Búsqueda Imágenes Maps Play YouTube Noticias Gmail Drive Más »
Iniciar sesión
Usuarios de lectores de pantalla: deben hacer clic en este enlace para utilizar el modo de accesibilidad. Este modo tiene las mismas funciones esenciales pero funciona mejor con el lector.

Patentes

  1. Búsqueda avanzada de patentes
Número de publicaciónUS20020017179 A1
Tipo de publicaciónSolicitud
Número de solicitudUS 09/929,238
Fecha de publicación14 Feb 2002
Fecha de presentación13 Ago 2001
Fecha de prioridad14 Ago 2000
También publicado comoUS7698976, US8100039, US20080282858, US20100263509
Número de publicación09929238, 929238, US 2002/0017179 A1, US 2002/017179 A1, US 20020017179 A1, US 20020017179A1, US 2002017179 A1, US 2002017179A1, US-A1-20020017179, US-A1-2002017179, US2002/0017179A1, US2002/017179A1, US20020017179 A1, US20020017179A1, US2002017179 A1, US2002017179A1
InventoresStephen Gass, David D'Ascenzo, David Fanning
Cesionario originalGass Stephen F., D'ascenzo David S., Fanning David A.
Exportar citaBiBTeX, EndNote, RefMan
Enlaces externos: USPTO, Cesión de USPTO, Espacenet
Miter saw with improved safety system
US 20020017179 A1
Resumen
A miter saw is disclosed having a base, a blade supported by the base, a detection system adapted to detect a dangerous condition between a person and the blade, and a reaction system associated with the detection system to cause a predetermined action to take place upon detection of the dangerous condition. The blade is rotatable, and moves into a cutting zone to cut a workpiece. The predetermined action may be to stop the blade from rotating, to create an impulse against movement of the blade into the cutting zone, or to cause the blade to move away from the cutting zone.
Imágenes(7)
Previous page
Next page
Reclamaciones(29)
1. A miter saw comprising:
a support structure having a cutting zone;
a blade supported by the support structure so that the blade may move into the cuffing zone;
a motor adapted to drive the blade;
a detection system to detect contact between a person and the blade; and
a reaction system adapted to create an impulse against movement of the blade into the cutting zone upon detection by the detection system of contact between the person and the blade.
2. The miter saw of claim 1, where the reaction system is adapted to move the blade in a direction away from the cutting zone upon detection by the detection system of contact between the person and the blade.
3. The miter saw of claim 1, where the blade is rotatable, and where the reaction system is further adapted to stop rotation of the blade upon detection by the detection system of contact between the person and the blade.
4. The miter saw of claim 3, where the reaction system includes a brake mechanism adapted to engage and stop the rotation of the blade, and where the engagement of the brake mechanism with the blade creates the impulse against movement of the blade into the cutting zone.
5. The miter saw of claim 4, where the engagement of the brake mechanism with the blade moves the blade in a direction away from the cutting zone.
6. The miter saw of claim 4, where the blade has angular momentum when rotating, and where the engagement of the brake mechanism with the blade creates the impulse due, at least partially, to the angular momentum of the blade.
7. The miter saw of claim 3, where the reaction system includes a brake mechanism adapted to engage and stop the rotation of the blade, and where the brake mechanism is coupled to the support structure to maintain an operative position relative to the blade as the blade moves into the cutting zone.
8. The miter saw of claim 3, where the reaction system includes a first mechanism adapted to stop the rotation of the blade, and a second mechanism adapted to create an impulse against movement of the blade into the cutting zone.
9. A miter saw comprising:
a support structure having a cutting zone;
a rotatable blade supported by the support structure so that the blade may move into the cutting zone;
a motor adapted to drive the blade;
a detection system adapted to detect contact between the blade and a person; and
a brake mechanism adapted to stop rotation of the blade upon detection by the detection system of contact between the blade and the person.
10. The miter saw of claim 9, where the brake mechanism is further adapted to stop movement of the blade into the cutting zone.
11. The miter saw of claim 9, where the support structure includes a pivot arm adapted to support the blade and selectively pivotal toward and away from the cutting zone, and where the brake mechanism is further adapted to move the pivot arm away from the cutting zone.
12. The miter saw of claim 9, where the support structure includes a pivot arm adapted to support the blade and selectively pivotal toward and away from the cutting zone, where the brake mechanism is adapted to engage the blade upon detection by the detection system of contact between the blade and the person, and where engagement of the brake mechanism with the blade causes the pivot arm to pivot away from the cutting zone.
13. The miter saw of claim 12, where the blade has angular momentum when rotating, and where the engagement of the brake mechanism with the blade causes the pivot arm to pivot away from the cutting zone, due at least partially, to the angular momentum of the blade.
14. The miter saw of claim 9, where the support structure includes a pivot arm adapted to support the blade and selectively pivotal toward and away from the cutting zone, and further comprising a second brake mechanism adapted to stop the pivot arm from pivoting toward the cutting zone upon detection by the detection system of contact between the blade and the person.
15. The miter saw of claim 9, where the support structure includes a pivot arm adapted to support the blade and selectively pivotal toward and away from the cutting zone, and further comprising a second brake mechanism adapted to move the pivot arm away from the cutting zone upon detection by the detection system of contact between the blade and the person.
16. The miter saw of claim 9, where the blade has teeth, and where the brake mechanism includes at least one brake pawl adapted to pivot into the teeth of the blade.
17. A miter saw comprising:
a base having a cutting region;
a blade;
a brake system adapted to brake the blade; and
a linkage between the blade and base, where the linkage is configured to cause the blade to move away from the cutting region when the brake system brakes the blade.
18. The miter saw of claim 17 where the blade is rotatable, where the blade has an angular momentum when rotated, and where the linkage is configured so that the angular momentum of the blade causes the blade to move away from the cutting region when the brake system brakes the blade.
19. A miter saw comprising:
a base;
a housing pivotally connected to the base;
a blade;
a mounting system holding the blade in the housing; and
a brake system adapted to brake the blade;
where the mounting system is configured so that the blade pivots into the housing when the brake system brakes the blade.
20. A miter saw comprising:
a base;
a swing arm supported by the base and adapted to move toward a workpiece to be cut;
a blade mounted to move with the swing arm to contact the workpiece when the swing arm moves toward the workpiece;
a detection system adapted to detect a dangerous condition between a person and the blade; and
a reaction system adapted to interrupt the movement of the blade and swing arm upon the detection by the detection system of the dangerous condition between the person and the blade.
21. The miter saw of claim 20, further comprising a piston/cylinder to limit the speed with which the swing arm can move.
22. The miter saw of claim 20, where the swing arm includes a cam portion, and further comprising a pawl adapted to engage the cam portion to stop the movement of the swing arm toward the workpiece upon the detection of the dangerous condition.
23. A miter saw comprising:
a base;
a blade supported by the base;
a detection system adapted to detect a dangerous condition between a person and the blade; and
a reaction system associated with the detection system to cause a predetermined action to take place upon detection of the dangerous condition.
24. The miter saw of claim 23, where the reaction system includes a brake system to brake the blade.
25. The miter saw of claim 23, where the reaction system includes a mechanism to retract the blade.
26. A miter saw comprising:
a base;
a blade supported by the base;
a detection system adapted to detect a dangerous condition between a person and the blade; and
reaction means associated with the detection system for causing a predetermined action to take place upon detection of the dangerous condition.
27. The miter saw of claim 26, where the blade is rotatable, and where the predetermined action is to stop the blade from rotating.
28. The miter saw of claim 26, where the base has a cutting zone, where the blade is adapted to move into the cutting zone to cut a workpiece, and where the predetermined action is to create an impulse against movement of the blade into the cutting zone.
29. The miter saw of claim 26, where the base has a cutting zone, where the blade is adapted to move into the cutting zone to cut a workpiece, and where the predetermined action is to cause the blade to move away from the cutting zone.
