US20020006324A1 - Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment - Google Patents

Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment Download PDF

Info

Publication number
US20020006324A1
US20020006324A1 US09/184,652 US18465298A US2002006324A1 US 20020006324 A1 US20020006324 A1 US 20020006324A1 US 18465298 A US18465298 A US 18465298A US 2002006324 A1 US2002006324 A1 US 2002006324A1
Authority
US
United States
Prior art keywords
wafer
stand
wafers
wafer holder
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/184,652
Other versions
US6457929B2 (en
Inventor
Michito Sato
Hiroaki Fukabori
Yukio Mukaino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEH America Inc
Original Assignee
SEH America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEH America Inc filed Critical SEH America Inc
Priority to US09/184,652 priority Critical patent/US6457929B2/en
Assigned to SEH AMERICA, INC. reassignment SEH AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUKAINO, YUKIO, FUKABORI, HIROAKI, SATO, MICHITO
Priority to US09/681,566 priority patent/US6354794B2/en
Publication of US20020006324A1 publication Critical patent/US20020006324A1/en
Application granted granted Critical
Publication of US6457929B2 publication Critical patent/US6457929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S134/00Cleaning and liquid contact with solids
    • Y10S134/902Semiconductor wafer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/137Associated with semiconductor wafer handling including means for charging or discharging wafer cassette
    • Y10S414/138Wafers positioned vertically within cassette
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • Y10S414/14Wafer cassette transporting

