US20020048891A1 - Method for crystallizing semiconductor material without exposing it to air - Google Patents

Method for crystallizing semiconductor material without exposing it to air Download PDF

Info

Publication number
US20020048891A1
US20020048891A1 US09/038,926 US3892698A US2002048891A1 US 20020048891 A1 US20020048891 A1 US 20020048891A1 US 3892698 A US3892698 A US 3892698A US 2002048891 A1 US2002048891 A1 US 2002048891A1
Authority
US
United States
Prior art keywords
film
semiconductor
laser
light
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/038,926
Other versions
US6423586B1 (en
Inventor
Shunpei Yamazaki
Hongyong Zhang
Naoto Kusumoto
Yasuhiko Takemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/251,940 external-priority patent/US4986213A/en
Priority claimed from US07/520,998 external-priority patent/US5171710A/en
Priority claimed from JP3080799A external-priority patent/JPH05299339A/en
Priority claimed from US07/933,718 external-priority patent/US5296405A/en
Priority claimed from US08/183,800 external-priority patent/US5962869A/en
Priority to US09/038,926 priority Critical patent/US6423586B1/en
Application filed by Individual filed Critical Individual
Priority to US09/978,696 priority patent/US6881615B2/en
Publication of US20020048891A1 publication Critical patent/US20020048891A1/en
Publication of US6423586B1 publication Critical patent/US6423586B1/en
Application granted granted Critical
Priority to US11/105,404 priority patent/US7435635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor material, e.g., containing silicon as the major component. More particularly, the present invention relates to a thin film transistor improved in properties and a process for fabricating the same.
  • the semiconductor material according to the present invention enables fabrication of thin film semiconductor devices such as thin film transistors having excellent device characteristics.
  • Non-crystalline semiconductor materials the so-called amorphous semiconductors
  • polycrystalline semiconductor materials have been heretofore used for the fabrication of thin film semiconductor devices such as thin film field effect transistors and the like.
  • amorphous materials as referred herein signifies not only the materials having a strict structural disordering in the atomic level, but also includes those having a short range ordering for a distance of about several nanometers. More concretely, “amorphous materials” include silicon materials having an electron mobility of 10 cm 2 /V s or lower and materials having a carrier mobility lowered to 1% or less of the intrinsic carrier mobility of the corresponding semiconductor material.
  • materials consisting of fine crystal aggregates which are composed of fine crystals about 10 nm in size i.e., the materials known as microcrystals (having a grain diameter of 50 to 500 ⁇ as calculated according to shira equation in Raman shift) or semi-amorphous materials (having lattice distortion therein and a peak in Raman shift at less than 521 cm ⁇ 1 , and having a structure comprising amorphous structure and crystalline structure with undefined boundary), are collectively referred to hereinafter as amorphous materials.
  • amorphous semiconductor such as amorphous silicon (a-Si) and amorphous germanium (a-Ge) in the fabrication of a semiconductor device is advantageous in that the process can be conducted at a relatively low temperature of 400° C. or even lower.
  • a-Si amorphous silicon
  • a-Ge amorphous germanium
  • a pure amorphous semiconductor has an extremely low carrier mobility (electron mobility and hole mobility).
  • pure amorphous semiconductors are rarely applied as they are, for example, to channel-forming areas of thin film transistors (TFTs); in general, the pure amorphous semiconductor materials are subjected to the irradiation of a high energy beam such as a laser beam or a light emitted from a Xenon lamp, so that they may be once molten to recrystallize and thereby modified into a crystalline semiconductor material having an improved carrier mobility.
  • a high energy beam such as a laser beam or a light emitted from a Xenon lamp
  • the high energy beam not necessary be a laser beam, and included in the high intensity beam is, for example, a powerful light emitted from a flash lamp which has a similar effect on the semiconductor material as the laser beam irradiation.
  • the semiconductor materials heretofore obtained by laser annealing are still low in the carrier mobility as compared with those of single crystal semiconductor materials.
  • the highest reported electron mobility is 200 cm 2 /V ⁇ s at best, which is a mere one seventh of the electron mobility of a single silicon, 1350 cm 2 /V ⁇ s.
  • the semiconductor characteristics (mainly mobility) of the semiconductor material thus obtained by the laser annealing process suffers poor reproducibility and also scattering of the mobility values over the single film. Those disadvantages lead to a low product yield of semiconductor devices having a plurality of elements fabricated on a single plane.
  • An object of the present invention is to provide a thin film semiconductor material having a high mobility and a process for forming the same with excellent reproducibility. More specifically, an object of the present invention is to provide a process in which the problems of the conventional laser annealing process are overcome, and to provide, accordingly, a practically feasible thin film semiconductor material improved in characteristics.
  • FIG. 1 is a graph showing the relation between the center wavenumber of the Raman peak (Raman shift; taken in the abscissa) and the electron mobility (the ordinate) of a laser-annealed silicon film.
  • the oxygen concentration of the film is found to be 2 ⁇ 10 21 cm ⁇ 3 ;
  • FIG. 2 is a graph showing the relation between the center wavenumber of the Raman peak (Raman shift; taken in the abscissa) and the electron mobility (the ordinate) of laser-annealed silicon films with varying oxygen concentration;
  • FIG. 3 is a graph showing the relation between the ratio of the full band width at half maximum (FWHM) of the Raman peak for a laser-annealed silicon film to the FWHM of the Raman peak for a single crystal silicon (FWHM ratio; taken in the abscissa) and the electron mobility (the ordinate), for laser-annealed silicon films with varying oxygen concentration;
  • FIG. 4 is a graph showing the relation between the peak intensity ratio (Ia/Ic; taken in the abscissa) and the electron mobility (the ordinate) for laser-annealed silicon films with varying oxygen concentration, where Ia represents the Raman peak intensity (of the peak at a wavenumber of about 480 cm ⁇ 1 ) for the amorphous component of the laser-annealed silicon film, and Ic represents the Raman peak intensity (at about 521 cm ⁇ 1 ) for the single crystal silicon;
  • FIG. 5 is a graph showing a position-dependent change of FWHM of the Raman peak for channel-forming areas of field effect transistors, where, the abscissa is X/L with L representing the channel length, and the ordinate is FWHM; and
  • FIG. 6 shows a process for fabricating a field effect transistor.
  • Raman spectroscopy is an effective method for evaluating the crystallinity of a material, and it has been used with the purpose of quantitatively evaluating the crystallinity of a semiconductor film fabricated by a laser annealing process.
  • the center wavenumber, as well as the width, the height, etc., of the Raman peak of a laser-annealed semiconductor film is closely related to the properties of the semiconductor film.
  • the Raman peak at 521 cm ⁇ 1 for a single crystal silicon was observed on a laser-annealed silicon film to be shifted to a shorter wavenumber (longer wavelength). It has been also found that the center wavenumber of this Raman peak is strongly correlated with the carrier mobility of the silicon film obtained by laser annealing.
  • FIG. 1 relates the center wavenumber of the Raman peak (abscissa) to the electron mobility (ordinate) of a laser-annealed silicon film.
  • the electron mobility was obtained by measuring the capacitance-voltage (C-V) characteristics on a TFT having fabricated from the silicon film. From FIG. 1, it can be read that the electron mobilities for those having a Raman peak center of 515 cm ⁇ 1 or higher behave quite differently from the mobilities of those having a Raman peak center below 515 cm ⁇ 1 .
  • the Raman peak center is more sensitive to the change in electron mobility in the peak center wavenumber region of 515 cm ⁇ 1 or shorter; beyond this wavenumber, in contrast, a little shift of Raman peak to higher wavenumber side signifies a large increase in electron mobility.
  • phase having a Raman peak of 515 cm ⁇ 1 or higher is assumed as a phase which has achieved atomic ordering in the solid phase without undergoing melting
  • phase having a Raman peak of 515 cm ⁇ 1 or higher is assumably a phase having solidified from a liquid phase which has once experienced melting by laser annealing.
  • the center wavenumber of the Raman peak was 521 cm ⁇ 1 at maximum, and the highest observed electron mobility was about 200 cm 2 /V ⁇ s.
  • the concentration of elements other than silicon, such as oxygen, nitrogen, and carbon, is referred hereinafter to the concentration of those elements at the central portion of the film.
  • the concentration of the elements in the central region is taken into account because despite the extremely high concentration of those elements in the portion near the substrate or at the vicinity of the surface, the impurity elements in those portions are believed to have little influence in the carrier mobility which is to be considered in the present invention.
  • the portion low in concentration of those foreign elements exists at the central portion of the film, and it is believed that the central portion of the film plays an important role in a semiconductor device such as a field effect transistor. Accordingly, “a concentration of a foreign element” referred simply herein signifies the concentration at the central portion of the film.
  • the film as a whole which results from such a process is lowered in mobility due to the barriers created at the grain boundaries.
  • the oxygen atoms or the areas rich in oxygen function as crystal nuclei to effect crystal growth. Accordingly, the size of the individual crystals becomes smaller with increasing population of the oxygen atoms. This leads to a lower crystallinity because of the crystals having grown into smaller size, which in consequence give a lower mobility.
  • the curve relating the electron mobility to the Raman peak position shows typically a knickpoint (i.e., a bent) irrespective of the oxygen concentration.
  • the present inventors denoted the region at the right side (the side higher in wavenumber) of the broken lines as a melting and crystallizing region. This is because a film falling in this region is surmised that it has undergone melting and recrystallization upon laser annealing. A high mobility was obtained on films falling in this region.
  • the semiconductor material in accordance with the present invention preferably has a Raman shift of 512 cm ⁇ 1 or more and is preferably produced by laser annealing a semiconductor containing therein oxygen, nitrogen and carbon at a concentration of 5 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or less respectively in the melting and crystallizing region.
  • FWHM ratio full band width at half maximum ratio
  • FIG. 3 The abscissa is the full band width at half maximum ratio (FWHM ratio), which is defined herein as a ratio of the FWHM of a Raman peak obtained on a laser-annealed film to that obtained on a single crystal silicon.
  • FWHM ratio the full band width at half maximum ratio
  • a smaller FWHM ratio closer to unity represents a film having a structure similar to that of a single crystal silicon. Referring to FIG. 3, it can be seen that the FWHM ratio becomes closer to 1 with increasing electron mobility if films of equal oxygen concentration are compared.
  • the electron mobility increased with lowering the oxygen concentration in the film; similar results were again obtained for nitrogen-and carbon atoms. That is, a higher electron mobility was obtained with decreasing concentration of foreign atoms. Similarly, the same tendency was observed for hole mobilities.
  • the region at the left hand side of the broken lines shown in the FIGURE is again considered as the melting and crystallizing region.
  • FIG. 4 is a graph showing the relation between a ratio which the present inventors define as a peak intensity ratio (Ia/Ic; taken as the abscissa), and the electron mobility for laser-annealed silicon films with varying oxygen concentration, where Ia represents the Raman peak intensity (of the peak at a wavenumber of about 480 cm ⁇ 1 ) for the amorphous component of the laser-annealed silicon film, and Ic represents the Raman peak intensity (at about 521 cm ⁇ 1 ) for the single crystal silicon.
  • Ia represents the Raman peak intensity (of the peak at a wavenumber of about 480 cm ⁇ 1 ) for the amorphous component of the laser-annealed silicon film
  • Ic represents the Raman peak intensity (at about 521 cm ⁇ 1 ) for the single crystal silicon.
  • the electron mobility increased with decreasing intensity ratio, provided that the oxygen concentration is the same.
  • the present inventors empirically obtained higher carrier mobility with increasing intensity of Raman peaks, and the Raman peak intensity was higher for films having lower concentrations of oxygen, nitrogen, and carbon.
  • a higher carrier mobility can be obtained by decreasing the amounts of oxygen, nitrogen, and carbon incorporated into the film. More specifically, the present inventors have found that, by reducing concentration of each of the foreign atoms to 5 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or lower, more preferably to 1 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or lower, a high electron mobility can be obtained, said electron mobility being as high as 1000 cm 2 /V ⁇ s for a silicon film, for example. The present inventors found that by decreasing concentrations of the foreign atoms, this high electron mobility can be ameliorated further to a value near to the carrier mobility of a single crystal semiconductor, and also that the reproducibility of this high mobility can be improved. In addition, a hole mobility of from 300 to 500 cm 2 /V ⁇ s was obtained by a similar process.
  • the laser annealing is carried out in an atmosphere under atmospheric pressure or reduced pressure.
  • a laser beam or a light equivalent to the laser beam is irradiated to a noncrystal semiconductor containing therein carbon, nitrogen and oxygen at a concentration of 5 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or less, preferably 1 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or less, respectively.
  • a particular fabrication process is requisite.
  • One of such processes is to first cover the surface of an amorphous semiconductor containing the foreign atoms of oxygen, nitrogen, and carbon at an extremely low concentration of 10 15 atoms ⁇ cm ⁇ 3 or lower with a protective film such as of silicon oxide, silicon nitride, and silicon carbide, and then laser annealing the film under a high vacuum at a pressure of 10 ⁇ 4 Torr or lower.
  • a protective film such as of silicon oxide, silicon nitride, and silicon carbide
  • laser annealing the film under a high vacuum at a pressure of 10 ⁇ 4 Torr or lower Such enables a semiconductor film having very high mobility, with extremely low concentrations for oxygen, nitrogen, and carbon.
  • a silicon film having an electron mobility of 1000 cm 2 /V ⁇ s was obtained with each of the concentrations of carbon, nitrogen, and carbon being controlled to 1 ⁇ 10 15 atoms ⁇ cm ⁇ 3 or lower.
  • the protective films such as of silicon oxide, silicon nitride, and silicon carbide, can be favorably deposited on the surface of an amorphous semiconductor film by continuously depositing the amorphous film and the protective film in a same chamber. More specifically, a preferred process comprises, for example, depositing an amorphous semiconductor film in a chamber equipped with a single vacuum apparatus, using a chemical vapor deposition (CVD) process or a sputtering process, and then, in the same chamber, continuously depositing the protective film while maintaining the same previous atmosphere or by once evacuating the chamber to an extreme vacuum and then controlling the atmosphere to a one pertinent for the film deposition.
  • CVD chemical vapor deposition
  • independent chambers are provided so that the films are deposited separately therein, and that the amorphous film once deposited in a particular chamber is transferred to another chamber while maintaining the high vacuum.
  • the selection of a particular film deposition process depends on the plant and equipment investment. At any rate, the important points to be assured are to sufficiently reduce the amount of-oxygen, nitrogen, and carbon in the film and to avoid adsorption of gases on the surface of the amorphous semiconductor and at the boundary between said semiconductor and the protective film provided thereon.
  • the protective film may be made from any material capable of transmitting a laser beam or a light equivalent to the laser beam, and usable are silicon oxide, silicon nitride, silicon carbide, and a material comprising a mixture thereof and represented by the chemical formula SiN x O y C z (where, 0 ⁇ 4/3; 0 ⁇ y ⁇ 2; 0 ⁇ z ⁇ 1; and 0 ⁇ 3x+2y+4z ⁇ 4).
  • the thickness of the film is in the range of from 50 to 1000 nm.
  • the carrier mobility can be univocally defined from the parameters such as the wavenumber of the Raman peak center, the FWHM of the Raman peak, and the intensity of the Raman peak attributed to the amorphous content in contrast to that of the whole Raman peak.
  • the information available from Raman spectroscopy it is possible to semi-quantitatively obtain the mobility of a minute area to which a direct measurement cannot be applied.
  • FIG. 5 is a graph showing a position-dependent change of FWHM of the Raman peak for laser-annealed channel-forming areas of field effect transistors whose electron mobilities were found 22 cm 2 /V ⁇ s, 201 cm 2 /V ⁇ s, and 980 cm 2 /V ⁇ s.
  • the abscissa is the position of the channel forming area, X/L, with L being the channel length of 100 ⁇ m, and X being the coordinate of the channel forming area.
  • the channel-forming area of a field effect transistor having an electron mobility of 201 cm 2 /V ⁇ s also yielded an oxygen concentration of 8 ⁇ 10 20 atoms ⁇ cm ⁇ 3 .
  • the FWHM is lowered over the whole area, and is largely dependent on the position.
