical patent/US6420760B2/en
Publication of US20020004260A1 publication Critical patent/US20020004260A1/en
Application granted granted Critical
Publication of US6420760B2 publication Critical patent/US6420760B2/en
Assigned to TOSHIBA MATSUSHITA DISPLAY TECHNOLOGY CO., LTD. reassignment TOSHIBA MATSUSHITA DISPLAY TECHNOLOGY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Definitions

  • the present invention relates to the field of methods for manufacturing polycrystal silicon thin film transistors and thin film transistors as employed in liquid crystal display devices and input and output devices including image sensors.
  • the electron mobility of a polycrystal silicon thin film transistor is greater by a factor of 100 than that of an amorphous silicon thin film transistor.
  • the use of polycrystal silicon thin film transistors allows the miniaturization of elements and the denser mounting of driving circuits on one substrate.
  • polycrystal silicon thin film transistors are recently used in thin film transistor arrays with built-in driving circuits. These thin film transistor arrays with built-in driving circuits have been made possible by the development of technology to manufacture arrays on glass substrates which can be easily enlarged.
  • IEEE Electron Device Letters, Vol. EDL-7, No. 5, May 1986, pp. 276-278 discloses technology related to excimer laser annealing.
  • thermal annealing is used for activation, but the activation rate significantly drops as a result of reducing the processing temperature.
  • Rapid thermal annealing (RTA) and excimer laser activation are proposed as methods for improving the dopant activation rate at low temperatures to counteract the above disadvantage.
  • SID97 M/52 Recent Advances in Rapid Thermal Processing of Polysilicon TFT LCDs discloses RTA activation, and the Extended Abstract of the 18th (1986) International Conference on Solid State Devices and Materials, pp. 225-228, discloses excimer laser activation.
  • FIGS. 3A to 3 D show process flow charts describing a conventional method of manufacturing polysilicon thin film transistors for the active matrix arrays used in liquid crystal display devices.
  • a silicon oxide film which becomes a buffer layer 12 is formed on a transparent glass substrate 11 using the plasma CVD method.
  • Amorphous silicon (a-Si) film is then deposited using the plasma CVD method without exposing the substrate 11 , on which the buffer layer 12 is formed, to air.
  • a thermal treatment is applied to reduce the hydrogen in the a-Si film.
  • the a-Si film is polycrystallized by excimer laser annealing to form a poly-Si film 13 a.
  • the poly-Si film 13 a is processed into the size and shape required for a TFT.
  • a silicon oxide film which becomes a gate insulation film 14 is formed.
  • a gate electrode 15 typically made of Al alloy is formed and dopant is implanted to form a Lightly Doped Drain (LDD) region 13 b in the thin film transistor as shown by an arrow 100 in FIG. 3A.
  • a mask for implanting dopant into the source and drain regions is then formed using a photo resist 25 in a manner to cover the LDD region 13 b of the thin film transistor.
  • a large quantity of phosphorus ion, the dopant is implanted into the source region 21 and drain region 22 by ion implantation, as shown by an arrow 100 in FIG. 3B.
  • the source region 21 and drain region 22 which have high concentrations of dopant are called a SD region 13 C.
  • excimer laser light is applied, as shown by an arrow 101 in FIG. 3C, to activate it.
  • a silicon oxide film which becomes an interlayer insulation film 16 is formed and contact holes 17 a and 17 b are opened on the insulation film in the source region 21 and drain region 22 .
  • a layered film of Ti and Al is formed and processed to form SD wirings 18 a and 18 b.
  • a protective insulation film 23 made of silicon nitride is formed, and annealed in a hydrogen atmosphere. Hydrogen annealing fills the empty ionic bonds in the polycrystal silicon thin film with hydrogen, enabling the characteristics of the thin film transistor to be improved.
  • the conventional method of activation using an excimer laser causes a high degree of thermal damage to the gate electrode 15 . More specifically, as shown in FIG. 3C, an irradiated excimer laser light is applied to and absorbed by the polycrystal silicon through the gate insulation film 14 at the source region 21 and drain region 22 of the thin film transistor. The laser light applied to the gate electrode 15 region is also directly absorbed by the gate metal, causing the gate electrode's temperature to rise. If metals with high melting points such as W, Mo, and Cr are used for the gate electrode 15 , cracks or peeling of the gate electrode 15 may occur as a result of thermal shock due to laser irradiation. If Al alloy is used for the gate electrode 15 , quality problems such as an increase in hillocks may occur. Hillocks are the phenomenon whereby the material surface becomes bumpy as a result of temperature rise.
  • the present invention provides a thin film transistor manufacturing method and thin film transistor which reduces the thermal damage to gate electrodes caused by laser irradiation during the manufacture of thin film transistors which includes the process of dopant activation by laser irradiation.
  • a method for manufacturing thin film transistors in accordance with an exemplary embodiment of the present invention includes the steps of forming a semiconductor thin film on a transparent substrate; forming a first insulation film having a refractive index n 1 and film thickness d 1 on the semiconductor thin film as a gate insulation film; forming a gate electrode on the first insulation film; implanting dopant into the semiconductor thin film; forming a second insulation film having refractive index n 2 and film thickness d 2 in a way to cover the first insulation film and gate electrode; and activating dopant implanted by applying laser with wavelength ⁇ after forming the second insulation film.
  • the film thicknesses d 1 and d 2 practically satisfy a set of Formulae (1) and (2) as follows:
  • n and m 1 are any given positive integer.
  • Another exemplary embodiment of the present invention refers to a method for manufacturing thin film transistors including the steps of forming the semiconductor film on the transparent substrate; forming the first insulation film having refractive index n 1 and film thickness d 1 on the semiconductor thin film as a gate insulation film; forming the gate electrode on the first insulation film; implanting dopant into the semiconductor thin film after forming the gate electrode; forming the second insulation film having refractive index n 2 and film thickness d 2 in a way to cover the first insulation film and gate electrode; and activating dopant implanted by laser irradiating with a wavelength ⁇ after forming the second insulation film.
  • the film thickness d 1 of the first insulation film and film thickness d 2 of the second insulation film fall in a range practically satisfying a set of Formulae (5) and (6) when m and m 1 are any given positive integers.
  • the above acceptable range for the film thicknesses d 1 and d 2 allows to reduce the thermal damage to the gate electrode by laser irradiation, and also to achieve efficient dopant activation by the laser.
  • the first insulation film is silicon oxide made by decomposing a gaseous material containing at least organic silicon material by plasma.