Definitions

  • This invention is directed to the field of semiconductor wafer preparation and, more particularly, to an apparatus and method for transferring wafers between wafer holders.
  • wafers are subjected to mechanical processes including slicing, grinding and lapping, which produce lattice damage in the surface regions of the wafers.
  • This lattice damage is generally removed by chemically etching the wafers to remove the damaged surface regions of the wafers.
  • Etching is typically conducted in an etching machine, which includes an etching drum to movably support the wafers within an acid etch solution during the etching process.
  • the wafers are positioned on the etching drum so that the wafers are parallel to, and uniformly spaced from, each other. Such positioning of the wafers is desirable so that the wafers do not contact and possibly chip or scratch each other.
  • the wafer surfaces are very sensitive to such contact before etching (after cleaning).
  • uniform spacing of the wafers promotes uniform etching of the wafers, so that etched wafers are uniformly sized and do not include stained regions. Non-uniform etching can produce defective wafers that are unsuitable for subsequent fabrication and must be scrapped at substantial financial cost.
  • etching drums typically have multiple sets of grooves, with each set of grooves being designed to receive and support a single wafer. Each set of grooves typically includes several grooves that are aligned with each other. During manual positioning of the wafers, operators must position the wafers so that each of the wafers is properly received within each of the grooves of one set of grooves only.
  • the wafers are not properly positioned in this manner, they will be “cross-indexed” in the grooves, meaning that individual wafers are received in the grooves of more than one set of grooves. Consequently, more than one wafer can be received in individual grooves, causing the wafers to not all be parallel to, and equally spaced from, each other. As a result, the wafers can physically contact each other. Such contact can scratch the wafers and also prevent uniform etching of each wafer, as described above.
  • wafers are very sensitive to contamination after being cleaned. Accordingly, it is important to reduce exposure of the wafers to potential contamination during transfer operations, such as by reducing exposure of cleaned wafers to the ambient atmosphere prior to etching, so as to reduce oxidation and contamination of the wafers.
  • This invention provides an apparatus for transferring wafers between various types of wafer holders that can satisfy the above needs.
  • the wafers can be semiconductor wafers as well as other types of wafers and similar shaped objects.
  • the apparatus can be used to transfer wafers between various types of wafer holders.
  • the apparatus can transfer wafers from wafer holders that hold wafers in set relationships, such as parallel relationships, relative to each other.
  • the apparatus can automatically transfer wafers between such wafer holders and retain the wafers in their desired relationships during transfer.
  • the apparatus can eliminate the need for operators to manually transfer wafers between holders.
  • the apparatus can transfer wafers without cross-indexing the wafers.
  • the apparatus can eliminate the need for operators to manually correct cross-indexing problems in transferred wafers. Accordingly, the wafers can be prevented from contacting and damaging each other during transfer.
  • the apparatus can be used to transfer wafers from wafer cassettes, which are typically used to carry semiconductor wafers during wafer preparation.
  • the apparatus can be used to automatically transfer wafers from wafer cassettes to etching drums that are utilized in etching machines.
  • the apparatus can automatically transfer etching drums between the apparatus and etching machines, so that manual transfer is not required.
  • the apparatus comprises a transfer chamber for containing a liquid, and a transfer unit for transferring at least one wafer in the liquid from a first wafer holder to a second wafer holder.
  • the first and second wafer holders can be a wafer cassette and an etching drum, respectively.
  • the liquid is preferably a high-purity liquid.
  • the apparatus can comprise one or more stands disposed in the liquid in the transfer chamber. During transfer operations, the stands can support one or more of the wafers in the liquid.
  • the apparatus can further comprise a first lift for supporting the first wafer holder and a second lift for supporting the second wafer holder.
  • the first lift can be moved by the transfer unit to transfer one or more wafers from the first wafer holder to the first stand in the liquid.
  • the second lift can be moved by the transfer unit to transfer one or more wafers from the second stand to the second wafer holder in the liquid.
  • the transfer unit can also transfer wafers in the reverse direction in the liquid, i.e., from the second wafer holder to the second stand, from the second stand to the first stand, and from the first stand to the first wafer holder.
  • the apparatus can transfer wafers to and from other machines used for wafer fabrication, such as etching machines, that are utilized in wafer preparation. Accordingly, wafers can be transferred back to a wafer holder after the wafers are subjected to other wafer fabrication steps.
  • the transfer unit is preferably automated so that it can automatically transfer the wafers in the liquid between the various wafer supports. Accordingly, the apparatus can eliminate the need for operators to manually transfer wafers between wafer holders.
  • This invention also provides a method for transferring wafers between wafer holders in a liquid medium that utilizes the apparatus.
  • FIG. 1 is a partial perspective view of an apparatus for transferring wafers between wafer holders in a liquid in accordance with an embodiment of this invention, showing a cassette lift supporting a pair of wafer cassettes in a raised position in a transfer chamber;
  • FIG. 2 illustrates the manner of placing the wafer cassettes onto the cassette
  • FIG. 3 illustrates a transfer unit of the apparatus according to an embodiment of this invention in a raised position prior to being engaged with the cassette lift of FIG. 2;
  • FIG. 4 illustrates the transfer unit of FIG. 3 with the wafer chucks of the transfer unit in a closed position
  • FIG. 5 illustrates the transfer unit of FIG. 4 with the wafer chucks in an open position in which the transfer unit is fully engaged with the cassette lift in the raised position;
  • FIG. 6 illustrates the apparatus of FIG. 1 with the cassette lift in the raised position and the wafer chucks engaged with the cassette lift;
  • FIG. 7 illustrates the transfer unit and cassette lift of FIG. 5 and the manner of disengaging cassette lift stop elements to enable the cassette lift to be lowered into the liquid in the tank by the transfer unit;
  • FIG. 8 illustrates the apparatus of FIG. 1 with the cassette lift in a lowered position after the wafers contained in the wafer cassettes are transferred to first wafer stands;
  • FIG. 9 shows the cassette lift of FIG. 2 in the lowered position of FIG. 8, with a plurality of wafers positioned in a parallel relationship on the first wafer stands;
  • FIG. 10 illustrates the apparatus of FIG. 8 after disengaging the wafer chucks from the cassette lift and engaging wafer engagement portions of the wafer chucks with the wafers;
  • FIG. 11 shows the transfer unit in a raised position above the first wafer stands after removing the wafers from the first stands, and the wafer cassettes in the lowered position in the tank;
  • FIG. 12 illustrates the apparatus of FIG. 10 with the wafer chucks in a raised position above second wafer stands prior to the wafer chucks being engaged with the drum lift;
  • FIG. 13 shows the transfer unit in the raised position above the second wafer stands with the wafer chucks in the closed position supporting the wafers;
  • FIG. 14 shows the apparatus of FIG. 12 with the wafer chucks opened and engaged with the drum lift and the cassettes supported on the second wafer stands in the lowered position of the drum lift;
  • FIG. 15 illustrates the wafers positioned in a parallel relationship on the second stands and the etching drum in a lowered position, with the arrow representing the direction of movement of the etching drum to a raised position;
  • FIG. 16 illustrates the apparatus of FIG. 14 with the drum lift in a raised position in which the wafers are supported by the etching drum;
  • FIG. 17 illustrates the manner of closing the wafer chucks and engaging the drum lift stop elements to hold the drum lift in the raised position
  • FIG. 18 illustrates the etching drum and drum lift in the raised position after the drum chucks are disengaged from the drum lift
  • FIG. 19 illustrates the transfer unit after being disengaged from the drum lift and being moved to a side of the etching drum facing the first stands, showing a drum hand of the transfer unit engaged with a shaft of the etching drum and a wafer holding bar of the transfer unit engaged with a movable locking rod of the etching drum;
  • FIG. 20 is an enlarged partial view showing the wafer holding bar of the transfer unit engaged with the movable locking rod of the etching drum, with the locking rod in an unlocked position;
  • FIG. 21 illustrates an etching drum that can be used in the apparatus of this invention.
  • FIG. 22 illustrates the tank of the apparatus and a portion of the transfer unit disposed above the tank.
  • This invention provides an apparatus and method for transferring wafers between various types of wafer holders.
  • This invention can be used to transfer wafers between wafer holders that are conventionally used to contain wafers during wafer preparation.
  • the wafer holders can be wafer cassettes, wafer boats, etching drums and the like.
  • the wafers can be semiconductor wafers such as silicon wafers, gallium arsenide wafers and other semiconductor materials.
  • the wafers can be composed of non-semiconductor materials as well, such as quartz wafers.
  • the apparatus of this invention can transfer wafers between wafer holders such that the wafers are retained in a desired orientation relative to each other during and after transfer.
  • wafers are typically supported by wafer holders in a parallel relationship, such as in individual grooves, to prevent contact between individual wafers.
  • the apparatus can transfer wafers between various types of wafer holders and retain such parallel relationship of the wafers.
  • the apparatus can transfer wafers automatically, thus eliminating the need for operators to manually handle the wafer holders or wafers during transfer operations.
  • this invention can reduce exposure of wafers to contamination during transfer, and can eliminate physical damage to wafers that can occur during manual handling operations.
  • the above and other advantages of this invention will be described below with reference to the drawings.
  • the figures illustrate the transfer of wafers between wafer cassettes and an etching drum.
  • the etching drum is utilized in an etching machine to etch the wafers.
  • the etching machine does not form a part of this invention and, accordingly, is not illustrated or described in detail herein.
  • the apparatus of this invention can be used to transfer wafers between different types of wafer holders as well such as, for example, between different wafer cassettes or different etching drums.
  • the wafers can be transferred between more than two different wafer holders.
  • FIG. 1 illustrates a portion of an apparatus 10 according to an embodiment of this invention that can be used to transfer wafers between wafer holders in a liquid environment.
  • the illustrated apparatus includes a tank 12 shown partially broken away. The tank is typically open at the upper end as shown.
  • the tank includes upstanding side walls 14 , 16 and a bottom wall 18 forming a housing.
  • the housing defines a transfer chamber 20 for containing a liquid that functions as the wafer transfer medium.
  • the liquid can be any suitable high-purity liquid that is non-contaminating to the apparatus and to the wafers. Typically, the liquid is high-purity deionized water.
  • the liquid level L in the transfer chamber is typically approximately as shown in FIG. 1.
  • the liquid in the tank 12 can comprise a chemical that forms an oxide layer on the wafers, to protect the wafers from scratching due to contact between each other.
  • the liquid can comprise high-purity water and up to about 5% of hydrogen peroxide.
  • Other suitable chemicals that promote oxide layer formation can be used as well.
  • the apparatus 10 can also include a liquid supply system that circulates the liquid into and out of the tank.
  • the liquid supply system can include a liquid inlet 22 and a liquid outlet 24 or an alternative overflow system to enable the liquid to be filled into the tank 12 to maintain the liquid in the tank in a clean condition.
  • the liquid supply system can maintain a desired liquid level in the tank 12 .
  • a liquid supply system is not necessary in all embodiments of this invention, and that wafer contamination by the liquid can be prevented in other manners.
  • the apparatus 10 of this invention can be used to transfer wafers between wafer holders when no liquid is contained in the tank 12 .
  • the wafers can also be transferred without requiring operators to handle the wafers. It is preferable, however, to transfer wafers in a liquid for at least the following reasons.
  • the high-purity liquid prevents the wafers from being exposed to the atmosphere during the transfer operation, thereby eliminating contamination of the wafers by the air during transfer.
  • the increased viscosity of the liquid as compared to the air can assist in maintaining the wafers in the desired relative orientation with respect to each other during transfer.
  • the apparatus 10 further comprises a cassette lift 26 and a drum lift 28 laterally spaced from the cassette lift 26 .
  • the cassette lift 26 is shown in a fixed, raised position in FIG. 1.
  • the cassette lift 26 includes a bottom wall 30 and opposed upstanding side walls 32 .
  • the bottom wall 30 is sized to support at least one wafer cassette 34 (two wafer cassettes 34 are shown). More or less wafer cassettes 34 can be used in other embodiments of this invention.
  • Each wafer cassette 34 typically includes a plurality of parallel grooves 36 , which are each sized to support one wafer, such that the wafer cassettes can support a plurality of wafers in a parallel relationship.
  • each wafer cassette 34 is typically sized to support about 25 or less wafers.
  • One or more holes 38 extend through the bottom wall 30 of the cassette lift 26 . The number of holes 38 can be varied depending on the number of wafer cassettes 34 supported on the cassette lift 26 .
  • the side walls 32 each include two slots 40 that are typically generally L-shaped.
  • the slots 40 each typically include a vertical portion 42 and a horizontal portion 44 .
  • the horizontal portions 44 extend outwardly in opposite directions to each other.
  • a first cassette lift stop element 46 is provided on the outer surface 48 of each of the side walls 32 of the cassette lift 26 .
  • the first cassette lift stop elements 46 each releasingly engage a second cassette lift stop element 50 provided on the side walls 14 of the tank 12 as shown in FIG. 1, to hold the cassette lift 26 in the vertically fixed, raised position.
  • the first and second cassette lift stop elements 46 , 50 can be selectively disengaged from each other by moving the second cassette lift stop elements 50 away from the first cassette lift stop elements 46 to enable the cassette lift 26 to be moved vertically downward in the tank 12 as described in greater detail below.
  • One or more rollers 52 are provided on each side wall 32 of the cassette lift 26 .
  • the rollers 52 mate with vertically extending rails 54 which are mounted to each of the opposed side walls 14 of the tank 12 , to enable the cassette lift 26 to be moved vertically in the tank 12 in the direction of the rails 54 .