Descripción
    CROSS-REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims the benefit of and priority from the following U.S. Provisional Patent Applications: Ser. No. 60/225,056, filed Aug. 14, 2000, Ser. No. 60/225,057, filed Aug. 14, 2000, Ser. No. 60/225,058, filed Aug. 14, 2000, Ser. No. 60/225,059, filed Aug. 14, 2000, Ser. No. 60/225,089, filed Aug. 14, 2000, Ser. No. 60/225,094, filed Aug. 14, 2000, Ser. No. 60/225,169, filed Aug. 14, 2000, Ser. No. 60/225,170, filed Aug. 14, 2000, Ser. No. 60/225,200, filed Aug. 14, 2000, Ser. No. 60/225,201, filed Aug. 14, 2000, Ser. No. 60/225,206, filed Aug. 14, 2000, Ser. No. 60/225,210, filed Aug. 14, 2000, Ser. No. 60/225,211, filed Aug. 14, 2000, and Ser. No. 60/225,212, filed Aug. 14, 2000.
  • FIELD
  • [0002]
    The present invention relates to miter saws, and more particularly to a miter saw with a high-speed safety system.
  • BACKGROUND
  • [0003]
    Miter saws are a type of woodworking machinery used to cut workpieces of wood, plastic and other materials. Miter saws include a base upon which workpieces are placed, and a circular saw blade is mounted on a swing arm above the base. A person uses a miter saw by placing workpiece on the base beneath the blade and then bringing the blade down via the swing arm to cut the workpiece. Miter saws present a risk of injury to users because the spinning blade is often exposed when in use. Furthermore, persons often use their hands to position and support workpieces beneath the blade, which increases the chance that an injury will occur.
  • [0004]
    The present invention provides a miter saw with an improved safety system that is adapted to detect the occurrence of one or more dangerous, or triggering, conditions during use of the miter saw, such as when a user's body contacts the spinning saw blade. When such a condition occurs, the safety system is actuated to limit or even prevent serious injury to the user.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0005]
    [0005]FIG. 1 is a schematic block diagram of a machine with a fast-acting safety system according to the present invention.
  • [0006]
    [0006]FIG. 2 is a schematic diagram of an exemplary safety system in the context of a machine having a circular blade.
  • [0007]
    [0007]FIG. 3 is a side elevation view of a miter saw with an improved safety system according to the present invention.
  • [0008]
    [0008]FIG. 4 is a cross-sectional top plan view of the miter saw of FIG. 3.
  • [0009]
    [0009]FIG. 5 is a side elevation view of another miter saw according to the present invention.
  • [0010]
    [0010]FIG. 6 is a side elevation view of another miter saw according to the present invention.
  • [0011]
    [0011]FIG. 7 is a side elevation view of another miter saw according to the present invention.
  • [0012]
    [0012]FIG. 8 is a side elevation view of another miter saw according to the present invention.
  • [0013]
    [0013]FIG. 9 is a fragmentary cross-sectional view of an electrically isolated blade.
  • DETAILED DESCRIPTION
  • [0014]
    A machine is shown schematically in FIG. 1 and indicated generally at 10. Machine 10 may be any of a variety of different machines adapted for cutting workpieces, such as wood, including a table saw, miter saw (chop saw), radial arm saw, circular saw, band saw, jointer, planer, etc. Machine 10 includes an operative structure 12 having a cutting tool 14 and a motor assembly 16 adapted to drive the cutting tool. Machine 10 also includes a safety system 18 configured to minimize the potential of a serious injury to a person using machine 10. Safety system 18 is adapted to detect the occurrence of one or more dangerous, or triggering, conditions during use of machine 10. If such a dangerous condition is detected, safety system 18 is adapted to engage operative structure 12 to limit any injury to the user caused by the dangerous condition.
  • [0015]
    Machine 10 also includes a suitable power source 20 to provide power to operative structure 12 and safety system 18. Power source 20 may be an external power source such as line current, or an internal power source such as a battery. Alternatively, power source 20 may include a combination of both external and internal power sources. Furthermore, power source 20 may include two or more separate power sources, each adapted to power different portions of machine 10.
  • [0016]
    It will be appreciated that operative structure 12 may take any one of many different forms, depending on the type of machine 10. For example, operative structure 12 may include a stationary housing configured to support motor assembly 16 in driving engagement with cutting tool 14. Alternatively, operative structure 12 may include a movable structure configured to carry cutting tool 14 between multiple operating positions. As a further alternative, operative structure 12 may include one or more transports mechanisms adapted to convey a workpiece toward and/or away from cutting tool 14.
  • [0017]
    Motor assembly 16 includes one or more motors adapted to drive cutting tool 14. The motors may be either directly or indirectly coupled to the cutting tool, and may also be adapted to drive workpiece transport mechanisms. Cutting tool 14 typically includes one or more blades or other suitable cutting implements that are adapted to cut or remove portions from the workpieces. The particular form of cutting tool 14 will vary depending upon the various embodiments of machine 10. For example, in table saws, miter saws, circular saws and radial arm saws, cutting tool 14 will typically include one or more circular rotating blades having a plurality of teeth disposed along the perimetrical edge of the blade. For a jointer or planer, the cutting tool typically includes a plurality of radially spaced-apart blades. For a band saw, the cutting tool includes an elongate, circuitous tooth-edged band.
  • [0018]
    Safety system 18 includes a detection subsystem 22, a reaction subsystem 24 and a control subsystem 26. Control subsystem 26 may be adapted to receive inputs from a variety of sources including detection subsystem 22, reaction subsystem 24, operative structure 12 and motor assembly 16. The control subsystem may also include one or more sensors adapted to monitor selected parameters of machine 10. In addition, control subsystem 26 typically includes one or more instruments operable by a user to control the machine. The control subsystem is configured to control machine 10 in response to the inputs it receives.
  • [0019]
    Detection subsystem 22 is configured to detect one or more dangerous, or triggering, conditions during use of machine 10. For example, the detection subsystem may be configured to detect that a portion of the user's body is dangerously close to, or in contact with, a portion of cutting tool 14. As another example, the detection subsystem may be configured to detect the rapid movement of a workpiece due to kickback by the cutting tool, as is described in U.S. Provisional Patent Application Ser. No. 60/182,866, filed Feb. 16, 2000 entitled “Fast-Acting Safety Stop,” the disclosure of which is herein incorporated by reference. In some embodiments, detection subsystem 22 may inform control subsystem 26 of the dangerous condition, which then activates reaction subsystem 24. In other embodiments, the detection subsystem may be adapted to activate the reaction subsystem directly.
  • [0020]
    Once activated in response to a dangerous condition, reaction subsystem 24 is configured to engage operative structure 12 quickly to prevent serious injury to the user. It will be appreciated that the particular action to be taken by reaction subsystem 24 will vary depending on the type of machine 10 and/or the dangerous condition that is detected. For example, reaction subsystem 24 may be configured to do one or more of the following: stop the movement of cutting tool 14, disconnect motor assembly 16 from power source 20, place a barrier between the cutting tool and the user, or retract the cutting tool from its operating position, etc. The reaction subsystem may be configured to take a combination of steps to protect the user from serious injury. Placement of a barrier between the cutting tool and teeth is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,206, filed Aug. 14, 2000, entitled “Cutting Tool Safety System,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Cutting Tool Safety System,” the disclosures of which are herein incorporated by reference. Retraction of the cutting tool from its operating position is described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,089, filed Aug. 14, 2000, entitled “Retraction System For Use In Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Retraction System For Use In Power Equipment,” the disclosures of which are herein incorporated by reference.
