US20020060791A1 - Light detection device - Google Patents

Light detection device Download PDF

Info

Publication number
US20020060791A1
US20020060791A1 US10/041,532 US4153202A US2002060791A1 US 20020060791 A1 US20020060791 A1 US 20020060791A1 US 4153202 A US4153202 A US 4153202A US 2002060791 A1 US2002060791 A1 US 2002060791A1
Authority
US
United States
Prior art keywords
light
sample
substrate
sensed volume
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/041,532
Inventor
David Stumbo
Douglas Modlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LJL Biosystems Inc
Original Assignee
LJL Biosystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LJL Biosystems Inc filed Critical LJL Biosystems Inc
Priority to US10/041,532 priority Critical patent/US20020060791A1/en
Assigned to LJL BIOSYSTEMS, INC. reassignment LJL BIOSYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MODLIN, DOUGLAS N., STUMBO, DAVID P.
Publication of US20020060791A1 publication Critical patent/US20020060791A1/en
Priority to US10/218,897 priority patent/US6982431B2/en
Priority to US10/445,292 priority patent/US6992761B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • B01J2219/00317Microwell devices, i.e. having large numbers of wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00707Processes involving means for analysing and characterising the products separated from the reactor apparatus
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0403Sample carriers with closing or sealing means
    • G01N2035/0405Sample carriers with closing or sealing means manipulating closing or opening means, e.g. stoppers, screw caps, lids or covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0418Plate elements with several rows of samples
    • G01N2035/0425Stacks, magazines or elevators for plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/046General conveyor features
    • G01N2035/0462Buffers [FIFO] or stacks [LIFO] for holding carriers between operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1074Multiple transfer devices arranged in a two-dimensional array

Definitions

  • the invention relates to optical detection. More particularly, the invention relates to apparatus and methods for optical detection with improved read speed and/or signal-to noise ratio.
  • the apparatus and methods may be used with microplates, biochips, m chromatography plates, microscope slides, and other substrates for high-throughput screening, genomics, SNPs analysis, pharmaceutical research and development, life sciences research, and other applications.
  • Optical spectroscopy is the study of the interaction of light with matter. Typically, optical spectroscopy involves monitoring some property of light that is changed by its interaction with matter, and then using that change to characterize the components and properties of a molecular system. Recently, optical spectroscopy has been used in high throughput screening procedures to identify candidate drug compounds.
  • Optical spectroscopy is a broad term that describes a number of methods, such as absorption, luminescence (such as photoluminescence and chemiluminescence), scattering/reflectance, circular dichroism, optical rotation, and optical microscopy/imaging, among others.
  • photoluminescence includes fluorescence intensity (FLINT), fluorescence polarization (FP), fluorescence resonance energy transfer (FRET), fluorescence lifetime (FLT), total internal reflection fluorescence (TIRF), fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), and their phosphorescence analogs, among others.
  • optical detection systems for use in optical spectroscopy suffer from a number of shortcomings.
  • optical detection systems generally involve alignment of a sample and portions of an optical relay structure (such as an optics head) for directing light to and from the sample.
  • Such alignment may be accomplished by physically moving the sample relative to the optical relay structure, or by physically moving the optical relay structure relative to the sample.
  • Such movement is followed by a waiting period before measurement to permit vibrations to subside.
  • Time spent during alignment and subsequent waiting periods is downtime because it is time during which data cannot be collected from the sample.
  • Such downtime is especially significant in high-throughput screening, where tens or hundreds of thousands of samples must be aligned with an optical relay structure to conduct a particular study.
  • the number of alignment steps can be reduced by reading simultaneously from a plurality of samples or from a larger area of a single sample.
  • simultaneous reading typically will reduce intensities, because excitation light is distributed to a larger area and because the distance between the sample and optical relay structure is increased. Reduced intensities may decrease signal-to-noise ratios, decreasing reliability, especially with less intense nonlaser light sources.
  • the invention provides apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio.
  • FIG. 1 is a schematic view of a light detection device constructed in accordance with aspects of the invention, showing the device in use to read from a substrate.
  • FIG. 2 is an alternative schematic view of the light detection device of FIG. 1.
  • FIG. 3 is a schematic view of an alternative light detection device constructed in accordance with aspects of the invention, showing the device in use to read from a substrate.
  • FIG. 4 is an alternative schematic view of the light detection device of FIG. 3.
  • FIGS. 5 - 7 are schematic views of other alternative light detection devices constructed in accordance with aspects of the invention.
  • FIG. 8 is a partially exploded perspective view of yet another light detection device constructed in accordance with aspects of the invention, showing a transport module and an analysis module.
  • FIG. 9 is a schematic view of an optical system from the analysis module of FIG. 8.
  • FIG. 10 is a partially schematic perspective view of portions of the apparatus of FIG. 8.
  • FIG. 11 is a schematic view of photoluminescence optical components from the optical system of FIG. 9.
  • FIG. 12 is a schematic view of chemiluminescence optical components from the optical system of FIG. 9.
  • the invention provides apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio. These apparatus and methods may involve among others moving a sample substrate while simultaneously detecting light transmitted from one or more sample sites on the substrate by sequentially tracking the sample sites as they move. In this way, downtime associated with starting and stopping the sample substrate and with an inability to read during or immediately after moving the substrate may be reduced or eliminated.
  • the following examples illustrate without limitation additional aspects of the invention.
  • FIG. 1 shows a light detection device 100 constructed in accordance with aspects of the invention.
  • Device 100 includes a stage 101 , an examination region 102 , and an optics head 104 .
  • Examination region 102 is delimited by a detection initiation position 106 a and a detection termination position 106 b .
  • Stage 101 may be used to support a substrate 108 having a plurality of sample sites 110 , such as a microplate and associated microplate wells, and optics head 104 may be used to direct light 112 to and/or from a sensed volume 114 positioned in a sample site located in the examination region.
  • light may be directed to the sample site from a light source 116 , and/or light may be directed from the substrate to a detector 118 .
  • the examination region will be larger than the sensed volume, and the separation between adjacent/examined sample sites will be larger than the separation between the initiation position and the termination position.
  • Suitable substrates, light sources, detectors, and optical relay structures for directing light to an optics head and substrate from a light source, and from a substrate and optics head to a detector are described below.
  • Device 100 also includes a scanning mechanism 120 configured to scan the substrate, so that device 100 may read from a plurality of positions on the substrate.
  • scanning mechanism 120 includes a reflective surface 122 and is configured simultaneously to move (at least a portion of) the optics head and substrate, preferably in a single direction.
  • the optics head tracks the substrate between detection initiation position 106 a and detection termination position 106 b , and signal is collected continuously during an integration time over which there typically is no substantial relative motion between the optics head and the sample being analyzed.
  • the position of the sensed volume (or optical beam) may be reset to the detection initiation position so that the sensed volume can track and detect from the next sample site on the substrate.
  • the scanning mechanism improves read time by reducing the time that the detection optics spends over areas of the substrate that do not contain sample to be interrogated. (Any time spent over such areas can be considered downtime.)
  • the scanning mechanism also improves read time because the substrate moves continuously, more rapidly bringing new areas of the substrate into position for reading, and because the need for a waiting period for vibrations to subside is reduced or eliminated if the substrate does not jostle the samples by starting, stopping, or otherwise significantly changing speed.
  • the sample sites may move at a substantially constant speed, at least through the examination region.
  • Device 100 may use any of various strategies to read from multiple sample sites.