  • a thin film transistor of the present invention includes a semiconductor thin film formed on a transparent substrate; a first insulation film having refractive index n 1 and film thickness d 1 formed on the semiconductor thin film as a gate insulation film; a gate electrode formed on the first insulation film; dopant implanted into the semiconductor thin film; and a second insulation film having refractive index n 2 and film thickness d 2 formed in a way to cover the first insulation film and gate electrode.
  • Implanted dopant is activated by applying the laser with wavelength ⁇ .
  • the film thicknesses d 1 and d 2 practically satisfy a set of Formulae (1) and (2) when m and m 1 are any given positive integers.
  • FIGS. 1A to 1 D are sectional views illustrating processes of a method for manufacturing thin film transistors in a preferred embodiment of the present invention.
  • FIG. 2A shows a characteristics chart illustrating the relation between the film thickness of an insulation film and reflectance of laser light.
  • FIG. 2B is a sectional view of regions A and B in the thin film transistor.
  • FIGS. 3A to 3 D are sectional views illustrating processes of a conventional method for manufacturing thin film transistors.
  • FIG. 1A A method for manufacturing thin film transistors in a preferred embodiment of the present invention is described below with reference to FIGS. 1A to 1 D.
  • a silicon oxide film of 400 nm thick is formed on a transparent glass substrate 11 using the plasma CVD method to form a buffer layer 12 .
  • amorphous silicon (a-Si) is deposited up to 50 nm thick using the plasma CVD method without exposing the glass substrate 11 , on which the silicon oxide thin film is formed, to air.
  • the glass substrate 11 is thermally treated at 450° C. for 90 minutes under the reduced nitrogen atmosphere of 1 Torr.
  • the a-Si film is polycrystalized by excimer laser annealing to form a poly-Si film 13 a which is a non-single crystal semiconductor thin film.
  • excimer laser XeCl excimer laser with a wavelength of 308 nm is used, and irradiated in a vacuum. Its energy density is 350 mJ/cm 2 , and average irradiation shots are 35 shots/point.
  • the poly-Si film 13 a is processed into the size and shape required for a TFT.
  • a silicon oxide film of 50 nm thick is deposited to form a gate insulation film 14 which is a first insulation film.
  • This silicon oxide film is made from a mixed gas of oxygen gas and TEOS (tetraethylorthosilicate, Si(OCH 2 CH 3 ) 4 ) gas, which is an organic silicon material using the plasma CVD method.
  • the film thickness is set to 45 nm.
  • a gate electrode 15 made of Al alloy is then formed.
  • An LDD region 13 b of the thin film transistor is formed by implanting dopant using the gate electrode 15 as a mask. Phosphorus ion is excited at the accelerated voltage of 70 keV, and implanted to the direction of an arrow 100 for a dose rate of 10 13 /cm 2 .
  • photo resist 25 is applied to cover the LDD region 13 b of the thin film transistor, as shown in FIG. 1B, to form a mask for implanting dopant into the source region 21 and drain region 22 .
  • the LDD region is not essential, but is effective for reducing the OFF-state current of the thin film transistor.
  • a silicon oxide film of 215 nm thick is formed as a second insulation film, as shown in FIG. 1C, to form an interlayer insulation film 16 .
  • a short-wave excimer laser is applied to activate implanted dopant as shown by an arrow 101 in FIG. 1C.
  • the laser used for activation is XeCl excimer laser, and has a wavelength ⁇ of 308 nm, and a half width of 30 nm. Its energy density is 300 mJ/cm 2 , and the average irradiation shots are 20 shots/point.
  • the refractive index n 1 is both 1.46.
  • FIG. 2A shows the reflectance of laser light against the thickness of insulation film when the laser light enters the insulation film (SiO 2 ) from the air.
  • FIG. 2B shows a sectional view of the thin film transistor during activation by the laser light. This figure corresponds to the sectional view in FIG. 1C.
  • the reflectance of the laser light entering the insulation film from the air repeats the maximum and minimum reflectance in a cycle of ⁇ /(4*n), as shown in FIG. 2A, when the laser wavelength is ⁇ and refractive index of the insulation film is n.
  • the sum d 1 +d 2 of both insulation film thicknesses is an odd multiple of a half period of the reflectance, i.e.,
  • d 1 + d 2 (2* m 1 ⁇ 1)* ⁇ /(4 *n 1 ).
  • m and m 1 are any given positive integers.
  • the dopant is ideally activated by the laser when a set of Formulae (1) and (2) are satisfied.
  • contact holes 17 a and 17 b are opened on the interlayer insulation film 16 as shown in FIG. 1D, and then SD wiring 18 a and 18 b made of a Ti and Al layered film are respectively formed.
  • a protective insulation film 23 made of silicon nitride is formed, and annealed in a hydrogen atmosphere. Accordingly, empty ionic bonds in the polycrystal silicon thin film are filled with hydrogen to improve characteristics of the thin film transistor.
  • Annealing in the above description is preferably conducted at between 250° C. and 400° C. for 30 minutes to 3 hours.
  • annealing temperature is 350° C.
  • annealing time is 1 hour.
  • the manufacturing method of the present invention thus enables excimer laser light to be reflected off the interlayer insulation film 16 on the gate electrode 15 .
  • interlayer insulation film 16 and gate insulation film 14 on the source region 21 , drain region 22 , and LDD region 13 b of the thin film transistor prevents reflection of the excimer laser.
  • This allows efficient absorption of laser energy at regions requiring dopant activation, and at the same time, prevents absorption of laser energy at the gate electrode which requires to avoid temperature rise.
  • materials which likely to cause hillocks, cracks and the like by temperature rise such as Al and metals having a large stress and high melting point including Cr, Mo, W, and Ni, may be used for gate wiring.
  • the preferred embodiment uses the same material for the gate insulation film and interlayer insulation film, which means the same refractive index n 1 for both films. However, there is no need to use materials having the same refractive index.
  • the film thicknesses d 1 and d 2 may satisfy a set of the following Formulae (5) and (6) when m and m 1 are any given positive integers:
  • film thickness of the gate insulation film is d 1 and its refractive index is n 1
  • film thickness of the interlayer insulation film is d 2 and its refractive index is n 2 .
  • organic silicon material such as TEOS gas decomposed by plasma for making the gate insulation film, as described in the preferred embodiment, is effective for improving the reliability of the thin film transistor because a damage to the base layer at depositing the film is little.
  • the present invention enables formation of an optical reflective film on the gate electrode against the laser light, and formation of a reflection preventive film on the source and drain regions of the thin film transistor when the laser light is applied to activate the dopant.
  • This enables the gate electrode to reflect the laser beam during activation, and at the same time, allows the regions where dopant is implanted to absorb energy efficiently. Accordingly, cracks and peeling of the gate electrode is preventable even in laser annealing conditions achieving sufficient activation rate.
  • the present invention significantly improves the yield in the manufacturing of thin film transistors.
  • silicon oxide film made by decomposing an organic silicon material by plasma for covering the source region and the drain region of the thin film transistor by an insulation film enables further improvement in the reliability of the thin film transistor.