  • some points yielded FWHM values comparable to, or even lower than those of the channel-forming area having an electron mobility of 980 cm 2 /V ⁇ s.
  • a low FWHM is suggestive of a high electron mobility at that point, and that a localized portion having a high crystallinity equal to that of a single crystal silicon is present. From the viewpoint of mass-production of devices, such a material having large local fluctuations is not favorable despite a high mobility.
  • the channel-forming area of a field effect transistor having an electron mobility of 980 cm 2 /V ⁇ s yielded an oxygen concentration of about 1 ⁇ 10 19 atoms ⁇ cm ⁇ 3 , which was considerably lower than those of two above. From FIG. 5 it can be seen that the FWHM is generally low and has less positional dependence.
  • the graph indicates that the material has a high electron mobility as a whole, and that it is composed of a material having a crystallinity well comparable to that of a single crystal silicon. Thus, such a material is suitable for mass production to be used in devices.
  • the conditions for the laser annealing vary depending on the operating conditions of the laser (such as whether the laser is operated in a continuous mode or in a pulsed mode, the repetition cycle, beam intensity, and wavelength), and the coating.
  • the lasers to be used in the process is selected from ultraviolet (UV)-emitting lasers such as the various types of excimer lasers, and lasers emitting light in the visible and infrared (IR) regions, such as a YAG laser.
  • a suitable laser should be selected depending on the thickness of the film to be laser-annealed.
  • the laser annealing is effected at relatively shallow portions on the surface when a UV-emitting laser is used, because the materials have a short absorption length for UV light.
  • those materials have a longer absorption length for a light in the visible and IR regions, such a beam penetrate deep into the material to effect laser annealing of the inner portions.
  • a high carrier mobility can be obtained by optimally controlling the laser conditions such as wavelength and intensity, so that melting and recrystallization may occur on the film.
  • the laser-irradiated portion should be maintained at a temperature not lower than the melting point of the semiconductor under process for a long duration.
  • silicon for example, it requires heating to 1400° C. or higher under the atmospheric pressure; in germanium, it should be heated to at least 1000° C. under the atmospheric pressure to effect the melting.
  • a temperature as high as 2000° C. or even higher is achieved instantaneously and spectroscopically observed. Such a high temperature does not always cause melting of the film. Thus, a definition of a temperature in this case does not make sense.
  • a planar TFT was fabricated and the electric characteristics thereof were evaluated. Referring to FIG. 6, the process for the fabrication thereof is described. First, an amorphous silicon film (an activation layer of the TFT) was deposited on a quartz substrate 601 at a thickness of about 100 nm by a conventional RF sputtering process, at a substrate temperature of 150° C. under an atmosphere consisting substantially of 100% argon at a pressure of 0.5 Pa. A 99.99% or higher purity argon gas was used alone, without adding other gases such as hydrogen. The sputtering was conducted at a power input of 200 W and an RF frequency of 13.56 MHz. The resulting film was etched into a 100 ⁇ 500 ⁇ m rectangle to obtain a desired amorphous silicon film 602.
  • the film was confirmed by secondary ion mass spectroscopy (SIMS) to contain each of oxygen, nitrogen, and carbon at a concentration of 10 19 atoms ⁇ cm ⁇ 3 or less.
  • SIMS secondary ion mass spectroscopy
  • the film was then placed in a vacuum vessel controlled to a vacuum of 10 ⁇ 5 Torr for laser annealing.
  • a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 200 mJ, and a pulse repetition of 50 shots, to effect laser annealing by irradiating a laser beam at a wavelength of 248 nm to the film.
  • a gate dielectric 603 was then deposited by sputtering on the surface of the thus obtained laser-annealed silicon film in an oxygen atmosphere, at a thickness of about 100 nm.
  • the film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.5 MHz) power input of 400 W.
  • the atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added.
  • the oxygen gas was of 99.9% or higher purity, and the pressure thereof was 0.5 Pa.
  • a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a 100 ⁇ m wide gate 604 .
  • a photoresist 605 used in the dry etching process was left unremoved on the gate.
  • the resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10 ⁇ 5 Torr for laser annealing.
  • a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, to effect the film annealing by irradiating a beam at a wavelength of 248 nm.
  • the impurity areas which were made amorphous by the ion doping were thus recrystallized.
  • the laser-annealed structure was thermally annealed further in hydrogen atmosphere.
  • the substrate was placed in a chamber equipped with a vacuum-evacuating means.
  • the chamber was first evacuated to a vacuum of 10 ⁇ 6 Torr using a turbo molecular pump, and this state was maintained for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, to anneal the substrate at 300° C. for 60 minutes.
  • the vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • a channel is located in the activation layer under the gate electrode between the source and the drain areas in the field effect transistor and comprises the intrinsic or substantially intrinsic semiconductor crystallized by the KrF excimer laser.
  • a planar TFT was fabricated and the electric characteristics thereof were evaluated.
  • an amorphous silicon film containing phosphorus at a concentration of 3 ⁇ 10 17 atoms ⁇ cm ⁇ 3 was deposited on a quartz substrate at a thickness of about 100 nm by a conventional RF sputtering process.
  • the amorphous silicon film having deposited at this thickness can be wholly annealed by a KrF laser beam at a wavelength of 248 nm.
  • the RF sputtering was performed at a substrate temperature of 150° C. under an atmosphere consisting substantially of 100% argon at a pressure of 0.5 Pa.
  • a 99.99% or higher purity argon gas was used alone, without adding other gases such as hydrogen.
  • the sputtering was conducted at a power input of 200 W and an RF frequency of 13.56 MHz.
  • the resulting film was etched into a 100 ⁇ m ⁇ 500 ⁇ m rectangle to obtain the desired amorphous silicon film.
  • the film was confirmed by secondary ion mass spectroscopy (SIMS) to contain each of oxygen, nitrogen, and carbon at a concentration of 10 19 atoms ⁇ cm ⁇ 3 or less.
  • SIMS secondary ion mass spectroscopy
  • a gate dielectric was then deposited by sputtering on the surface of the thus obtained silicon film in an oxygen atmosphere, at a thickness of about 100 nm.
  • the film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.56 MHz) power input of 400 W.
  • the atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added.
  • the oxygen gas was of 99.9% or higher purity, and the pressure thereof was 0.5 Pa.
  • a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a gate at a width of 100 ⁇ m. At this point, a photoresist used in the dry etching process was left on the gate.
  • the resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10 ⁇ 5 Torr for laser annealing.
  • a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, to anneal the film by irradiating a beam at a wavelength of 248 nm from the back of the substrate.
  • the amorphous silicon film recrystallized.
  • the crystallization of the source or the drain area can be effected simultaneously with the crystallization of the channel forming area.
  • the instant process is therefore advantageous in that a favorable boundary with a continuous crystallinity can be obtained with less defects, as compared with the process of EXAMPLE 1 in which many defects were found to generate in the boundary between the source or drain area and the channel forming area.
  • the laser-annealed structure was thermally annealed further in hydrogen atmosphere.
  • the substrate was placed in a chamber equipped with a vacuum-evacuating means.
  • the chamber was first evacuated to a vacuum of 10 ⁇ 6 Torr using a turbo molecular pump, and then heated to 100° C. to maintain this state for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, so that annealing of the substrate may be conducted then at 300° C. for 60 minutes.
  • the vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • the concentrations of oxygen, nitrogen, and carbon of this field effect transistor were each found by SIMS to be 1 ⁇ 10 19 atoms ⁇ cm ⁇ 3 or lower.
  • the Raman spectroscopy of the channel forming area resolved a Raman peak at a center wavenumber of 520 cm ⁇ 1 , having a FWHM of 4.5 cm ⁇ 1 .
  • the presence of a once melted and recrystallized silicon was evidenced by those results.
  • a planar TFT was fabricated and the electric characteristics thereof were evaluated. First, about 100 nm thick amorphous silicon film and a 10 nm thick silicon nitride coating thereon were continuously deposited on a quartz substrate having coated with a 10 nm thick silicon nitride coating by using a film-deposition apparatus having two chambers. The amorphous silicon film was deposited by a conventional sputtering method, and the silicon nitride film was deposited by a glow-discharge plasma chemical vapor deposition (CVD).
  • CVD glow-discharge plasma chemical vapor deposition
  • the substrate was set in a first pre-chamber which was heated to 200° C. and evacuated to a pressure of 10 ⁇ 6 Torr or lower for 1 hour.
  • an air-tight first chamber which is constantly controlled to a pressure of 10 ⁇ 4 Torr or lower except for the case of film deposition, was evacuated to 10 ⁇ 6 Torr.
  • the substrate was transferred from the first pre-chamber to the first chamber and set therein, at which point the chamber was evacuated to 10 ⁇ 6 Torr or lower while maintaining the substrate and the target to a temperature of 200° C. for a duration of 1 hour.
  • argon gas was introduced into the chamber to generate an RF plasma to conduct film deposition by sputtering.
  • a 99.9999% or higher purity silicon target containing 1 ppm of phosphorus was used for the target.
  • the film deposition was conducted with the substrate temperature being maintained at 150° C., in an atmosphere consisting substantially of 100% argon gas at a pressure of 5 ⁇ 10 ⁇ 2 Torr. No gases other than argon, such as hydrogen, was added intentionally.
  • the argon gas used herein was of 99.9999% or higher purity.
  • the sputtering was operated at an input power of 200 W and an RF frequency of 13.56 MHz.
  • the RF discharge was cut off, and while evacuating the first chamber to a vacuum of 10 ⁇ 6 Torr, an air-tight second pre-chamber, which is provided between the first and second chambers and is constantly maintained to a pressure of 10 ⁇ 5 Torr or lower, was vacuumevacuated to 10 ⁇ 6 Torr, so that the substrate may be transferred therein from the first chamber.
  • an air-tight second chamber which is always maintained at a pressure of 10 ⁇ 4 Torr or lower except for the case of carrying out a film deposition, was evacuated to 10 ⁇ 6 Torr to set therein the substrate having transferred from the second pre-chamber.
  • the substrate was kept at 200° C. in the second chamber, while the chamber was evacuated to maintain the substrate under a pressure of 10 ⁇ 6 Torr or lower for 1 hour.
  • a gas mixture diluted with hydrogen and comprising a 99.9999% or higher purity ammonia gas and disilane (Si 2 H 6 ) gas at a ratio of 3:2 was introduced in the second chamber to control the overall pressure to 10 ⁇ 1 Torr.
  • An RF current was applied to the chamber to generate a plasma therein, so that a silicon nitride film might be deposited on the substrate.
  • the power input was 200 W, at a frequency of 13.56 MHz.
  • the RF discharge was cut off. While evacuating the second chamber to 10 ⁇ 6 Torr, a third pre-chamber, which is provided at one side of the second chamber and having a quartz window, was vacuum evacuated to 10 ⁇ 6 Torr, at which point the substrate was transferred from the second chamber to the third pre-chamber. Then, a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, so that a laser beam at a wavelength of 248 nm was irradiated to the film to effect the laser annealing. Thus was the amorphous silicon film crystallized.
  • the process of continuously conducting the film deposition and the annealing thereof as described above may be carried out in two ways.
  • One is establishing a film-deposition chamber and separately a pre-chamber as described in the foregoing, and providing a window in the pre-chamber to effect the laser annealing through this window.
  • the other process is similar to the first, except that the window is provided to the film-deposition chamber so that the laser annealing may be effected subsequently to the film deposition.
  • the latter process requires etching of the window to remove the coating having adhered during the film-deposition process, since the coating adhesions make the window translucent. Accordingly, the former process is favorable from the viewpoint of its applicability to mass production and the maintenance costs.
  • a dry nitrogen gas is introduced into the third pre-chamber to recover the atmospheric pressure.
  • the substrate was then taken out from the third pre-chamber, and the silicon nitride film having deposited thereon was removed by a known dry etching process.
  • the resulting silicon film was etched into a 100 ⁇ m ⁇ 500 ⁇ m rectangular shape.
  • concentrations of oxygen, nitrogen, and carbon of this field effect transistor were each 1 ⁇ 10 16 atoms ⁇ cm ⁇ 3 or lower, which were each confirmed by SIMS performed on a separate film fabricated by the same process.
  • a gate dielectric was then deposited on the surface of the thus obtained laser-annealed silicon film in an oxygen atmosphere by sputtering, at a thickness of about 100 nm.
  • the film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.56 MHz) power input of 400 W.
  • a 99.9999% or higher purity silicon oxide was used as the target for sputtering.
  • the atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added.
  • the oxygen gas was of 99.999% or higher purity, and the pressure thereof was 5 ⁇ 10 ⁇ 2 Torr.
  • a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a gate at a width of 100 ⁇ m. At this point, a photoresist used in the dry etching process was left on the gate.
  • the resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10 ⁇ 5 Torr for laser annealing.
  • a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 50 mJ, and a pulse repetition of 50 shots, to anneal the film by irradiating a beam at a wavelength of 248 nm from the back of the substrate.
  • the impurity areas which were made amorphous by the ion doping were recrystallized, that is, the amorphous silicon in the impurity areas was recrystallized.
  • the present process is similar to that described in EXAMPLE 1 in the point that the laser annealing is conducted in two steps, however, the present process should be distinguished from the previous in that the laser annealing is effected by irradiating the beam from the back of the substrate to form a continuous junction between the impurity regions and the channel forming area.
  • the first laser annealing is conducted for the purpose of producing a film of high carrier mobility by effecting melting-recrystallization
  • the second laser annealing is conducted at a lower laser output to accelerate ordering in the microscopic level while avoiding melting of the film, and to thereby reduce the resistance in the impurity area.
  • the crystalline area (mainly the channel forming area) having established in the first laser annealing remain unaffected in the second laser annealing. Furthermore, as was described in EXAMPLE 2, a boundary having continuous crystallinity reduced in defects can be obtained between the source or drain area and the channel forming area.
  • Laser annealing by irradiation of an ultraviolet laser beam from the substrate surface is effective for the surface portion to which the ultraviolet laser beam is irradiated, and is not sufficiently effective for deeper portion, that is, there is a high possibility that a high mobility cannot be obtained in the deeper portion. Thereby production yield may be lowered.
  • Laser irradiation from the back of the substrate is not sufficiently effective for obtaining a high mobility in a portion of the activation layer in contact with the gate electrode.
  • laser annealing is carried out twice in this embodiment, that is, the first laser annealing is carried out by irradiating a laser beam to the amorphous silicon film from the surface side thereof and the second laser annealing is carried out by irradiating a laser beam to the film from the back of the substrate, to increase the production yield and to establish a continuous junction between the channel forming area and the impurity areas.
  • the laser-annealed structure was thermally annealed further in hydrogen atmosphere.
  • the substrate was placed in a chamber equipped with a vacuum-evacuating means.
  • the chamber was first evacuated to a vacuum of 10 ⁇ 6 Torr using a turbo molecular pump, and then heated to 100° C. to maintain this state for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, so that annealing of the substrate may be conducted then at 300° C. for 60 minutes.
  • the vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • the present invention provides thin film semiconductors of high mobility at an excellent reproducibility.
  • the description above was made mainly on the laser annealing of a semiconductor film having deposited on an insulator substrate made of quartz and the like, however, the present invention is not only limited thereto and can be applied to single crystal semiconductors such as single crystal silicon substrate which are used in, for example, monolithic integrated circuits (ICs).
  • the present invention can be applied to a germanium film, silicon-germanium alloy films, or films of various other intrinsic semiconductor materials as well as compound semiconductor materials.
  • laser annealing which is used as a means of increasing the mobility of an amorphous film, refers inclusively to means in which a high density optical energy is used, such as a flash lamp annealing.
  • a process using a high density optical energy for improving the crystallinity of a semiconductor material is within the scope of the present invention.