  • the device can read from the sample sites sequentially, one-by-one, as described above, or it can read from the sites in groups of two or more. Here, such reading groups may be parallel or perpendicular to the direction of reading, or a combination thereof.
  • the device also can read from a first array in a first direction, move or offset in a second (typically perpendicular) direction, and then read again in the first direction from a second array parallel to the first array.
  • Mechanisms for moving a sample substrate in one, two, or three directions are described in PCT patent application Ser. No. PCT/US00/12277, filed May 3, 2000, which is incorporated herein by reference.
  • Signal from samples on the (moving) substrate may be read by point-to-point reading or by constant velocity scanning.
  • point-to-point reading the optics head is fixed relative to the substrate, as described above, while the signal from the detector is integrated for a desired period.
  • constant velocity scanning the optical beam is moved relative to the substrate, while the signal from the detector is “binned” into pixels.
  • the size of each pixel is simply the product of the scanning speed (relative to the substrate speed) and the integration time. For example, if the (relative) scanning speed is 10 mm per second and the integration time is 100 milliseconds, the pixel size is 1 mm.
  • a point-to-point reading detection system can read photoluminescent samples essentially as rapidly as a charge-coupled device (CCD)-based reading system with an equivalent light source and numerical aperture.
  • CCD charge-coupled device
  • a CCD is faster for chemiluminescence, because it collects the light emitted (which is not affected by detector area) from all samples simultaneously.
  • the light output of each well is decreased in large area photoluminescence, because the illumination per well is reduced, so that the increased speed resulting from collecting light from all wells in parallel is cancelled by the reduced illumination per well.
  • the invention can be effective with fluorescence, phosphorescence, and chemiluminescence measurements, because for a given total read time, more time is spent integrating signal, and less time is spent aligning the optics with new samples.
  • the invention is particularly effective with fluorescence polarization measurements, because good signal-to-noise ratios preferably involve collection of a minimum number of photons (e.g., 10,000) during the integration period, as described in U.S. patent application Ser. No. 09/349,733, which is incorporated herein by reference.
  • FIG. 2 is an alternative view of light detection device 100 showing details of the optical relay structures.
  • light 112 is directed from light source 116 (or equivalently from a fiber or other optics operatively connected to light source 116 ) through a collimating (e.g., convex-plano) lens 124 and onto a beamsplitter 126 , which directs a portion of the light toward substrate 108 .
  • Light emitted from the substrate is directed onto the beamsplitter, which transmits a portion of the light through a focusing (e.g., a plano-convex) lens 128 toward detector 118 (or equivalently a fiber or other optics operatively connected to detector 118 ).
  • a focusing e.g., a plano-convex
  • reflective element 122 may be moved to track the plate motion during integration, and then to “fly-back” quickly to the starting position for the next integration. If the input/output light 112 is collimated, the change in path length will not affect focus, spot size, or light collection, among others.
  • the optics is reflective, which can improve efficiency, optical bandwidth, and cost relative to refractive optics.
  • the moving element can be supported on nonfriction bearings, such as flexures (for example, on a four-bar linkage), because motion is small ( ⁇ 2 mm for a 1536-well plate). Feedback can be provided to reduce positional error of the mirror.
  • the stage and mirror can be locked together so that the mirror tracks the well location substantially exactly, even if the plate motion is not perfectly smooth.
  • This has the significant advantage that substantially precise motion may be accomplished on a much lower mass object (the mirror, instead of the plate and its stage), so that bandwidth is higher and power requirements are lower.
  • FIG. 3 shows an alternative light detection device 200 constructed in accordance with aspects of the invention.
  • Device 200 includes a stage 201 , an examination site 202 delimited as above, and an optics head 204 for directing light 206 to and/or from a substrate 208 positioned in the examination site.
  • Device 200 also includes a scanning mechanism 210 configured to scan the substrate.
  • the scanning mechanism is configured to move the substrate while holding the optics head fixed. More specifically, the scanning mechanism is configured to rotate rather than translate.
  • Scanning mechanism 212 may include a galvanometer mirror and/or a rotating polygon mirror for matching illumination and/or detection with particular areas of the substrate.
  • Galvanometer mirrors include small planar or convex mirrors attached to the rotating coil of a galvanometer to move a spot of reflected light, among others.
  • Rotating polygon mirrors include a polygonal mirror attached to a driver to move a spot of reflected light, among others.
  • Device 200 may be used with any light source, although nonlaser light sources, such as arc lamps or LEDs, present special difficulties. This is because the distance between the source and detector may be relatively long, which may result in lower efficiencies with nonlaser light sources. Some of the difficulty may be overcome by using a high color temperature continuous light source, as described in U.S. patent application Ser. No. 09/349,733, which is incorporated herein by reference.
  • FIG. 4 shows an alternative view of light detection device 200 , illustrating several techniques, including a galvanometer technique and a rotating polygon technique.
  • the optics are substantially as described above for FIG. 2, except that a lens such as a plano-convex, converging, or other positive strength lens is used between the scanning mechanism and the substrate for field flattening.
  • FIG. 4 illustrates a galvanometer technique.
  • a mirror 220 pivots through a small angle and then returns to its start position to repeat the cycle.
  • Suitable drivers include galvanometers, voice-coil drivers, and piezo drivers.
  • the mirror and driver typically are supported by nonfriction bearings, which may include springs, torsion springs, and/or flexures.
  • a lack of stick-slip enables precise, low-power positioning.
  • the system can be resonant, meaning that the compliance of the bearings resonates with the combined mass of the mirror and driver. If the system is resonant, power requirements will drop significantly. Feedback can be provided as above to reduce positional error of the mirror.
  • the inset in FIG. 4 illustrates a rotating polygon technique.
  • a polygonal mirror 230 (or section 232 thereof) rotates in synchrony with the stage.
  • the motor drive may be much easier: if the mirrors are curved, or if an optic is added, the motion may be at constant angular velocity.
  • the polygon should be large compared to the collimated beam. (Dead time occurs when the beam is on two facets of the mirror at once.)
  • the focused spot tends to follow an arc. If the plate is planar, resulting difficulties may be corrected by effectively increasing the radius of curvature of the arc by adding a field-flattening optic, by offsetting the axis of rotation of the galvanometer, and/or by providing a rotating polygon with curved faces. Whether corrected or not, the arc will track the sample site in the same direction over the distance scale of the examination region.
  • FIGS. 5 - 6 show other alternative light detection devices constructed in accordance with aspects of the invention. These devices involve scanning an aperture over a larger area detector/source. In these (and other) embodiments, the light may not be collimated as it goes through the scanning mechanism.
  • FIG. 5 shows a first pair of embodiments involving scanning an aperture.
  • the detector can accommodate the entire motion of the scanned location (e.g., an area of 2.25 mm ⁇ 4.5 mm for a 1536-well microplate), which is true with a photomultiplier tube (PMT), and if the source can illuminate it, then only an aperture need be scanned. This is accomplished by imaging a small area of the plate adjacent the well being measured onto a second “aperture plate.” The aperture plate is moved in synchrony with the sample plate, but in the opposite direction, so that light to and from only one well can make it through the aperture. If the lens demagnifies by a factor 1/m, then the aperture plate should move at a speed m times the sample plate speed.
  • PMT photomultiplier tube
  • the subsequent optics has much relaxed imaging requirements because there is little or no possibility of cross-talk.
  • the aperture plate also could have more than one set of associated optics to increase throughput (requiring multiple imaging elements) or to provide “quick-change” capability for different wavelengths, excitations, etc.
  • the dichroic mirror can pivot to reduce the illuminated area requirement.
  • a sample plate or other substrate can be imaged onto an “aperture plate” refractively or reflectively, among others.