Abstract

A first insulation film is formed as a gate insulation film of a thin film transistor, and a gate electrode is formed on the gate insulation film. Then, dopant is implanted to form source and drain regions. A second insulation film having refractive index n1 and film thickness d2 is formed to cover the first insulation film and gate electrode as an interlayer insulation film. After forming the second insulation film, laser with wavelength λ is applied to activate the dopant. The film thicknesses d1 and d2 of the first and second insulation films satisfy conditions against the laser wavelength λ for forming a reflection protective film at regions where activation is necessary. At the same time, the film thicknesses d1 and d2 are set in a way that the interlayer insulation film on the gate electrode forms a reflective film. This reduces the thermal damage to the gate electrode from the laser during dopant activation.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of methods for manufacturing polycrystal silicon thin film transistors and thin film transistors as employed in liquid crystal display devices and input and output devices including image sensors. [0001]
  • BACKGROUND OF THE INVENTION
  • The electron mobility of a polycrystal silicon thin film transistor is greater by a factor of 100 than that of an amorphous silicon thin film transistor. The use of polycrystal silicon thin film transistors allows the miniaturization of elements and the denser mounting of driving circuits on one substrate. In the field of liquid crystal display devices, polycrystal silicon thin film transistors are recently used in thin film transistor arrays with built-in driving circuits. These thin film transistor arrays with built-in driving circuits have been made possible by the development of technology to manufacture arrays on glass substrates which can be easily enlarged. [0002]
  • To form polycrystal thin film transistors at low temperatures, the development of a method for activating the dopant implanted into the polycrystal silicon thin film at low temperatures is important as well as technology to form polycrystal silicon thin film at low temperatures. Low temperature crystallization using excimer laser annealing is often employed to form good polycrystal silicon thin films on large substrates at low temperatures. [0003]
  • For example, IEEE Electron Device Letters, Vol. EDL-7, No. 5, May 1986, pp. 276-278, discloses technology related to excimer laser annealing. In general, thermal annealing is used for activation, but the activation rate significantly drops as a result of reducing the processing temperature. [0004]
  • Rapid thermal annealing (RTA) and excimer laser activation are proposed as methods for improving the dopant activation rate at low temperatures to counteract the above disadvantage. SID97 M/52: Recent Advances in Rapid Thermal Processing of Polysilicon TFT LCDs discloses RTA activation, and the Extended Abstract of the 18th (1986) International Conference on Solid State Devices and Materials, pp. 225-228, discloses excimer laser activation. [0005]
  • FIGS. 3A to [0006] 3D show process flow charts describing a conventional method of manufacturing polysilicon thin film transistors for the active matrix arrays used in liquid crystal display devices. As shown in FIG. 3A, a silicon oxide film which becomes a buffer layer 12 is formed on a transparent glass substrate 11 using the plasma CVD method. Amorphous silicon (a-Si) film is then deposited using the plasma CVD method without exposing the substrate 11, on which the buffer layer 12 is formed, to air.
  • Next, a thermal treatment is applied to reduce the hydrogen in the a-Si film. The a-Si film is polycrystallized by excimer laser annealing to form a poly-Si film [0007] 13 a. Finally, the poly-Si film 13 a is processed into the size and shape required for a TFT.
  • Next, a silicon oxide film which becomes a [0008] gate insulation film 14 is formed. A gate electrode 15 typically made of Al alloy is formed and dopant is implanted to form a Lightly Doped Drain (LDD) region 13 b in the thin film transistor as shown by an arrow 100 in FIG. 3A. As shown in FIG. 3B, a mask for implanting dopant into the source and drain regions is then formed using a photo resist 25 in a manner to cover the LDD region 13 b of the thin film transistor. A large quantity of phosphorus ion, the dopant, is implanted into the source region 21 and drain region 22 by ion implantation, as shown by an arrow 100 in FIG. 3B. The source region 21 and drain region 22 which have high concentrations of dopant are called a SD region 13C.
  • Since the implanted dopant is electrically inactive, excimer laser light is applied, as shown by an [0009] arrow 101 in FIG. 3C, to activate it.
  • Then, as shown in FIG. 3D, a silicon oxide film which becomes an [0010] interlayer insulation film 16 is formed and contact holes 17 a and 17 b are opened on the insulation film in the source region 21 and drain region 22. A layered film of Ti and Al is formed and processed to form SD wirings 18 a and 18 b.
  • Finally, a [0011] protective insulation film 23 made of silicon nitride is formed, and annealed in a hydrogen atmosphere. Hydrogen annealing fills the empty ionic bonds in the polycrystal silicon thin film with hydrogen, enabling the characteristics of the thin film transistor to be improved.
  • However, the conventional method of activation using an excimer laser causes a high degree of thermal damage to the [0012] gate electrode 15. More specifically, as shown in FIG. 3C, an irradiated excimer laser light is applied to and absorbed by the polycrystal silicon through the gate insulation film 14 at the source region 21 and drain region 22 of the thin film transistor. The laser light applied to the gate electrode 15 region is also directly absorbed by the gate metal, causing the gate electrode's temperature to rise. If metals with high melting points such as W, Mo, and Cr are used for the gate electrode 15, cracks or peeling of the gate electrode 15 may occur as a result of thermal shock due to laser irradiation. If Al alloy is used for the gate electrode 15, quality problems such as an increase in hillocks may occur. Hillocks are the phenomenon whereby the material surface becomes bumpy as a result of temperature rise.
  • The present invention provides a thin film transistor manufacturing method and thin film transistor which reduces the thermal damage to gate electrodes caused by laser irradiation during the manufacture of thin film transistors which includes the process of dopant activation by laser irradiation. [0013]
  • SUMMARY OF THE INVENTION
  • A method for manufacturing thin film transistors in accordance with an exemplary embodiment of the present invention includes the steps of forming a semiconductor thin film on a transparent substrate; forming a first insulation film having a refractive index n[0014] 1 and film thickness d1 on the semiconductor thin film as a gate insulation film; forming a gate electrode on the first insulation film; implanting dopant into the semiconductor thin film; forming a second insulation film having refractive index n2 and film thickness d2 in a way to cover the first insulation film and gate electrode; and activating dopant implanted by applying laser with wavelength λ after forming the second insulation film. In this configuration, the film thicknesses d1 and d2 practically satisfy a set of Formulae (1) and (2) as follows:
  • d 2* n 2=2*m*λ/4  (1)
  • d 1 *n 1 +d 2 *n 2=(2*m 1−1)*λ/4  (2)
  • Here, m and m[0015] 1 are any given positive integer.
  • These film thicknesses enable the laser light to be reflected off the gate electrode and absorbed at portions other than the gate electrode. This allows a reduction in the thermal damage to the gate electrode by laser irradiation, and also achieves efficient dopant activation by the laser. [0016]
  • Another exemplary embodiment of the present invention refers to a method for manufacturing thin film transistors including the steps of forming the semiconductor film on the transparent substrate; forming the first insulation film having refractive index n[0017] 1 and film thickness d1 on the semiconductor thin film as a gate insulation film; forming the gate electrode on the first insulation film; implanting dopant into the semiconductor thin film after forming the gate electrode; forming the second insulation film having refractive index n2 and film thickness d2 in a way to cover the first insulation film and gate electrode; and activating dopant implanted by laser irradiating with a wavelength λ after forming the second insulation film.
  • In this configuration, the film thickness d[0018] 1 of the first insulation film and film thickness d2 of the second insulation film fall in a range practically satisfying a set of Formulae (5) and (6) when m and m1 are any given positive integers.
  • abs{d 2 *n 2−2*m*λ/4}<λ/ 8  (5); and
  • abs{( d 2 *n 2 +d 1*n 1)−(2*m1−1)*λ/4}<λ/8  (6);
  • The above acceptable range for the film thicknesses d[0019] 1 and d2 allows to reduce the thermal damage to the gate electrode by laser irradiation, and also to achieve efficient dopant activation by the laser.
  • In these methods for manufacturing thin film transistors, the first insulation film is silicon oxide made by decomposing a gaseous material containing at least organic silicon material by plasma. [0020]
  • A thin film transistor of the present invention includes a semiconductor thin film formed on a transparent substrate; a first insulation film having refractive index n[0021] 1 and film thickness d1 formed on the semiconductor thin film as a gate insulation film; a gate electrode formed on the first insulation film; dopant implanted into the semiconductor thin film; and a second insulation film having refractive index n2 and film thickness d2 formed in a way to cover the first insulation film and gate electrode. Implanted dopant is activated by applying the laser with wavelength λ. In this configuration, the film thicknesses d1 and d2 practically satisfy a set of Formulae (1) and (2) when m and m1 are any given positive integers.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A to [0022] 1D are sectional views illustrating processes of a method for manufacturing thin film transistors in a preferred embodiment of the present invention.
  • FIG. 2A shows a characteristics chart illustrating the relation between the film thickness of an insulation film and reflectance of laser light. [0023]
  • FIG. 2B is a sectional view of regions A and B in the thin film transistor. [0024]
  • FIGS. 3A to [0025] 3D are sectional views illustrating processes of a conventional method for manufacturing thin film transistors.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A method for manufacturing thin film transistors in a preferred embodiment of the present invention is described below with reference to FIGS. 1A to [0026] 1D. As shown in FIG. 1A, a silicon oxide film of 400 nm thick is formed on a transparent glass substrate 11 using the plasma CVD method to form a buffer layer 12. Then, amorphous silicon (a-Si) is deposited up to 50 nm thick using the plasma CVD method without exposing the glass substrate 11, on which the silicon oxide thin film is formed, to air. To reduce hydrogen in the a-Si film, the glass substrate 11 is thermally treated at 450° C. for 90 minutes under the reduced nitrogen atmosphere of 1 Torr. The a-Si film is polycrystalized by excimer laser annealing to form a poly-Si film 13 a which is a non-single crystal semiconductor thin film. As for excimer laser, XeCl excimer laser with a wavelength of 308 nm is used, and irradiated in a vacuum. Its energy density is 350 mJ/cm2, and average irradiation shots are 35 shots/point.
  • After crystallizing the a-Si film to form the poly-Si film [0027] 13 a, the poly-Si film 13 a is processed into the size and shape required for a TFT. A silicon oxide film of 50 nm thick is deposited to form a gate insulation film 14 which is a first insulation film. This silicon oxide film is made from a mixed gas of oxygen gas and TEOS (tetraethylorthosilicate, Si(OCH2CH3)4) gas, which is an organic silicon material using the plasma CVD method. The film thickness is set to 45 nm.
  • A [0028] gate electrode 15 made of Al alloy is then formed. An LDD region 13 b of the thin film transistor is formed by implanting dopant using the gate electrode 15 as a mask. Phosphorus ion is excited at the accelerated voltage of 70 keV, and implanted to the direction of an arrow 100 for a dose rate of 1013/cm2. After forming the LDD region 13 b, photo resist 25 is applied to cover the LDD region 13 b of the thin film transistor, as shown in FIG. 1B, to form a mask for implanting dopant into the source region 21 and drain region 22. The LDD region is not essential, but is effective for reducing the OFF-state current of the thin film transistor.
  • After implanting the dopant, a silicon oxide film of 215 nm thick is formed as a second insulation film, as shown in FIG. 1C, to form an [0029] interlayer insulation film 16. Then, a short-wave excimer laser is applied to activate implanted dopant as shown by an arrow 101 in FIG. 1C. The laser used for activation is XeCl excimer laser, and has a wavelength λ of 308 nm, and a half width of 30 nm. Its energy density is 300 mJ/cm2, and the average irradiation shots are 20 shots/point.
  • The [0030] gate insulation film 14, which is the first insulation film, has the film thickness d1=50 nm and refractive index n1=1.46. The interlayer insulation film 16, which is the second insulation film, formed on the gate insulation film 14 has the film thickness d2=215 nm and refractive index n1=1.46. Accordingly, insulation film on the source region 21 and drain region 22 of the thin film transistor which requires dopant activation has a film thickness of d1+d2=265 nm. The refractive index n1 is both 1.46.
  • FIG. 2A shows the reflectance of laser light against the thickness of insulation film when the laser light enters the insulation film (SiO[0031] 2) from the air. FIG. 2B shows a sectional view of the thin film transistor during activation by the laser light. This figure corresponds to the sectional view in FIG. 1C. The reflectance of the laser light entering the insulation film from the air repeats the maximum and minimum reflectance in a cycle of λ/(4*n), as shown in FIG. 2A, when the laser wavelength is λ and refractive index of the insulation film is n.