  • the cassette lift 26 supports the wafer cassettes 34 prior to transferring wafers from the cassette lift 26 to one or more first wafer stands 56 of the apparatus 10 .
  • a pair of laterally spaced first wafer stands 56 are mounted to, and extend upwardly from, the bottom wall 18 of the tank 12 .
  • the apparatus 10 can include a number of first stands 56 corresponding to the number of wafer cassettes 34 .
  • the first wafer stands 56 can each include a pair of upstanding legs 58 and a wafer basket 60 attached to the upper ends of the legs 58 .
  • the wafer baskets 60 include a upper surface 62 in which a plurality of parallel grooves 64 are formed.
  • the upper surface 62 is typically concave to match the configuration of the wafers.
  • the grooves 64 are each sized to receive and support one wafer in a vertical orientation, such that the first wafer stands 56 can each support a plurality of wafers in a parallel relationship, as depicted in FIG. 9. In the illustrated relationship, the wafers are spaced from each so that no contact occurs between the wafers.
  • the drum lift 28 typically can have a construction similar to that of the cassette lift 26 .
  • the drum lift 28 can comprise opposed upstanding side walls 66 and a bottom wall 68 .
  • the side walls 66 are spaced from each other by a distance greater than the length of an etching drum 70 that is supported on the drum lift 28 .
  • the side walls 66 each include a slot 72 that is typically generally L-shaped slot 72 (FIG. 8).
  • the slots 72 can include a vertical portion 74 and a horizontal portion 76 .
  • a first drum lift stop element 78 is provided on the outer surface of each side wall 66 of the drum lift 28 .
  • the first drum lift stop elements 78 each engage a second drum lift stop element 80 provided on the side walls 14 of the tank 12 , to maintain the drum lift 28 in a vertically fixed position.
  • One or more rollers 82 are provided on each side wall. The rollers 82 mate with vertically extending rails 84 mounted to each of the opposed side walls 14 of the tank 12 , such that the drum lift 28 is vertically movable in the tank 12 along the direction of the rails 84 .
  • the bottom wall 68 of the drum lift includes one or more holes 86 which extend through the bottom wall 68 (FIG. 17).
  • the number of holes 86 typically equals the number of holes 38 in the cassette lift 26 .
  • One or more second wafer stands 88 (two are shown) are mounted to the bottom wall 18 of the tank 12 (see FIG. 8).
  • the second wafer stands 88 each include each include a pair of upstanding legs 90 and a wafer basket 92 attached to the upper ends of the legs 90 .
  • the wafer baskets 92 include a concave upper surface 94 defining a plurality of parallel grooves 96 .
  • the grooves 96 are each sized to receive and support a wafer in a vertical orientation, such that the second wafer stands 88 can each support a plurality of wafers in a parallel relationship.
  • the holes 86 in the bottom wall 68 of the drum lift 28 are each configured to receive the wafer basket 92 of one of the second wafer stands 88 during wafer transfer.
  • the number of second wafer stands 88 can vary in embodiments of this invention.
  • the apparatus 10 comprises two second wafer stands 88 , which equals the number of first wafer stands 56 .
  • the number of first and second wafer stands can be different in some embodiments.
  • the size of the wafer baskets 60 , 92 of the first and second wafer stands 56 , 88 , respectively, can be varied to vary the wafer holding capacity.
  • a single wafer stand 88 including a wafer basket 92 having the wafer holding capacity of the two illustrated wafer baskets 92 combined can alternatively be used instead of two second wafer stands 88 .
  • Such configurations are also possible for the first wafer stand 56 .
  • the drum lift 28 supports the etching drum 70 in the tank 12 so as to enable transfer of the wafers from the first wafer stands 56 to the second wafer stands 88 , and from the second wafer stands 88 to the etching drum 70 , as described in detail below.
  • the etching drum 70 comprises a plurality of laterally spaced plates 93 , 94 .
  • the plates are typically arranged in a parallel relationship relative to each other as shown.
  • the plates 93 , 94 each include an arcuate shaped through hole 96 .
  • a plurality of fixed rods 98 and a movable locking rod 100 extend longitudinally along the etching drum 70 .
  • the fixed rods 98 connect the plates 93 , 94 together and maintain the plates 93 , 94 in a fixed relationship relative to each other.
  • the fixed rods 98 and the locking rod 100 each include a plurality of grooves 102 .
  • the grooves 102 in each rod are each aligned with a groove in each of the other respective rods, and the aligned groups of four grooves 102 can each receive and support one of the wafers.
  • the locking rod 100 extends through the arcuate shaped through holes 96 of each of the plates 93 , 94 and is movable along the arcuate shaped through holes 96 between an upper, locking position shown in phantom line and an illustrated lower, unlocking position, as represented by the arrows A.
  • a plurality of wafers can be supported in the grooves 102 when the movable rod 100 is in the unlocking position, such that the wafers can be selectively removed from the etching drum 70 .
  • the plurality of wafers can be supported in the grooves 102 when the movable rod 100 is in the locking position, such that the wafers cannot be accidentally or intentionally removed from the etching drum 70 .
  • the etching drum further comprises a central shaft 104 which extends outwardly from each of the end plates 94 .
  • vertical slots (not shown) are formed in the inner surface of each of the side walls 66 of the drum lift 28 .
  • the shaft 104 can be inserted into the respective slots in a downward direction to support the etching drum 70 on the drum lift.
  • the etching drum 70 can be lifted such that the shaft 104 is moved upwardly in the respective slots to remove the etching drum 70 from the drum lift 28 .
  • the etching drum 70 also includes a gear mechanism 106 that can engage mating gears in a conventional etching machine when the etching drum 70 is placed in the etching machine to etch the wafers following wafer transfer.
  • the apparatus 10 comprises a transfer unit 110 that performs multiple functions during wafer transfer, enabling wafers to be automatically transferred between different wafer holders.
  • the wafer transfer unit 110 also enables wafers to be transferred to and from machines, such as an etching machine, that are utilized in wafer fabrication.
  • the transfer unit 110 enables a plurality of wafers to be automatically, simultaneously transferred from wafer holders such as the wafer cassettes 34 to other wafer holders such as the etching drum 70 .
  • the wafers are transferred from the wafer cassettes 34 to the first wafer stands 56 , from the first wafer stands 56 to the second wafer stands 88 , and from the second wafer stands 88 to a second wafer holder such as the etching drum 70 .
  • These wafer transfer steps can each be performed in the liquid contained in the tank 12 , such that the wafers are not exposed to the ambient environment during transfer between the wafer holders.
  • the wafers can be transferred during each of these steps such that the wafers are retained in a desired relationship to each other, such as in a parallel relationship shown in some figures.
  • an embodiment of the transfer unit 110 comprises a body portion 112 including opposed end faces 114 , opposed side faces 116 and a top face 118 .
  • the body portion 112 can have other shapes as well, including other rectangular shapes.
  • the transfer unit 110 also includes a drive mechanism 122 that moves the body portion 112 relative to the tank 12 .
  • the drive mechanism 122 can include two pairs of arms 124 , 126 . Each pair of arms 124 , 126 are pivotally connected at upper ends to a mounting surface 127 and at lower ends to one of the opposed end faces 114 of the body portion 112 of the transfer unit 110 .
  • the arms 124 , 126 are vertically movable and are also pivotal about pivot axes 129 to move the transfer unit 110 vertically and laterally in the tank 12 as described below.
  • the drive mechanism 122 can also include drive elements (not shown) for moving the arms 124 , 126 .
  • the operation of the drive elements can be controlled by an operator of the apparatus 10 .
  • the operation of the apparatus 10 can be automatically programmed so that the transfer unit 110 performs the operations described below in an automated manner, so that the operator needs only to start the transfer process and to stop the operation of the apparatus after transfer is completed.
  • a pair of wafer chucks 128 , 130 are provided on the bottom face 120 of the body portion 112 .
  • the wafer chucks 128 , 130 each include a rod 132 and one or more wafer engagement portions 134 attached on the rod 132 .
  • the rods 132 are typically cylindrical shaped as shown, and can optionally have other shapes such as rectangular.
  • the wafer engagement portions 134 each include an inner surface 136 including a plurality of grooves 138 each sized to receive a wafer (only the grooves 138 of the wafer chucks 130 are shown).
  • each wafer engagement portion 134 is typically concave shaped to match the circumferential shape of the wafers.
  • the grooves 138 are preferably parallel to each other.
  • the wafer chucks 128 , 130 are moved automatically toward and away from each other during wafer transfer operations.
  • the wafer chucks 128 , 130 can be moved toward and away from each by a retractable pneumatic-operated rod or the like (not shown).
  • FIG. 2 shows the manner of placing two wafer cassettes 34 onto the cassette lift 26 .
  • This step is typically performed manually by an operator, with the wafer cassettes 34 being positioned above the liquid in the tank 12 .
  • the wafer cassettes 34 each have an open bottom.
  • One of the wafer cassettes 34 is shown positioned over one of the holes 38 in the bottom wall 30 of the cassette lift 26 .
  • the other wafer cassette 34 is shown before being lowered onto the cassette lift 26 over the other hole 38 .
  • the cassette lift 26 is retained in a fixed upper position in which the wafer cassettes 34 are positioned above the liquid in the tank, by engagement of the first and second cassette lift stop elements 46 , 50 , as shown in FIG. 2.
  • FIG. 3 shows the transfer unit 110 positioned above the cassette lift 26 before the transfer unit 110 is engaged with the cassette lift 26 .
  • the transfer unit 110 is engaged with the cassette lift 26 by lowering the transfer unit 110 such that the outer portions of the rods 132 of the wafer chucks 128 , 130 are inserted into the vertical portions 42 of the slots 40 on the side walls 32 as shown in FIG. 4.
  • the wafer chucks 128 , 130 are moved horizontally away from each other (opened) such that the rods 132 are moved into the horizontal portions 44 of the slots 40 , as shown in FIGS. 5 and 6.
  • the second cassette lift stop element 50 is moved horizontally to disengage from the first cassette lift stop element 46 as depicted by the arrow B in FIG. 7.
  • the transfer unit 110 can then be lowered as depicted by the arrow C to lower the cassette lift 26 into the liquid in the tank 12 .
  • the transfer unit 110 lowers the cassette lift 26 into the liquid such that the holes 38 in the bottom wall 30 of the cassette lift 26 move downwardly so as to each receive one of the first wafer stands 56 .
  • FIGS. 8 and 9 show the cassette lift 26 in a bottom position in which the first wafer stands 56 extend upwardly through the holes 38 and the wafers are transferred from the wafer cassettes 34 to the respective wafer baskets 60 .
  • the wafer baskets 60 can support the wafers in the same orientation as the wafers are supported on wafer cassettes 34 .
  • the wafer cassettes 34 are positioned substantially below the wafer baskets 60 .
  • the wafers are next transferred from the first wafer stands 56 to the drum lift 28 .
  • the wafer chucks 128 , 130 are brought toward each other (closed) so that pairs of opposed grooves 138 , including a groove 138 of each opposed wafer engagement portion 134 , each receive one of the wafers.
  • the wafer engagement portions 134 support the wafers in a parallel relationship relative to each other as shown.
  • FIG. 11 shows the wafer transfer unit 110 in a raised position above the first wafer stands 56 after the wafers have been engaged and lifted off of the first wafer stands 56 by the wafer transfer unit 110 .
  • the wafers supported by the wafer chucks 128 , 130 are then moved laterally in the tank 12 to the drum lift 28 .
  • the wafers are positioned above the second wafer stands 88 as shown in FIG. 12 and lowered onto the second wafer stands 88 as shown in FIG. 13.
  • the wafers are positioned in the same parallel orientation on the second wafer stands 88 as on the first wafer stands 56 .
  • FIGS. 13 and 14 show the drum lift 28 and etching drum 70 in a lowered position at this stage of the wafer transfer operation.
  • the wafers are transferred from the second wafer stands 88 to the etching drum 70 .
  • This is achieved by lifting the drum lift 28 and supported etching drum 70 upwardly in the tank 12 in the direction of the arrow D shown in FIG. 15.
  • the rods 132 of the wafer chucks 128 , 130 of the wafer transfer unit 110 are engaged in the horizontal portions 76 of the slots 72 formed in the drum lift 28 and the wafer transfer unit 110 is raised until the wafers supported on the second wafer stands 88 are supported by the rods 98 , 100 of the etching drum 70 as shown in FIG. 16.
  • the wafer transfer unit 110 is then disengaged from the drum lift 28 by moving the rods 132 of the wafer chucks 128 , 130 toward each other as represented by the arrows E, E in FIG. 17.
  • FIG. 18 shows the drum lift 28 after the wafer transfer unit 110 is disengaged.
  • the drum lift 28 is held in the fixed raised position by engagement of the drum lift stop elements 78 , 80 as depicted by the arrow F in FIG. 17 and shown in FIG. 18.
  • the etching drum 70 is then removed from the drum lift 28 by the wafer transfer unit 110 .
  • the wafer transfer unit 110 is moved to the side of the etching drum 70 that faces the cassette lift 26 (front side).
  • the wafer transfer unit 110 includes a pair of drum hands 140 which are each configured to support the shaft 104 of the etching drum 70 .
  • the wafer transfer unit 110 can also include a pair of wafer holding bars 142 that engage the locking rod 100 of the etching drum 70 and move the locking rod 100 from the unlocking to the locking position as depicted by arrow F.
  • the wafer transfer unit 110 lifts the etching drum 70 upwardly and away from the drum lift 28 .
  • the etching drum 70 can then be removed from the liquid in the tank 12 and moved by the wafer transfer unit 110 to another wafer fabrication location. Typically, the etching drum 70 is moved to the etching machine to etch the wafers. Following etching, the wafer transfer unit can move the etching drum 70 and wafers back to the apparatus 10 . The wafers can then be transferred from the etching drum 70 to the wafer cassettes 34 by performing the above-described transfer steps in reverse order. Accordingly, the apparatus 10 can be utilized to automatically transfer wafers to and from an etching machine without an operator having to manually handle the wafers during this transfer.
  • the apparatus is preferably composed of materials that are non-contaminating to the liquid in the tank and to the wafers.
  • the components of the apparatus that are exposed to the liquid in the tank can be composed of non-metallic materials such as polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE) and the like.
  • Other components that are not exposed to the liquid can be composed of the same non-metallic materials, as well as metals such as stainless steels with a non-metallic material coating.
  • the etching drum 70 is composed of materials that are resistant to chemical attack in the etching machine. Suitable plastic materials are typically used to form the etching drum 70 .