  • a plate can be imaged refractively using a lens.
  • a plate can be imaged reflectively (with advantages as mentioned above) using a mirror, such as a section of an ellipse.
  • the mirror may be dichroic, which can eliminate all lenses and greatly increase bandwidth; this permits the focus to be adjusted without moving the aperture plate or optics Oust the imaging unit), so that the light source(s) and detector(s) can be mounted at the optics head, eliminating the cost and light loss associated with fiber optics.
  • mirrors can be scanned or pivoted to reduce illumination requirements.
  • FIG. 6 shows a second pair of embodiments involving scanning an aperture.
  • the imaging optics (mirror or lens) can be rotated, or a prism inside the imaging optics can be rotated.
  • the techniques described above can be used with an ellipsoidal mirror, with or without demagnification.
  • FIG. 7 shows yet another alternative device constructed in accordance with aspects of the invention, using a Digital Mirror Device (DMD).
  • DMD Digital Mirror Device
  • This device has a large array of very small (10-20 micron), very fast mirrors that can be rotated under electronic control. Placed in an image plane, they can be used to control the area that is reflected into the optics.
  • a suitable DMD (used for video projectors) may be obtained commercially from Texas Instruments Inc. (Dallas, Tex.).
  • the apparatus and methods for optical detection provided by the invention can be used in a large variety of optical systems and for a large variety of optical applications.
  • This example describes a preferred system, namely a multi-mode high-throughput light detection system for analyzing samples.
  • FIG. 8 shows such a system 350 , which includes a transport module 352 and an analysis module 354 capable of detecting and analyzing light.
  • the transport module includes I/O sites 356 , a transfer site 358 , and mechanisms (not visible) for transporting sample holders between the I/O and transfer sites, as described above.
  • the analysis module includes a housing 360 , a moveable control unit 362 , an optical system (not visible), and a transport mechanism 364 .
  • the housing may be used to enclose the analysis module, protecting both the user and components of the module, and may be used as a fixed reference point to describe the motions of any moveable portions of the apparatus, such as a scanning optics head.
  • the control unit may be used to operate the module manually and/or robotically, as described in U.S. Pat. No. 6,025,985, which is incorporated herein by reference.
  • the optical system and transport mechanisms are described in subsequent sections.
  • FIGS. 9 - 12 show an optical system (and related components) 390 for use in system 350 .
  • the optical system may include components for generating and/or detecting light, and for transmitting light to and/or from a sample. These components may include (1) a stage for supporting the sample, (2) one or more light sources for delivering light to the sample, (3) one or more detectors for receiving light transmitted from the sample and converting it to a signal, (4) first and second optical relay structures for relaying light between the light source, sample, and detector, and/or (5) a processor for analyzing the signal from the detector.
  • System components may be chosen to optimize speed, sensitivity, and/or dynamic range for one or more assays.
  • optical components with low intrinsic luminescence may be used to enhance sensitivity in luminescence assays by reducing background.
  • System components also may be shared by different assays, or dedicated to particular assays.
  • steady-state photoluminescence assays may use a continuous light source
  • time-resolved photoluminescence assays may use a time-varying light source
  • chemiluminescence assays may not use a light source.
  • steady-state and time-resolved photoluminescence assays may both use a first detector, and chemiluminescence assays may use a second detector.
  • Optical system 390 includes (a) a photoluminescence optical system, and (b) a chemiluminescence optical system, as described below. Further aspects of the optical system are described in the following patent applications, which are incorporated herein by reference: U.S. patent application Ser. No. 09/160,533, filed Sep. 24, 1998; U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999; PCT patent application Ser. No. PCT/US99/16287, filed Jul. 26, 1999; and PCT patent application Ser. No. PCT/US00/04543, filed Feb. 22, 2000.
  • FIGS. 9 - 11 show the photoluminescence (or incident light-based) optical system of optical system 390 .
  • optical system 390 includes a continuous light source 400 and a time-modulated light source 402 .
  • Optical system 390 includes light source slots 403 a - d for four light sources, although other numbers of light source slots and light sources also could be provided.
  • Light source slots 403 a - d function as housings that may surround at least a portion of each light source, providing some protection from radiation and explosion.
  • the direction of light transmission through the incident light based optical system is indicated by arrows.
  • Continuous source 400 provides light for absorbance, scattering, photoluminescence intensity, and steady-state photoluminescence polarization assays.
  • Continuous light source 400 may include arc lamps, incandescent lamps, fluorescent lamps, electroluminescent devices, lasers, laser diodes, and light-emitting diodes (LEDs), among others.
  • a preferred continuous source is a high-intensity, high color temperature xenon arc lamp, such as a Model LX175F CERMAX xenon lamp from ILC Technology, Inc. Color temperature is the absolute temperature in Kelvin at which a blackbody radiator must be operated to have a chromaticity equal to that of the light source.
  • a high color temperature lamp produces more light than a low color temperature lamp, and it may have a maximum output shifted toward or into visible wavelengths and ultraviolet wavelengths where many luminophores absorb.
  • the preferred continuous source has a color temperature of 5600 Kelvin, greatly exceeding the color temperature of about 3000 Kelvin for a tungsten filament source.
  • the preferred source provides more light per unit time than flash sources, averaged over the flash source duty cycle, increasing sensitivity and reducing read times.
  • Optical system 390 may include a modulator mechanism configured to vary the intensity of light incident on the sample without varying the intensity of light produced by the light source. Further aspects of the continuous light source are described in U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999, which is incorporated herein by reference.
  • Time-modulated source 402 provides light for time-resolved absorbance and/or photoluminescence assays, such as photoluminescence lifetime and time-resolved photoluminescence polarization assays.
  • a preferred time-modulated source is a xenon flash lamp, such as a Model FX-1160 xenon flash lamp from EG&G Electro-Optics. The preferred source produces a “flash” of light for a brief interval before signal detection and is especially well suited for time-domain measurements.
  • Other time-modulated sources include pulsed lasers, electronically modulated lasers and LEDs, and continuous lamps and other sources whose intensity can be modulated extrinsically using a Pockels cell, Kerr cell, or other mechanism.
  • Such other mechanisms may include an amplitude modulator such as a chopper as described in PCT patent application Ser. No. PCT/US99/16287, filed Jul. 26, 1999, which is incorporated herein by reference. Extrinsically modulated continuous light sources are especially well suited for frequency domain measurements.
  • continuous source 400 and time-modulated source 402 produce multichromatic, unpolarized, and incoherent light.
  • Continuous source 400 produces substantially continuous illumination
  • time-modulated source 402 produces time-modulated illumination.
  • Light from these light sources may be delivered to the sample without modification, or it may be filtered to alter its intensity, spectrum, polarization, or other properties.
  • Light produced by the light sources follows an excitation optical path to an examination site or measurement region. Such light may pass through one or more “spectral filters,” which generally comprise any mechanism for altering the spectrum of light that is delivered to the sample. Spectrum refers to the wavelength composition of light.
  • a spectral filter may be used to convert white or multichromatic light, which includes light of many colors, into red, blue, green, or other substantially monochromatic light, which includes light of one or only a few colors.
  • spectrum is altered by an excitation interference filter 404 , which preferentially transmits light of preselected wavelengths and preferentially absorbs light of other wavelengths.
  • excitation interference filters 404 may be housed in an excitation filter wheel 406 , which allows the spectrum of excitation light to be changed by rotating a preselected filter into the optical path.
  • Spectral filters also may separate light spatially by wavelength. Examples include gratings, monochromators, and prisms.