  • FIG. 2A shows the case when the wavelength λ of excimer laser is 308 nm, and refractive index n of the insulation film (SiO[0032] 2) is 1.46. In this case, a half cycle λ/(4*n) of the reflectance is 52. 7 nm. Accordingly, since laser light enters the interlayer insulation film (d2=215 nm) on the region A shown in FIG. 2B, which is the gate electrode, the reflectance becomes almost the maximum as shown in FIG. 2A, and incident laser energy is scarcely absorbed by the gate electrode 15 of the thin film transistor
  • On the other hand, on the region B shown in FIG. 2B, which is the [0033] source region 21, drain region 22, and LDD region 13 b of the thin film transistor, the laser light enters the film having the thickness of the sum of the film thickness d1=50 nm of the gate insulation film and the film thickness d2=215 nm of the interlayer insulation film i.e., d1+d2=265 nm. Accordingly, the reflectance is almost minimum as shown in FIG. 2A, and incident laser energy reaches the bottom poly-Si film 13 a most efficiently. The poly-Si film 13 a is thus most efficiently annealed, and dopant implanted is satisfactorily activated.
  • The above findings may take the next numerical forms. [0034]
  • Ideal conditions are achieved when the interlayer insulation film thickness d[0035] 2 is an even multiple of a half period of the reflectance, i.e.,
  • d 2=2*m*λ/(4*n 1); and
  • the sum d[0036] 1+d2 of both insulation film thicknesses is an odd multiple of a half period of the reflectance, i.e.,
  • [0037] d 1+d 2=(2* m 1−1)*λ/(4*n 1). Here m and m1 are any given positive integers.
  • These formulae may then be rearranged as follows:[0038]
  • d 2* n 1=2*m*λ/4; and
  • (d 1+d 2)* n 1=(2*m 1−1)*λ/4.
  • These formulae may be generalized for the case when refractive index n[0039] 2 of the interlayer insulation film is different from refractive index n1 of the gate insulation film as follows:
  • d 2* n 2=2*m*λ/4  (1); and
  • d 2* n 2+d 1* n 1=(2*m 1−1)*λ/4  (2).
  • In other words, the dopant is ideally activated by the laser when a set of Formulae (1) and (2) are satisfied. [0040]
  • After dopant activation, contact holes [0041] 17 a and 17 b are opened on the interlayer insulation film 16 as shown in FIG. 1D, and then SD wiring 18 a and 18 b made of a Ti and Al layered film are respectively formed. Lastly, a protective insulation film 23 made of silicon nitride is formed, and annealed in a hydrogen atmosphere. Accordingly, empty ionic bonds in the polycrystal silicon thin film are filled with hydrogen to improve characteristics of the thin film transistor.
  • Annealing in the above description is preferably conducted at between 250° C. and 400° C. for 30 minutes to 3 hours. Here, annealing temperature is 350° C., and annealing time is 1 hour. A thin film transistor manufactured using the manufacturing method of the present invention demonstrates mobility of 150 cm[0042] 2/V·sec and Vth=2.0 V. An increase in hillocks is not observed in a process of dopant activation by the laser even if Al alloy is used for the gate electrode 15.
  • The manufacturing method of the present invention thus enables excimer laser light to be reflected off the [0043] interlayer insulation film 16 on the gate electrode 15. On the other hand, interlayer insulation film 16 and gate insulation film 14 on the source region 21, drain region 22, and LDD region 13 b of the thin film transistor prevents reflection of the excimer laser. This allows efficient absorption of laser energy at regions requiring dopant activation, and at the same time, prevents absorption of laser energy at the gate electrode which requires to avoid temperature rise. Accordingly, materials which likely to cause hillocks, cracks and the like by temperature rise, such as Al and metals having a large stress and high melting point including Cr, Mo, W, and Ni, may be used for gate wiring.
  • As shown in FIG. 2A, minimum and maximum reflectance repeat in every insulation film thickness of λ/(4*n[0044] 1) [nm] against wavelength λ of the laser in use and refractive index n1 of the insulation film. Accordingly, errors in the film thickness of the insulation film are preferably within the range of a half of a minimum interval where the reflectance becomes the maximum and minimum, i.e., ±λ/(8* n1) [nm]. If this condition is quantified, the film thickness d1 of the gate insulation film and the film thickness d2 of the interlayer insulation film may satisfy a set of the following Formulae (3) and (4) when m and m1 are any given positive integers:
  • abs{d 2 *n 1−2*m*λ/4}<λ/8  (3); and
  • abs{(d 2+d 1)* n 1−(2*m 1−1)*λ/4}<λ/8  (4).
  • The preferred embodiment uses the same material for the gate insulation film and interlayer insulation film, which means the same refractive index n[0045] 1 for both films. However, there is no need to use materials having the same refractive index. When materials having different refractive index are used for the gate insulation film and interlayer insulation film, the film thicknesses d1 and d2 may satisfy a set of the following Formulae (5) and (6) when m and m1 are any given positive integers:
  • abs{d 2* n 2−2*m*λ/4}<λ/8  (5); and
  • abs{( d 2* n 2+d 1*n 1)−(2*m 1−1)*λ/4}<λ/8  (6);
  • where film thickness of the gate insulation film is d[0046] 1 and its refractive index is n1, and film thickness of the interlayer insulation film is d2 and its refractive index is n2.
  • The same effects as described in the preferred embodiment are achievable when the above Formulae (5) and (6) are satisfied. [0047]
  • The use of organic silicon material, such as TEOS gas decomposed by plasma for making the gate insulation film, as described in the preferred embodiment, is effective for improving the reliability of the thin film transistor because a damage to the base layer at depositing the film is little. [0048]
  • As described above, the present invention enables formation of an optical reflective film on the gate electrode against the laser light, and formation of a reflection preventive film on the source and drain regions of the thin film transistor when the laser light is applied to activate the dopant. This enables the gate electrode to reflect the laser beam during activation, and at the same time, allows the regions where dopant is implanted to absorb energy efficiently. Accordingly, cracks and peeling of the gate electrode is preventable even in laser annealing conditions achieving sufficient activation rate. As a result, the present invention significantly improves the yield in the manufacturing of thin film transistors. [0049]
  • Furthermore, the use of silicon oxide film made by decomposing an organic silicon material by plasma for covering the source region and the drain region of the thin film transistor by an insulation film enables further improvement in the reliability of the thin film transistor. [0050]