Abstract

An apparatus for transferring wafers between wafer holders such as wafer cassettes, etching drums and the like includes a tank for containing a liquid transfer medium in which the wafers can be transferred. The apparatus includes a wafer transfer unit that can transfer a plurality of wafers such as semiconductor wafers between wafer holders, and maintain the wafers in a desired relative orientation during transfer. For example, the wafers can be maintained in a parallel relationship. The apparatus can be used to automatically transfer wafers to etching drums without cross-indexing of the wafers and without manual handling of the wafers.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0001]
  • This invention is directed to the field of semiconductor wafer preparation and, more particularly, to an apparatus and method for transferring wafers between wafer holders. [0002]
  • 2. Description of Related Art [0003]
  • During semiconductor wafer preparation, wafers are subjected to mechanical processes including slicing, grinding and lapping, which produce lattice damage in the surface regions of the wafers. This lattice damage is generally removed by chemically etching the wafers to remove the damaged surface regions of the wafers. Etching is typically conducted in an etching machine, which includes an etching drum to movably support the wafers within an acid etch solution during the etching process. [0004]
  • During the etching process, it is important that the wafers are positioned on the etching drum so that the wafers are parallel to, and uniformly spaced from, each other. Such positioning of the wafers is desirable so that the wafers do not contact and possibly chip or scratch each other. The wafer surfaces are very sensitive to such contact before etching (after cleaning). In addition, uniform spacing of the wafers promotes uniform etching of the wafers, so that etched wafers are uniformly sized and do not include stained regions. Non-uniform etching can produce defective wafers that are unsuitable for subsequent fabrication and must be scrapped at substantial financial cost. [0005]
  • It is known to manually position wafers on etching drums. The structure of etching drums makes it difficult, however, for operators to manually position the wafers on the etching drums so that the wafers are properly positioned in an efficient manner. Particularly, etching drums typically have multiple sets of grooves, with each set of grooves being designed to receive and support a single wafer. Each set of grooves typically includes several grooves that are aligned with each other. During manual positioning of the wafers, operators must position the wafers so that each of the wafers is properly received within each of the grooves of one set of grooves only. If the wafers are not properly positioned in this manner, they will be “cross-indexed” in the grooves, meaning that individual wafers are received in the grooves of more than one set of grooves. Consequently, more than one wafer can be received in individual grooves, causing the wafers to not all be parallel to, and equally spaced from, each other. As a result, the wafers can physically contact each other. Such contact can scratch the wafers and also prevent uniform etching of each wafer, as described above. [0006]
  • In order to correct cross-indexing, operators must manually re-position the wafers on the etching drum before etching. This approach is not satisfactory, however, for several reasons. First, the wafers are susceptible to scratching and, accordingly, it is desirable to minimize such handling of the wafers. Second, it is time-consuming for the operators to re-position the wafers and this additional step can significantly delay the performance of the etching step. Third, the environment of the etching machine can be hazardous to operators due to the presence of the acid etch solution and associated fumes. Correcting cross-indexing problems can force the operators to be exposed to this environment for extended periods of time. [0007]
  • Another concern during wafer preparation is to maintain the wafers in a clean condition. For example, wafers are very sensitive to contamination after being cleaned. Accordingly, it is important to reduce exposure of the wafers to potential contamination during transfer operations, such as by reducing exposure of cleaned wafers to the ambient atmosphere prior to etching, so as to reduce oxidation and contamination of the wafers. [0008]
  • Thus, there is a need for an apparatus and method for transferring wafers from wafer carriers to etching drums that can reduce or even eliminate cross-indexing, reduce exposure of operators to hazardous wafer etching environments, and reduce wafer contamination during processing and transfer operations. [0009]
  • SUMMARY OF THE INVENTION
  • This invention provides an apparatus for transferring wafers between various types of wafer holders that can satisfy the above needs. [0010]
  • The wafers can be semiconductor wafers as well as other types of wafers and similar shaped objects. [0011]
  • The apparatus can be used to transfer wafers between various types of wafer holders. For example, in some embodiments, the apparatus can transfer wafers from wafer holders that hold wafers in set relationships, such as parallel relationships, relative to each other. The apparatus can automatically transfer wafers between such wafer holders and retain the wafers in their desired relationships during transfer. The apparatus can eliminate the need for operators to manually transfer wafers between holders. In addition, the apparatus can transfer wafers without cross-indexing the wafers. Thus, the apparatus can eliminate the need for operators to manually correct cross-indexing problems in transferred wafers. Accordingly, the wafers can be prevented from contacting and damaging each other during transfer. [0012]
  • The apparatus can be used to transfer wafers from wafer cassettes, which are typically used to carry semiconductor wafers during wafer preparation. The apparatus can be used to automatically transfer wafers from wafer cassettes to etching drums that are utilized in etching machines. In addition, the apparatus can automatically transfer etching drums between the apparatus and etching machines, so that manual transfer is not required. [0013]
  • According to an embodiment of this invention, the apparatus comprises a transfer chamber for containing a liquid, and a transfer unit for transferring at least one wafer in the liquid from a first wafer holder to a second wafer holder. For example, the first and second wafer holders can be a wafer cassette and an etching drum, respectively. In some embodiments, the liquid is preferably a high-purity liquid. By transferring wafers in the liquid, the wafers can be protected against exposure to contamination during transfer. [0014]
  • Although not limited to these specifics, in a particular embodiment of this invention, the apparatus can comprise one or more stands disposed in the liquid in the transfer chamber. During transfer operations, the stands can support one or more of the wafers in the liquid. The apparatus can further comprise a first lift for supporting the first wafer holder and a second lift for supporting the second wafer holder. The first lift can be moved by the transfer unit to transfer one or more wafers from the first wafer holder to the first stand in the liquid. The second lift can be moved by the transfer unit to transfer one or more wafers from the second stand to the second wafer holder in the liquid. [0015]
  • The transfer unit can also transfer wafers in the reverse direction in the liquid, i.e., from the second wafer holder to the second stand, from the second stand to the first stand, and from the first stand to the first wafer holder. In addition, the apparatus can transfer wafers to and from other machines used for wafer fabrication, such as etching machines, that are utilized in wafer preparation. Accordingly, wafers can be transferred back to a wafer holder after the wafers are subjected to other wafer fabrication steps. [0016]
  • The transfer unit is preferably automated so that it can automatically transfer the wafers in the liquid between the various wafer supports. Accordingly, the apparatus can eliminate the need for operators to manually transfer wafers between wafer holders. [0017]
  • This invention also provides a method for transferring wafers between wafer holders in a liquid medium that utilizes the apparatus.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Certain preferred embodiments of this invention will be described in detail, with reference to the accompanying figures, in which: [0019]
  • FIG. 1 is a partial perspective view of an apparatus for transferring wafers between wafer holders in a liquid in accordance with an embodiment of this invention, showing a cassette lift supporting a pair of wafer cassettes in a raised position in a transfer chamber; [0020]
  • FIG. 2 illustrates the manner of placing the wafer cassettes onto the cassette FIG. 3 illustrates a transfer unit of the apparatus according to an embodiment of this invention in a raised position prior to being engaged with the cassette lift of FIG. 2; [0021]
  • FIG. 4 illustrates the transfer unit of FIG. 3 with the wafer chucks of the transfer unit in a closed position; [0022]
  • FIG. 5 illustrates the transfer unit of FIG. 4 with the wafer chucks in an open position in which the transfer unit is fully engaged with the cassette lift in the raised position; [0023]
  • FIG. 6 illustrates the apparatus of FIG. 1 with the cassette lift in the raised position and the wafer chucks engaged with the cassette lift; [0024]
  • FIG. 7 illustrates the transfer unit and cassette lift of FIG. 5 and the manner of disengaging cassette lift stop elements to enable the cassette lift to be lowered into the liquid in the tank by the transfer unit; [0025]
  • FIG. 8 illustrates the apparatus of FIG. 1 with the cassette lift in a lowered position after the wafers contained in the wafer cassettes are transferred to first wafer stands; [0026]
  • FIG. 9 shows the cassette lift of FIG. 2 in the lowered position of FIG. 8, with a plurality of wafers positioned in a parallel relationship on the first wafer stands; [0027]
  • FIG. 10 illustrates the apparatus of FIG. 8 after disengaging the wafer chucks from the cassette lift and engaging wafer engagement portions of the wafer chucks with the wafers; [0028]
  • FIG. 11 shows the transfer unit in a raised position above the first wafer stands after removing the wafers from the first stands, and the wafer cassettes in the lowered position in the tank; [0029]
  • FIG. 12 illustrates the apparatus of FIG. 10 with the wafer chucks in a raised position above second wafer stands prior to the wafer chucks being engaged with the drum lift; [0030]
  • FIG. 13 shows the transfer unit in the raised position above the second wafer stands with the wafer chucks in the closed position supporting the wafers; [0031]
  • FIG. 14 shows the apparatus of FIG. 12 with the wafer chucks opened and engaged with the drum lift and the cassettes supported on the second wafer stands in the lowered position of the drum lift; [0032]
  • FIG. 15 illustrates the wafers positioned in a parallel relationship on the second stands and the etching drum in a lowered position, with the arrow representing the direction of movement of the etching drum to a raised position; [0033]
  • FIG. 16 illustrates the apparatus of FIG. 14 with the drum lift in a raised position in which the wafers are supported by the etching drum; [0034]
  • FIG. 17 illustrates the manner of closing the wafer chucks and engaging the drum lift stop elements to hold the drum lift in the raised position; [0035]
  • FIG. 18 illustrates the etching drum and drum lift in the raised position after the drum chucks are disengaged from the drum lift; [0036]
  • FIG. 19 illustrates the transfer unit after being disengaged from the drum lift and being moved to a side of the etching drum facing the first stands, showing a drum hand of the transfer unit engaged with a shaft of the etching drum and a wafer holding bar of the transfer unit engaged with a movable locking rod of the etching drum; [0037]
  • FIG. 20 is an enlarged partial view showing the wafer holding bar of the transfer unit engaged with the movable locking rod of the etching drum, with the locking rod in an unlocked position; [0038]
  • FIG. 21 illustrates an etching drum that can be used in the apparatus of this invention; and [0039]