  • excitation filter wheel 406 may be mounted in the optical path of some light source slots 403 a,b, but not other light source slots 403 c,d.
  • the filter wheel may include a blank station that does not affect light passage.
  • Light is transmitted through a fiber optic cable much like water is transmitted through a garden hose.
  • Fiber optic cables can be used easily to turn light around corners and to route light around opaque components of the apparatus. Moreover, fiber optic cables give the light a more uniform intensity profile.
  • a preferred fiber optic cable is a fused silicon bundle, which has low autoluminescence. Despite these advantages, light also can be delivered to the optics heads using other mechanisms, such as mirrors.
  • Excitation polarization filters may be included with the top and/or bottom optics head.
  • polarization is altered by excitation polarizers 414 , which are included only with top optics head 412 a for top reading; however, such polarizers also can be included with bottom optics head 412 b for bottom reading.
  • Excitation polarization filters 414 may include an s-polarizer S that passes only spolarized light, a p-polarizer P that passes only p-polarized light, and a blank O that passes substantially all light, where polarizations are measured relative to the beamsplitter. Excitation polarizers 414 also may include a standard or ferro-electric liquid crystal display (LCD) polarization switching system. Such a system may be faster than a mechanical switcher. Excitation polarizers 414 also may include a continuous mode LCD polarization rotator with synchronous detection to increase the signal-to-noise ratio in polarization assays.
  • LCD ferro-electric liquid crystal display
  • Excitation polarizers 414 may be incorporated as an inherent component in some light sources, such as certain lasers, that intrinsically produce polarized light. Further aspects of the polarization filters and their use in polarization assay are described in U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999, which is incorporated herein by reference.
  • the confocal optics element includes a set of lenses 417 a - c and an excitation aperture 416 placed in an image plane conjugate to the sensed volume, as shown in FIG. 11.
  • Aperture 416 may be implemented directly, as an aperture, or indirectly, as the end of a fiber optic cable. Preferred apertures have diameters of 1 mm and 1.5 mm.
  • Lenses 417 a,b project an image of aperture 416 onto the sample, so that only a preselected or sensed volume of the sample is illuminated. The area of illumination will have a diameter corresponding to the diameter of the excitation aperture.
  • Beamsplitter 418 is used to direct excitation or incident light toward the sample and light monitor, and to direct light leaving the sample toward the detector.
  • the beamsplitter is changeable, so that it may be optimized for different assay modes or samples. In some embodiments, switching between beamsplitters may be performed manually, whereas in other embodiments, such switching may be performed automatically. Automatic switching may be performed based on direct operator command, or based on an analysis of the sample by the instrument. If a large number or variety of photoactive molecules are to be studied, the beamsplitter must be able to accommodate light of many wavelengths; in this case, a “50:50” beamsplitter that reflects half and transmits half of the incident light independent of wavelength is optimal.
  • Such a beamsplitter can be used with many types of molecules, while still delivering considerable excitation light onto the sample, and while still transmitting considerable light leaving the sample to the detector. If one or a few related photoactive molecules are to be studied, the beamsplitter needs only to be able to accommodate light at a limited number of wavelengths; in this case, a “dichroic” or “multidichroic” beamsplitter is optimal.
  • a beamsplitter can be designed with cutoff wavelengths for the appropriate sets of molecules and will reflect most or substantially all of the excitation and background light, while transmitting most or substantially all of the emission light in the case of luminescence. This is possible because the beamsplitter may have a reflectivity and transmissivity that varies with wavelength.
  • the beamsplitter more generally comprises any optical device for dividing a beam of light into two or more separate beams.
  • a simple beamsplitter (such as a 50:50 beamsplitter) may include a very thin sheet of glass inserted in the beam at an angle, so that a portion of the beam is transmitted in a first direction and a portion of the beam is reflected in a different second direction.
  • a more sophisticated beamsplitter (such as a dichroic or multi-dichroic beamsplitter) may include other prismatic materials, such as fused silica or quartz, and may be coated with a metallic or dielectric layer having the desired transmission and reflection properties, including dichroic and multi-dichroic transmission and reflection properties.
  • two right-angle prisms are cemented together at their hypotenuse faces, and a suitable coating is included on one of the cemented faces. Further aspects of the beamsplitter are described in PCT patent application Ser. No. PCT/US00/06841, filed Mar. 15, 2000, which is incorporated herein by reference.
  • Light monitor 422 is used to correct for fluctuations in the intensity of light provided by the light sources. Such corrections may be performed by reporting detected intensities as a ratio over corresponding times of the luminescence intensity measured by the detector to the excitation light intensity measured by the light monitor.
  • the light monitor also can be programmed to alert the user if the light source fails.
  • a preferred light monitor is a silicon photodiode with a quartz window for low autoluminescence.
  • the sample may be held in a substrate (or sample holder) supported by a stage 423 .
  • the sample can include compounds, mixtures, surfaces, solutions, emulsions, suspensions, cell cultures, fermentation cultures, cells, tissues, secretions, and/or derivatives and/or extracts thereof.
  • Analysis of the sample may involve measuring the presence, concentration, or physical properties (including interactions) of a photoactive analyte in such a sample.
  • Sample may refer to the contents of a single microplate well, or several microplate wells, depending on the assay.
  • substrate generally comprises any material, surface, or other holder capable of supporting a sample for use in optical spectroscopy, and preferably for use with automated sample handling equipment.
  • the substrate may support discrete or continuous samples, where sample sites refer to the locations of discrete samples or the locations of different regions within a continuous sample, respectively.
  • the substrate may support samples at low, intermediate, or high density, and be designed for single or multiple use.
  • Representative sample holders include microplates, PCR plates, biochips, and chromatography plates, among others.
  • a microplate is a multi-well sample holder, typically but not exclusively used for luminescence applications.
  • a PCR plate is a multiwell sample holder used for performing PCR.
  • Preferred PCR plates would include a footprint, well spacing, and well shape similar to those of the preferred microplates, while possessing a stiffness adequate for automated handling and a thermal stability adequate for PCR.
  • a biochip is a small, flat surface (such as a glass or silicon wafer, a semiconductor chip, or a multiple-well CCD) onto which biomolecules (such as nucleic acids and proteins) are immobilized in distinct spots or arrays.
  • Biochips include DNA chips, DNA microarrays, gene arrays, and gene chips, among others. Preferred biochips are described in Bob Sinclair, Everything's Great When It Sits on a Chip: A Bright Future for DNA Arrays , 13 THE SCIENTIST, May 24, 1999, at 18. As defined here, a chromatography plate is a flat surface used for performing chromatography, electrophoresis, or other separations.
  • the preferred sample holder is a microplate 424 , which includes a plurality of discrete microplate wells 426 for holding samples.
  • Microplates are typically substantially rectangular holders that include a plurality of sample wells for holding a corresponding plurality of samples. These sample wells are normally cylindrical in shape although rectangular or other shaped wells are sometimes used. The sample wells are typically disposed in regular arrays.
  • the “standard” microplate includes 96 cylindrical sample wells disposed in an 8 ⁇ 12 rectangular array on 9-millimeter centers. Preferred microplates are described in U.S. patent application Ser. No. 09/478,819, filed Jan. 5, 2000, which is incorporated herein by reference.
  • the sensed volume generally comprises any volume from which light is detected, and preferably any volume from which light is substantially exclusively detected.
  • the sensed volume may have an hourglass shape, with a cone angle of about 25° and a minimum diameter ranging between 0.1 mm and 2.0 mm. For 96-well and 384-well microplates, a preferred minimum diameter is about 1.5 mm. For 1536-well microplates, a preferred minimum diameter is about 1.0 mm.