Abstract

A semiconductor material and a method for forming the same, said semiconductor material having produced by a process comprising melting a noncrystal semiconductor film containing therein carbon, nitrogen, and oxygen each at a concentration of 5×1019 atoms·cm−3 or lower, preferably 1×1019 atoms·cm−3 or lower, by irradiating a laser beam or a high intensity light equivalent to a laser beam to said noncrystal semiconductor film, and then recrystallizing the thus molten amorphous silicon film. The present invention provides thin film semiconductors having high mobility at an excellent reproducibility, said semiconductor materials being useful for fabricating thin film semiconductor devices such as thin film transistors improved in device characteristics.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a semiconductor material, e.g., containing silicon as the major component. More particularly, the present invention relates to a thin film transistor improved in properties and a process for fabricating the same. The semiconductor material according to the present invention enables fabrication of thin film semiconductor devices such as thin film transistors having excellent device characteristics. [0002]
  • 2. Description of the Prior Art [0003]
  • Non-crystalline semiconductor materials (the so-called amorphous semiconductors) and polycrystalline semiconductor materials have been heretofore used for the fabrication of thin film semiconductor devices such as thin film field effect transistors and the like. The term “amorphous materials” as referred herein signifies not only the materials having a strict structural disordering in the atomic level, but also includes those having a short range ordering for a distance of about several nanometers. More concretely, “amorphous materials” include silicon materials having an electron mobility of 10 cm[0004] 2/V s or lower and materials having a carrier mobility lowered to 1% or less of the intrinsic carrier mobility of the corresponding semiconductor material. Accordingly, materials consisting of fine crystal aggregates which are composed of fine crystals about 10 nm in size, i.e., the materials known as microcrystals (having a grain diameter of 50 to 500 Å as calculated according to shira equation in Raman shift) or semi-amorphous materials (having lattice distortion therein and a peak in Raman shift at less than 521 cm−1, and having a structure comprising amorphous structure and crystalline structure with undefined boundary), are collectively referred to hereinafter as amorphous materials.
  • The use of an amorphous semiconductor such as amorphous silicon (a-Si) and amorphous germanium (a-Ge) in the fabrication of a semiconductor device is advantageous in that the process can be conducted at a relatively low temperature of 400° C. or even lower. Thus, much attention is paid now to a process using an amorphous material, because such a process is regarded as a promising one for the fabrication of liquid crystal displays and the like, to which a high temperature process cannot be applied. [0005]
  • However, a pure amorphous semiconductor has an extremely low carrier mobility (electron mobility and hole mobility). Thus, pure amorphous semiconductors are rarely applied as they are, for example, to channel-forming areas of thin film transistors (TFTs); in general, the pure amorphous semiconductor materials are subjected to the irradiation of a high energy beam such as a laser beam or a light emitted from a Xenon lamp, so that they may be once molten to recrystallize and thereby modified into a crystalline semiconductor material having an improved carrier mobility. Such a treatment of high energy beam irradiation is referred hereinafter collectively as “laser annealing”. It should be noted, however, that the high energy beam not necessary be a laser beam, and included in the high intensity beam is, for example, a powerful light emitted from a flash lamp which has a similar effect on the semiconductor material as the laser beam irradiation. [0006]
  • Generally, however, the semiconductor materials heretofore obtained by laser annealing are still low in the carrier mobility as compared with those of single crystal semiconductor materials. In the case of a silicon film, for example, the highest reported electron mobility is 200 cm[0007] 2/V·s at best, which is a mere one seventh of the electron mobility of a single silicon, 1350 cm2/V·s. Moreover, the semiconductor characteristics (mainly mobility) of the semiconductor material thus obtained by the laser annealing process suffers poor reproducibility and also scattering of the mobility values over the single film. Those disadvantages lead to a low product yield of semiconductor devices having a plurality of elements fabricated on a single plane.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a thin film semiconductor material having a high mobility and a process for forming the same with excellent reproducibility. More specifically, an object of the present invention is to provide a process in which the problems of the conventional laser annealing process are overcome, and to provide, accordingly, a practically feasible thin film semiconductor material improved in characteristics.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph showing the relation between the center wavenumber of the Raman peak (Raman shift; taken in the abscissa) and the electron mobility (the ordinate) of a laser-annealed silicon film. The oxygen concentration of the film is found to be 2×10[0009] 21 cm−3;
  • FIG. 2 is a graph showing the relation between the center wavenumber of the Raman peak (Raman shift; taken in the abscissa) and the electron mobility (the ordinate) of laser-annealed silicon films with varying oxygen concentration; [0010]
  • FIG. 3 is a graph showing the relation between the ratio of the full band width at half maximum (FWHM) of the Raman peak for a laser-annealed silicon film to the FWHM of the Raman peak for a single crystal silicon (FWHM ratio; taken in the abscissa) and the electron mobility (the ordinate), for laser-annealed silicon films with varying oxygen concentration; [0011]
  • FIG. 4 is a graph showing the relation between the peak intensity ratio (Ia/Ic; taken in the abscissa) and the electron mobility (the ordinate) for laser-annealed silicon films with varying oxygen concentration, where Ia represents the Raman peak intensity (of the peak at a wavenumber of about 480 cm[0012] −1) for the amorphous component of the laser-annealed silicon film, and Ic represents the Raman peak intensity (at about 521 cm−1) for the single crystal silicon;
  • FIG. 5 is a graph showing a position-dependent change of FWHM of the Raman peak for channel-forming areas of field effect transistors, where, the abscissa is X/L with L representing the channel length, and the ordinate is FWHM; and [0013]
  • FIG. 6 shows a process for fabricating a field effect transistor.[0014]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Raman spectroscopy is an effective method for evaluating the crystallinity of a material, and it has been used with the purpose of quantitatively evaluating the crystallinity of a semiconductor film fabricated by a laser annealing process. During an extensive study on the laser annealing process conducted by the present inventors, it has been found that the center wavenumber, as well as the width, the height, etc., of the Raman peak of a laser-annealed semiconductor film is closely related to the properties of the semiconductor film. [0015]
  • For instance, the Raman peak at 521 cm[0016] −1 for a single crystal silicon was observed on a laser-annealed silicon film to be shifted to a shorter wavenumber (longer wavelength). It has been also found that the center wavenumber of this Raman peak is strongly correlated with the carrier mobility of the silicon film obtained by laser annealing.
  • Referring to FIG. 1, an example which illustrates the relation above is explained. FIG. 1 relates the center wavenumber of the Raman peak (abscissa) to the electron mobility (ordinate) of a laser-annealed silicon film. The electron mobility was obtained by measuring the capacitance-voltage (C-V) characteristics on a TFT having fabricated from the silicon film. From FIG. 1, it can be read that the electron mobilities for those having a Raman peak center of 515 cm[0017] −1 or higher behave quite differently from the mobilities of those having a Raman peak center below 515 cm −1. More specifically, it can be seen that the Raman peak center is more sensitive to the change in electron mobility in the peak center wavenumber region of 515 cm−1 or shorter; beyond this wavenumber, in contrast, a little shift of Raman peak to higher wavenumber side signifies a large increase in electron mobility.
  • This phenomena is clearly an evidence of the presence of two phases. According to the study of the present inventors, the phase observed with a Raman peak at 515 cm[0018] −1 or lower is assumed as a phase which has achieved atomic ordering in the solid phase without undergoing melting, whereas the phase having a Raman peak of 515 cm−1 or higher is assumably a phase having solidified from a liquid phase which has once experienced melting by laser annealing.
  • The center wavenumber of the Raman peak was 521 cm[0019] −1 at maximum, and the highest observed electron mobility was about 200 cm2/V·s.
  • In the course of the study for improving the mobility, the present inventors then found that oxygen, nitrogen, and carbon atoms incorporated in the film greatly influence the mobility. In the laser-annealed silicon films investigated and which yielded the results shown in FIG. 1, the nitrogen and oxygen atoms were both incorporated in negligible amounts, however, the number of oxygen atoms present at the central portion of the film was about 2×10[0020] 21 atoms·cm−3. Then, the number of oxygen atoms in the film was decreased to see the influence of this decrease on the relation between the Raman peak center and the electron mobility.
  • The concentration of elements other than silicon, such as oxygen, nitrogen, and carbon, is referred hereinafter to the concentration of those elements at the central portion of the film. The concentration of the elements in the central region is taken into account because despite the extremely high concentration of those elements in the portion near the substrate or at the vicinity of the surface, the impurity elements in those portions are believed to have little influence in the carrier mobility which is to be considered in the present invention. In general, within a coating, the portion low in concentration of those foreign elements exists at the central portion of the film, and it is believed that the central portion of the film plays an important role in a semiconductor device such as a field effect transistor. Accordingly, “a concentration of a foreign element” referred simply herein signifies the concentration at the central portion of the film. [0021]
  • The influence of oxygen concentration on the relation between the electron mobility and the Raman peak center is illustrated in FIG. 2. Obviously, the electron mobility is significantly improved by reducing the oxygen concentration of the film. The same tendency was observed for both carbon and nitrogen. As a possible explanation for the results obtained above, the present inventors propose two mechanisms as follows. In the case of laser annealing a film containing oxygen at a high concentration, the portions low in oxygen atoms serve as crystal nuclei to effect crystal growth during the melting and crystallization of the film; the oxygen atoms incorporated into the film are driven to the periphery with the growth of the crystal, and are precipitated at the grain boundaries. Thus, the film as a whole which results from such a process is lowered in mobility due to the barriers created at the grain boundaries. Another possible explanation the present inventors propose is that the oxygen atoms or the areas rich in oxygen (in general, those areas are believed to have a higher melting temperature) function as crystal nuclei to effect crystal growth. Accordingly, the size of the individual crystals becomes smaller with increasing population of the oxygen atoms. This leads to a lower crystallinity because of the crystals having grown into smaller size, which in consequence give a lower mobility. [0022]
  • At any rate, decreasing the oxygen concentration in the film is effective for significantly increasing the electron mobility thereof by laser annealing. For example, an electron mobility as high as 1000 cm[0023] 2/V·s was obtained by controlling the oxygen concentration to 1×1019 atoms·cm−3. Similar results were obtained by lowering the concentrations of nitrogen and carbon atoms as well. Also, a similar tendency was observed on hole mobilities.
  • Furthermore, as in the case of FIG. 1, the curve relating the electron mobility to the Raman peak position shows typically a knickpoint (i.e., a bent) irrespective of the oxygen concentration. Referring to FIG. 2, the present inventors denoted the region at the right side (the side higher in wavenumber) of the broken lines as a melting and crystallizing region. This is because a film falling in this region is surmised that it has undergone melting and recrystallization upon laser annealing. A high mobility was obtained on films falling in this region. The semiconductor material in accordance with the present invention preferably has a Raman shift of 512 cm[0024] −1 or more and is preferably produced by laser annealing a semiconductor containing therein oxygen, nitrogen and carbon at a concentration of 5×1019 atoms·cm−3 or less respectively in the melting and crystallizing region.
  • Another similar tendency was observed by the present inventors on the relation between the full band width at half maximum (FWHM) and the electron mobility. The relation is shown in FIG. 3. The abscissa is the full band width at half maximum ratio (FWHM ratio), which is defined herein as a ratio of the FWHM of a Raman peak obtained on a laser-annealed film to that obtained on a single crystal silicon. A smaller FWHM ratio closer to unity represents a film having a structure similar to that of a single crystal silicon. Referring to FIG. 3, it can be seen that the FWHM ratio becomes closer to 1 with increasing electron mobility if films of equal oxygen concentration are compared. Also, as was the case above in the relation between the mobility and the Raman peak center, the electron mobility increased with lowering the oxygen concentration in the film; similar results were again obtained for nitrogen-and carbon atoms. That is, a higher electron mobility was obtained with decreasing concentration of foreign atoms. Similarly, the same tendency was observed for hole mobilities. In FIG. 3, the region at the left hand side of the broken lines shown in the FIGURE is again considered as the melting and crystallizing region. [0025]
  • Furthermore, the present inventors found that the electron mobility can be intimately correlated with the peak intensity of a peak assigned to the amorphous component within the film. FIG. 4 is a graph showing the relation between a ratio which the present inventors define as a peak intensity ratio (Ia/Ic; taken as the abscissa), and the electron mobility for laser-annealed silicon films with varying oxygen concentration, where Ia represents the Raman peak intensity (of the peak at a wavenumber of about 480 cm[0026] −1) for the amorphous component of the laser-annealed silicon film, and Ic represents the Raman peak intensity (at about 521 cm−1) for the single crystal silicon. The electron mobility increased with decreasing intensity ratio, provided that the oxygen concentration is the same. This signifies that the electron mobility is higher for films containing less amorphous components. Furthermore, the electron mobility increased with decreasing oxygen concentration of the film. A similar tendency was observed on the individual effect of nitrogen and carbon concentrations. The same tendency was observed for hole mobility. The present inventors denote again this region at the left hand side of the broken lines shown in FIG. 4 as the melting and crystallizing region.
  • In addition, the present inventors empirically obtained higher carrier mobility with increasing intensity of Raman peaks, and the Raman peak intensity was higher for films having lower concentrations of oxygen, nitrogen, and carbon. [0027]