  • FIG. 22 illustrates the tank of the apparatus and a portion of the transfer unit disposed above the tank.[0040]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • This invention provides an apparatus and method for transferring wafers between various types of wafer holders. This invention can be used to transfer wafers between wafer holders that are conventionally used to contain wafers during wafer preparation. For example, the wafer holders can be wafer cassettes, wafer boats, etching drums and the like. The wafers can be semiconductor wafers such as silicon wafers, gallium arsenide wafers and other semiconductor materials. The wafers can be composed of non-semiconductor materials as well, such as quartz wafers. [0041]
  • The apparatus of this invention can transfer wafers between wafer holders such that the wafers are retained in a desired orientation relative to each other during and after transfer. For example, wafers are typically supported by wafer holders in a parallel relationship, such as in individual grooves, to prevent contact between individual wafers. The apparatus can transfer wafers between various types of wafer holders and retain such parallel relationship of the wafers. [0042]
  • The apparatus can transfer wafers automatically, thus eliminating the need for operators to manually handle the wafer holders or wafers during transfer operations. In addition, this invention can reduce exposure of wafers to contamination during transfer, and can eliminate physical damage to wafers that can occur during manual handling operations. [0043]
  • The above and other advantages of this invention will be described below with reference to the drawings. The figures illustrate the transfer of wafers between wafer cassettes and an etching drum. The etching drum is utilized in an etching machine to etch the wafers. The etching machine does not form a part of this invention and, accordingly, is not illustrated or described in detail herein. It will be understood by those skilled in the art that the apparatus of this invention can be used to transfer wafers between different types of wafer holders as well such as, for example, between different wafer cassettes or different etching drums. In addition, it will be understood that the wafers can be transferred between more than two different wafer holders. [0044]
  • FIG. 1 illustrates a portion of an [0045] apparatus 10 according to an embodiment of this invention that can be used to transfer wafers between wafer holders in a liquid environment. The illustrated apparatus includes a tank 12 shown partially broken away. The tank is typically open at the upper end as shown. The tank includes upstanding side walls 14, 16 and a bottom wall 18 forming a housing. The housing defines a transfer chamber 20 for containing a liquid that functions as the wafer transfer medium. The liquid can be any suitable high-purity liquid that is non-contaminating to the apparatus and to the wafers. Typically, the liquid is high-purity deionized water. The liquid level L in the transfer chamber is typically approximately as shown in FIG. 1.
  • According to an aspect of this invention, the liquid in the [0046] tank 12 can comprise a chemical that forms an oxide layer on the wafers, to protect the wafers from scratching due to contact between each other. For example, the liquid can comprise high-purity water and up to about 5% of hydrogen peroxide. Other suitable chemicals that promote oxide layer formation can be used as well.
  • The [0047] apparatus 10 can also include a liquid supply system that circulates the liquid into and out of the tank. The liquid supply system can include a liquid inlet 22 and a liquid outlet 24 or an alternative overflow system to enable the liquid to be filled into the tank 12 to maintain the liquid in the tank in a clean condition. In addition, the liquid supply system can maintain a desired liquid level in the tank 12. However, it will be readily apparent that such a liquid supply system is not necessary in all embodiments of this invention, and that wafer contamination by the liquid can be prevented in other manners.
  • It will be understood by those skilled in the art that the [0048] apparatus 10 of this invention can be used to transfer wafers between wafer holders when no liquid is contained in the tank 12. In such embodiments, the wafers can also be transferred without requiring operators to handle the wafers. It is preferable, however, to transfer wafers in a liquid for at least the following reasons. First, the high-purity liquid prevents the wafers from being exposed to the atmosphere during the transfer operation, thereby eliminating contamination of the wafers by the air during transfer. Second, the increased viscosity of the liquid as compared to the air can assist in maintaining the wafers in the desired relative orientation with respect to each other during transfer.
  • The [0049] apparatus 10 further comprises a cassette lift 26 and a drum lift 28 laterally spaced from the cassette lift 26. The cassette lift 26 is shown in a fixed, raised position in FIG. 1. Referring also to FIG. 2, the cassette lift 26 includes a bottom wall 30 and opposed upstanding side walls 32. The bottom wall 30 is sized to support at least one wafer cassette 34 (two wafer cassettes 34 are shown). More or less wafer cassettes 34 can be used in other embodiments of this invention. Each wafer cassette 34 typically includes a plurality of parallel grooves 36, which are each sized to support one wafer, such that the wafer cassettes can support a plurality of wafers in a parallel relationship. For simplification, only one wafer W is shown in each wafer cassette 34 in some figures, such as FIG. 1. In other figures such as FIG. 2, a plurality of wafers W are shown in the wafer cassettes 34 to illustrate how the wafers can be supported in various relationships such as the illustrated parallel relationship. Each wafer cassette 34 is typically sized to support about 25 or less wafers. One or more holes 38 extend through the bottom wall 30 of the cassette lift 26. The number of holes 38 can be varied depending on the number of wafer cassettes 34 supported on the cassette lift 26. The side walls 32 each include two slots 40 that are typically generally L-shaped. The slots 40 each typically include a vertical portion 42 and a horizontal portion 44. The horizontal portions 44 extend outwardly in opposite directions to each other.
  • A first cassette [0050] lift stop element 46 is provided on the outer surface 48 of each of the side walls 32 of the cassette lift 26. The first cassette lift stop elements 46 each releasingly engage a second cassette lift stop element 50 provided on the side walls 14 of the tank 12 as shown in FIG. 1, to hold the cassette lift 26 in the vertically fixed, raised position. The first and second cassette lift stop elements 46, 50 can be selectively disengaged from each other by moving the second cassette lift stop elements 50 away from the first cassette lift stop elements 46 to enable the cassette lift 26 to be moved vertically downward in the tank 12 as described in greater detail below. One or more rollers 52 are provided on each side wall 32 of the cassette lift 26. The rollers 52 mate with vertically extending rails 54 which are mounted to each of the opposed side walls 14 of the tank 12, to enable the cassette lift 26 to be moved vertically in the tank 12 in the direction of the rails 54.
  • The [0051] cassette lift 26 supports the wafer cassettes 34 prior to transferring wafers from the cassette lift 26 to one or more first wafer stands 56 of the apparatus 10. As shown, a pair of laterally spaced first wafer stands 56 are mounted to, and extend upwardly from, the bottom wall 18 of the tank 12. In embodiments in which more or less than two wafer cassettes 34 are utilized, the apparatus 10 can include a number of first stands 56 corresponding to the number of wafer cassettes 34. The first wafer stands 56 can each include a pair of upstanding legs 58 and a wafer basket 60 attached to the upper ends of the legs 58. The wafer baskets 60 include a upper surface 62 in which a plurality of parallel grooves 64 are formed. The upper surface 62 is typically concave to match the configuration of the wafers. The grooves 64 are each sized to receive and support one wafer in a vertical orientation, such that the first wafer stands 56 can each support a plurality of wafers in a parallel relationship, as depicted in FIG. 9. In the illustrated relationship, the wafers are spaced from each so that no contact occurs between the wafers.
  • The [0052] drum lift 28 typically can have a construction similar to that of the cassette lift 26. As shown, the drum lift 28 can comprise opposed upstanding side walls 66 and a bottom wall 68. The side walls 66 are spaced from each other by a distance greater than the length of an etching drum 70 that is supported on the drum lift 28. The side walls 66 each include a slot 72 that is typically generally L-shaped slot 72 (FIG. 8). The slots 72 can include a vertical portion 74 and a horizontal portion 76. A first drum lift stop element 78 is provided on the outer surface of each side wall 66 of the drum lift 28. The first drum lift stop elements 78 each engage a second drum lift stop element 80 provided on the side walls 14 of the tank 12, to maintain the drum lift 28 in a vertically fixed position. One or more rollers 82 are provided on each side wall. The rollers 82 mate with vertically extending rails 84 mounted to each of the opposed side walls 14 of the tank 12, such that the drum lift 28 is vertically movable in the tank 12 along the direction of the rails 84.
  • The [0053] bottom wall 68 of the drum lift includes one or more holes 86 which extend through the bottom wall 68 (FIG. 17). The number of holes 86 typically equals the number of holes 38 in the cassette lift 26. One or more second wafer stands 88 (two are shown) are mounted to the bottom wall 18 of the tank 12 (see FIG. 8). The second wafer stands 88 each include each include a pair of upstanding legs 90 and a wafer basket 92 attached to the upper ends of the legs 90. The wafer baskets 92 include a concave upper surface 94 defining a plurality of parallel grooves 96. The grooves 96 are each sized to receive and support a wafer in a vertical orientation, such that the second wafer stands 88 can each support a plurality of wafers in a parallel relationship. As described below, the holes 86 in the bottom wall 68 of the drum lift 28 are each configured to receive the wafer basket 92 of one of the second wafer stands 88 during wafer transfer.
  • It will be understood by those skilled in the art that the number of second wafer stands [0054] 88 can vary in embodiments of this invention. In the illustrated embodiment, the apparatus 10 comprises two second wafer stands 88, which equals the number of first wafer stands 56. However, the number of first and second wafer stands can be different in some embodiments. Furthermore, the size of the wafer baskets 60, 92 of the first and second wafer stands 56, 88, respectively, can be varied to vary the wafer holding capacity. For example, a single wafer stand 88 including a wafer basket 92 having the wafer holding capacity of the two illustrated wafer baskets 92 combined can alternatively be used instead of two second wafer stands 88. Such configurations are also possible for the first wafer stand 56.
  • The [0055] drum lift 28 supports the etching drum 70 in the tank 12 so as to enable transfer of the wafers from the first wafer stands 56 to the second wafer stands 88, and from the second wafer stands 88 to the etching drum 70, as described in detail below.
  • An embodiment of the [0056] etching drum 70 that can be used in the apparatus 10 is illustrated in greater detail in FIG. 21. As shown, the etching drum 70 comprises a plurality of laterally spaced plates 93, 94. The plates are typically arranged in a parallel relationship relative to each other as shown. The plates 93, 94 each include an arcuate shaped through hole 96. A plurality of fixed rods 98 and a movable locking rod 100 extend longitudinally along the etching drum 70. The fixed rods 98 connect the plates 93, 94 together and maintain the plates 93, 94 in a fixed relationship relative to each other. The fixed rods 98 and the locking rod 100 each include a plurality of grooves 102. The grooves 102 in each rod are each aligned with a groove in each of the other respective rods, and the aligned groups of four grooves 102 can each receive and support one of the wafers. The locking rod 100 extends through the arcuate shaped through holes 96 of each of the plates 93, 94 and is movable along the arcuate shaped through holes 96 between an upper, locking position shown in phantom line and an illustrated lower, unlocking position, as represented by the arrows A. A plurality of wafers can be supported in the grooves 102 when the movable rod 100 is in the unlocking position, such that the wafers can be selectively removed from the etching drum 70. The plurality of wafers can be supported in the grooves 102 when the movable rod 100 is in the locking position, such that the wafers cannot be accidentally or intentionally removed from the etching drum 70.