  • [0021]
    The configuration of reaction subsystem 24 typically will vary depending on which action(s) are taken. In the exemplary embodiment depicted in FIG. 1, reaction subsystem 24 is configured to stop the movement of cutting tool 14 and includes a brake mechanism 28, a biasing mechanism 30, a restraining mechanism 32, and a release mechanism 34. Brake mechanism 28 is adapted to engage operative structure 12 under the urging of biasing mechanism 30. During normal operation of machine 10, restraining mechanism 32 holds the brake mechanism out of engagement with the operative structure. However, upon receipt of an activation signal by reaction subsystem 24, the brake mechanism is released from the restraining mechanism by release mechanism 34, whereupon, the brake mechanism quickly engages at least a portion of the operative structure to bring the cutting tool to a stop.
  • [0022]
    It will be appreciated by those of skill in the art that the exemplary embodiment depicted in FIG. 1 and described above may be implemented in a variety of ways depending on the type and configuration of operative structure 12. Turning attention to FIG. 2, one example of the many possible implementations of safety system 18 is shown. System 18 is configured to engage an operative structure having a cutting tool in the form of a circular blade 40 mounted on a rotating shaft or arbor 42. Blade 40 includes a plurality of cutting teeth (not shown) disposed around the outer edge of the blade. As described in more detail below, braking mechanism 28 is adapted to engage the teeth of blade 40 and stop the rotation of the blade. U.S. Provisional Patent Application Ser. No. 60/225,210, filed Aug. 14, 2000, entitled “Translation Stop For Use In Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Translation Stop For Use In Power Equipment,” the disclosures of which are herein incorporated by reference, describe other systems for stopping the movement of the cutting tool. U.S. Provisional Patent Application Ser. No. 60/225,058, filed Aug. 14, 2000, entitled “Table Saw With Improved Safety System,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Table Saw With Improved Safety System,” the disclosures of which are herein incorporated by reference, describe safety system 18 in the context of a table saw.
  • [0023]
    In the exemplary implementation, detection subsystem 22 is adapted to detect the dangerous condition of the user coming into contact with blade 40. The detection subsystem includes a sensor assembly, such as contact detection plates 44 and 46, capacitively coupled to blade 40 to detect any contact between the user's body and the blade. Typically, the blade, or some larger portion of cutting tool 14 is electrically isolated from the remainder of machine 10. Alternatively, detection subsystem 22 may include a different sensor assembly configured to detect contact in other ways, such as optically, resistively, etc. In any event, the detection subsystem is adapted to transmit a signal to control subsystem 26 when contact between the user and the blade is detected. Various exemplary embodiments and implementations of detection subsystem 22 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,200, filed Aug. 14, 2000, entitled “Contact Detection System For Power Equipment,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Detection System For Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,211, filed Aug. 14, 2000, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Apparatus And Method For Detecting Dangerous Conditions In Power Equipment,” the disclosures of which are herein incorporated by reference.
  • [0024]
    Control subsystem 26 includes one or more instruments 48 that are operable by a user to control the motion of blade 40. Instruments 48 may include start/stop switches, speed controls, direction controls, etc. Control subsystem 26 also includes a logic controller 50 connected to receive the user's inputs via instruments 48. Logic controller 50 is also connected to receive a contact detection signal from detection subsystem 22. Further, the logic controller may be configured to receive inputs from other sources (not shown) such as blade motion sensors, workpiece sensors, etc. In any event, the logic controller is configured to control operative structure 12 in response to the user's inputs through instruments 48. However, upon receipt of a contact detection signal from detection subsystem 22, the logic controller overrides the control inputs from the user and activates reaction subsystem 24 to stop the motion of the blade. Various exemplary embodiments and implementations of control subsystem 26 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,059, filed Aug. 14, 2000, entitled “Logic Control For Fast-Acting Safety System,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Logic Control For Fast-Acting Safety System,” U.S. Provisional Patent Application Ser. No. 60/225,094, filed Aug. 14, 2000, entitled “Motion Detecting System For Use In Safety System For Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Motion Detecting System For Use In A Safety System For Power Equipment,” the disclosures of which are herein incorporated by reference.
  • [0025]
    In the exemplary implementation, brake mechanism 28 includes a pawl 60 mounted adjacent the edge of blade 40 and selectively moveable to engage and grip the teeth of the blade. Pawl 60 may be constructed of any suitable material adapted to engage and stop the blade. As one example, the pawl may be constructed of a relatively high strength thermoplastic material such as polycarbonate, ultrahigh molecular weight polyethylene (UHMW) or Acrylonitrile Butadiene Styrene (ABS), etc., or a metal such as aluminum, etc. It will be appreciated that the construction of pawl 60 will vary depending on the configuration of blade 40. In any event, the pawl is urged into the blade by a biasing mechanism in the form of a spring 66. In the illustrative embodiment shown in FIG. 2, pawl 60 is pivoted into the teeth of blade 40. It should be understood that sliding or rotary movement of pawl 60 may also be used. The spring is adapted to urge pawl 60 into the teeth of the blade with sufficient force to grip the blade and quickly bring it to a stop.
  • [0026]
    The pawl is held away from the edge of the blade by a restraining mechanism in the form of a fusible member 70. The fusible member is constructed of a suitable material adapted to restrain the pawl against the bias of spring 66, and also adapted to melt under a determined electrical current density. Examples of suitable materials for fusible member 70 include NiChrome wire, stainless steel wire, etc. The fusible member is connected between the pawl and a contact mount 72. Preferably, fusible member 70 holds the pawl relatively close to the edge of the blade to reduce the distance the pawl must travel to engage the blade. Positioning the pawl relatively close to the edge of the blade reduces the time required for the pawl to engage and stop the blade. Typically, the pawl is held approximately {fraction (1/32)}-inch to ¼-inch from the edge of the blade by fusible member 70, however other pawl-to-blade spacings may also be used within the scope of the invention.
  • [0027]
    Pawl 60 is released from its unactuated, or cocked, position to engage blade 40 by a release mechanism in the form of a firing subsystem 76. The firing subsystem is coupled to contact mount 72, and is configured to melt fusible member 70 by passing a surge of electrical current through the fusible member. Firing subsystem 76 is coupled to logic controller 50 and activated by a signal from the logic controller. When the logic controller receives a contact detection signal from detection subsystem 22, the logic controller sends an activation signal to firing subsystem 76, which melts fusible member 70, thereby releasing the pawl to stop the blade. Various exemplary embodiments and implementations of reaction subsystem 24 are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,056, filed Aug. 14, 2000, entitled “Firing Subsystem For Use In A Fast-Acting Safety System,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Firing Subsystem For Use In A Fast-Acting Safety System,” U.S. Provisional Patent Application Ser. No. 60/225,170, filed Aug. 14, 2000, entitled “Spring-Biased Brake Mechanism For Power Equipment,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Spring-Biased Brake Mechanism For Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,169, filed Aug. 14, 2000, entitled “Brake Mechanism For Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Brake Mechanism For Power Equipment,” the disclosures of which are herein incorporated by reference.
  • [0028]
    It will be appreciated that activation of the brake mechanism will typically require the replacement of one or more portions of safety system 18. For example, pawl 60 and fusible member 70 typically must be replaced before the safety system is ready to be used again. Thus, it may be desirable to construct one or more portions of safety system 18 in a cartridge that can be easily replaced. For example, in the exemplary implementation depicted in FIG. 2, safety system 18 includes a replaceable cartridge 80 having a housing 82. Pawl 60, spring 66, fusible member 70 and contact mount 72 are all mounted within housing 82. Alternatively, other portions of safety system 18 may be mounted within the housing. In any event, after the reaction system has been activated, the safety system can be reset by replacing cartridge 80. The portions of safety system 18 not mounted within the cartridge may be replaced separately or reused as appropriate. Various exemplary embodiments and implementations of a safety system using a replaceable cartridge are described in more detail in U.S. Provisional Patent Application Ser. No. 60/225,201, filed Aug. 14, 2000, entitled “Replaceable Brake Mechanism For Power Equipment,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Replaceable Brake Mechanism For Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,212, filed Aug. 14, 2000, entitled “Brake Positioning System,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Brake Positioning System,” the disclosures of which are herein incorporated by reference.