  • Conclusively, from the foregoing description, a higher carrier mobility can be obtained by decreasing the amounts of oxygen, nitrogen, and carbon incorporated into the film. More specifically, the present inventors have found that, by reducing concentration of each of the foreign atoms to 5×10[0028] 19 atoms·cm−3 or lower, more preferably to 1×1019 atoms·cm−3 or lower, a high electron mobility can be obtained, said electron mobility being as high as 1000 cm2/V·s for a silicon film, for example. The present inventors found that by decreasing concentrations of the foreign atoms, this high electron mobility can be ameliorated further to a value near to the carrier mobility of a single crystal semiconductor, and also that the reproducibility of this high mobility can be improved. In addition, a hole mobility of from 300 to 500 cm2/V·s was obtained by a similar process.
  • In the present invention, the laser annealing is carried out in an atmosphere under atmospheric pressure or reduced pressure. [0029]
  • A laser beam or a light equivalent to the laser beam is irradiated to a noncrystal semiconductor containing therein carbon, nitrogen and oxygen at a concentration of 5×10[0030] 19 atoms·cm−3 or less, preferably 1×1019 atoms·cm−3 or less, respectively.
  • In practice, however, it is difficult to control the concentration of the foreign atoms to a value as low as 1×10[0031] 16 atoms·cm−3 and below, even if the laser annealing were to be carried out under an extremely high vacuum to a film containing the atoms at a very low concentration of 1×1016 atoms·cm−3 or lower. This is because the oxygen gas, nitrogen gas, water molecules, carbon dioxide gas, etc., which are present in the atmosphere in trace amounts are taken up in the film during the laser annealing. Otherwise, it is presumably due to the presence of a gas having adsorbed on the surface of the film, which is then trapped into the film during the laser annealing.
  • To circumvent the aforementioned difficulties, a particular fabrication process is requisite. One of such processes is to first cover the surface of an amorphous semiconductor containing the foreign atoms of oxygen, nitrogen, and carbon at an extremely low concentration of 10[0032] 15 atoms·cm−3 or lower with a protective film such as of silicon oxide, silicon nitride, and silicon carbide, and then laser annealing the film under a high vacuum at a pressure of 10−4 Torr or lower. Such a process enables a semiconductor film having very high mobility, with extremely low concentrations for oxygen, nitrogen, and carbon. For example, a silicon film having an electron mobility of 1000 cm2/V·s was obtained with each of the concentrations of carbon, nitrogen, and carbon being controlled to 1×1015 atoms·cm−3 or lower.
  • The protective films, such as of silicon oxide, silicon nitride, and silicon carbide, can be favorably deposited on the surface of an amorphous semiconductor film by continuously depositing the amorphous film and the protective film in a same chamber. More specifically, a preferred process comprises, for example, depositing an amorphous semiconductor film in a chamber equipped with a single vacuum apparatus, using a chemical vapor deposition (CVD) process or a sputtering process, and then, in the same chamber, continuously depositing the protective film while maintaining the same previous atmosphere or by once evacuating the chamber to an extreme vacuum and then controlling the atmosphere to a one pertinent for the film deposition. However, to further improve the yield, the reproducibility, and the reliability of the products, it is preferred that independent chambers are provided so that the films are deposited separately therein, and that the amorphous film once deposited in a particular chamber is transferred to another chamber while maintaining the high vacuum. The selection of a particular film deposition process depends on the plant and equipment investment. At any rate, the important points to be assured are to sufficiently reduce the amount of-oxygen, nitrogen, and carbon in the film and to avoid adsorption of gases on the surface of the amorphous semiconductor and at the boundary between said semiconductor and the protective film provided thereon. Even if an amorphous semiconductor film of high purity and a silicon nitride protective film thereon were to be formed, the carrier mobility would be impaired if the amorphous film were to be once exposed to the atmosphere. In general, such an amorphous film would yield a low carrier mobility even after laser annealing, and moreover, the probability to obtain a high mobility would be very low. This is believed due to the gas adsorbed on the surface of the amorphous semiconductor film which later diffuse into the film at the laser annealing process. [0033]
  • The protective film may be made from any material capable of transmitting a laser beam or a light equivalent to the laser beam, and usable are silicon oxide, silicon nitride, silicon carbide, and a material comprising a mixture thereof and represented by the chemical formula SiN[0034] xOyCz (where, 0≦×≦4/3; 0≦y≦2; 0≦z≦1; and 0≦3x+2y+4z≦4). Preferably, the thickness of the film is in the range of from 50 to 1000 nm.
  • In the foregoing description, it has been shown that a semiconductor film having a high carrier mobility can be obtained by reducing the concentrations of oxygen, nitrogen, and carbon of the amorphous semiconductor film and during the laser annealing process. The electron mobility and the hole mobility obtained therefrom are mere average values of the channel-forming area in the field effect transistors fabricated for the measurement purposes; thus, those values fail to give the individual mobilities at particular minute portions within the channel-forming area. However, as was described referring to FIGS. [0035] 1 to 4 according to the present invention, it has been elucidated that the carrier mobility can be univocally defined from the parameters such as the wavenumber of the Raman peak center, the FWHM of the Raman peak, and the intensity of the Raman peak attributed to the amorphous content in contrast to that of the whole Raman peak. Thus, by the information available from Raman spectroscopy, it is possible to semi-quantitatively obtain the mobility of a minute area to which a direct measurement cannot be applied.
  • FIG. 5 is a graph showing a position-dependent change of FWHM of the Raman peak for laser-annealed channel-forming areas of field effect transistors whose electron mobilities were found 22 cm[0036] 2/V·s, 201 cm2/V·s, and 980 cm2/V·s. Referring to FIG. 5, the abscissa is the position of the channel forming area, X/L, with L being the channel length of 100 μm, and X being the coordinate of the channel forming area. Thus, X/L=0 corresponds to the boundary between the channel-forming area and the source area, X/L=1 represents the boundary between the channel forming area and the drain area, and X/L=0.5 indicates the center of the channel-forming area.
  • It can be seen from FIG. 5 that the field effect transistor having an electron mobility of 22 cm[0037] 2/V·s has a large FWHM with little fluctuation. The data is in agreement with the previous observations of the present authors referring to FIG. 3, i.e., that the crystallinity approaches to that of a single crystal with decreasing FWHM, and that thereby the electron mobility is increased with reducing FWHM. These data show, in addition, that the positional variation in FWHM (dependence of FWHM on position) is low and hence a uniform crystallinity is obtained over the whole film. The film yielded an oxygen concentration of about 8×1020 atoms·cm−3, and it is assumed that it had not undergone melting during laser annealing.
  • The channel-forming area of a field effect transistor having an electron mobility of 201 cm[0038] 2/V·s also yielded an oxygen concentration of 8×1020 atoms·cm−3. As shown in FIG. 5, the FWHM is lowered over the whole area, and is largely dependent on the position. Moreover, some points yielded FWHM values comparable to, or even lower than those of the channel-forming area having an electron mobility of 980 cm2/V·s. A low FWHM is suggestive of a high electron mobility at that point, and that a localized portion having a high crystallinity equal to that of a single crystal silicon is present. From the viewpoint of mass-production of devices, such a material having large local fluctuations is not favorable despite a high mobility.
  • The channel-forming area of a field effect transistor having an electron mobility of 980 cm[0039] 2/V·s yielded an oxygen concentration of about 1×1019 atoms·cm−3, which was considerably lower than those of two above. From FIG. 5 it can be seen that the FWHM is generally low and has less positional dependence. The graph indicates that the material has a high electron mobility as a whole, and that it is composed of a material having a crystallinity well comparable to that of a single crystal silicon. Thus, such a material is suitable for mass production to be used in devices.
  • To achieve a high carrier mobility, not only the concentration of the foreign atoms should be lowered, but also the conditions for the laser annealing must be optimized. The conditions for the laser annealing vary depending on the operating conditions of the laser (such as whether the laser is operated in a continuous mode or in a pulsed mode, the repetition cycle, beam intensity, and wavelength), and the coating. The lasers to be used in the process is selected from ultraviolet (UV)-emitting lasers such as the various types of excimer lasers, and lasers emitting light in the visible and infrared (IR) regions, such as a YAG laser. A suitable laser should be selected depending on the thickness of the film to be laser-annealed. In silicon and germanium materials, the laser annealing is effected at relatively shallow portions on the surface when a UV-emitting laser is used, because the materials have a short absorption length for UV light. On the other hand, because those materials have a longer absorption length for a light in the visible and IR regions, such a beam penetrate deep into the material to effect laser annealing of the inner portions. Thus, it is possible to obtain a laser-annealed portion only at the vicinity of the film surface by properly selecting the thickness of the coating and the type of the laser. Anyway, a high carrier mobility can be obtained by optimally controlling the laser conditions such as wavelength and intensity, so that melting and recrystallization may occur on the film. To sufficiently effect melting of the film, the laser-irradiated portion should be maintained at a temperature not lower than the melting point of the semiconductor under process for a long duration. In the case of melting silicon, for example, it requires heating to 1400° C. or higher under the atmospheric pressure; in germanium, it should be heated to at least 1000° C. under the atmospheric pressure to effect the melting. However, in an extremely short period of, for example, 10 nsec as practiced in excimer lasers, a temperature as high as 2000° C. or even higher is achieved instantaneously and spectroscopically observed. Such a high temperature does not always cause melting of the film. Thus, a definition of a temperature in this case does not make sense. [0040]
  • In addition, a further annealing of a laser-annealed semiconductor film in hydrogen gas atmosphere in the temperature range of from 200 to 600° C. for a duration of from 10 minutes to 6 hours was effective to obtain a high carrier mobility at an improved reproducibility. This is presumably due to the formation of many dangling bonds at the interatomic bonding sites within the semiconductor during the laser annealing, which is effected simultaneously with the crystallization. Such dangling bonds then function as barriers to the carriers. If a considerable amount of oxygen, nitrogen, and carbon atoms were to be incorporated in the semiconductor, those foreign atoms may enter into the interstices of such dangling bonds; however, when the concentrations of oxygen, nitrogen, and carbon are extremely low as in the present case, the dangling bonds remain as they are and therefore require a further annealing in hydrogen atmosphere after the laser annealing. [0041]
  • The present invention is described in further detail below referring to non-limiting examples. [0042]
  • EXAMPLE 1
  • A planar TFT was fabricated and the electric characteristics thereof were evaluated. Referring to FIG. 6, the process for the fabrication thereof is described. First, an amorphous silicon film (an activation layer of the TFT) was deposited on a [0043] quartz substrate 601 at a thickness of about 100 nm by a conventional RF sputtering process, at a substrate temperature of 150° C. under an atmosphere consisting substantially of 100% argon at a pressure of 0.5 Pa. A 99.99% or higher purity argon gas was used alone, without adding other gases such as hydrogen. The sputtering was conducted at a power input of 200 W and an RF frequency of 13.56 MHz. The resulting film was etched into a 100 μ×500 μm rectangle to obtain a desired amorphous silicon film 602.
  • The film was confirmed by secondary ion mass spectroscopy (SIMS) to contain each of oxygen, nitrogen, and carbon at a concentration of 10[0044] 19 atoms·cm−3 or less.
  • The film was then placed in a vacuum vessel controlled to a vacuum of 10[0045] −5 Torr for laser annealing. A KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 200 mJ, and a pulse repetition of 50 shots, to effect laser annealing by irradiating a laser beam at a wavelength of 248 nm to the film.
  • A [0046] gate dielectric 603 was then deposited by sputtering on the surface of the thus obtained laser-annealed silicon film in an oxygen atmosphere, at a thickness of about 100 nm. The film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.5 MHz) power input of 400 W. The atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added. The oxygen gas was of 99.9% or higher purity, and the pressure thereof was 0.5 Pa.
  • Then, a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a 100 μm [0047] wide gate 604. At this point, a photoresist 605 used in the dry etching process was left unremoved on the gate.
  • Boron ions were then doped to the whole structure other than the gate by ion implantation at a dopant concentration of 10[0048] 14 cm−2. In this case, the gate and the photoresist thereon were utilized as masks to avoid doping of boron ions to the portion under the gate. Thus were obtained impurity areas, i.e., a source area 606 and a drain area 607. The resulting structure is given in FIG. 6(B).
  • The resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10[0049] −5 Torr for laser annealing. A KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, to effect the film annealing by irradiating a beam at a wavelength of 248 nm. The impurity areas which were made amorphous by the ion doping were thus recrystallized.
  • The laser-annealed structure was thermally annealed further in hydrogen atmosphere. The substrate was placed in a chamber equipped with a vacuum-evacuating means. The chamber was first evacuated to a vacuum of 10[0050] −6 Torr using a turbo molecular pump, and this state was maintained for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, to anneal the substrate at 300° C. for 60 minutes. The vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • Finally, a 100 nm thick silicon oxide film provided on the top of the source and the drain areas was perforated to form thereon [0051] aluminum contacts 608 and 609. Thus was a complete field effect transistor obtained. A channel is located in the activation layer under the gate electrode between the source and the drain areas in the field effect transistor and comprises the intrinsic or substantially intrinsic semiconductor crystallized by the KrF excimer laser.
  • The measurement of C-V characteristics on this field effect transistor yielded an electron mobility of 980 cm[0052] 2/V·s for the channel forming area. The threshold voltage was 4.9 V. The concentrations of oxygen, nitrogen, and carbon of this field effect transistor were each found by SIMS to be 1×1019 atoms·cm−3 or lower.
  • EXAMPLE 2
  • A planar TFT was fabricated and the electric characteristics thereof were evaluated. First, an amorphous silicon film containing phosphorus at a concentration of 3×10[0053] 17 atoms·cm−3 was deposited on a quartz substrate at a thickness of about 100 nm by a conventional RF sputtering process. The amorphous silicon film having deposited at this thickness can be wholly annealed by a KrF laser beam at a wavelength of 248 nm. The RF sputtering was performed at a substrate temperature of 150° C. under an atmosphere consisting substantially of 100% argon at a pressure of 0.5 Pa. A 99.99% or higher purity argon gas was used alone, without adding other gases such as hydrogen. The sputtering was conducted at a power input of 200 W and an RF frequency of 13.56 MHz. The resulting film was etched into a 100 μm×500 μm rectangle to obtain the desired amorphous silicon film.