  • The etching drum further comprises a [0057] central shaft 104 which extends outwardly from each of the end plates 94. To support the etching drum 70, vertical slots (not shown) are formed in the inner surface of each of the side walls 66 of the drum lift 28. The shaft 104 can be inserted into the respective slots in a downward direction to support the etching drum 70 on the drum lift. As described below, the etching drum 70 can be lifted such that the shaft 104 is moved upwardly in the respective slots to remove the etching drum 70 from the drum lift 28. The etching drum 70 also includes a gear mechanism 106 that can engage mating gears in a conventional etching machine when the etching drum 70 is placed in the etching machine to etch the wafers following wafer transfer.
  • As shown in some of the figures, including FIGS. 3, 4, [0058] 5, 7, 11, 13, 17 and 19, the apparatus 10 comprises a transfer unit 110 that performs multiple functions during wafer transfer, enabling wafers to be automatically transferred between different wafer holders. The wafer transfer unit 110 also enables wafers to be transferred to and from machines, such as an etching machine, that are utilized in wafer fabrication.
  • In the illustrated embodiment, the [0059] transfer unit 110 enables a plurality of wafers to be automatically, simultaneously transferred from wafer holders such as the wafer cassettes 34 to other wafer holders such as the etching drum 70. During this transfer process, the wafers are transferred from the wafer cassettes 34 to the first wafer stands 56, from the first wafer stands 56 to the second wafer stands 88, and from the second wafer stands 88 to a second wafer holder such as the etching drum 70. These wafer transfer steps can each be performed in the liquid contained in the tank 12, such that the wafers are not exposed to the ambient environment during transfer between the wafer holders. In addition, the wafers can be transferred during each of these steps such that the wafers are retained in a desired relationship to each other, such as in a parallel relationship shown in some figures.
  • Only the relevant portions of the [0060] transfer unit 110 needed for illustrative purposes are shown in detail in the figures and described below. As shown in FIG. 3, an embodiment of the transfer unit 110 comprises a body portion 112 including opposed end faces 114, opposed side faces 116 and a top face 118. The body portion 112 can have other shapes as well, including other rectangular shapes.
  • Referring to FIG. 22, the [0061] transfer unit 110 also includes a drive mechanism 122 that moves the body portion 112 relative to the tank 12. The drive mechanism 122 can include two pairs of arms 124, 126. Each pair of arms 124, 126 are pivotally connected at upper ends to a mounting surface 127 and at lower ends to one of the opposed end faces 114 of the body portion 112 of the transfer unit 110. The arms 124, 126 are vertically movable and are also pivotal about pivot axes 129 to move the transfer unit 110 vertically and laterally in the tank 12 as described below. The drive mechanism 122 can also include drive elements (not shown) for moving the arms 124, 126. The operation of the drive elements can be controlled by an operator of the apparatus 10. For example, the operation of the apparatus 10 can be automatically programmed so that the transfer unit 110 performs the operations described below in an automated manner, so that the operator needs only to start the transfer process and to stop the operation of the apparatus after transfer is completed.
  • A pair of wafer chucks [0062] 128, 130 are provided on the bottom face 120 of the body portion 112. The wafer chucks 128, 130 each include a rod 132 and one or more wafer engagement portions 134 attached on the rod 132. (In FIGS. 6, 8, 10, 12, 14 and 16, only the wafer chucks 128, 130 of the transfer unit 110 are shown for simplification.) The rods 132 are typically cylindrical shaped as shown, and can optionally have other shapes such as rectangular. The wafer engagement portions 134 each include an inner surface 136 including a plurality of grooves 138 each sized to receive a wafer (only the grooves 138 of the wafer chucks 130 are shown). The inner surface 136 of each wafer engagement portion 134 is typically concave shaped to match the circumferential shape of the wafers. The grooves 138 are preferably parallel to each other. As described in greater detail below, the wafer chucks 128, 130 are moved automatically toward and away from each other during wafer transfer operations. The wafer chucks 128, 130 can be moved toward and away from each by a retractable pneumatic-operated rod or the like (not shown).
  • The operation of the [0063] wafer transfer apparatus 10 will now be described with reference to the drawing figures which sequentially illustrate a series of steps that can be automatically performed by the wafer transfer apparatus during the transfer of wafers from the wafer cassettes 34 to the etching drum 70 disposed on the drum lift 28. In these figures, only portions of the apparatus 10 are illustrated for simplicity and clarity. As shown in FIG. 2, open H-bar sides of the wafer cassettes face toward each other to enable bar codes on the wafers to be automatically read before and after wafer cassette 34 transfer.
  • FIG. 2 shows the manner of placing two [0064] wafer cassettes 34 onto the cassette lift 26. This step is typically performed manually by an operator, with the wafer cassettes 34 being positioned above the liquid in the tank 12. The wafer cassettes 34 each have an open bottom. One of the wafer cassettes 34 is shown positioned over one of the holes 38 in the bottom wall 30 of the cassette lift 26. The other wafer cassette 34 is shown before being lowered onto the cassette lift 26 over the other hole 38. The cassette lift 26 is retained in a fixed upper position in which the wafer cassettes 34 are positioned above the liquid in the tank, by engagement of the first and second cassette lift stop elements 46, 50, as shown in FIG. 2.
  • FIG. 3 shows the [0065] transfer unit 110 positioned above the cassette lift 26 before the transfer unit 110 is engaged with the cassette lift 26. The transfer unit 110 is engaged with the cassette lift 26 by lowering the transfer unit 110 such that the outer portions of the rods 132 of the wafer chucks 128, 130 are inserted into the vertical portions 42 of the slots 40 on the side walls 32 as shown in FIG. 4. Once the rods 132 reach the bottom ends of the vertical portions 42, the wafer chucks 128, 130 are moved horizontally away from each other (opened) such that the rods 132 are moved into the horizontal portions 44 of the slots 40, as shown in FIGS. 5 and 6.
  • To next lower the [0066] cassette lift 26 into the liquid in the tank 12, the second cassette lift stop element 50 is moved horizontally to disengage from the first cassette lift stop element 46 as depicted by the arrow B in FIG. 7. The transfer unit 110 can then be lowered as depicted by the arrow C to lower the cassette lift 26 into the liquid in the tank 12. The transfer unit 110 lowers the cassette lift 26 into the liquid such that the holes 38 in the bottom wall 30 of the cassette lift 26 move downwardly so as to each receive one of the first wafer stands 56. FIGS. 8 and 9 show the cassette lift 26 in a bottom position in which the first wafer stands 56 extend upwardly through the holes 38 and the wafers are transferred from the wafer cassettes 34 to the respective wafer baskets 60. The wafer baskets 60 can support the wafers in the same orientation as the wafers are supported on wafer cassettes 34. The wafer cassettes 34 are positioned substantially below the wafer baskets 60.
  • The wafers are next transferred from the first wafer stands [0067] 56 to the drum lift 28. Referring to FIG. 10, in order to transfer the wafers from the first wafer stands 56, the wafer chucks 128, 130 are brought toward each other (closed) so that pairs of opposed grooves 138, including a groove 138 of each opposed wafer engagement portion 134, each receive one of the wafers. The wafer engagement portions 134 support the wafers in a parallel relationship relative to each other as shown. FIG. 11 shows the wafer transfer unit 110 in a raised position above the first wafer stands 56 after the wafers have been engaged and lifted off of the first wafer stands 56 by the wafer transfer unit 110.
  • The wafers supported by the wafer chucks [0068] 128, 130 are then moved laterally in the tank 12 to the drum lift 28. The wafers are positioned above the second wafer stands 88 as shown in FIG. 12 and lowered onto the second wafer stands 88 as shown in FIG. 13. The wafers are positioned in the same parallel orientation on the second wafer stands 88 as on the first wafer stands 56. FIGS. 13 and 14 show the drum lift 28 and etching drum 70 in a lowered position at this stage of the wafer transfer operation.
  • Next, the wafers are transferred from the second wafer stands [0069] 88 to the etching drum 70. This is achieved by lifting the drum lift 28 and supported etching drum 70 upwardly in the tank 12 in the direction of the arrow D shown in FIG. 15. To lift the drum lift 28 and etching drum 70, the rods 132 of the wafer chucks 128, 130 of the wafer transfer unit 110 are engaged in the horizontal portions 76 of the slots 72 formed in the drum lift 28 and the wafer transfer unit 110 is raised until the wafers supported on the second wafer stands 88 are supported by the rods 98, 100 of the etching drum 70 as shown in FIG. 16.
  • The [0070] wafer transfer unit 110 is then disengaged from the drum lift 28 by moving the rods 132 of the wafer chucks 128, 130 toward each other as represented by the arrows E, E in FIG. 17. FIG. 18 shows the drum lift 28 after the wafer transfer unit 110 is disengaged. The drum lift 28 is held in the fixed raised position by engagement of the drum lift stop elements 78, 80 as depicted by the arrow F in FIG. 17 and shown in FIG. 18.
  • The [0071] etching drum 70 is then removed from the drum lift 28 by the wafer transfer unit 110. Specifically, the wafer transfer unit 110 is moved to the side of the etching drum 70 that faces the cassette lift 26 (front side). As shown in FIGS. 19 and 20, the wafer transfer unit 110 includes a pair of drum hands 140 which are each configured to support the shaft 104 of the etching drum 70. The wafer transfer unit 110 can also include a pair of wafer holding bars 142 that engage the locking rod 100 of the etching drum 70 and move the locking rod 100 from the unlocking to the locking position as depicted by arrow F. After the drum hands 140 are moved to support the etching drum 70, the wafer transfer unit 110 lifts the etching drum 70 upwardly and away from the drum lift 28.
  • The [0072] etching drum 70 can then be removed from the liquid in the tank 12 and moved by the wafer transfer unit 110 to another wafer fabrication location. Typically, the etching drum 70 is moved to the etching machine to etch the wafers. Following etching, the wafer transfer unit can move the etching drum 70 and wafers back to the apparatus 10. The wafers can then be transferred from the etching drum 70 to the wafer cassettes 34 by performing the above-described transfer steps in reverse order. Accordingly, the apparatus 10 can be utilized to automatically transfer wafers to and from an etching machine without an operator having to manually handle the wafers during this transfer.
  • According to an aspect of this invention, the apparatus is preferably composed of materials that are non-contaminating to the liquid in the tank and to the wafers. For example, the components of the apparatus that are exposed to the liquid in the tank can be composed of non-metallic materials such as polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE) and the like. Other components that are not exposed to the liquid can be composed of the same non-metallic materials, as well as metals such as stainless steels with a non-metallic material coating. [0073]
  • The [0074] etching drum 70 is composed of materials that are resistant to chemical attack in the etching machine. Suitable plastic materials are typically used to form the etching drum 70.
  • While this invention has been described in conjunction with the specific embodiments described above, it is evident that many alternatives, modifications and variations are apparent to those skilled in the art in view of this disclosure. Accordingly, the preferred embodiments of this invention as set forth above are intended to be illustrative and not limiting. Various changes can be made without departing from the spirit and scope of this invention as defined in the following claims. [0075]