Claims (19)

What is claimed is:
1. A method for manufacturing a thin film transistor, said method comprising the steps of:
forming a semiconductor thin film on a transparent substrate;
forming a first insulation film having refractive index n2 and film thickness d1 on said semiconductor thin film;
forming a gate electrode on said first insulation film;
implanting dopant into said semiconductor thin film;
forming a second insulation film having refractive index n2 and film thickness d2 in a way to cover said first insulation film and said gate electrode; and
activating said implanted dopant by applying a laser with wavelength λ;
wherein said film thicknesses d1 and d2 are of sufficient thickness to cause said laser to be reflected off of the gate electrode and to be absorbed by said thin film transistor away from said gate electrode.
2. The method of manufacturing a thin film transistor according to claim 1, wherein said thickness d1 and d2 satisfy a set of the Formulae (1) and (2) when m and m1 are any given positive integers:
d 2*n 2=2*m*λ/4  (1)d 1 *n 1 +d 2 *n 2=(2*m 1−1)*λ/4  (2).
3. The method of manufacturing a thin film transistor according to claim 1, wherein said first insulation film is a gate insulation film.
4. The method of manufacturing a thin film transistor according to claim 1, wherein said thickness d1 and d2 fall in a range satisfying a set of the Formulae (5) and (6) when m and m1 are any given positive integers:
abs{d 2 *n2−2*m*λ/4}<λ/ 8  (5); andabs{(d 2 *n2+d*n 1)−(2*m1−1)*λ/4}<λ/8  (6).
5. The method for manufacturing a thin film transistor as defined in claim 4, wherein the refractive index n2 of said second insulation film is substantially equal to the refractive index n1 of said first insulation film.
6. The method for manufacturing a thin film transistor as defined in claim 2, wherein said first insulation film is silicon oxide made by decomposing a gaseous material at least containing organic silicon by plasma.
7. The method for manufacturing a thin film transistor as defined in claim 4, wherein said first insulation film is silicon oxide made by decomposing a gaseous material at least containing organic silicon by plasma.
8. The method for manufacturing a thin film transistor as defined in claim 2, wherein said semiconductor thin film is non-single crystal semiconductor thin film made of polycrystal silicon.
9. The method for manufacturing a thin film transistor as defined in claim 4, wherein said semiconductor thin film is non-single crystal semiconductor thin film made of polycrystal silicon.
10. The method for manufacturing a thin film transistor as defined in claim 2, wherein dopant for forming source and drain regions of said thin film transistor, and dopant for forming a lightly doped drain (LDD) are implanted in said step of implanting dopant into said semiconductor thin film.
11. The method for manufacturing a thin film transistor as defined in claim 4, wherein dopant for forming source and drain regions of said thin film transistor, and dopant for forming a lightly doped drain (LDD) are implanted in said step of implanting dopant into said semiconductor thin film.
12. A thin film transistor comprising:
a semiconductor thin film formed on a transparent substrate;
a first insulation film having refractive index n1 and film thickness d1 formed on said semiconductor thin film;
a gate electrode formed on said first insulation film;
dopant implanted into said semiconductor thin film; and
a second insulation film having refractive index n2 and film thickness d2 formed in a way to cover said first insulation film and said gate electrode;
wherein said film thicknesses d1 and d2 are of sufficient thickness to cause said laser to be reflected off of the gate electrode and to be absorbed by said thin film transistor away from said gate electrode.
13. The thin film transistor according to claim 12, wherein said thickness d1 and d2 satisfy a set of the Formulae (1) and (2) when m and m1 are any given positive integers:
d 2*n 2=2*m*λ/4  (1)d 1*n 1 +d 2*n 2=(2*m 1−1)*λ/4  (2).
14. The thin film transistor according to claim 12, wherein said first insulation film is a gate insulation film.
15. The thin film transistor according to claim 14, wherein said thickness d1 and d2 fall in a range satisfying a set of the Formulae (5) and (6) when m and m1 are any given positive integers:
abs{d 2 *n 2−2*m*λ/4}<λ/ 8  (5); andabs{(d 2 *n 2 +d 1*n 1)−(2*m 1−1)*λ/4}<λ/8  (6).
16. The thin film transistor as defined in claim 13, wherein said first insulation film is silicon oxide made by decomposing a gaseous material containing at least organic silicon by plasma.
17. The thin film transistor as defined in claim 15, wherein said first insulation film is silicon oxide made by decomposing a gaseous material containing at least organic silicon by plasma.
18. The thin film transistor as defined in claim 13, wherein said semiconductor thin film is non-single crystal semiconductor thin film made of polycrystal silicon.
19. The thin film transistor as defined in claim 15, wherein said semiconductor thin film is non-single crystal semiconductor thin film made of polycrystal silicon.
US09/941,980 1999-05-10 2001-08-29 Thin film transistor manufacturing method and thin film transistor Expired - Fee Related US6420760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/941,980 US6420760B2 (en) 1999-05-10 2001-08-29 Thin film transistor manufacturing method and thin film transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP12812199A JP3318285B2 (en) 1999-05-10 1999-05-10 Method for manufacturing thin film transistor
JP11-128121 1999-05-10
US09/566,609 US6309917B1 (en) 1999-05-10 2000-05-09 Thin film transistor manufacturing method and thin film transistor
US09/941,980 US6420760B2 (en) 1999-05-10 2001-08-29 Thin film transistor manufacturing method and thin film transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/566,609 Division US6309917B1 (en) 1998-06-02 2000-05-09 Thin film transistor manufacturing method and thin film transistor