  • [0029]
    While one particular implementation of safety system 18 has been described, it will be appreciated that many variations and modifications are possible within the scope of the invention. Many such variations and modifications are described in U.S. Provisional Patent Applications Ser. Nos. 60/182,866, filed Feb. 16, 2000, and 60/157,340, filed Oct. 1, 1999, both entitled “Fast-Acting Safety Stop,” the disclosures of which are herein incorporated by reference.
  • [0030]
    In FIGS. 3 and 4, an exemplary embodiment of machine 10 is shown in the context of a miter saw 1510, which is also commonly referred to as a chop saw. It will be understood that miter saw 1510 may be any type of miter saw including a simple miter saw, compound miter saw, sliding compound miter saw, etc. Typically, miter saw 1510 includes a base or stand 1512 adapted to hold the workpiece to be cut. A swing arm 1514 is pivotally coupled to base 1512 to allow the arm to pivot downward toward the base. Attached to arm 1514 is a housing 1516 adapted to at least partially enclose a circular blade 40. A motor assembly 16 is coupled to the housing, and includes a rotating arbor 42 on which the blade is mounted. Motor assembly 16 includes a handle 1518 with a trigger 1520 operable to run the saw. Blade 40 rotates downward toward base 1512. An optional blade guard (not shown) may extend from the bottom of housing 1516 to cover any portion of the blade exposed from the housing. A person uses miter saw 1510 by placing workpiece on base 1512 beneath the upraised blade and then bringing the blade down via swing arm 1514 into what may be thought of as a cutting zone to cut the workpiece. It should be understood that various embodiments of miter saws with improved safety systems are disclosed herein and include various elements, sub-elements, features and variations. Miter saws according to the present invention may include any one or more of the elements, sub-elements, features and variations disclosed herein, regardless of whether the particular elements, sub-elements, features and/or variations are described together or shown together in the figures.
  • [0031]
    The portion of saw 1510 from which sensors 44 and 46 detect contact with a user should be electrically isolated from ground and the remaining portion of saw 1510 to allow an input signal to be capacitively coupled from one plate to the other. For example, blade 40 may be electrically isolated from the rest of the saw via a plastic or other nonconductive bushing, such as shown in FIG. 9 at 1570. Alternatively, the blade and arbor assembly may be electrically isolated. Also shown in FIG. 9 are insulating washers 1572 and 1574 that isolate blade 40 from arbor flange 1576 and arbor washer 1578. The insulating washers should be sufficiently thick that only negligible capacitance is created between the blade and the grounded arbor flange and washer. A typical thickness is approximately ⅛-inch, although thicker or thinner washers may be used. In addition, some or all of the arbor components may be formed from non-conductive materials, such as ceramics, to reduce or eliminate the need for bushing 1570.
  • [0032]
    An arbor nut 1580 holds the entire blade assembly on arbor 42. Friction established by tightening the arbor nut allows torque from the arbor to be transmitted to the saw blade. It is preferable, although not essential, that the blade be able to slip slightly on the arbor in the event of a sudden stop by the brake to reduce the mass that must be stopped and decrease the chance of damage to the blade, arbor, and/or other components in the drive system of the saw. Alternatively, a threaded arbor bolt may be used in place of nut 1580. The arbor bolt has a threaded shaft that is received into arbor 40, and a head that retains the blade assembly on the arbor.
  • [0033]
    Furthermore, it may be desirable to construct the bushing from a material that is soft enough to deform when the blade is stopped suddenly. For example, depending on the type of braking system used, a substantial radial impact load may be transmitted to the arbor when the brake is actuated. A deformable bushing can be used to absorb some of this impact and reduce the chance of damage to the arbor. In addition, proper positioning of the brake in combination with a deformable bushing may be employed to cause the blade to move away from the user upon activation of the brake, as will be discussed in further detail below.
  • [0034]
    In an alternative embodiment, the arbor and/or part of its supporting framework is electrically isolated from ground instead of isolating the blade from the arbor. One benefit of this embodiment is that if the blade is electrically connected to the arbor, then the arbor itself can be used to capacitively couple the input signal from charge plate 44 to charge plate 46. An example of such a configuration is disclosed in U.S. Provisional Patent Application Ser. No. 60/182,866, filed Feb. 16, 2000, which is incorporated herein by reference.
  • [0035]
    Any of the various configurations and arrangements of safety system 18 described above may be implemented in miter saw 1510. In the exemplary embodiment depicted in FIGS. 3 and 4, safety system 18 is a cartridge-type system. With the exception of charging plates 44 and 46, both brake mechanism 28 and detection subsystem 22 are contained within cartridge 80. Examples of suitable cartridges 80 are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,201, filed Aug. 14, 2000, entitled “Replaceable Brake Mechanism For Power Equipment,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Replaceable Brake Mechanism For Power Equipment,” U.S. Provisional Patent Application Ser. No. 60/225,212, filed Aug. 14, 2000, entitled “Brake Positioning System,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Brake Positioning System,” the disclosures of which are incorporated by reference. The cartridge is configured to be mounted on the front inside surface of housing 1516 by any suitable fastening mechanism 1522, such as by one or more bolts 1524. The housing may include a movable panel or door 1526 to allow access to the cartridge. Alternatively, cartridge 80 may be inserted into a port or opening in the housing. A pawl 60 is mounted in the cartridge and is positionable in front of the blade. Examples of suitable pawls and brake mechanisms incorporating the same are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,169, filed Aug. 14, 2000, entitled “Brake Mechanism For Power Equipment,” U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Brake Mechanism For Power Equipment, U.S. Provisional Patent Application Ser. No. 60/225,170, filed Aug. 14, 2000, entitled “Spring-Biased Brake Mechanism For Power Equipment,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Spring-Biased Brake Mechanism For Power Equipment,” the disclosures of which are incorporated by reference. It should be understood that cartridge 80 is not essential to all embodiments of the miter saw disclosed herein and that miter saw 1510 may be implemented without requiring a cartridge. Instead, the brake mechanism of the safety system may be mounted in any suitable operative position relative to blade 40 without being housed in a cartridge.
  • [0036]
    Charge plates 44 and 46 are attached to the inside wall of housing 1516 by one or more mounts 1528. The mounts are attached to the housing by any suitable fastening mechanism 1522, such as by bolts 1532, and are configured to position the charge plates parallel to, and closely adjacent, blade 40. As shown in FIG. 4, the spacing between the charge plates and the blade is preferably much less than the spacing between the charge plates and the housing to minimize any parasitic capacitance between the charge plates and the housing. Alternatively, the housing may be constructed from an electrically nonconductive material.
  • [0037]
    Cables 1534 and 1536 connect the charge plates to safety system's electronics unit, which may be housed in the cartridge or elsewhere on the miter saw. Electrical power for safety system 18 is provided by any suitable source, such as a cable extending from motor assembly 16. In addition to actuating the engagement of the pawl with the blade, the electronics unit within cartridge 80 is also configured to interrupt the power to motor assembly 16 when contact between the user's body and the blade is detected.
  • [0038]
    A circular blade spinning at several thousand revolutions per minute possesses a substantial amount of angular momentum. Thus, when the pawl engages a circular blade such as is found on miter saw 1510 and stops the blade within a few milliseconds, the angular momentum must be transferred to the brake mechanism, including pawl 60. Because the swing arm of the miter saw is free to pivot in the direction of blade rotation, the angular momentum of the blade may be transferred to the swing arm when the blade is suddenly stopped, causing the swing arm to swing downward. This sudden and forceful downward movement of the swing arm may cause injury to the user if a portion of the user's body is beneath the blade. Therefore, an alternative embodiment of miter saw 1510 includes means for preventing the swing arm from moving downward when the blade is stopped. In addition, the pawl typically is mounted at the front of the miter saw to urge the blade to climb upward away from the user (i.e., deforming the plastic bushing) when engaged by the pawl.