Claims (27)

What is claimed is:
1. An apparatus for transferring wafers between wafer holders, comprising:
a transfer chamber containing a liquid; and
a transfer unit for transferring at least one wafer in the liquid from a first wafer holder to a second wafer holder.
2. The apparatus of claim 1, further comprising:
a first stand disposed in the liquid in the transfer chamber;
a first lift for supporting the first wafer holder;
a second stand disposed in the liquid in the transfer chamber at a laterally spaced location from the first stand; and
a second lift disposed in the liquid in the transfer chamber for supporting the second wafer holder;
wherein the transfer unit is operable to (i) move the first lift to transfer in the liquid the at least one wafer from the first wafer holder to the first stand, (ii) transfer in the liquid the at least one wafer from the first stand to the second stand, and (iii) move the second lift to transfer in the liquid the at least one wafer from the second stand to the second wafer holder supported on the second lift.
3. The apparatus of claim 2, wherein a plurality of wafers can be (i) retained in a substantially parallel relationship during transfer from the first wafer holder to the first stand, from the first stand to the second stand, and from the second stand to the second wafer holder, and (ii) supported on the second wafer holder in the substantially parallel relationship.
4. The apparatus of claim 2, wherein the first wafer holder, first stand, second stand and second wafer holder each include a plurality of parallel grooves, and each groove of the first wafer holder, first stand, second stand and second wafer holder are sized to receive one said at least one wafer.
5. The apparatus of claim 2, wherein the transfer unit is operable to automatically transfer the at least one wafer from the first wafer holder to the first stand, from the first stand to the second stand, and from the second stand to the second wafer holder, in the liquid.
6. The apparatus of claim 2, wherein the first lift is sized to support more than one first wafer holder, and each first wafer holder is configured to support a plurality of wafers.
7. The apparatus of claim 1, wherein the materials forming the apparatus are non-contaminating to the at least one wafer.
8. The apparatus of claim 2, wherein the transfer unit is operable to (i) remove the second wafer holder containing the at least one wafer from the liquid, (ii) move the second wafer holder to a location spaced from the apparatus, (iii) transfer the second wafer holder from the location back to the apparatus such that the second wafer holder is supported on the second stand, (iv) transfer the at least one wafer from the second wafer holder to the first stand, and (v) move the first wafer holder to transfer the at least one wafer from the first stand to the first wafer holder.
9. The apparatus of claim 1, wherein the first wafer holder is a wafer cassette and the second wafer holder is an etching drum.
10. The apparatus of claim 2, wherein the transfer unit is operable to (i) move the first lift in the transfer chamber such that the at least one wafer is transferred from the first wafer holder to the first stand, and (ii) move the second lift in the transfer chamber such that the at least one wafer is transferred from the second stand to the second wafer holder supported on the second lift.
11. An apparatus for automatically transferring a plurality of wafers from a wafer holder to an etching drum, comprising:
a transfer chamber containing a liquid;
a first stand disposed in the liquid, the first stand including a plurality of first grooves each sized to receive one of the plurality of wafers;
a first lift for supporting at least one wafer holder each configured to support a plurality of the wafers;
a second stand disposed in the liquid, the second stand including a plurality of second grooves each sized to receive one of the plurality of wafers;
a second lift laterally spaced from the first lift in the chamber for supporting in the liquid an etching drum including a plurality of third grooves each sized to receive one of the plurality of wafers; and
a transfer unit for (i) moving the first lift to transfer in the liquid the plurality of wafers from the at least one wafer holder to the first stand such that the first stand supports the plurality of wafers in a desired relationship relative to each other, (ii) transferring in the liquid the plurality of wafers from the first stand to the second stand, and (iii) moving the second lift to transfer in the liquid the plurality of wafers from the second stand to the etching drum supported on the second lift such that the etching drum supports the plurality of wafers in the desired relationship relative to each other, wherein the plurality of wafers are retained in the desired relationship during transfer between the at least one wafer holder and the first stand, the first stand and the second stand, and the second stand and the etching drum, and the plurality of wafers are supported on the etching drum in the desired relationship.
12. The apparatus of claim 11, wherein the transfer unit is operable to (i) move the first lift relative to the first stand so as to automatically transfer the plurality of wafers from the at least one wafer holder to the first stand, and (ii) move the second lift relative to the second stand so as to automatically transfer the plurality of wafers from the second stand to the etching drum.
13. The apparatus of claim 11, wherein the transfer unit comprises a wafer engagement element that can grasp a plurality of wafers supported on the first stand and position the plurality of wafers on the second stand in the desired relationship.
14. The apparatus of claim 13, wherein the wafer engagement element includes a plurality of fourth grooves each for receiving one of the plurality of wafers, the fourth grooves of the wafer engagement element having about the same spacing as the first, second and third grooves.
15. The apparatus of claim 11, wherein the first lift includes a wall having a through opening sized to receive the first stand when the first lift is moved in the liquid to transfer the plurality of wafers from the at least one wafer holder to the first stand, and the second lift includes a wall having a through opening sized to receive the second stand when the second lift is moved in the liquid to transfer the plurality of wafers from the second stand to the etching drum.
16. The apparatus of claim 11, wherein the transfer unit is automatically operated to transfer the plurality of wafers.
17. The apparatus of claim 11, wherein the transfer unit is operable in a reverse direction to transfer the wafers from the etching drum to the second stand, from the second stand to the first stand, and from the first stand to the at least one wafer holder.
18. An apparatus for transferring wafers from a wafer holder to an etching drum, comprising a transfer unit for automatically removing at least one wafer supported on a wafer holder and transferring the removed at least one wafer to an etching drum such that the at least one wafer is supported on the etching drum.
19. The apparatus of claim 18, further comprising:
a transfer chamber;
a first stand disposed in the transfer chamber;
a first lift for supporting the wafer holder;
a second stand disposed in the transfer chamber at a laterally spaced location from the first stand; and
a second lift disposed in the transfer chamber for supporting the etching drum;
wherein the transfer unit is operable to (i) move the first lift to transfer the at least one wafer from the wafer holder to the first stand, (ii) transfer the at least one wafer from the first stand to the second stand, and (iii) move the second lift to transfer the at least one wafer from the second stand to the etching drum supported on the second lift.
20. A method of transferring wafers between wafer holders, comprising:
placing at least one wafer on a first wafer holder;
placing the first wafer holder in a liquid contained in a transfer chamber; and
automatically transferring the at least one wafer from the first wafer holder to a second wafer holder disposed in the liquid.
21. The method of claim 20, wherein the first wafer holder is a wafer cassette and the second wafer holder is an etching drum.
22. The method of claim 20, wherein a first stand and a second stand are disposed in the liquid, and the method further comprises:
automatically transferring the at least one wafer from the first wafer holder to the first stand in the liquid;
automatically transferring the at least one wafer from the first stand to the second stand in the liquid; and
automatically transferring the at least one wafer from the second stand to the second wafer holder in the liquid.
23. The method of claim 22, wherein the first stand and the second wafer holder each comprise a plurality of parallel grooves, each groove is sized to receive one of the at least one wafers, and a plurality of the wafers are transferred from the first wafer holder to the second wafer holder substantially without cross-indexing of the transferred wafers.
24. The method of claim 20, wherein a plurality of wafers are transferred from the first wafer holder to the second wafer holder (i) such that the plurality of wafers substantially do not contact each other during transfer, and (ii) substantially without cross-indexing of the transferred wafers.
25. The method of claim 22, wherein a plurality of wafers are transferred simultaneously from the first wafer holder to the first stand, simultaneously from the first stand to the second stand, and simultaneously from the second stand to the second wafer holder.
26. A method of transferring wafers between a wafer holder and an etching drum, comprising:
placing at least one wafer on a wafer holder; and
automatically removing the at least one wafer from the wafer holder and transferring the at least one wafer to an etching drum.
27. The method of claim 26, wherein a plurality of said at least one wafer are transferred from the wafer holder to the etching drum substantially without cross-indexing of the wafers.
US09/184,652 1998-11-03 1998-11-03 Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment Expired - Lifetime US6457929B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/184,652 US6457929B2 (en) 1998-11-03 1998-11-03 Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment
US09/681,566 US6354794B2 (en) 1998-11-03 2001-04-30 Method for automatically transferring wafers between wafer holders in a liquid environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/184,652 US6457929B2 (en) 1998-11-03 1998-11-03 Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/681,566 Division US6354794B2 (en) 1998-11-03 2001-04-30 Method for automatically transferring wafers between wafer holders in a liquid environment

Publications (2)

Publication Number Publication Date
US20020006324A1 true US20020006324A1 (en) 2002-01-17
US6457929B2 US6457929B2 (en) 2002-10-01

Family

ID=22677791

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/184,652 Expired - Lifetime US6457929B2 (en) 1998-11-03 1998-11-03 Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment
US09/681,566 Expired - Fee Related US6354794B2 (en) 1998-11-03 2001-04-30 Method for automatically transferring wafers between wafer holders in a liquid environment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/681,566 Expired - Fee Related US6354794B2 (en) 1998-11-03 2001-04-30 Method for automatically transferring wafers between wafer holders in a liquid environment

Country Status (1)

Country Link
US (2) US6457929B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209421A1 (en) * 2002-05-09 2003-11-13 Gerardo Buitron W-patterned tools for transporting/handling pairs of disks
US20030210498A1 (en) * 2002-05-09 2003-11-13 Kim Kwang Kon Information-storage media with dissimilar outer diameter and/or inner diameter chamfer designs on two sides
US20030211275A1 (en) * 2002-05-09 2003-11-13 Gerardo Buitron Method of simultaneous two-disk processing of single-sided magnetic recording disks
US20040016214A1 (en) * 2002-05-09 2004-01-29 Gerardo Buitron Method of merging two disks concentrically without gap between disks
US20040069662A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Cassette for holding disks of multiple form factors
US20040071535A1 (en) * 2002-10-10 2004-04-15 Walter Crofton Automated merge nest for pairs of magnetic storage disks
US20040070092A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Method for simultaneous two-disk texturing
US20040070859A1 (en) * 2002-10-10 2004-04-15 Walter Crofton Apparatus for simultaneous two-disk scrubbing and washing
US20040068862A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Cassette apparatus for holding 25 pairs of disks for manufacturing process
US20050266216A1 (en) * 2002-05-09 2005-12-01 Maxtor Corporation Method of manufacturing single-sided sputtered magnetic recording disks
US7052739B2 (en) 2002-05-09 2006-05-30 Maxtor Corporation Method of lubricating multiple magnetic storage disks in close proximity
US7882616B1 (en) 2004-09-02 2011-02-08 Seagate Technology Llc Manufacturing single-sided storage media
US20160096653A1 (en) * 2014-10-01 2016-04-07 United States Postal Service Transformable tray and tray system for receiving, transporting and unloading items
CN115116913A (en) * 2022-06-22 2022-09-27 南京原磊纳米材料有限公司 Multi-piece wafer transmission mechanism