  • The film was confirmed by secondary ion mass spectroscopy (SIMS) to contain each of oxygen, nitrogen, and carbon at a concentration of 10[0054] 19 atoms·cm−3 or less.
  • A gate dielectric was then deposited by sputtering on the surface of the thus obtained silicon film in an oxygen atmosphere, at a thickness of about 100 nm. The film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.56 MHz) power input of 400 W. The atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added. The oxygen gas was of 99.9% or higher purity, and the pressure thereof was 0.5 Pa. [0055]
  • Then, a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a gate at a width of 100 μm. At this point, a photoresist used in the dry etching process was left on the gate. [0056]
  • Boron ions were then doped to the whole structure except for the gate by ion implantation at a dopant concentration of 10[0057] 14 cm−2. In this case, the gate and the photoresist thereon were utilized as masks to avoid doping of boron ions to the portion under the gate. Thus were obtained impurity areas, i.e., a source area and a drain area, in the silicon film.
  • The resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10[0058] −5 Torr for laser annealing. A KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, to anneal the film by irradiating a beam at a wavelength of 248 nm from the back of the substrate. Thus was the amorphous silicon film recrystallized. In this process, the crystallization of the source or the drain area can be effected simultaneously with the crystallization of the channel forming area. The instant process is therefore advantageous in that a favorable boundary with a continuous crystallinity can be obtained with less defects, as compared with the process of EXAMPLE 1 in which many defects were found to generate in the boundary between the source or drain area and the channel forming area.
  • The laser-annealed structure was thermally annealed further in hydrogen atmosphere. The substrate was placed in a chamber equipped with a vacuum-evacuating means. The chamber was first evacuated to a vacuum of 10[0059] −6 Torr using a turbo molecular pump, and then heated to 100° C. to maintain this state for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, so that annealing of the substrate may be conducted then at 300° C. for 60 minutes. The vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • Finally, a 100 nm thick silicon oxide film provided on the top of the source and the drain areas was perforated to form thereon aluminum contacts. Thus was the structure completed into a field effect transistor. [0060]
  • The measurement of C-V characteristics on this field effect transistor yielded an electron mobility of 990 cm[0061] 2/V·s for the channel forming area. The threshold voltage was 3.9 V. The present field effect transistor yielded an improved (lower) threshold voltage as compared with that of the field effect transistor fabricated in EXAMPLE 1. This is assumed attributable to the simultaneous laser annealing of the impurity areas and the channel forming area, which might have crystallized uniformly at the same time by irradiating the laser beam from the back. Furthermore, the drain current ratio at the ON/OFF of the gate voltage was found to be 5×106.
  • The concentrations of oxygen, nitrogen, and carbon of this field effect transistor were each found by SIMS to be 1×10[0062] 19 atoms·cm−3 or lower. The Raman spectroscopy of the channel forming area resolved a Raman peak at a center wavenumber of 520 cm−1, having a FWHM of 4.5 cm−1. The presence of a once melted and recrystallized silicon was evidenced by those results.
  • EXAMPLE 3
  • A planar TFT was fabricated and the electric characteristics thereof were evaluated. First, about 100 nm thick amorphous silicon film and a 10 nm thick silicon nitride coating thereon were continuously deposited on a quartz substrate having coated with a 10 nm thick silicon nitride coating by using a film-deposition apparatus having two chambers. The amorphous silicon film was deposited by a conventional sputtering method, and the silicon nitride film was deposited by a glow-discharge plasma chemical vapor deposition (CVD). [0063]
  • The substrate was set in a first pre-chamber which was heated to 200° C. and evacuated to a pressure of 10[0064] −6 Torr or lower for 1 hour. Separately, an air-tight first chamber, which is constantly controlled to a pressure of 10−4 Torr or lower except for the case of film deposition, was evacuated to 10−6 Torr. The substrate was transferred from the first pre-chamber to the first chamber and set therein, at which point the chamber was evacuated to 10−6 Torr or lower while maintaining the substrate and the target to a temperature of 200° C. for a duration of 1 hour. Then, argon gas was introduced into the chamber to generate an RF plasma to conduct film deposition by sputtering. A 99.9999% or higher purity silicon target containing 1 ppm of phosphorus was used for the target. The film deposition was conducted with the substrate temperature being maintained at 150° C., in an atmosphere consisting substantially of 100% argon gas at a pressure of 5×10−2 Torr. No gases other than argon, such as hydrogen, was added intentionally. The argon gas used herein was of 99.9999% or higher purity. The sputtering was operated at an input power of 200 W and an RF frequency of 13.56 MHz.
  • Upon completion of the film deposition, the RF discharge was cut off, and while evacuating the first chamber to a vacuum of 10[0065] −6 Torr, an air-tight second pre-chamber, which is provided between the first and second chambers and is constantly maintained to a pressure of 10−5 Torr or lower, was vacuumevacuated to 10−6 Torr, so that the substrate may be transferred therein from the first chamber. Then, an air-tight second chamber, which is always maintained at a pressure of 10−4 Torr or lower except for the case of carrying out a film deposition, was evacuated to 10−6 Torr to set therein the substrate having transferred from the second pre-chamber. The substrate was kept at 200° C. in the second chamber, while the chamber was evacuated to maintain the substrate under a pressure of 10−6 Torr or lower for 1 hour.
  • Then, a gas mixture diluted with hydrogen and comprising a 99.9999% or higher purity ammonia gas and disilane (Si[0066] 2H6) gas at a ratio of 3:2 was introduced in the second chamber to control the overall pressure to 10−1 Torr. An RF current was applied to the chamber to generate a plasma therein, so that a silicon nitride film might be deposited on the substrate. The power input was 200 W, at a frequency of 13.56 MHz.
  • After completion of the film deposition, the RF discharge was cut off. While evacuating the second chamber to 10[0067] −6 Torr, a third pre-chamber, which is provided at one side of the second chamber and having a quartz window, was vacuum evacuated to 10−6 Torr, at which point the substrate was transferred from the second chamber to the third pre-chamber. Then, a KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 100 mJ, and a pulse repetition of 50 shots, so that a laser beam at a wavelength of 248 nm was irradiated to the film to effect the laser annealing. Thus was the amorphous silicon film crystallized.
  • The process described in the foregoing was particularly effective for improving the product yield. By thus conducting continuously the laser annealing from the point of film deposition without substantially disturbing the vacuum state, a high product yield can be achieved irrespective of the presence of a protective film on the amorphous film. Accordingly, the process is effective on the FETs described in EXAMPLES 1 and 2 as well, in which no protective films are provided. Assumably, the films are maintained free from adhesion of dusts, etc., from adsorption of water and gases, and from scratches and other defects. [0068]
  • The process of continuously conducting the film deposition and the annealing thereof as described above, may be carried out in two ways. One is establishing a film-deposition chamber and separately a pre-chamber as described in the foregoing, and providing a window in the pre-chamber to effect the laser annealing through this window. The other process is similar to the first, except that the window is provided to the film-deposition chamber so that the laser annealing may be effected subsequently to the film deposition. The latter process, however, requires etching of the window to remove the coating having adhered during the film-deposition process, since the coating adhesions make the window translucent. Accordingly, the former process is favorable from the viewpoint of its applicability to mass production and the maintenance costs. [0069]
  • After the laser annealing is finished in the third pre-chamber, a dry nitrogen gas is introduced into the third pre-chamber to recover the atmospheric pressure. The substrate was then taken out from the third pre-chamber, and the silicon nitride film having deposited thereon was removed by a known dry etching process. The resulting silicon film was etched into a 100 μm×500 μm rectangular shape. [0070]
  • The concentrations of oxygen, nitrogen, and carbon of this field effect transistor were each 1×10[0071] 16 atoms·cm−3 or lower, which were each confirmed by SIMS performed on a separate film fabricated by the same process.
  • A gate dielectric was then deposited on the surface of the thus obtained laser-annealed silicon film in an oxygen atmosphere by sputtering, at a thickness of about 100 nm. The film-deposition was conducted at a substrate temperature of 150° C. and at an RF (13.56 MHz) power input of 400 W. A 99.9999% or higher purity silicon oxide was used as the target for sputtering. The atmosphere was controlled to be substantially oxygen, and no other gas was intentionally added. The oxygen gas was of 99.999% or higher purity, and the pressure thereof was 5×10[0072] −2 Torr.
  • Then, a 200 nm thick aluminum film was deposited by a known vacuum deposition process, and was further subjected to a conventional dry etching process to remove the unnecessary portions to obtain a gate at a width of 100 μm. At this point, a photoresist used in the dry etching process was left on the gate. [0073]
  • Boron ions were then doped to the whole structure except for the gate by ion implantation at a dopant concentration of 10[0074] 14 cm−2. In this case, the gate and the photoresist thereon were utilized as masks to avoid doping of boron ions to the portion under the gate. Thus were obtained impurity areas, i.e., a source area and a drain area, in the silicon film.
  • The resulting structure was then placed in a vacuum vessel controlled to a vacuum of 10[0075] −5 Torr for laser annealing. A KrF excimer laser was operated at a pulse duration of 10 nsec, an irradiation energy of 50 mJ, and a pulse repetition of 50 shots, to anneal the film by irradiating a beam at a wavelength of 248 nm from the back of the substrate. Thus, the impurity areas which were made amorphous by the ion doping were recrystallized, that is, the amorphous silicon in the impurity areas was recrystallized.
  • The present process is similar to that described in EXAMPLE 1 in the point that the laser annealing is conducted in two steps, however, the present process should be distinguished from the previous in that the laser annealing is effected by irradiating the beam from the back of the substrate to form a continuous junction between the impurity regions and the channel forming area. In particular, the first laser annealing is conducted for the purpose of producing a film of high carrier mobility by effecting melting-recrystallization, whereas the second laser annealing is conducted at a lower laser output to accelerate ordering in the microscopic level while avoiding melting of the film, and to thereby reduce the resistance in the impurity area. Since the laser output is controlled to a lower level, the crystalline area (mainly the channel forming area) having established in the first laser annealing remain unaffected in the second laser annealing. Furthermore, as was described in EXAMPLE 2, a boundary having continuous crystallinity reduced in defects can be obtained between the source or drain area and the channel forming area. [0076]
  • Laser annealing by irradiation of an ultraviolet laser beam from the substrate surface is effective for the surface portion to which the ultraviolet laser beam is irradiated, and is not sufficiently effective for deeper portion, that is, there is a high possibility that a high mobility cannot be obtained in the deeper portion. Thereby production yield may be lowered. Laser irradiation from the back of the substrate is not sufficiently effective for obtaining a high mobility in a portion of the activation layer in contact with the gate electrode. Therefore, laser annealing is carried out twice in this embodiment, that is, the first laser annealing is carried out by irradiating a laser beam to the amorphous silicon film from the surface side thereof and the second laser annealing is carried out by irradiating a laser beam to the film from the back of the substrate, to increase the production yield and to establish a continuous junction between the channel forming area and the impurity areas. [0077]
  • The laser-annealed structure was thermally annealed further in hydrogen atmosphere. The substrate was placed in a chamber equipped with a vacuum-evacuating means. The chamber was first evacuated to a vacuum of 10[0078] −6 Torr using a turbo molecular pump, and then heated to 100° C. to maintain this state for 30 minutes. Then a 99.99% or higher purity hydrogen gas was introduced to the chamber until the pressure was recovered to 100 Torr, so that annealing of the substrate may be conducted then at 300° C. for 60 minutes. The vessel was once evacuated to remove the adhered gases, water, and the like from the film, because it had been known empirically that a high mobility with favorable reproducibility cannot be obtained for the films having thermally annealed with those impurities being adhered thereto.
  • Finally, a 100 nm thick silicon oxide film provided on the top of the source and the drain areas was perforated to form thereon aluminum contacts. Thus was the structure completed into a field effect transistor. [0079]
  • One hundred field effect transistors above were fabricated. The measurement of C-V characteristics on these field effect transistors yielded an average electron mobility of 995 cm[0080] 2/V·s for the channel forming area. The threshold voltage was 4.2 V in average. The drain current ratio at the ON/OFF of the gate voltage was found to be 8×106 in average. Each of the field effect transistors thus fabricated was checked whether it had favorable characteristics on electron mobility, threshold voltage, and drain current ratio. The standard values for the electron mobility, the threshold voltage, and the drain current ratio were set to 800 cm2/V·s, 5.0 V, and 1×106, respectively. Ninety-one out of 100 field effect transistors were found as being favorable.
  • The concentrations of oxygen, nitrogen, and carbon of these field effect transistors evaluated as favorable were each found by SIMS to be 1×10[0081] 16 atoms·cm−3 or lower.
  • As described in the foregoing, the present invention provides thin film semiconductors of high mobility at an excellent reproducibility. The description above was made mainly on the laser annealing of a semiconductor film having deposited on an insulator substrate made of quartz and the like, however, the present invention is not only limited thereto and can be applied to single crystal semiconductors such as single crystal silicon substrate which are used in, for example, monolithic integrated circuits (ICs). Furthermore, in addition to the silicon film which was described in great detail in the EXAMPLES, the present invention can be applied to a germanium film, silicon-germanium alloy films, or films of various other intrinsic semiconductor materials as well as compound semiconductor materials. As described hereinbefore, it should be further noted that the term “laser annealing” , which is used as a means of increasing the mobility of an amorphous film, refers inclusively to means in which a high density optical energy is used, such as a flash lamp annealing. Thus, it should be noted that a process using a high density optical energy for improving the crystallinity of a semiconductor material is within the scope of the present invention. [0082]
  • While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. [0083]