  • the size and shape of the sample holder may be matched to the size and shape of the sensed volume, as described in U.S. patent application Ser. No. 09/478,819, filed Jan. 5, 2000, which is incorporated herein by reference.
  • the position of the sensed volume can be moved precisely within the sample to optimize the signal-to-noise and signal-to-background ratios.
  • the sensed volume may be moved away from walls or other boundary interfaces in the sample holder to optimize signal-to-noise and signal-to-background ratios, reducing spurious signals that might arise from luminophores bound to the walls and thereby immobilized.
  • position in the X,Y-plane perpendicular to the optical path is controlled by moving the stage supporting the sample, whereas position along the Z-axis parallel to the optical path is controlled by moving the optics heads using a Z-axis adjustment mechanism 430 , as shown in FIGS. 9 and 10.
  • any mechanism for bringing the sensed volume into alignment or register with the appropriate portion of the sample also may be employed.
  • mechanisms such as those presented above in Examples 1-4 may be employed for bringing the sensed volume into alignment with a preselected portion of a moving sample holder and for maintaining that alignment during sample reading.
  • top and bottom optics permits assays to combine: (1) top illumination and top detection, or (2) top illumination and bottom detection, or (3) bottom illumination and top detection, or (4) bottom illumination and bottom detection.
  • Same side illumination and detection, (1) and (4) is referred to as “epi” and is preferred for photoluminescence and scattering assays.
  • Opposite-side illumination and detection, (2) and (3) is referred to as “trans” and has been used in the past for absorbance assays.
  • epi modes are supported, so the excitation and emission light travel the same path in the optics head, albeit in opposite or anti-parallel directions.
  • trans modes also can be used with additional sensors, as described below.
  • top and bottom optics heads move together and share a common focal plane. However, in other embodiments, top and bottom optics heads may move independently, so that each can focus independently on the same or different sample planes.
  • top optics can be used with any sample holder having an open top
  • bottom optics can be used only with sample holders having optically transparent bottoms, such as glass or thin plastic bottoms. Clear bottom sample holders are particularly suited for measurements involving analytes that accumulate on the bottom of the holder.
  • Light may be transmitted by the sample in multiple directions. A portion of the transmitted light will follow an emission pathway to a detector. Transmitted light passes through lens 417 c and may pass through an emission aperture 431 and/or an emission polarizer 432 .
  • the emission aperture is placed in an image plane conjugate to the sensed volume and transmits light substantially exclusively from this sensed volume.
  • the emission apertures in the top and bottom optical systems are the same size as the associated excitation apertures, although other sizes also may be used.
  • the emission polarizers are included only with top optics head 412 a. The emission aperture and emission polarizer are substantially similar to their excitation counterparts. Emission polarizer 432 may be included in detectors that intrinsically detect the polarization of light.
  • Excitation polarizers 414 and emission polarizers 432 may be used together in nonpolarization assays to reject certain background signals.
  • Luminescence from the sample holder and from luminescent molecules adhered to the sample holder is expected to be polarized, because the rotational mobility of these molecules should be hindered.
  • Such polarized background signals can be eliminated by “crossing” the excitation and emission polarizers, that is, setting the angle between their transmission axes at 90°. As described above, such polarized background signals also can be reduced by moving the sensed volume away from walls of the sample holder.
  • beamsplitter 418 should be optimized for reflection of one polarization and transmission of the other polarization. This method will work best where the luminescent molecules of interest emit relatively unpolarized light, as will be true for small luminescent molecules in solution.
  • Transmitted light next passes through an emission fiber optic cable 434 a b to an emission optical shuttle (or switch) 436 .
  • This shuttle positions the appropriate emission fiber optic cable in front of the appropriate detector.
  • these components are substantially similar to their excitation counterparts, although other mechanisms also could be employed.
  • Light exiting the fiber optic cable next may pass through one or more emission “intensity filters,” which generally comprise any mechanism for reducing the intensity of light. Intensity refers to the amount of light per unit area per unit time.
  • intensity is altered by emission neutral density filters 438 , which absorb light substantially independent of its wavelength, dissipating the absorbed energy as heat.
  • Emission neutral density filters 438 may include a high-density filter H that absorbs most incident light, a medium-density filter M that absorbs somewhat less incident light, and a blank O that absorbs substantially no incident light. These filters may be changed manually, or they may be changed automatically, for example, by using a filter wheel.
  • Intensity filters also may divert a portion of the light away from the sample without absorption.
  • Examples include beam splitters, which transmit some light along one path and reflect other light along another path, and diffractive beam splitters (e.g., acousto-optic modulators), which deflect light along different paths through diffraction.
  • Examples also include hot mirrors or windows that transmit light of some wavelengths and absorb light of other wavelengths.
  • Emission interference filter 440 may be housed in an emission filter wheel 442 .
  • these components are substantially similar to their excitation counterparts, although other mechanisms also could be employed.
  • Emission interference filters block stray excitation light, which may enter the emission path through various mechanisms, including reflection and scattering. If unblocked, such stray excitation light could be detected and misidentified as photoluminescence, decreasing the signal-to-background ratio.
  • Emission interference filters can separate photoluminescence from excitation light because photoluminescence has longer wavelengths than the associated excitation light. Luminescence typically has wavelengths between 200 and 2000 nanometers.
  • Optical system 390 includes detector slots 4145 a - d for four detectors, although other numbers of detector slots and detectors also could be provided.
  • detectors comprise any mechanism capable of converting energy from detected light into signals that may be processed by the apparatus, and by the processor in particular.
  • Suitable detectors include photomultiplier tubes, photodiodes, avalanche photodiodes, charge-coupled devices (CCDs), and intensified CCDs, among others.
  • CCDs charge-coupled devices
  • intensified CCDs intensified CCDs
  • detection modes include (1) discrete (e.g., photon-counting) modes, (2) analog (e.g., current-integration) modes, and/or (3) imaging modes, among others, as described in PCT patent application Ser. No. PCT/US99/03678.
  • FIGS. 9, 10, and 12 show the chemiluminescence optical system of optical system 390 . Because chemiluminescence follows a chemical event rather than the absorption of light, the chemiluminescence optical system does not require a light source or other excitation optical components. Instead, the chemiluminescence optical system requires only selected emission optical components. In optical system 390 , a separate lensless chemiluminescence optical system is employed, which is optimized for maximum sensitivity in the detection of chemiluminescence.
  • chemiluminescence optical system performs the same functions and are subject to the same caveats and alternatives as their counterparts in the incident light-based optical system.
  • the chemiluminescence optical system also can be used for other assay modes that do not require illumination, such as electrochemiluminescence.
  • the chemiluminescence optical path begins with a chemiluminescent sample 420 held in a sample holder 426 .
  • the sample and sample holder are analogous to those used in photoluminescence assays; however, analysis of the sample involves measuring the intensity of light generated by a chemiluminescence reaction within the sample rather than by light-induced photoluminescence.
  • a familiar example of chemiluminescence is the glow of the firefly.
  • Chemiluminescence light typically is transmitted from the sample in all directions, although most will be absorbed or reflected by the walls of the sample holder. A portion of the light transmitted through the top of the well is collected using a chemiluminescence head 450 , as shown in FIG. 9, and will follow a chemiluminescence optical pathway to a detector. The direction of light transmission through the chemiluminescence optical system is indicated by arrows.
  • the chemiluminescence head includes a nonconfocal mechanism for transmitting light from a sensed volume within the sample. Detecting from a sensed volume reduces contributions to the chemiluminescence signal resulting from “cross talk,” which is pickup from neighboring wells.