  • [0039]
    It will be appreciated that there are many suitable means for preventing sudden downward movement of the swing arm. For example, the pivotal connection between the swing arm and the base of the miter saw may be electrically lockable, for example using an electromagnetic leaf brake, to prevent the arm from pivoting. The signal to lock the connection may be provided by the detection system. An example of a miter saw with a lockable swing arm is shown in FIG. 5, in which an electromagnetic leaf brake is schematically illustrated at 1537. Alternatively, or additionally, a shock absorber may be connected between the swing arm and the base to limit the speed with which the swing arm can pivot relative to the base. This arrangement also serves to limit how far the blade moves between the time contact between the blade and user is detected, and the time the blade is stopped by the pawl. An example of a miter saw with a shock absorber 1539 is shown in FIG. 6 extending between the base and swing arm of the miter saw. While there are many other ways of connecting the swing arm to the base to prevent sudden movement of the arm toward the base, most such arrangements transfer the angular momentum to the swing arm/base assembly. Depending on the weight and balance of the saw, the angular momentum may be sufficient to cause the entire saw to overturn. Therefore, it may be desirable to secure the base to a stable surface with clamps, bolts, etc.
  • [0040]
    Alternatively, the miter saw can be configured to absorb any angular momentum without allowing the swing arm to move downward. For example, the exemplary embodiment depicted in FIGS. 3 and 4 is configured with a pivotal motor assembly to allow the blade to move upward into the housing upon engagement with the pawl. Motor assembly 16 is connected to housing 1516 via pivot bolt, or axle, 1540, allowing the motor assembly to pivot about bolt 1540 in the direction of blade rotation. A spring 1542 is compressed between the housing and an anchor 1544 to bias the motor assembly against the direction of blade rotation. The motor assembly may include a lip 1546, which slides against a flange 1548 on the housing to hold the end of the motor assembly opposite the pivot bolt against the housing.
  • [0041]
    When the saw is in use, spring 1542 holds the motor assembly in a normal position rotated fully counter to the direction of blade rotation. However, once the pawl is released to engage the blade, the motor assembly and blade to pivot upward against the bias of the spring. In this embodiment, the pawl is positioned at the front of the blade so that the pivot bolt 1540 is between the pawl and the arbor. This arrangement encourages the blade to move upward into the housing when stopped. The spring is selected to be sufficiently strong to hold the motor assembly down when cutting through a workpiece, but sufficiently compressible to allow the blade and motor assembly to move upward when the blade is stopped.
  • [0042]
    While one exemplary implementation of safety system 18 in the context of a miter saw has been described, the invention should not be seen as limited to any particular implementation as the configuration and arrangement of safety system 18 may vary among miter saws and applications. For example, the pivoting motor assembly configuration may also be combined with one or more of the other systems described above which prevent the swing arm from pivoting suddenly toward the base. Further, it will be appreciated that the blade and motor assembly may be configured in any of a variety of ways to at least partially absorb the angular momentum of the blade.
  • [0043]
    [0043]FIG. 7 shows an alternative configuration of miter saw 1510 adapted to absorb the angular momentum of the blade. In this configuration, the miter saw includes two swing arms 1550 and 1552. One end 1554 of each swing arm is connected to base 1512, and the opposite end 1556 of each swing arm is connected to housing 1516, blade 40, and/or the motor assembly (not shown). The position of the swing arms relative to each other may vary depending on the swing arm motion desired. In FIG. 7, swing arm 1550 is connected to base 1512 somewhat below and forward of swing arm 1552. Typically, the motor assembly is rigidly attached to end 1556 of swing arm 1550, while housing 1516 is connected to rotate about end 1556 of swing arm 1550. End 1556 of swing arm 1552 is connected only to the housing. This arrangement replicates the motion of the motor assembly and trigger found on many conventional miter saws. Alternatively, the motor assembly may be connected to rotate about end 1556 of swing arm 1550 along with the housing.
  • [0044]
    The configuration shown in FIG. 7 causes the housing and/or motor assembly to rotate as the swing arms pivot. Significantly, when the swing arms move upward, the housing and/or motor assembly rotate in the same direction in which the blade rotates during cutting. As a result, when the pawl engages the blade and transfers the angular momentum of the blade to the housing and/or motor assembly, the housing and/or motor assembly tend to rotate in the same direction as the blade. This causes the swing arms to pivot upward, drawing the blade away from the workpiece and the user's body. Thus, as described above, the miter saw configuration illustrated in FIG. 7 is adapted to absorb the angular momentum of the blade and translate that angular momentum into an upward force on the swing arm.
  • [0045]
    The configuration shown in FIG. 7 and described above illustrates a further alternative embodiment of a miter saw with safety system 18. Specifically, the safety system may be configured to move the blade of the cutting tool rapidly away from the user when contact with the user's body is detected in addition to, or instead of, stopping the blade. This alternative embodiment may be implemented in the context of any of the cutting tools described herein. For example, a table saw implemented with safety system 18 may include a swing arm adapted to pivot downward to pull the blade beneath the upper surface of the saw when a dangerous, or triggering, condition is detected, such as contact between the user and the blade while the blade is rotating. A spring (not shown) may be coupled to the swing arm to increase the speed with which it drops downward. It will be appreciated that similar implementations may be configured in the context of all the saws described herein. In the case of the miter saw, a electromagnetic leaf brake can be used to stop the movement of the arm upon contact with a user. In addition, the restraining mechanism can be used to release a spring to push the arm upward upon contact of the blade and user. With such systems, it may not be necessary to abruptly stop the blade to avoid injury.
  • [0046]
    Another example of a miter saw 1510 constructed according to the present invention is shown in FIG. 8. As shown, saw 1510 illustrates another suitable mechanism for stopping the sudden downward movement of swing arm 1514 when safety system 18 is actuated and pawl 60 engages blade 40. Swing arm 1514 includes a cam portion 1560 having a cam surface 1562. Cam portion 1560 may be integral with the swing arm and housing 1516. A stopping pawl 1564 is mounted to vertical support 1566 adjacent cam surface 1562, and an actuator 1568 is positioned adjacent pawl 1564. The actuator is operatively coupled to the control and detection subsystems associated with brake pawl 60 and cartridge 80 so that when pawl brake pawl 60 is released, actuator 1568 engages stopping pawl 1564. During normal operation, actuator 1568 maintains the pawl spaced-apart from cam surface 1562. However, once contact between the blade and the user's body is detected, the detection system sends an actuation signal to actuator 1568, which may be the same or a different signal that triggers the release of brake pawl 60. In any event, upon receipt of the actuation signal, the actuator drives against stopping pawl 1564, causing it to pivot into cam surface 1562, preventing further movement of the swing arm. Stopping pawl 1564 may be constructed or coated with a high friction material such as rubber, and/or may be configured with teeth, etc., to increase its braking action. Cam portion 1560 may be modified so that it extends as far as possible from the point around which it pivots, in order to provide as great a moment arm as possible to help stop the downward motion of the swing arm.
  • [0047]
    Safety system 22 may also protect the user from injury by wrapping the blade with a protective surface upon detection of a dangerous, or triggering, condition. Alternatively, or additionally, system 22 may protect the user by disabling the teeth of the blade. Examples of these embodiments of safety system 22 are disclosed in U.S. Provisional Patent Application Ser. No. 60/225,206, filed Aug. 14, 2000, entitled “Cutting Tool Safety System,” and U.S. patent application Ser. No. ______, filed Aug. 13, 2001, entitled “Cutting Tool Safety System,” which are hereby incorporated by reference.