Claims (16)

What is claimed is:
1. A method for forming a semiconductor material comprising the steps of:
forming on a surface a film comprising a noncrystal semiconductor and containing therein carbon, nitrogen and oxygen at a concentration of 5×1019 atoms·cm−3 or less respectively; and
melting said noncrystal semiconductor by irradiating said film with a laser beam or a light equivalent to the laser beam to crystallize the noncrystal semiconductor into a crystallized semiconductor having a peak of intensity of scattered light at a Raman shift of 512 cm−1 or more in Raman spectroscopy thereof.
2. The method of claim 1 for forming a semiconductor material wherein said light comprises a plurality of laser pulses.
3. The method of claim 1 further comprising the step of subjecting the film to thermal treatment in an atmosphere comprising hydrogen after said melting step.
4. The method of claim 1 wherein said light comprises an excimer laser pulse.
5. The method of claim 1 wherein the irradiation is carried out by excimer laser or YAG laser.
6. A method for forming a semiconductor material comprising the steps of:
forming on a surface a film comprising a noncrystal semiconductor and containing therein carbon, nitrogen and oxygen at a concentration of 5×1019 atoms·cm−3 or less respectively;
forming a protective film comprising a material selected from the group consisting of silicon oxide, silicon nitride and silicon carbide on said film comprising a noncrystal semiconductor; and
melting said noncrystal semiconductor by irradiating said film comprising a noncrystal semiconductor with a laser beam or a light equivalent to the laser beam through said protective film to crystallize the noncrystal semiconductor into a crystallized semiconductor having a peak of intensity of scattered light at a Raman shift of 512 cm−1 or more in Raman spectroscopy thereof.
7. The method of claim 6 for forming a semiconductor material wherein said light comprises a plurality of laser pulses.
8. The method of claim 6 wherein said protective film transmits said laser beam or said light.
9. The method of claim 8 wherein said protective film comprises a material expressed by a formula SiNxOyCz where 0≦x<4/3, 0≦y≦2, 0≦z≦1, and 0<3x+2y+4z≦4.
10. The method of claim 6 wherein said light comprises an excimer laser pulse.
11. The method of claim 6 wherein the irradiation is carried out by excimer laser or YAG laser.
12. The method of claim 11 further comprising the step of subjecting said film comprising a noncrystal semiconductor to thermal treatment in an atmosphere comprising hydrogen after said melting step.
13. A method for forming a semiconductor material comprising the steps of:
forming on a surface a film comprising a noncrystal semiconductor and containing therein carbon, nitrogen and oxygen at a concentration of 5×1019 atoms·cm−3 or less respectively;
irradiating said film with a first light in order to crystallize the noncrystal semiconductor into a crystallized semiconductor having a peak of intensity of scattered light at a Raman shift 512 cm−1 or more in Raman spectroscopy thereof;
irradiating said film with a second light after the irradiation of said first light in order to increase the crystallinity thereof.
14. The method of claim 13 for forming a semiconductor material wherein said light comprises a plurality of laser pulses.
15. A method for forming a semiconductor material comprising the steps of:
forming on a surface a film comprising a noncrystal semiconductor and containing therein carbon, nitrogen and oxygen at a concentration of 5×1019 atoms·cm−3 or less respectively;
forming a protective film comprising a material selected from the group consisting of silicon oxide, silicon nitride and silicon carbide on said film comprising a noncrystal semiconductor;
irradiating said film with a first light in order to crystallize the noncrystal semiconductor into a crystallized semiconductor having a peak of intensity of scattered light at a Raman shift 512 cm−1 or more in Raman spectroscopy thereof;
irradiating said film with a second light after the irradiation of said first light in order to increase the crystallinity thereof.
16. The method of claim 15 for forming a semiconductor material wherein said light comprises a plurality of laser pulses.
US09/038,926 1986-08-01 1998-03-09 Method for crystallizing semiconductor material without exposing it to air Expired - Fee Related US6423586B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/038,926 US6423586B1 (en) 1986-08-01 1998-03-09 Method for crystallizing semiconductor material without exposing it to air
US09/978,696 US6881615B2 (en) 1988-09-28 2001-10-18 Method for crystallizing semiconductor material without exposing it to air
US11/105,404 US7435635B2 (en) 1988-09-28 2005-04-14 Method for crystallizing semiconductor material

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US89179186A 1986-08-01 1986-08-01
US07/251,940 US4986213A (en) 1985-08-02 1988-09-28 Semiconductor manufacturing device
US07/520,998 US5171710A (en) 1985-08-02 1990-05-09 Method for photo annealing non-single crystalline semiconductor films
JP3080799A JPH05299339A (en) 1991-03-18 1991-03-18 Semiconductor material and its manufacture
JP3-80799 1991-03-18
US85251792A 1992-03-17 1992-03-17
US07/933,718 US5296405A (en) 1985-08-02 1992-08-24 Method for photo annealing non-single crystalline semiconductor films
US08/183,800 US5962869A (en) 1988-09-28 1994-01-21 Semiconductor material and method for forming the same and thin film transistor
US08/396,780 US5753542A (en) 1985-08-02 1995-03-01 Method for crystallizing semiconductor material without exposing it to air
US09/038,926 US6423586B1 (en) 1986-08-01 1998-03-09 Method for crystallizing semiconductor material without exposing it to air

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/396,780 Division US5753542A (en) 1985-08-02 1995-03-01 Method for crystallizing semiconductor material without exposing it to air

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/978,696 Division US6881615B2 (en) 1988-09-28 2001-10-18 Method for crystallizing semiconductor material without exposing it to air

Publications (2)

Publication Number Publication Date
US20020048891A1 true US20020048891A1 (en) 2002-04-25
US6423586B1 US6423586B1 (en) 2002-07-23

Family

ID=27524884

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/396,780 Expired - Lifetime US5753542A (en) 1985-08-02 1995-03-01 Method for crystallizing semiconductor material without exposing it to air
US09/038,926 Expired - Fee Related US6423586B1 (en) 1986-08-01 1998-03-09 Method for crystallizing semiconductor material without exposing it to air
US09/978,696 Expired - Fee Related US6881615B2 (en) 1988-09-28 2001-10-18 Method for crystallizing semiconductor material without exposing it to air
US11/105,404 Expired - Fee Related US7435635B2 (en) 1988-09-28 2005-04-14 Method for crystallizing semiconductor material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/396,780 Expired - Lifetime US5753542A (en) 1985-08-02 1995-03-01 Method for crystallizing semiconductor material without exposing it to air

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09/978,696 Expired - Fee Related US6881615B2 (en) 1988-09-28 2001-10-18 Method for crystallizing semiconductor material without exposing it to air
US11/105,404 Expired - Fee Related US7435635B2 (en) 1988-09-28 2005-04-14 Method for crystallizing semiconductor material

Country Status (1)

Country Link
US (4) US5753542A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030094625A1 (en) * 1996-01-19 2003-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US20030098458A1 (en) * 1996-01-19 2003-05-29 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and its manufacturing method
US20040005742A1 (en) * 1994-06-02 2004-01-08 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US20040108503A1 (en) * 1996-01-19 2004-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US20050056843A1 (en) * 1996-01-19 2005-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20060099780A1 (en) * 1996-01-26 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device
US20090075460A1 (en) * 1994-06-02 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US7709837B2 (en) 1996-01-19 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and its manufacturing method