  • the nonconfocal mechanism includes a chemiluminescence baffle 452 , which includes rugosities 453 that absorb or reflect light from other wells.
  • the nonconfocal mechanism also includes a chemiluminescence aperture 454 that further confines detection to a sensed volume.
  • Fiber optic cable 456 is analogous to excitation and emission fiber optic cables 410 a,b and 434 a,b in the photoluminescence optical system.
  • Fiber optic cable 456 may include a transparent, open-ended lumen that may be filled with fluid. This lumen would allow the fiber optic to be used both to transmit luminescence from a microplate well and to dispense fluids into the microplate well. The effect of such a lumen on the optical properties of the fiber optic could be minimized by employing transparent fluids having optical indices matched to the optical index of the fiber optic.
  • chemiluminescence intensity filters which generally comprise any mechanism for reducing the intensity of light.
  • intensity is altered by chemiluminescence neutral density filters 458 .
  • Light also may pass through other filters, if desired.
  • Light last passes to a detector, which converts light into signals that may be processed by the apparatus.
  • a detector which converts light into signals that may be processed by the apparatus.
  • chemiluminescence detector 460 This detector may be selected to optimize detection of blue/green light, which is the type most often produced in chemiluminescence.
  • a preferred detection is a photomultiplier tube, selected for high quantum efficiency and low dark count at chemiluminescence wavelengths (400-500 nanometers).
  • the apparatus and methods described herein may be used with any of the light detection devices, light detection methods, and/or sample holders described in the above-identified patent applications.
  • the invention may be used for fluorescence and phosphorescence measurements, which involve illuminating with light of one wavelength and detecting light of a longer wavelength.
  • the invention also may be used for epi-absorption measurements, which involve illuminating with and detecting light of the same wavelength.
  • the invention also may be used for chemiluminescence measurements, which involve only detecting light.

Abstract

Apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio.

Description

    CROSS REFERENCES TO PRIORITY APPLICATIONS
  • This application is a continuation of PCT patent application Ser. No. PCT/US00/18547, filed Jul. 7, 2000, which in turn is based upon and claims priority from U.S. Provisional Patent Application Serial No. 60/142,721, filed Jul. 7, 1999. These PCT and provisional patent applications are each incorporated herein by reference. [0001]
  • CROSS REFERENCES TO RELATED MATERIALS
  • This application incorporates by reference the following U.S. patent applications: Ser. No. 08/840,553, filed Apr. 14, 1997; Ser. No. 08/929,095, filed Sep. 15, 1997; Ser, No. 09/118,141, filed Jul. 16, 1998; Ser. No. 09/144,575, filed Aug. 31, 1998; Ser. No. 09/144,578, filed Aug. 31, 1998; Ser. No. 09/146,081, filed Sep. 2, 1998; Ser. No. 09/156,318, filed Sep. 18, 1998; Ser. No. 09/160,533, filed Sep. 24, 1998; Ser. No. 09/302,158, filed Apr. 29, 1999; Ser. No. 09/349,733, filed Jul. 8, 1999; Ser. No. 09/468,440, filed Dec. 21, 1999; Ser. No. 09/478,819, filed Jan. 5, 2000; Ser. No. 09/494,407, filed Jan. 28, 2000; Ser. No. 09/556,030, filed Apr. 20, 2000; and Ser. No. 09/596,444, filed Jun. 19, 2000. [0002]
  • This application also incorporates by reference the following PCT patent applications: Ser. No. PCT/US99/01656, filed Jan. 25, 1999; Ser. No. PCT/US99/03678, filed Feb. 19, 1999; Ser. No. PCT/US99/08410, filed Apr. 16, 1999; Ser. No. PCT/US99/16057, filed Jul. 15, 1999; Ser. No. PCT/US99/16453, filed Jul. 21, 1999; Ser. No. PCT/US99/16621, filed Jul. 23, 1999; Ser. No. PCT/US99/16286, filed Jul. 26, 1999; Ser. No. PCT/US99/16287, filed Jul. 26, 1999; Ser. No. PCT/US99/24707, filed Oct. 19, 1999; Ser. No. PCT/US00/00895, filed Jan. 14, 2000; Ser. No. PCT/TJS00/03589, filed Feb. 11, 2000; Ser. No. PCT/US00/04543, filed Feb. 22, 2000; Ser. No. PCT/US00/06841, filed Mar. 15, 2000; Ser. No. PCT/US00/12277, filed May 3, 2000; Ser. No. PCT/US00/15774, filed Jun. 9, 2000; Ser. No. PCT/US00/16012, filed Jun. 9, 2000; and Ser. No. PCT/US00/16025, filed Jun. 9, 2000. [0003]
  • This application also incorporates by reference the following U.S. provisional patent applications: Ser. No. 60/143,185, filed Jul. 9, 1999; Ser. No. 60/153,251, filed Sep. 10, 1999; Ser. No. 60/164,633, filed Nov. 10, 1999; 60/165,813, filed Nov. 16, 1999; Ser. No. 60/167,301, filed Nov. 24, 1999; Ser. No. 60/167,463, filed Nov. 24, 1999; Ser. No. 60/178,026, filed Jan. 26, 2000; Ser. No. 60/182,036, filed Feb. 11, 2000; Ser. No. 60/182,419, filed Feb. 14, 2000; Ser. No. 60/184,719, filed Feb. 24, 2000; Ser. No. 60/184,924, filed Feb. 25, 2000; Ser. No. 60/190,265, filed Mar. 17, 2000; Ser. No. 60/191,890, filed Mar. 23, 2000; Ser. No. 60/193,586, filed Mar. 30, 2000; Ser. No. 60/197,324, filed Apr. 14, 2000; Ser. No. 60/200,530, filed Apr. 27, 2000; Ser. No. 60/200,594, filed Apr. 28, 2000; and Ser. No. 60/202,087, filed May 4, 2000. [0004]
  • This application also incorporates by reference the following publications: K. E. van Holde, [0005] Physical Biochemistry (2nd ed. 1985); William Bains, Biotechnology from A to Z (1993); Richard P. Haugland, Handbook of Fluorescent Probes and Research Chemicals (6th ed. 1996); Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy (2nd ed. 1999); Bob Sinclair, Everything's Great When It Sits on a Chip: A Bright Future for DNA Arrays, 13 THE SCIENTIST, May 24, 1999, at 18; and Charles R. Cantor and Paul R. Schimmel, Biophysical Chemistry (1980).