Publications (2)

Publication Number Publication Date
US20020004260A1 true US20020004260A1 (en) 2002-01-10
US6420760B2 US6420760B2 (en) 2002-07-16

Family

ID=14976916

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/566,609 Expired - Fee Related US6309917B1 (en) 1998-06-02 2000-05-09 Thin film transistor manufacturing method and thin film transistor
US09/941,980 Expired - Fee Related US6420760B2 (en) 1999-05-10 2001-08-29 Thin film transistor manufacturing method and thin film transistor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/566,609 Expired - Fee Related US6309917B1 (en) 1998-06-02 2000-05-09 Thin film transistor manufacturing method and thin film transistor

Country Status (5)

Country Link
US (2) US6309917B1 (en)
JP (1) JP3318285B2 (en)
KR (1) KR100605773B1 (en)
CN (1) CN1144275C (en)
TW (1) TW472393B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534350B2 (en) * 2001-08-02 2003-03-18 Industrial Technology Research Institute Method for fabricating a low temperature polysilicon thin film transistor incorporating channel passivation step
US20040051101A1 (en) * 2002-07-05 2004-03-18 Fujitsu Display Technologies Corporation Thin film transistor device, method of manufacturing the same, and thin film transistor substrate and display having the same
US20060091460A1 (en) * 2004-10-28 2006-05-04 Gregory Herman Semiconductor devices and methods of making
US7582492B2 (en) 2004-05-21 2009-09-01 Panasonic Corporation Method of doping impurities, and electronic element using the same
US20100268082A1 (en) * 1999-08-20 2010-10-21 Mclaughlin Glen Ultrasound Imaging System
US10490619B2 (en) * 2014-09-17 2019-11-26 Samsung Display Co., Ltd. Manufacturing method of organic light emitting diode display device with first and second driving voltage lines

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3505445B2 (en) * 1999-08-30 2004-03-08 シャープ株式会社 Liquid crystal display device and method of manufacturing the same
US6746901B2 (en) * 2000-05-12 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating thereof
KR20030091644A (en) * 2002-05-23 2003-12-03 엘지.필립스 엘시디 주식회사 poly silicon thin film transistor and fabrication method of the same
US6902960B2 (en) * 2002-11-14 2005-06-07 Sharp Laboratories Of America, Inc. Oxide interface and a method for fabricating oxide thin films
US7759736B2 (en) * 2002-11-14 2010-07-20 Sharp Laboratories Of America, Inc. Oxide interface with improved oxygen bonding
JP4015068B2 (en) 2003-06-17 2007-11-28 株式会社東芝 Manufacturing method of semiconductor device
KR100570974B1 (en) * 2003-06-25 2006-04-13 삼성에스디아이 주식회사 Tft
JP4649896B2 (en) * 2004-07-09 2011-03-16 日本電気株式会社 Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
CN100401484C (en) * 2004-12-01 2008-07-09 中华映管股份有限公司 Method for producing thin film transistor
JP2006278532A (en) * 2005-03-28 2006-10-12 Toshiba Corp Heat treatment method and method of manufacturing semiconductor device
JP2007095989A (en) * 2005-09-29 2007-04-12 Dainippon Printing Co Ltd Method of manufacturing thin film transistor
KR100749421B1 (en) * 2006-03-06 2007-08-14 삼성에스디아이 주식회사 Thin film transistor and display device having the same
JP2008021827A (en) * 2006-07-13 2008-01-31 Renesas Technology Corp Manufacturing method for semiconductor device
US7851352B2 (en) * 2007-05-11 2010-12-14 Semiconductor Energy Laboratory Co., Ltd Manufacturing method of semiconductor device and electronic device
JP5411456B2 (en) * 2007-06-07 2014-02-12 株式会社半導体エネルギー研究所 Semiconductor device
CN101587839B (en) * 2008-05-23 2011-12-21 清华大学 Method for producing thin film transistors
CN101599495B (en) * 2008-06-04 2013-01-09 清华大学 Thin-film transistor panel
CN101620994B (en) * 2008-06-30 2011-01-12 中芯国际集成电路制造(北京)有限公司 Methods for determining the minimum thickness of doped gate dielectric layer, polysilicon layer and laminated top layer
KR101155563B1 (en) 2009-05-27 2012-06-19 주식회사 효성 Method for manufacturing for Solar cell using a Laser
CN102763213A (en) * 2011-02-23 2012-10-31 松下电器产业株式会社 Thin-film transistor device manufacturing method, thin-film transistor device, and display device
CN104992899A (en) * 2015-06-09 2015-10-21 深圳市华星光电技术有限公司 Poly-silicon film preparation method and poly-silicon TFT structure
CN106876481B (en) * 2017-05-04 2020-11-03 京东方科技集团股份有限公司 Oxide thin film transistor, manufacturing method thereof, array substrate and display device
CN107393966A (en) * 2017-07-27 2017-11-24 武汉华星光电半导体显示技术有限公司 Low-temperature polysilicon film transistor and preparation method thereof, display device
CN111869327A (en) 2018-03-20 2020-10-30 堺显示器制品株式会社 Flexible OLED device, manufacturing method thereof and supporting substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897346A (en) * 1994-02-28 1999-04-27 Semiconductor Energy Laboratory Co., Ltd. Method for producing a thin film transistor
JPH0992836A (en) 1995-09-22 1997-04-04 Toshiba Corp Polysilicon thin film transistor
KR100188090B1 (en) 1995-10-12 1999-07-01 김광호 Fabrication method of thin film transistor panel for lcd
KR100199064B1 (en) * 1995-10-17 1999-07-01 구자홍 Fabrication method of thin film transistor
US6104450A (en) * 1996-11-07 2000-08-15 Sharp Kabushiki Kaisha Liquid crystal display device, and methods of manufacturing and driving same
US6010923A (en) * 1997-03-31 2000-01-04 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device utilizing annealed semiconductor layer as channel region