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753542A (en) 1985-08-02 1998-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for crystallizing semiconductor material without exposing it to air
TW237562B (en) 1990-11-09 1995-01-01 Semiconductor Energy Res Co Ltd
US6979840B1 (en) * 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US6709907B1 (en) 1992-02-25 2004-03-23 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US6323071B1 (en) * 1992-12-04 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for forming a semiconductor device
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
US5488000A (en) * 1993-06-22 1996-01-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor using a nickel silicide layer to promote crystallization of the amorphous silicon layer
US6713330B1 (en) * 1993-06-22 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a thin film transistor
US5663077A (en) 1993-07-27 1997-09-02 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor in which the gate insulator comprises two oxide films
US6777763B1 (en) * 1993-10-01 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
JP3030368B2 (en) 1993-10-01 2000-04-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
CN1052566C (en) 1993-11-05 2000-05-17 株式会社半导体能源研究所 Method for processing semiconductor device, apparatus for processing a semiconductor and apparatus for processing semiconductor device
TW299897U (en) 1993-11-05 1997-03-01 Semiconductor Energy Lab A semiconductor integrated circuit
US6897100B2 (en) 1993-11-05 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
US7056381B1 (en) * 1996-01-26 2006-06-06 Semiconductor Energy Laboratory Co., Ltd. Fabrication method of semiconductor device
JP3472024B2 (en) 1996-02-26 2003-12-02 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US5913113A (en) * 1997-02-24 1999-06-15 Lg Electronics Inc. Method for fabricating a thin film transistor of a liquid crystal display device
US6329270B1 (en) 1997-03-07 2001-12-11 Sharp Laboratories Of America, Inc. Laser annealed microcrystalline film and method for same
US6169013B1 (en) 1997-03-07 2001-01-02 Sharp Laboratories Of America, Inc. Method of optimizing crystal grain size in polycrystalline silicon films
US7153729B1 (en) 1998-07-15 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US7084016B1 (en) 1998-07-17 2006-08-01 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor thin film, method of fabricating the same, semiconductor device, and method of fabricating the same
US6326219B2 (en) 1999-04-05 2001-12-04 Ultratech Stepper, Inc. Methods for determining wavelength and pulse length of radiant energy used for annealing
US7245018B1 (en) * 1999-06-22 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Wiring material, semiconductor device provided with a wiring using the wiring material and method of manufacturing thereof
US6863733B1 (en) 1999-07-15 2005-03-08 Nec Corporation Apparatus for fabricating thin-film semiconductor device
JP3393469B2 (en) * 1999-07-15 2003-04-07 日本電気株式会社 Thin film semiconductor device manufacturing method and thin film semiconductor forming apparatus
US6743680B1 (en) * 2000-06-22 2004-06-01 Advanced Micro Devices, Inc. Process for manufacturing transistors having silicon/germanium channel regions
TWI313059B (en) * 2000-12-08 2009-08-01 Sony Corporatio
US6787424B1 (en) 2001-02-09 2004-09-07 Advanced Micro Devices, Inc. Fully depleted SOI transistor with elevated source and drain
US6551885B1 (en) 2001-02-09 2003-04-22 Advanced Micro Devices, Inc. Low temperature process for a thin film transistor
US6495437B1 (en) 2001-02-09 2002-12-17 Advanced Micro Devices, Inc. Low temperature process to locally form high-k gate dielectrics
US6524920B1 (en) * 2001-02-09 2003-02-25 Advanced Micro Devices, Inc. Low temperature process for a transistor with elevated source and drain
US6756277B1 (en) 2001-02-09 2004-06-29 Advanced Micro Devices, Inc. Replacement gate process for transistors having elevated source and drain regions
GB0222450D0 (en) * 2002-09-27 2002-11-06 Koninkl Philips Electronics Nv Method of manufacturing an electronic device comprising a thin film transistor
US20040231590A1 (en) * 2003-05-19 2004-11-25 Ovshinsky Stanford R. Deposition apparatus for the formation of polycrystalline materials on mobile substrates
US7112499B2 (en) * 2004-01-16 2006-09-26 Chartered Semiconductor Manufacturing Ltd. Dual step source/drain extension junction anneal to reduce the junction depth: multiple-pulse low energy laser anneal coupled with rapid thermal anneal
US7312125B1 (en) 2004-02-05 2007-12-25 Advanced Micro Devices, Inc. Fully depleted strained semiconductor on insulator transistor and method of making the same
JP4342429B2 (en) * 2004-02-09 2009-10-14 株式会社東芝 Manufacturing method of semiconductor device
KR101026808B1 (en) * 2004-04-30 2011-04-04 삼성전자주식회사 Manufacturing method for thin film transistor array panel
JP2005347694A (en) * 2004-06-07 2005-12-15 Sharp Corp Method and device for manufacturing semiconductor thin film
US7132355B2 (en) * 2004-09-01 2006-11-07 Micron Technology, Inc. Method of forming a layer comprising epitaxial silicon and a field effect transistor
US8673706B2 (en) * 2004-09-01 2014-03-18 Micron Technology, Inc. Methods of forming layers comprising epitaxial silicon
US7764549B2 (en) * 2005-06-20 2010-07-27 Sandisk 3D Llc Floating body memory cell system and method of manufacture
WO2007046290A1 (en) * 2005-10-18 2007-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20070212859A1 (en) * 2006-03-08 2007-09-13 Paul Carey Method of thermal processing structures formed on a substrate
US8278739B2 (en) * 2006-03-20 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Crystalline semiconductor film, semiconductor device, and method for manufacturing thereof
KR100775963B1 (en) * 2006-07-12 2007-11-15 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US8034724B2 (en) 2006-07-21 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI438823B (en) * 2006-08-31 2014-05-21 Semiconductor Energy Lab Method for manufacturing crystalline semiconductor film and semiconductor device
US7662703B2 (en) * 2006-08-31 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing crystalline semiconductor film and semiconductor device
US8338278B2 (en) * 2006-12-04 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device with crystallized semiconductor film
US7972943B2 (en) * 2007-03-02 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8695655B2 (en) 2007-10-15 2014-04-15 The Goodyear Tire & Rubber Company Tire tread with tread wear indicator
JP5552276B2 (en) * 2008-08-01 2014-07-16 株式会社半導体エネルギー研究所 Method for manufacturing SOI substrate
TWI528418B (en) * 2009-11-30 2016-04-01 應用材料股份有限公司 Crystallization processing for semiconductor applications
US11444245B2 (en) * 2018-10-22 2022-09-13 The Board Of Trustees Of The University Of Alabama Rapid layer-specific photonic annealing of perovskite thin films