  • FIELD OF THE INVENTION
  • The invention relates to optical detection. More particularly, the invention relates to apparatus and methods for optical detection with improved read speed and/or signal-to noise ratio. The apparatus and methods may be used with microplates, biochips, m chromatography plates, microscope slides, and other substrates for high-throughput screening, genomics, SNPs analysis, pharmaceutical research and development, life sciences research, and other applications. [0006]
  • BACKGROUND OF THE INVENTION
  • Optical spectroscopy is the study of the interaction of light with matter. Typically, optical spectroscopy involves monitoring some property of light that is changed by its interaction with matter, and then using that change to characterize the components and properties of a molecular system. Recently, optical spectroscopy has been used in high throughput screening procedures to identify candidate drug compounds. [0007]
  • Optical spectroscopy is a broad term that describes a number of methods, such as absorption, luminescence (such as photoluminescence and chemiluminescence), scattering/reflectance, circular dichroism, optical rotation, and optical microscopy/imaging, among others. In turn, each of these terms describes a number of more closely related methods; for example photoluminescence includes fluorescence intensity (FLINT), fluorescence polarization (FP), fluorescence resonance energy transfer (FRET), fluorescence lifetime (FLT), total internal reflection fluorescence (TIRF), fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP), and their phosphorescence analogs, among others. [0008]
  • Unfortunately, optical detection systems for use in optical spectroscopy suffer from a number of shortcomings. In particular, optical detection systems generally involve alignment of a sample and portions of an optical relay structure (such as an optics head) for directing light to and from the sample. Such alignment may be accomplished by physically moving the sample relative to the optical relay structure, or by physically moving the optical relay structure relative to the sample. Typically, such movement is followed by a waiting period before measurement to permit vibrations to subside. Time spent during alignment and subsequent waiting periods is downtime because it is time during which data cannot be collected from the sample. Such downtime is especially significant in high-throughput screening, where tens or hundreds of thousands of samples must be aligned with an optical relay structure to conduct a particular study. [0009]
  • In principle, the number of alignment steps can be reduced by reading simultaneously from a plurality of samples or from a larger area of a single sample. However, simultaneous reading typically will reduce intensities, because excitation light is distributed to a larger area and because the distance between the sample and optical relay structure is increased. Reduced intensities may decrease signal-to-noise ratios, decreasing reliability, especially with less intense nonlaser light sources. [0010]
  • SUMMARY OF THE INVENTION
  • The invention provides apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a light detection device constructed in accordance with aspects of the invention, showing the device in use to read from a substrate. [0012]
  • FIG. 2 is an alternative schematic view of the light detection device of FIG. 1. [0013]
  • FIG. 3 is a schematic view of an alternative light detection device constructed in accordance with aspects of the invention, showing the device in use to read from a substrate. [0014]
  • FIG. 4 is an alternative schematic view of the light detection device of FIG. 3. [0015]
  • FIGS. [0016] 5-7 are schematic views of other alternative light detection devices constructed in accordance with aspects of the invention.
  • FIG. 8 is a partially exploded perspective view of yet another light detection device constructed in accordance with aspects of the invention, showing a transport module and an analysis module. [0017]
  • FIG. 9 is a schematic view of an optical system from the analysis module of FIG. 8. [0018]
  • FIG. 10 is a partially schematic perspective view of portions of the apparatus of FIG. 8. [0019]
  • FIG. 11 is a schematic view of photoluminescence optical components from the optical system of FIG. 9. [0020]
  • FIG. 12 is a schematic view of chemiluminescence optical components from the optical system of FIG. 9.[0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides apparatus and methods for optical detection with improved read speed and/or signal-to-noise ratio. These apparatus and methods may involve among others moving a sample substrate while simultaneously detecting light transmitted from one or more sample sites on the substrate by sequentially tracking the sample sites as they move. In this way, downtime associated with starting and stopping the sample substrate and with an inability to read during or immediately after moving the substrate may be reduced or eliminated. The following examples illustrate without limitation additional aspects of the invention. [0022]
  • EXAMPLE 1
  • FIG. 1 shows a [0023] light detection device 100 constructed in accordance with aspects of the invention. Device 100 includes a stage 101, an examination region 102, and an optics head 104. Examination region 102 is delimited by a detection initiation position 106 a and a detection termination position 106 b. Stage 101 may be used to support a substrate 108 having a plurality of sample sites 110, such as a microplate and associated microplate wells, and optics head 104 may be used to direct light 112 to and/or from a sensed volume 114 positioned in a sample site located in the examination region. Specifically, light may be directed to the sample site from a light source 116, and/or light may be directed from the substrate to a detector 118. Typically, the examination region will be larger than the sensed volume, and the separation between adjacent/examined sample sites will be larger than the separation between the initiation position and the termination position. Suitable substrates, light sources, detectors, and optical relay structures for directing light to an optics head and substrate from a light source, and from a substrate and optics head to a detector are described below.
  • [0024] Device 100 also includes a scanning mechanism 120 configured to scan the substrate, so that device 100 may read from a plurality of positions on the substrate. In device 100, scanning mechanism 120 includes a reflective surface 122 and is configured simultaneously to move (at least a portion of) the optics head and substrate, preferably in a single direction. The optics head tracks the substrate between detection initiation position 106 a and detection termination position 106 b, and signal is collected continuously during an integration time over which there typically is no substantial relative motion between the optics head and the sample being analyzed. After the integration time, the position of the sensed volume (or optical beam) may be reset to the detection initiation position so that the sensed volume can track and detect from the next sample site on the substrate. If the reset time is small compared to the integration time, the percentage of time lost will be small. The scanning mechanism improves read time by reducing the time that the detection optics spends over areas of the substrate that do not contain sample to be interrogated. (Any time spent over such areas can be considered downtime.) The scanning mechanism also improves read time because the substrate moves continuously, more rapidly bringing new areas of the substrate into position for reading, and because the need for a waiting period for vibrations to subside is reduced or eliminated if the substrate does not jostle the samples by starting, stopping, or otherwise significantly changing speed. In this regard, the sample sites may move at a substantially constant speed, at least through the examination region.
  • [0025] Device 100 may use any of various strategies to read from multiple sample sites. The device can read from the sample sites sequentially, one-by-one, as described above, or it can read from the sites in groups of two or more. Here, such reading groups may be parallel or perpendicular to the direction of reading, or a combination thereof. The device also can read from a first array in a first direction, move or offset in a second (typically perpendicular) direction, and then read again in the first direction from a second array parallel to the first array. Mechanisms for moving a sample substrate in one, two, or three directions are described in PCT patent application Ser. No. PCT/US00/12277, filed May 3, 2000, which is incorporated herein by reference.
  • Signal from samples on the (moving) substrate may be read by point-to-point reading or by constant velocity scanning. In point-to-point reading, the optics head is fixed relative to the substrate, as described above, while the signal from the detector is integrated for a desired period. In constant velocity scanning, the optical beam is moved relative to the substrate, while the signal from the detector is “binned” into pixels. The size of each pixel is simply the product of the scanning speed (relative to the substrate speed) and the integration time. For example, if the (relative) scanning speed is 10 mm per second and the integration time is 100 milliseconds, the pixel size is 1 mm. [0026]
  • With this technique, a point-to-point reading detection system can read photoluminescent samples essentially as rapidly as a charge-coupled device (CCD)-based reading system with an equivalent light source and numerical aperture. This is because the light source is the limitation, not the detector. A CCD is faster for chemiluminescence, because it collects the light emitted (which is not affected by detector area) from all samples simultaneously. The light output of each well is decreased in large area photoluminescence, because the illumination per well is reduced, so that the increased speed resulting from collecting light from all wells in parallel is cancelled by the reduced illumination per well. nevertheless, the invention can be effective with fluorescence, phosphorescence, and chemiluminescence measurements, because for a given total read time, more time is spent integrating signal, and less time is spent aligning the optics with new samples. The invention is particularly effective with fluorescence polarization measurements, because good signal-to-noise ratios preferably involve collection of a minimum number of photons (e.g., 10,000) during the integration period, as described in U.S. patent application Ser. No. 09/349,733, which is incorporated herein by reference. [0027]
  • FIG. 2 is an alternative view of [0028] light detection device 100 showing details of the optical relay structures. Here, light 112 is directed from light source 116 (or equivalently from a fiber or other optics operatively connected to light source 116) through a collimating (e.g., convex-plano) lens 124 and onto a beamsplitter 126, which directs a portion of the light toward substrate 108. Light emitted from the substrate is directed onto the beamsplitter, which transmits a portion of the light through a focusing (e.g., a plano-convex) lens 128 toward detector 118 (or equivalently a fiber or other optics operatively connected to detector 118).