  • [0048]
    It is believed that the disclosure set forth above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed herein. No single feature, function, element or property of the disclosed embodiments is essential to all of the disclosed inventions. Similarly, where the claims recite “a” or “a first” element or the equivalent thereof, such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements.
  • [0049]
    It is believed that the following claims particularly point out certain combinations and subcombinations that are directed to one of the disclosed inventions and are novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such amended or new claims, whether they are directed to a different invention or directed to the same invention, whether different, broader, narrower or equal in scope to the original claims, are also regarded as included within the subject matter of the inventions of the present disclosure.
Citas de patentes
Patente citada Fecha de presentación Fecha de publicación Solicitante Título
US146886 *13 Nov 187327 Ene 1874 Improvement in sawing-machines
US162814 *18 Ene 18754 May 1875 Improvement in saw-guards
US261090 *22 Mar 188211 Jul 1882 Circular-saw guard
US264412 *21 Jun 188212 Sep 1882 Half to john h
US299480 *27 May 1884 Saw-guard
US302041 *21 Ago 188315 Jul 1884 Saw-guard
US307112 *14 Abr 188428 Oct 1884 Saw-guard
US509253 *21 Nov 1893 Safety-guard for rip-saws
US545504 *29 Abr 18953 Sep 1895 Saw-guard
US869513 *17 Jun 190729 Oct 1907Frederick C PfeilSaw-guard.
US997720 *25 May 191011 Jul 1911Othon TroupenatSafety device for saws.
US1037843 *30 Oct 191110 Sep 1912David S AckleySaw-guard
US1050649 *28 May 191014 Ene 1913Crescent Machine CompanySaw-guard.
US1054558 *29 Jul 191225 Feb 1913Nye CompanySelf-adjusting support for circular-saw and shaper guards.
US1074198 *21 Mar 191330 Sep 1913Francis Vosburgh PhillipsSaw-guard.
US1082870 *20 Nov 191230 Dic 1913John W HumasonSaw-guard.
US1101515 *27 Jun 191330 Jun 1914 Safety saw-guard.
US1126970 *10 Feb 19132 Feb 1915Eastman Kodak CoSaw-guard.
US1132129 *15 Jun 191416 Mar 1915Fred M StevensSafety-grip for circular saws.
US1148169 *6 Ene 191327 Jul 1915Andrew F HoweSaw-guard.
US1154209 *11 Ago 191421 Sep 1915John L RushtonSaw-guard.
US1205246 *27 Oct 191321 Nov 1916Int Harvester CanadaShipping-package.
US1228047 *18 Dic 191629 May 1917Darwin O ReinholdSelf-adjusting spreader for saws.
US1240430 *22 Jul 191618 Sep 1917Peter EricksonCutter-guard.
US1244187 *17 Feb 191723 Oct 1917Warren M FrisbieCircular-saw guard.
US1255886 *23 Nov 191512 Feb 1918 Saw-guard.
US1258961 *9 Mar 191612 Mar 1918James G TattersallSaw-guard and splitter.
US1311508 *18 Feb 191629 Jul 1919 Planooraph co
US1324136 *28 Mar 19179 Dic 1919 Tool-operating machine
US1381612 *24 Oct 191914 Jun 1921Anderson George ASaw-guard
US1397606 *29 Jul 191822 Nov 1921Smith Christian NSafety-shield for circular saws
US1427005 *26 Dic 191922 Ago 1922Mcmichael James DSaw guard
US1430983 *5 Oct 19213 Oct 1922Wilhelm GranbergGuard for sawing machines
US1464924 *20 Jun 192214 Ago 1923Drummond William DSaw guard
US1465224 *22 Jul 192114 Ago 1923Edward Lantz JosephAutomatic shield for circular saws
US1496212 *6 Feb 19233 Jun 1924James F SullivanCircular-saw guard
US1511797 *15 Feb 192414 Oct 1924Berghold Frank ESaw guard
US1526128 *20 Oct 192310 Feb 1925Andrew FlohrSaw guard
US1527587 *7 Dic 192324 Feb 1925Frank HutchinsonSaw guard
US1553996 *19 Abr 192415 Sep 1925Joseph FedererSafety saw guard
US1582483 *13 Ene 192527 Abr 1926Runyan Geniah BMeat cutter
US1600604 *6 Mar 192621 Sep 1926Andrew SorlienBoard holder for sawing machines
US1616478 *19 Ene 19268 Feb 1927Clarence E CatesGuard for circular saws
US1640517 *17 Abr 192430 Ago 1927Paine Lumber Company LtdSaw guard
US1662372 *26 Abr 192613 Mar 1928Ward Abraham DSaw guard
US1701948 *2 Abr 192512 Feb 1929Crowe Mfg CorpPortable saw
US1711490 *12 Sep 19277 May 1929Drummond William DSaw guard
US1712828 *14 Feb 192714 May 1929Klehm Henry JSaw guard
US1774521 *31 Oct 19282 Sep 1930Neighbour Wilbur SSaw guard
US1807120 *11 Mar 192926 May 1931Hall & Brown Wood Working MachSaw
US1811066 *23 Feb 192923 Jun 1931Tannewitz Carl ESawing machine
US1879280 *30 Ago 193027 Sep 1932James George VGuard for circular saws
US1904005 *3 Feb 193218 Abr 1933Edward MassetSaw guard
US1988102 *2 Abr 193215 Ene 1935William H WoodwardCircular saw machine
US1993219 *12 Jul 19335 Mar 1935Herberts Machinery Company LtdCircular saw
US2010851 *2 Jul 193413 Ago 1935Drummond William DAutomatic hood guard
US2075282 *27 May 193530 Mar 1937Duro Metal Prod CoBench saw
US2095330 *25 Jul 193612 Oct 1937Duro Metal Prod CoBench saw
US2106321 *16 Feb 193725 Ene 1938Gilles GuertinSaw guard
US2121069 *14 Jun 193721 Jun 1938Atlas Press CompanyCircular saw
US2131492 *28 Nov 193627 Sep 1938Walker Turner Company IncTilting arbor table saw
US2163320 *1 May 193720 Jun 1939William P MorganSawing appliance
US2168282 *18 Dic 19361 Ago 1939Delta Mfg CoCircular saw
US2241556 *20 Jun 193813 May 1941Hydraulic Dev Corp IncPhotoelectrically controlled press
US2261696 *15 Mar 19394 Nov 1941Walker Turner Co IncTilting saw
US2265407 *25 Ene 19399 Dic 1941Delta Mfg CoTilting arbor saw
US2286589 *28 Oct 194016 Jun 1942Tannewitz Carl EBlade grabber for band saws
US2292872 *10 Jul 194011 Ago 1942Eastman Elwyn ADouble hinge tilting arbor saw
US2299262 *29 Abr 194020 Oct 1942Mark UremovichPower-driven bench saw
US2312118 *31 Jul 194023 Feb 1943Neisewander Ray HAdjustable woodworking machine
US2313686 *17 Mar 19419 Mar 1943Mark UremovichSaw guard
US2328244 *24 Feb 194131 Ago 1943Woodward William HCircular saw machine
US2352235 *10 Sep 194127 Jun 1944Delta Mfg CoSaw guard
US2377265 *9 Ene 194229 May 1945Gen Motors CorpSealed-in regulator
US2402232 *6 Mar 194318 Jun 1946Automatic Elect LabAutomatic telephone system
US2425331 *13 Dic 194512 Ago 1947Kramer Linzie FGuard device for circular-saw table sawing machines
US2434174 *19 Jun 19446 Ene 1948Morgan Joseph PSafety brake for band-saw blades
US2452589 *14 Ene 19442 Nov 1948Standard Telephones Cables LtdElectric remote control and indication system
US2466325 *18 Jul 19455 Abr 1949Kearney & Trecker CorpSaw guard for adjustable-saw saw tables
US2496613 *30 May 19447 Feb 1950Woodward William HGuard for rotary disks
US2509813 *29 Sep 194730 May 1950Stratos CorpEmergency disconnect means for auxiliaries