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753A (en) * 1848-09-05 Jonathan w
US3706915A (en) * 1970-03-09 1972-12-19 Gen Electric Semiconductor device with low impedance bond
DE2508802A1 (en) 1975-02-28 1976-09-09 Siemens Ag METHOD OF DEPOSITING ELEMENTAL SILICON
FR2394173A1 (en) * 1977-06-06 1979-01-05 Thomson Csf METHOD OF MANUFACTURING ELECTRONIC DEVICES WHICH INCLUDE A THIN LAYER OF AMORPHIC SILICON AND AN ELECTRONIC DEVICE OBTAINED BY SUCH A PROCESS
US4226898A (en) * 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
GB2054264B (en) * 1979-06-22 1983-11-02 France Etat Service Postale Deposition and etching process for making semi-conductor components
JPS5662328A (en) * 1979-10-26 1981-05-28 Agency Of Ind Science & Technol Manufacturing of insulation membrane and insulation membrane-semiconductor interface
NL8006339A (en) * 1979-11-21 1981-06-16 Hitachi Ltd SEMICONDUCTOR DEVICE AND METHOD FOR THE MANUFACTURE THEREOF.
US4266986A (en) 1979-11-29 1981-05-12 Bell Telephone Laboratories, Incorporated Passivation of defects in laser annealed semiconductors
JPS56100412A (en) * 1979-12-17 1981-08-12 Sony Corp Manufacture of semiconductor device
JPS56108231A (en) * 1980-02-01 1981-08-27 Ushio Inc Annealing method of semiconductor wafer
US5091334A (en) * 1980-03-03 1992-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPS56146142A (en) 1980-04-16 1981-11-13 Hitachi Ltd Electrophotographic sensitive film
US4322253A (en) * 1980-04-30 1982-03-30 Rca Corporation Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment
US4313783A (en) * 1980-05-19 1982-02-02 Branson International Plasma Corporation Computer controlled system for processing semiconductor wafers
JPS56165371A (en) 1980-05-26 1981-12-18 Shunpei Yamazaki Semiconductor device
JPS5710267A (en) * 1980-06-23 1982-01-19 Fujitsu Ltd Semiconductor device
US4803528A (en) * 1980-07-28 1989-02-07 General Electric Company Insulating film having electrically conducting portions
JPS5727263A (en) 1980-07-28 1982-02-13 Hitachi Ltd Electrophotographic photosensitive film
US4405435A (en) * 1980-08-27 1983-09-20 Hitachi, Ltd. Apparatus for performing continuous treatment in vacuum
US4330363A (en) 1980-08-28 1982-05-18 Xerox Corporation Thermal gradient control for enhanced laser induced crystallization of predefined semiconductor areas
JPS5745921A (en) * 1980-09-02 1982-03-16 Fujitsu Ltd Forming method for semiconductor single crystal layer formed with laser irradiation
US4370510A (en) * 1980-09-26 1983-01-25 California Institute Of Technology Gallium arsenide single crystal solar cell structure and method of making
US4335161A (en) * 1980-11-03 1982-06-15 Xerox Corporation Thin film transistors, thin film transistor arrays, and a process for preparing the same
FR2498813A1 (en) * 1981-01-27 1982-07-30 Instruments Sa EQUIPMENT TREATMENT FACILITY FOR SEMICONDUCTOR PRODUCTION
US4371738A (en) 1981-05-04 1983-02-01 Rca Corporation Method of restoring degraded solar cells
US4402762A (en) * 1981-06-02 1983-09-06 John Puthenveetil K Method of making highly stable modified amorphous silicon and germanium films
JPS57210635A (en) 1981-06-19 1982-12-24 Tokyo Daigaku Manufacture of semiconductor device
NL188550C (en) * 1981-07-02 1992-07-16 Suwa Seikosha Kk METHOD FOR MANUFACTURING A SEMICONDUCTOR SUBSTRATE
JPS5821319A (en) * 1981-07-30 1983-02-08 Fujitsu Ltd Annealing by laser
JPS5861622A (en) * 1981-10-09 1983-04-12 Hitachi Ltd Manufacture of single crystal thin film
JPS5893223A (en) * 1981-11-30 1983-06-02 Toshiba Corp Preparation of semiconductor device
JPS58112324A (en) * 1981-12-25 1983-07-04 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0656887B2 (en) 1982-02-03 1994-07-27 株式会社日立製作所 Semiconductor device and manufacturing method thereof
US4557036A (en) * 1982-03-31 1985-12-10 Nippon Telegraph & Telephone Public Corp. Semiconductor device and process for manufacturing the same
JPS58194799A (en) 1982-05-07 1983-11-12 Hitachi Ltd Preparation of silicon single crystal
JPH0658966B2 (en) * 1982-05-17 1994-08-03 キヤノン株式会社 Semiconductor element
JPS58204527A (en) * 1982-05-24 1983-11-29 Semiconductor Energy Lab Co Ltd Semiconductor with fiber structure and manufacture thereof
JPS58212178A (en) * 1982-06-02 1983-12-09 Matsushita Electric Ind Co Ltd Thin film field effect transistor and manufacture thereof
JPS59115574A (en) 1982-12-23 1984-07-04 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric converter
US4591892A (en) 1982-08-24 1986-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor photoelectric conversion device
DE3331601A1 (en) 1982-09-02 1984-03-08 Canon K.K., Tokyo SEMICONDUCTOR DEVICE
US4582720A (en) * 1982-09-20 1986-04-15 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for forming non-single-crystal layer
JPS59124136A (en) * 1982-12-28 1984-07-18 Toshiba Corp Process of semiconductor wafer
US4862237A (en) 1983-01-10 1989-08-29 Seiko Epson Corporation Solid state image sensor
US4592799A (en) * 1983-05-09 1986-06-03 Sony Corporation Method of recrystallizing a polycrystalline, amorphous or small grain material
JPS59208743A (en) * 1983-05-13 1984-11-27 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS59222922A (en) * 1983-06-01 1984-12-14 Nippon Telegr & Teleph Corp <Ntt> Vapor growth apparatus
JPS6042817A (en) * 1983-08-19 1985-03-07 Mitsui Toatsu Chem Inc Method for controlling valence electron of hydrogenated amorphous silicon film
US4569697A (en) 1983-08-26 1986-02-11 Energy Conversion Devices, Inc. Method of forming photovoltaic quality amorphous alloys by passivating defect states
US4860069A (en) 1983-09-24 1989-08-22 Semiconductor Energy Laboratory Co., Ltd. Non-single-cry stal semiconductor light emitting device
JPS6089953A (en) * 1983-10-22 1985-05-20 Agency Of Ind Science & Technol Manufacture of layered semiconductor device
JPS60110164A (en) * 1983-11-21 1985-06-15 Matsushita Electric Ind Co Ltd Thin film field effect transistor and manufacture thereof
US4523370A (en) * 1983-12-05 1985-06-18 Ncr Corporation Process for fabricating a bipolar transistor with a thin base and an abrupt base-collector junction
GB8332394D0 (en) * 1983-12-05 1984-01-11 Pilkington Brothers Plc Coating apparatus
US4698486A (en) * 1984-02-28 1987-10-06 Tamarack Scientific Co., Inc. Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US4963503A (en) * 1984-04-09 1990-10-16 Hosiden Electronics Co., Ltd. Method of manufacturing liquid crystal display device
US4670763A (en) 1984-05-14 1987-06-02 Energy Conversion Devices, Inc. Thin film field effect transistor
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US4595601A (en) * 1984-05-25 1986-06-17 Kabushiki Kaisha Toshiba Method of selectively forming an insulation layer
US4640223A (en) * 1984-07-24 1987-02-03 Dozier Alfred R Chemical vapor deposition reactor
JPH0682839B2 (en) * 1984-08-21 1994-10-19 セイコー電子工業株式会社 Manufacturing method of display panel
JPS6158278A (en) * 1984-08-29 1986-03-25 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
DE3587100T2 (en) 1984-10-09 1993-09-09 Fujitsu Ltd METHOD FOR PRODUCING AN INTEGRATED CIRCUIT BASED ON THE SEMICONDUCTOR ON ISOLATOR TECHNOLOGY.
JPS61132959A (en) * 1984-12-03 1986-06-20 Fujitsu Ltd Flash fixing method
US4590091A (en) * 1984-12-17 1986-05-20 Hughes Aircraft Company Photochemical process for substrate surface preparation
JPS61196515A (en) * 1985-02-26 1986-08-30 Mitsubishi Electric Corp Band-fusion type semiconductor manufacturing equipment
JPS6216509A (en) * 1985-07-15 1987-01-24 Seiko Instr & Electronics Ltd Manufacture of substrate for semiconductor device
US5171710A (en) * 1985-08-02 1992-12-15 Semiconductor Energy Laboratory Co., Ltd. Method for photo annealing non-single crystalline semiconductor films
US5753542A (en) * 1985-08-02 1998-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for crystallizing semiconductor material without exposing it to air
DE3689735T2 (en) 1985-08-02 1994-06-30 Semiconductor Energy Lab Method and device for manufacturing semiconductor devices.
US5962869A (en) 1988-09-28 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and method for forming the same and thin film transistor
US5296405A (en) * 1985-08-02 1994-03-22 Semiconductor Energy Laboratory Co.., Ltd. Method for photo annealing non-single crystalline semiconductor films
US4719123A (en) * 1985-08-05 1988-01-12 Sanyo Electric Co., Ltd. Method for fabricating periodically multilayered film
US4597160A (en) 1985-08-09 1986-07-01 Rca Corporation Method of fabricating a polysilicon transistor with a high carrier mobility
US4663829A (en) * 1985-10-11 1987-05-12 Energy Conversion Devices, Inc. Process and apparatus for continuous production of lightweight arrays of photovoltaic cells
EP0222215B1 (en) * 1985-10-23 1991-10-16 Hitachi, Ltd. Polysilicon mos transistor and method of manufacturing the same
KR910003169B1 (en) * 1985-11-12 1991-05-20 가부시끼가이샤 한도다이 에네르기 겐뀨소 Smeiconductor device manufacturing method and device
JPS62160712A (en) * 1986-01-09 1987-07-16 Agency Of Ind Science & Technol Manufacture of semiconductor device
US4755865A (en) 1986-01-21 1988-07-05 Motorola Inc. Means for stabilizing polycrystalline semiconductor layers
NL8600216A (en) * 1986-01-30 1987-08-17 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
JPS62271418A (en) * 1986-05-20 1987-11-25 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon semiconductor element
JPS6310573A (en) * 1986-07-02 1988-01-18 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6354773A (en) * 1986-08-25 1988-03-09 Hitachi Ltd Thin film transistor
JPS6360519A (en) * 1986-08-30 1988-03-16 Sony Corp Annealing method
GB2202085B (en) 1987-01-27 1990-02-14 Ricoh Kk Amorphous silicon photosensor
JPS63300509A (en) * 1987-05-30 1988-12-07 Fujitsu Ltd Manufacture of semiconductor device
JPS6425515A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Manufacture of semiconductor device
JPH07114184B2 (en) 1987-07-27 1995-12-06 日本電信電話株式会社 Thin film type silicon semiconductor device and manufacturing method thereof
US5248630A (en) 1987-07-27 1993-09-28 Nippon Telegraph And Telephone Corporation Thin film silicon semiconductor device and process for producing thereof
US4891330A (en) 1987-07-27 1990-01-02 Energy Conversion Devices, Inc. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements
KR930003857B1 (en) * 1987-08-05 1993-05-14 마쯔시다덴기산교 가부시기가이샤 Plasma doping method
US4897360A (en) 1987-12-09 1990-01-30 Wisconsin Alumni Research Foundation Polysilicon thin film process
US4949700A (en) 1987-12-17 1990-08-21 Tokyou Seimitsu Co., Ltd. Ingot support device in slicing apparatus
JPH01184928A (en) * 1988-01-20 1989-07-24 Toshiba Corp Thin film formation
JP2623276B2 (en) * 1988-01-22 1997-06-25 株式会社日立製作所 Method for manufacturing thin film semiconductor device
US5174881A (en) * 1988-05-12 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming a thin film on surface of semiconductor substrate
JPH0787241B2 (en) * 1988-05-13 1995-09-20 松下電器産業株式会社 Storage capacitor formation method
US5108843A (en) * 1988-11-30 1992-04-28 Ricoh Company, Ltd. Thin film semiconductor and process for producing the same
JP2880175B2 (en) * 1988-11-30 1999-04-05 株式会社日立製作所 Laser annealing method and thin film semiconductor device
US5200017A (en) * 1989-02-27 1993-04-06 Hitachi, Ltd. Sample processing method and apparatus
US5186718A (en) * 1989-05-19 1993-02-16 Applied Materials, Inc. Staged-vacuum wafer processing system and method
US5036373A (en) * 1989-06-01 1991-07-30 Semiconductor Energy Laboratory Co., Ltd. Electric device with grains and an insulating layer
US5194398A (en) * 1989-06-28 1993-03-16 Mitsui Toatsu Chemicals, Inc. Semiconductor film and process for its production
US5272361A (en) 1989-06-30 1993-12-21 Semiconductor Energy Laboratory Co., Ltd. Field effect semiconductor device with immunity to hot carrier effects
EP0408216A3 (en) 1989-07-11 1991-09-18 Hitachi, Ltd. Method for processing wafers and producing semiconductor devices and apparatus for producing the same
GB2235326A (en) 1989-08-16 1991-02-27 Philips Electronic Associated Active matrix liquid crystal colour display devices
JPH0388323A (en) * 1989-08-31 1991-04-12 Kyocera Corp Manufacture of single crystal semiconductor thin film
US5278093A (en) 1989-09-23 1994-01-11 Canon Kabushiki Kaisha Method for forming semiconductor thin film
US4975387A (en) 1989-12-15 1990-12-04 The United States Of America As Represented By The Secretary Of The Navy Formation of epitaxial si-ge heterostructures by solid phase epitaxy
JPH03220529A (en) * 1990-01-25 1991-09-27 Nec Corp Manufacture of active matrix liquid crystal display
US5310410A (en) * 1990-04-06 1994-05-10 Sputtered Films, Inc. Method for processing semi-conductor wafers in a multiple vacuum and non-vacuum chamber apparatus
DE69127395T2 (en) * 1990-05-11 1998-01-02 Asahi Glass Co Ltd Method of manufacturing a thin film transistor with polycrystalline semiconductor
DE69115118T2 (en) * 1990-05-17 1996-05-30 Sharp Kk Method of manufacturing a thin film transistor.
EP0459763B1 (en) 1990-05-29 1997-05-02 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistors
US5314508A (en) * 1990-05-29 1994-05-24 Matsushita Electric Industrial Co., Ltd. Solid electrolyte fuel cell and method for manufacture of same
CA2018120C (en) * 1990-06-01 1995-01-24 Alden Heppner Rock picking machine
JP2973492B2 (en) * 1990-08-22 1999-11-08 ソニー株式会社 Crystallization method of semiconductor thin film
US5112764A (en) * 1990-09-04 1992-05-12 North American Philips Corporation Method for the fabrication of low leakage polysilicon thin film transistors
JPH04120732A (en) * 1990-09-12 1992-04-21 Hitachi Ltd Solid element and its manufacture
US5210050A (en) 1990-10-15 1993-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a semiconductor film
JP2838318B2 (en) 1990-11-30 1998-12-16 株式会社半導体エネルギー研究所 Photosensitive device and manufacturing method thereof
US5250818A (en) 1991-03-01 1993-10-05 Board Of Trustees Of Leland Stanford University Low temperature germanium-silicon on insulator thin-film transistor
JPH0824104B2 (en) * 1991-03-18 1996-03-06 株式会社半導体エネルギー研究所 Semiconductor material and manufacturing method thereof
JP2975151B2 (en) * 1991-03-28 1999-11-10 キヤノン株式会社 Continuous production equipment for semiconductor devices
JPH0812847B2 (en) * 1991-04-22 1996-02-07 株式会社半導体プロセス研究所 Semiconductor manufacturing apparatus and semiconductor device manufacturing method
US5324360A (en) * 1991-05-21 1994-06-28 Canon Kabushiki Kaisha Method for producing non-monocrystalline semiconductor device and apparatus therefor
US5324680A (en) * 1991-05-22 1994-06-28 Samsung Electronics, Co. Ltd. Semiconductor memory device and the fabrication method thereof
JP2880322B2 (en) * 1991-05-24 1999-04-05 キヤノン株式会社 Method of forming deposited film
JPH05182923A (en) * 1991-05-28 1993-07-23 Semiconductor Energy Lab Co Ltd Laser annealing method
GB9114018D0 (en) * 1991-06-28 1991-08-14 Philips Electronic Associated Thin-film transistor manufacture
US5343826A (en) * 1991-08-19 1994-09-06 Clark-Reliance Corporation Fluid indicator assemblies for sight flow apparatus
US5338388A (en) * 1992-05-04 1994-08-16 Mitsubishi Denki Kabushiki Kaisha Method of forming single-crystal semiconductor films
JP2564725B2 (en) * 1991-12-24 1996-12-18 株式会社半導体エネルギー研究所 Method of manufacturing MOS transistor
TW264575B (en) * 1993-10-29 1995-12-01 Handotai Energy Kenkyusho Kk
US5854803A (en) * 1995-01-12 1998-12-29 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US5968869A (en) * 1997-06-03 1999-10-19 Celanese International Corporation Vinyl acetate catalyst comprising palladium and gold deposited on a copper containing carrier
EP1744349A3 (en) * 1998-10-05 2007-04-04 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, beam homogenizer, semiconductor device, and method of manufacturing the semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075460A1 (en) * 1994-06-02 2009-03-19 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US20040005742A1 (en) * 1994-06-02 2004-01-08 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US6919237B2 (en) 1994-06-02 2005-07-19 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating thin film transistors
US20050239240A1 (en) * 1994-06-02 2005-10-27 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US7470575B2 (en) 1994-06-02 2008-12-30 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US7767559B2 (en) 1994-06-02 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
US20030098458A1 (en) * 1996-01-19 2003-05-29 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device and its manufacturing method
US20040108503A1 (en) * 1996-01-19 2004-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating same
US20050056843A1 (en) * 1996-01-19 2005-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US20030094625A1 (en) * 1996-01-19 2003-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for fabricating the same
US7679087B2 (en) 1996-01-19 2010-03-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor active region of TFTs having radial crystal grains through the whole area of the region
US7709837B2 (en) 1996-01-19 2010-05-04 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and its manufacturing method
US20060099780A1 (en) * 1996-01-26 2006-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device

Also Published As

Publication number Publication date
US5753542A (en) 1998-05-19
US6423586B1 (en) 2002-07-23
US20050181583A1 (en) 2005-08-18
US20020025659A1 (en) 2002-02-28
US7435635B2 (en) 2008-10-14
US6881615B2 (en) 2005-04-19

Similar Documents

Publication Publication Date Title
US6423586B1 (en) Method for crystallizing semiconductor material without exposing it to air
US5962869A (en) Semiconductor material and method for forming the same and thin film transistor
US5313076A (en) Thin film transistor and semiconductor device including a laser crystallized semiconductor
US5210050A (en) Method for manufacturing a semiconductor device comprising a semiconductor film
KR0168693B1 (en) Semiconductor fabricating method and semiconductor device fabricating method
US6562672B2 (en) Semiconductor material and method for forming the same and thin film transistor
KR960001466B1 (en) Semiconductor material and the manufacturing method thereof
WO1992014268A1 (en) Polysilicon thin film transistor
JP3986781B2 (en) Method for manufacturing thin film transistor
JP3942853B2 (en) Semiconductor material manufacturing equipment
JP3986772B2 (en) Method for manufacturing thin film transistor
JP3987311B2 (en) Method for manufacturing thin film transistor
JP3987062B2 (en) Method for manufacturing thin film transistor
KR100326529B1 (en) a method of manufacturing a semiconductor device
JP3987310B2 (en) Method for producing crystalline silicon film
JP3986771B2 (en) Method for producing crystalline silicon film
KR960001165B1 (en) A method for manufacturing a semiconductor device and a method
JPH0851220A (en) Semiconductor material and its manufacture
JP2000294507A (en) Semiconductor thin film and semiconductor device using the same
JP2000311857A (en) Semiconductor thin film and thin-film semiconductor device using the same
JPH10144608A (en) Semiconductor thin film and semiconductor device using the same
JPH0396279A (en) Manufacture of semiconductor device
JPH08288521A (en) Method of manufacturing semiconductor device
JPH10261589A (en) Semiconductor thin film and thin-film semiconductor device using it
JPH06120506A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140723