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017010C2 (en) * 2000-04-05 2002-02-07 Steag Micro Tech Gmbh Process for loading and unloading a treatment basin
JP3725051B2 (en) * 2001-07-27 2005-12-07 大日本スクリーン製造株式会社 Substrate processing equipment
US6595841B2 (en) * 2001-12-20 2003-07-22 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for holding wafer cassettes in a cassette tub during a chemical mechanical polishing process
US7027246B2 (en) * 2002-05-09 2006-04-11 Maxtor Corporation Method for servo pattern application on single-side processed disks in a merged state
US7367773B2 (en) * 2002-05-09 2008-05-06 Maxtor Corporation Apparatus for combining or separating disk pairs simultaneously
US7165308B2 (en) * 2002-05-09 2007-01-23 Maxtor Corporation Dual disk transport mechanism processing two disks tilted toward each other
WO2003105192A2 (en) * 2002-06-07 2003-12-18 Akrion, Llc Apparatus and method for cassette-less transfer of wafers
US7682653B1 (en) 2004-06-17 2010-03-23 Seagate Technology Llc Magnetic disk with uniform lubricant thickness distribution
DE102004039787A1 (en) * 2004-08-16 2006-02-23 Leybold Optics Gmbh Handling system, has handling modules, where substrate handling unit is arranged on one of modules for separate substrate-transfer from carrier that with vertically aligned substrate is transferred between two modules
JP4896024B2 (en) * 2004-08-25 2012-03-14 オムノバ ソリューソンズ インコーポレーティッド Manufacture of paper using agglomerated hollow particle latex
JP4688637B2 (en) * 2005-10-28 2011-05-25 東京エレクトロン株式会社 Substrate processing apparatus, batch knitting apparatus, batch knitting method, and batch knitting program
TWI427698B (en) * 2011-01-11 2014-02-21 Gallant Prec Machining Co A continuous semiconductor etching apparatus and etching method thereof
US9508582B2 (en) 2011-06-03 2016-11-29 Tel Nexx, Inc. Parallel single substrate marangoni module
CN115295470B (en) * 2022-10-08 2022-12-27 四川上特科技有限公司 Wafer transfer device and corrosion method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928036Y2 (en) 1980-07-15 1984-08-14 信越化学工業株式会社 Chemical etching processing equipment
US4806057A (en) 1986-04-22 1989-02-21 Motion Manufacturing, Inc. Automatic wafer loading method and apparatus
JPH0330425A (en) * 1989-06-28 1991-02-08 Mitsubishi Materials Corp Cassette carrier
US5169408A (en) 1990-01-26 1992-12-08 Fsi International, Inc. Apparatus for wafer processing with in situ rinse
JPH0785471B2 (en) 1990-10-16 1995-09-13 信越半導体株式会社 Etching equipment
US5505577A (en) * 1990-11-17 1996-04-09 Tokyo Electron Limited Transfer apparatus
US5089084A (en) 1990-12-03 1992-02-18 Micron Technology, Inc. Hydrofluoric acid etcher and cascade rinser
JP2756734B2 (en) * 1991-03-22 1998-05-25 大日本スクリーン製造株式会社 Wafer transfer equipment for surface treatment equipment
US5246528A (en) 1991-05-31 1993-09-21 Shin-Etsu Handotai Co., Ltd. Automatic wafer etching method and apparatus
US5298111A (en) 1991-05-31 1994-03-29 Shin-Etsu Handotai Co., Ltd. Automatic wafer transfer apparatus and a method for transferring wafers and an etching drum
US5256204A (en) 1991-12-13 1993-10-26 United Microelectronics Corporation Single semiconductor water transfer method and manufacturing system
US5301700A (en) * 1992-03-05 1994-04-12 Tokyo Electron Limited Washing system
US5664337A (en) * 1996-03-26 1997-09-09 Semitool, Inc. Automated semiconductor processing systems
JPH07321176A (en) 1994-05-20 1995-12-08 Hitachi Ltd Substrate carrying method
US5590996A (en) 1994-10-13 1997-01-07 Semitherm Wafer transfer apparatus
JP3576346B2 (en) 1996-03-25 2004-10-13 信越半導体株式会社 Wafer transfer device and method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7322098B2 (en) 2002-05-09 2008-01-29 Maxtor Corporation Method of simultaneous two-disk processing of single-sided magnetic recording disks
US7180709B2 (en) 2002-05-09 2007-02-20 Maxtor Corporation Information-storage media with dissimilar outer diameter and/or inner diameter chamfer designs on two sides
US7083871B2 (en) 2002-05-09 2006-08-01 Maxtor Corporation Single-sided sputtered magnetic recording disks
US20040016214A1 (en) * 2002-05-09 2004-01-29 Gerardo Buitron Method of merging two disks concentrically without gap between disks
US7628895B2 (en) 2002-05-09 2009-12-08 Seagate Technology Llc W-patterned tools for transporting/handling pairs of disks
US7600359B2 (en) 2002-05-09 2009-10-13 Seagate Technology Llc Method of merging two disks concentrically without gap between disks
US20030209421A1 (en) * 2002-05-09 2003-11-13 Gerardo Buitron W-patterned tools for transporting/handling pairs of disks
US20030210498A1 (en) * 2002-05-09 2003-11-13 Kim Kwang Kon Information-storage media with dissimilar outer diameter and/or inner diameter chamfer designs on two sides
US7267841B2 (en) 2002-05-09 2007-09-11 Maxtor Corporation Method for manufacturing single-sided sputtered magnetic recording disks
US20050266216A1 (en) * 2002-05-09 2005-12-01 Maxtor Corporation Method of manufacturing single-sided sputtered magnetic recording disks
US7052739B2 (en) 2002-05-09 2006-05-30 Maxtor Corporation Method of lubricating multiple magnetic storage disks in close proximity
US20060115599A1 (en) * 2002-05-09 2006-06-01 Maxtor Corporation Method of lubricating multiple magnetic storage disks in close proximity
US20030211275A1 (en) * 2002-05-09 2003-11-13 Gerardo Buitron Method of simultaneous two-disk processing of single-sided magnetic recording disks
US20040070859A1 (en) * 2002-10-10 2004-04-15 Walter Crofton Apparatus for simultaneous two-disk scrubbing and washing
US20040069662A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Cassette for holding disks of multiple form factors
US7168153B2 (en) 2002-10-10 2007-01-30 Maxtor Corporation Method for manufacturing single-sided hard memory disks
US7083502B2 (en) 2002-10-10 2006-08-01 Maxtor Corporation Method for simultaneous two-disk texturing
US20040068862A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Cassette apparatus for holding 25 pairs of disks for manufacturing process
US20040070092A1 (en) * 2002-10-10 2004-04-15 Gerardo Buitron Method for simultaneous two-disk texturing
US20040071535A1 (en) * 2002-10-10 2004-04-15 Walter Crofton Automated merge nest for pairs of magnetic storage disks
US7748532B2 (en) 2002-10-10 2010-07-06 Seagate Technology Llc Cassette for holding disks of different diameters
US7083376B2 (en) * 2002-10-10 2006-08-01 Maxtor Corporation Automated merge nest for pairs of magnetic storage disks
US8172954B2 (en) 2002-10-10 2012-05-08 Seagate Technology Llc Apparatus for simultaneous two-disk scrubbing and washing
US7882616B1 (en) 2004-09-02 2011-02-08 Seagate Technology Llc Manufacturing single-sided storage media
US20160096653A1 (en) * 2014-10-01 2016-04-07 United States Postal Service Transformable tray and tray system for receiving, transporting and unloading items
US10202248B2 (en) * 2014-10-01 2019-02-12 United States Postal Service Transformable tray and tray system for receiving, transporting and unloading items
CN115116913A (en) * 2022-06-22 2022-09-27 南京原磊纳米材料有限公司 Multi-piece wafer transmission mechanism

Also Published As

Publication number Publication date
US6354794B2 (en) 2002-03-12
US6457929B2 (en) 2002-10-01
US20010021340A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
US6457929B2 (en) Apparatus and method for automatically transferring wafers between wafer holders in a liquid environment
EP0658923B1 (en) Wafer cleaning tank
KR20150088792A (en) Method and apparatus for cleaning semiconductor wafer
KR102414340B1 (en) Method and apparatus for cleaning semiconductor wafers
US20040084066A1 (en) Wafer container cleaning system
US6322633B1 (en) Wafer container cleaning system
WO2001008820A1 (en) Wafer container cleaning system
US20040216841A1 (en) Substrate processing apparatus
JP2006179757A (en) Substrate processing apparatus
JPH07111963B2 (en) Substrate cleaning / drying device
US6576065B1 (en) Installation and method for chemical treatment of microelectronics wafers
JP3494765B2 (en) Cleaning treatment apparatus and control method therefor
JPH07310192A (en) Washing treatment device
US6287387B1 (en) Apparatus and method for locking a basket in a cleaning bath
JP3623284B2 (en) Cleaning apparatus and control method thereof
JPH06314677A (en) Cleaning apparatus
KR100466296B1 (en) Transfer robot and wafer array system using this robot
KR20070044126A (en) Wafer array apparatus and method for arraying wafer
JP2006019320A (en) Vertical heat treatment system and its operation method
JPH08195368A (en) Cleaning method and device, and transfer device
US11854841B2 (en) Space filling device for wet bench
KR20100024220A (en) Substrate processing apparatus and method for transferring substrate of the same
KR100843188B1 (en) Wafer array apparatus for arraying wafer
JP3248654B2 (en) Cleaning equipment
JPH0562955A (en) Semiconductor cleaning device and semiconductor wafer holding device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEH AMERICA, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SATO, MICHITO;FUKABORI, HIROAKI;MUKAINO, YUKIO;REEL/FRAME:009565/0998;SIGNING DATES FROM 19981022 TO 19981027

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12