US2517649 *9 Abr 19498 Ago 1950Jean FrechtmannBlade guard
US2518684 *21 Abr 194915 Ago 1950Harris Hyman MDuplex bench saw
US2530290 *12 Dic 194614 Nov 1950Atlas Press CompanyTable saw with tiltable and vertically adjustable arbor
US2554124 *28 Oct 194622 May 1951Zita Wallace SalmontMeans for automatic control of machinery or other devices
US2562396 *15 Mar 194731 Jul 1951Walt Inc DeSafety device for saws
US2572326 *24 Jun 194923 Oct 1951Camille Evans MervynCircular saw guard
US2590035 *10 Sep 194718 Mar 1952Abraham PollakTilting-arbor saw and cradle suspension therefor
US2593596 *24 Mar 194922 Abr 1952Olson George VCircular saw guard
US2601878 *8 Mar 19461 Jul 1952St Paul Foundry & Mfg CoTable saw with part of the table swingably and laterally adjustable
US2623555 *14 Jul 194830 Dic 1952Rockwell Mfg CoSaw guard
US2625966 *1 Jun 195120 Ene 1953Callender Foundry & Mfg CompanMotor and belt drive for tilt arbor saws
US2626639 *4 Nov 195027 Ene 1953Duro Metal Products CoBelt and pulley drive means for tiltable saws and the like
US2661777 *15 Sep 19528 Dic 1953Hitchcock Edgar JSelf-adjusting motor mounting for vertically adjusted saws
US2661780 *2 Ago 19508 Dic 1953Harry CrisciAutomatic magnetic brake for band saws
US2675707 *2 Oct 195020 Abr 1954 brown
US2678071 *6 Feb 195311 May 1954Duro Metal Products CoMotor mounting and drive means for power tools
US2690084 *1 Ago 195028 Sep 1954Atlas Press CompanySpring belt tension equalizer for machine tools
US2695638 *17 Feb 194930 Nov 1954King Seeley CorpTilting arbor circular wood saw
Citada por
Patente citante Fecha de presentación Fecha de publicación Solicitante Título
US6813983 *16 Ene 20029 Nov 2004Sd3, LlcPower saw with improved safety system
US6826988 *16 Ene 20027 Dic 2004Sd3, LlcMiter saw with improved safety system
US6877410 *15 Ene 200212 Abr 2005Sd3, LlcMiter saw with improved safety system
US6880440 *16 Ene 200219 Abr 2005Sd3, LlcMiter saw with improved safety system
US690072829 Jul 200231 May 2005Home Depot U.S.A., Inc.System to detect user entry into a defined danger zone
US692215313 May 200326 Jul 2005Credo Technology CorporationSafety detection and protection system for power tools
US695963112 Nov 20031 Nov 2005Makita CorporationPower tools
US7024975 *13 Ago 200111 Abr 2006Sd3, LlcBrake mechanism for power equipment
US70478547 Sep 200523 May 2006Makita CorporationPower tools
US7055417 *29 Sep 20006 Jun 2006Sd3, LlcSafety system for power equipment
US708477910 Sep 20041 Ago 2006Makita CorporationPower tool
US7137326 *13 Ago 200121 Nov 2006Sd3, LlcTranslation stop for use in power equipment
US731127610 Sep 200425 Dic 2007Fellowes Inc.Shredder with proximity sensing system
US762493817 Nov 20061 Dic 2009Acco Uk LimitedShredding machine
US76318221 Jun 200615 Dic 2009Fellowes Inc.Shredder with thickness detector
US763182322 Jun 200715 Dic 2009Fellowes Inc.Shredder with thickness detector
US763182426 Jun 200715 Dic 2009Fellowes Inc.Shredder with thickness detector
US763510221 Jun 200722 Dic 2009Fellowes Inc.Shredder with thickness detector
US766161411 Jul 200516 Feb 2010Fellowes Inc.Shredder throat safety system
US76859125 Nov 200730 Mar 2010Sd3, LlcMiter saw with improved safety system
US769897629 Jul 200820 Abr 2010Sd3, LlcMiter saw with improved safety system
US770792031 Dic 20044 May 2010Sd3, LlcTable saws with safety systems
US77124032 Jul 200211 May 2010Sd3, LlcActuators for use in fast-acting safety systems
US771268928 Jun 200711 May 2010Fellowes Inc.Shredder with thickness detector
US775798228 Sep 200620 Jul 2010Fellowes, Inc.Shredder with intelligent activation switch
US778450719 Ago 200531 Ago 2010Sd3, LlcRouter with improved safety system
US778899910 Abr 20067 Sep 2010Sd3, LlcBrake mechanism for power equipment
US782789028 Ene 20059 Nov 2010Sd3, LlcTable saws with safety systems and systems to mount and index attachments
US782789314 Mar 20079 Nov 2010Sd3, LlcElevation mechanism for table saws
US783231411 Jun 200716 Nov 2010Sd3, LlcBrake positioning system
US783680429 Dic 200623 Nov 2010Sd3, LlcWoodworking machines with overmolded arbors
US786623914 Mar 200711 Ene 2011Sd3, LlcElevation mechanism for table saws
US789592719 May 20101 Mar 2011Sd3, LlcPower equipment with detection and reaction systems
US794651413 Oct 200924 May 2011Fellowes, Inc.Shredder with thickness detector
US796346811 Nov 200921 Jun 2011Fellowes, Inc.Shredder with thickness detector
US799150318 May 20092 Ago 2011Sd3, LlcDetection systems for power equipment
US800881222 Jul 201030 Ago 2011Aurora Office Equipment Co., Ltd.Paper shredder control system responsive to touch-sensitive element
US80180999 Oct 200913 Sep 2011Aurora Office Equipment Co., Ltd.Touch-sensitive paper shredder control system
US80612458 Nov 200422 Nov 2011Sd3, LlcSafety methods for use in power equipment
US806594324 Oct 200529 Nov 2011Sd3, LlcTranslation stop for use in power equipment
US80874383 May 20103 Ene 2012Sd3, LlcDetection systems for power equipment
US808759927 Jul 20093 Ene 2012Aurora Office Equipment Co., Ltd.Anti-paper jam protection device for shredders
US810003919 Abr 201024 Ene 2012Sd3, LlcMiter saw with safety system
US81228073 May 201028 Feb 2012Sd3, LlcTable saws with safety systems
US814684527 Jul 20093 Abr 2012Aurora Office Equipment Co., Ltd. ShanghaiAutomatic shredder without choosing the number of paper to be shredded
US816224430 Jul 200824 Abr 2012Acco Uk LimitedShredding machine
US818625516 Nov 200929 May 2012Sd3, LlcContact detection system for power equipment
US819145020 Ago 20105 Jun 2012Sd3, LlcPower equipment with detection and reaction systems
US819649920 Ago 201012 Jun 2012Sd3, LlcPower equipment with detection and reaction systems
US820176627 Jul 200919 Jun 2012Aurora Office Equipment Co., Ltd.Pins or staples removable structure of automatic shredders
US84081069 Abr 20122 Abr 2013Sd3, LlcMethod of operating power equipment with detection and reaction systems
US845915731 Dic 200411 Jun 2013Sd3, LlcBrake cartridges and mounting systems for brake cartridges
US848922323 Dic 201116 Jul 2013Sd3, LlcDetection systems for power equipment
US849873219 Dic 201130 Jul 2013Sd3, LlcDetection systems for power equipment
US85054248 Nov 201013 Ago 2013Sd3, LlcTable saws with safety systems and systems to mount and index attachments
US864058325 Jul 20054 Feb 2014Robert Bosch GmbhSafety detection and protection system for power tools