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100268082A1 (en) * 1999-08-20 2010-10-21 Mclaughlin Glen Ultrasound Imaging System
US8226561B2 (en) 1999-08-20 2012-07-24 Zonare Medical Systems, Inc. Ultrasound imaging system
US8764661B2 (en) 1999-08-20 2014-07-01 Zonare Medical Systems, Inc. Echolocation data generation
US6534350B2 (en) * 2001-08-02 2003-03-18 Industrial Technology Research Institute Method for fabricating a low temperature polysilicon thin film transistor incorporating channel passivation step
US20040051101A1 (en) * 2002-07-05 2004-03-18 Fujitsu Display Technologies Corporation Thin film transistor device, method of manufacturing the same, and thin film transistor substrate and display having the same
US7582492B2 (en) 2004-05-21 2009-09-01 Panasonic Corporation Method of doping impurities, and electronic element using the same
US20060091460A1 (en) * 2004-10-28 2006-05-04 Gregory Herman Semiconductor devices and methods of making
US7291522B2 (en) 2004-10-28 2007-11-06 Hewlett-Packard Development Company, L.P. Semiconductor devices and methods of making
US20080042201A1 (en) * 2004-10-28 2008-02-21 Gregory Herman Semiconductor Devices and Methods of Making
US8823100B2 (en) 2004-10-28 2014-09-02 Hewlett-Packard Development Company, L.P. Semiconductor devices and methods of making
US10490619B2 (en) * 2014-09-17 2019-11-26 Samsung Display Co., Ltd. Manufacturing method of organic light emitting diode display device with first and second driving voltage lines

Also Published As

Publication number Publication date
TW472393B (en) 2002-01-11
JP2000323713A (en) 2000-11-24
JP3318285B2 (en) 2002-08-26
US6309917B1 (en) 2001-10-30
KR100605773B1 (en) 2006-07-28
CN1273436A (en) 2000-11-15
US6420760B2 (en) 2002-07-16
KR20010014887A (en) 2001-02-26
CN1144275C (en) 2004-03-31

Similar Documents

Publication Publication Date Title
US6420760B2 (en) Thin film transistor manufacturing method and thin film transistor
US6559036B1 (en) Semiconductor device and method of manufacturing the same
US6258638B1 (en) Method of manufacturing thin film transistor
KR100333153B1 (en) Process for fabricating semiconductor device
KR100881992B1 (en) Method of manufacturing a semiconductor device
US5936291A (en) Thin film transistor and method for fabricating the same
US20050236622A1 (en) Electronic device and method of manufacturing the same
JPH06296023A (en) Thin-film semiconductor device and manufacture thereof
US5183780A (en) Method of fabricating semiconductor device
US7199027B2 (en) Method of manufacturing a semiconductor film by plasma CVD using a noble gas and nitrogen
US7271041B2 (en) Method for manufacturing thin film transistor
JP3348531B2 (en) Method for hydrogenating thin film transistor and method for forming thin film transistor
KR100998159B1 (en) Semiconductor device and method of manufacturing the same
JPH08148692A (en) Manufacture of thin-film semiconductor device
JP2000114173A (en) Manufacture of semiconductor device
JPH0388322A (en) Heat treating method
JP2001168341A (en) Semiconductor device activation method thereof
JP4461731B2 (en) Thin film transistor manufacturing method
JPH1187724A (en) Manufacture of semiconductor device
JP3430743B2 (en) Method for manufacturing thin film transistor
JP2004214546A (en) Transistor, manufacturing method thereof, semiconductor integrated circuit, and display
JPH10189991A (en) Manufacture of semiconductor device
JP2005259818A (en) Method of crystallizing semiconductor film, method of manufacturing thin film transistor, electrooptic device, and electronic apparatus
JPH06232068A (en) Manufacture of semiconductor device
JP2005032920A (en) Semiconductor device, thin film transistor, and electro-optical device

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TOSHIBA MATSUSHITA DISPLAY TECHNOLOGY CO., LTD., J

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:019365/0073

Effective date: 20070320

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100716