US87082608 Ago 201129 Abr 2014Aurora Office Equipment Co., Ltd.Depowered standby paper shredder and method
US872346828 Abr 201113 May 2014Aurora Office Equipment Co., Ltd.Cooled motor
US878359226 Mar 201022 Jul 2014Fellowes, Inc.Shredder with thickness detector
US896337927 Jun 201124 Feb 2015Aurora Office Equipment Co., Ltd. ShanghaiPaper shredder control system responsive to touch-sensitive element
US952247620 Ago 201020 Dic 2016Sd3, LlcPower equipment with detection and reaction systems
US96234983 Sep 201518 Abr 2017Sd3, LlcTable saws
US96694101 Ago 20136 Jun 2017ACCO Brands CorporationShredding machine
US97025044 Feb 201411 Jul 2017Robert Bosch Tool CorporationSafety detection and protection system for power tools
US972484013 Mar 20028 Ago 2017Sd3, LlcSafety systems for power equipment
US20020017175 *13 Ago 200114 Feb 2002Gass Stephen F.Translation stop for use in power equipment
US20020017180 *13 Ago 200114 Feb 2002Gass Stephen F.Brake mechanism for power equipment
US20020059853 *16 Ene 200223 May 2002Gass Stephen F.Power saw with improved safety system
US20020059854 *16 Ene 200223 May 2002Gass Stephen F.Miter saw with improved safety system
US20020059855 *16 Ene 200223 May 2002Gass Stephen F.Miter saw with improved safety system
US20020066346 *15 Ene 20026 Jun 2002Gass Stephen F.Miter saw with improved safety system
US20020190581 *13 Jun 200219 Dic 2002Gass Stephen F.Apparatus and method for detecting dangerous conditions in power equipment
US20030002942 *2 Jul 20022 Ene 2003Gass Stephen F.Discrete proximity detection system
US20040017294 *29 Jul 200229 Ene 2004Metzger James I.System to detect user entry into a defined danger zone
US20040060404 *30 Sep 20021 Abr 2004Emerson Electric Co.Breakaway hub for saw
US20040123709 *30 Dic 20021 Jul 2004Emerson Electric Co.System for sensing user contact with a saw blade
US20040194594 *16 Ene 20047 Oct 2004Dils Jeffrey M.Machine safety protection system
US20040200329 *12 Nov 200314 Oct 2004Makita CorporationPower tools
US20050057206 *10 Sep 200417 Mar 2005Makita CorporationPower tool
US20050268767 *25 Jul 20058 Dic 2005Credo Technology CorporationSafety detection and protection system for power tools
US20060000332 *7 Sep 20055 Ene 2006Makita CorporationPower tools
US20060054724 *10 Sep 200416 Mar 2006Fellowes Inc.Shredder with proximity sensing system
US20060054725 *11 Jul 200516 Mar 2006Fellowes, Inc.Shredder throat safety system
US20060179983 *10 Abr 200617 Ago 2006Gass Stephen FBrake mechanism for power equipment
US20060180451 *11 Abr 200617 Ago 2006Gass Stephen FSwitch box for power tools with safety systems
US20060219827 *1 Jun 20065 Oct 2006Fellowes Inc.Shredder with thickness detector
US20060230896 *2 Jun 200619 Oct 2006Gass Stephen FMiter saw with improved safety system
US20060272463 *18 Ago 20067 Dic 2006Gass Stephen FMotion detecting system for use in a safety system for power equipment
US20070028733 *2 Oct 20068 Feb 2007Gass Stephen FSafety methods for use in power equipment
US20070131071 *5 Feb 200714 Jun 2007Gass Stephen FDiscrete proximity detection system
US20070175306 *14 Mar 20072 Ago 2007Gass Stephen FElevation mechanism for table saws
US20070246581 *26 Jun 200725 Oct 2007Fellowes Inc.Shredder with thickness detector
US20070246582 *17 Nov 200625 Oct 2007Acco Uk LimitedShredding machine
US20070246585 *22 Jun 200725 Oct 2007Fellowes Inc.Shredder with thickness detector
US20080029184 *11 Jun 20077 Feb 2008Gass Stephen FBrake positioning system
US20080053994 *30 Ago 20066 Mar 2008Aurora Office Equipment Co., Ltd. ShanghaiPaper-Breaker Wastebin Structure
US20080099590 *28 Sep 20061 May 2008Fellowes, Inc.Shredder with intelligent activation switch
US20080105772 *11 Jul 20058 May 2008Fellowes Inc.Shredder throat safety system
US20080245200 *18 Jul 20069 Oct 2008Bladestop Pty LimitedElectric Saw with Operator Protection System
US20080282858 *29 Jul 200820 Nov 2008Gass Stephen FMiter saw with improved safety system
US20100084496 *13 Oct 20098 Abr 2010Fellowes, Inc.Shredder with thickness detector
US20100116916 *9 Oct 200913 May 2010Aurora Office Equipment Co., Ltd. ShanghaiTouch-Sensitive Paper Shredder Control System
US20100236663 *19 May 201023 Sep 2010Gass Stephen FPower equipment with detection and reaction systems
US20100263509 *19 Abr 201021 Oct 2010Gass Stephen FMiter saw with safety system
US20100270404 *27 Jul 200928 Oct 2010Aurora Office Equipment Co., Ltd. Shanghaitype protection device for shredders
US20100282879 *27 Jul 200911 Nov 2010Aurora Office Equipment Co., Ltd.ShanghaiAnti-paper jam protection device for shredders
US20100288095 *3 May 201018 Nov 2010Gass Stephen FTable saws with safety systems
US20110023670 *20 Ago 20103 Feb 2011Gass Stephen FPower equipment with detection and reaction systems
US20110023673 *20 Ago 20103 Feb 2011Gass Stephen FPower equipment with detection and reaction systems
US20110126682 *8 Nov 20102 Jun 2011Gass Stephen FTable saws with safety systems and systems to mount and index attachments
US20110180641 *8 Abr 201128 Jul 2011Acco Uk LimitedShredding machine
USRE4416118 Feb 201123 Abr 2013Fellowes, Inc.Shredder with thickness detector
EP2425919A4 *30 Mar 20105 Ago 2015Makita CorpCutting machine
EP2969334A4 *13 Mar 20147 Dic 2016Bosch Gmbh RobertMiter saw with active control energy dampener
Clasificaciones
Clasificación de EE.UU.83/58, 83/490, 83/DIG.1
Clasificación internacionalB23D59/00, B23D47/08, F16P3/14, B27B13/14, B27B5/38, B27G19/02, B27G19/00, F16P3/12
Clasificación cooperativaY10T83/081, Y10T83/8773, Y10T83/7734, Y10T83/7693, Y10T83/7788, Y10T83/089, Y10T83/7726, Y10T83/7697, Y10T83/613, B23D47/08, B27B5/38, B27B13/14, B27G19/00, B27G19/02, F16P3/12, F16P3/148, B23D59/001
Clasificación europeaB23D47/08, B23D59/00B, F16P3/12, B27B5/38, B27G19/00, B27B13/14, B27G19/02, F16P3/14
Eventos legales
FechaCódigoEventoDescripción
10 Sep 2001ASAssignment
Owner name: SD3, LLC, OREGON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FANNING, DAVID;REEL/FRAME:012146/0312
Effective date: 20001204
Owner name: SD3, LLC, OREGON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GASS, STEPHEN F.;REEL/FRAME:012155/0361
Effective date: 20001221
Owner name: SD3, LLC, OREGON
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:D ASCENZO, DAVID S.;REEL/FRAME:012155/0365
Effective date: 20010130