  • Here, reflective element [0029] 122 (a parabolic section) may be moved to track the plate motion during integration, and then to “fly-back” quickly to the starting position for the next integration. If the input/output light 112 is collimated, the change in path length will not affect focus, spot size, or light collection, among others. The optics is reflective, which can improve efficiency, optical bandwidth, and cost relative to refractive optics. The moving element can be supported on nonfriction bearings, such as flexures (for example, on a four-bar linkage), because motion is small (˜2 mm for a 1536-well plate). Feedback can be provided to reduce positional error of the mirror. In fact, by measuring stage and mirror position and feeding back the error to the mirror drive, the stage and mirror can be locked together so that the mirror tracks the well location substantially exactly, even if the plate motion is not perfectly smooth. This has the significant advantage that substantially precise motion may be accomplished on a much lower mass object (the mirror, instead of the plate and its stage), so that bandwidth is higher and power requirements are lower.
  • EXAMPLE 2
  • FIG. 3 shows an alternative [0030] light detection device 200 constructed in accordance with aspects of the invention. Device 200 includes a stage 201, an examination site 202 delimited as above, and an optics head 204 for directing light 206 to and/or from a substrate 208 positioned in the examination site. Device 200 also includes a scanning mechanism 210 configured to scan the substrate. In device 200, the scanning mechanism is configured to move the substrate while holding the optics head fixed. More specifically, the scanning mechanism is configured to rotate rather than translate. Scanning mechanism 212 may include a galvanometer mirror and/or a rotating polygon mirror for matching illumination and/or detection with particular areas of the substrate. Galvanometer mirrors include small planar or convex mirrors attached to the rotating coil of a galvanometer to move a spot of reflected light, among others. Rotating polygon mirrors include a polygonal mirror attached to a driver to move a spot of reflected light, among others.
  • [0031] Device 200 may be used with any light source, although nonlaser light sources, such as arc lamps or LEDs, present special difficulties. This is because the distance between the source and detector may be relatively long, which may result in lower efficiencies with nonlaser light sources. Some of the difficulty may be overcome by using a high color temperature continuous light source, as described in U.S. patent application Ser. No. 09/349,733, which is incorporated herein by reference.
  • FIG. 4 shows an alternative view of [0032] light detection device 200, illustrating several techniques, including a galvanometer technique and a rotating polygon technique. The optics are substantially as described above for FIG. 2, except that a lens such as a plano-convex, converging, or other positive strength lens is used between the scanning mechanism and the substrate for field flattening.
  • The primary drawing in FIG. 4 illustrates a galvanometer technique. Here, driven by a galvanometer-type movement, a [0033] mirror 220 pivots through a small angle and then returns to its start position to repeat the cycle. Suitable drivers include galvanometers, voice-coil drivers, and piezo drivers. The mirror and driver typically are supported by nonfriction bearings, which may include springs, torsion springs, and/or flexures. A lack of stick-slip enables precise, low-power positioning. The system can be resonant, meaning that the compliance of the bearings resonates with the combined mass of the mirror and driver. If the system is resonant, power requirements will drop significantly. Feedback can be provided as above to reduce positional error of the mirror.
  • The inset in FIG. 4 illustrates a rotating polygon technique. Here, instead of scanning a mirror back-and-forth as above, a polygonal mirror [0034] 230 (or section 232 thereof) rotates in synchrony with the stage. The motor drive may be much easier: if the mirrors are curved, or if an optic is added, the motion may be at constant angular velocity. To reduce dead time between integrations, the polygon should be large compared to the collimated beam. (Dead time occurs when the beam is on two facets of the mirror at once.)
  • With both the galvanometer and rotating polygon techniques, the focused spot tends to follow an arc. If the plate is planar, resulting difficulties may be corrected by effectively increasing the radius of curvature of the arc by adding a field-flattening optic, by offsetting the axis of rotation of the galvanometer, and/or by providing a rotating polygon with curved faces. Whether corrected or not, the arc will track the sample site in the same direction over the distance scale of the examination region. [0035]
  • EXAMPLE 3
  • FIGS. [0036] 5-6 show other alternative light detection devices constructed in accordance with aspects of the invention. These devices involve scanning an aperture over a larger area detector/source. In these (and other) embodiments, the light may not be collimated as it goes through the scanning mechanism.
  • FIG. 5 shows a first pair of embodiments involving scanning an aperture. If the detector can accommodate the entire motion of the scanned location (e.g., an area of 2.25 mm×4.5 mm for a 1536-well microplate), which is true with a photomultiplier tube (PMT), and if the source can illuminate it, then only an aperture need be scanned. This is accomplished by imaging a small area of the plate adjacent the well being measured onto a second “aperture plate.” The aperture plate is moved in synchrony with the sample plate, but in the opposite direction, so that light to and from only one well can make it through the aperture. If the lens demagnifies by a [0037] factor 1/m, then the aperture plate should move at a speed m times the sample plate speed. The subsequent optics has much relaxed imaging requirements because there is little or no possibility of cross-talk. The aperture plate also could have more than one set of associated optics to increase throughput (requiring multiple imaging elements) or to provide “quick-change” capability for different wavelengths, excitations, etc. The dichroic mirror can pivot to reduce the illuminated area requirement.
  • A sample plate or other substrate can be imaged onto an “aperture plate” refractively or reflectively, among others. A plate can be imaged refractively using a lens. A plate can be imaged reflectively (with advantages as mentioned above) using a mirror, such as a section of an ellipse. The mirror may be dichroic, which can eliminate all lenses and greatly increase bandwidth; this permits the focus to be adjusted without moving the aperture plate or optics Oust the imaging unit), so that the light source(s) and detector(s) can be mounted at the optics head, eliminating the cost and light loss associated with fiber optics. Again, mirrors can be scanned or pivoted to reduce illumination requirements. [0038]
  • FIG. 6 shows a second pair of embodiments involving scanning an aperture. The imaging optics (mirror or lens) can be rotated, or a prism inside the imaging optics can be rotated. Alternatively, the techniques described above can be used with an ellipsoidal mirror, with or without demagnification. [0039]
  • EXAMPLE 4
  • FIG. 7 shows yet another alternative device constructed in accordance with aspects of the invention, using a Digital Mirror Device (DMD). This device has a large array of very small (10-20 micron), very fast mirrors that can be rotated under electronic control. Placed in an image plane, they can be used to control the area that is reflected into the optics. A suitable DMD (used for video projectors) may be obtained commercially from Texas Instruments Inc. (Dallas, Tex.). [0040]
  • EXAMPLE 5
  • The apparatus and methods for optical detection provided by the invention can be used in a large variety of optical systems and for a large variety of optical applications. This example describes a preferred system, namely a multi-mode high-throughput light detection system for analyzing samples. [0041]
  • At FIG. 8 shows such a [0042] system 350, which includes a transport module 352 and an analysis module 354 capable of detecting and analyzing light. The transport module includes I/O sites 356, a transfer site 358, and mechanisms (not visible) for transporting sample holders between the I/O and transfer sites, as described above. The analysis module includes a housing 360, a moveable control unit 362, an optical system (not visible), and a transport mechanism 364. The housing may be used to enclose the analysis module, protecting both the user and components of the module, and may be used as a fixed reference point to describe the motions of any moveable portions of the apparatus, such as a scanning optics head. The control unit may be used to operate the module manually and/or robotically, as described in U.S. Pat. No. 6,025,985, which is incorporated herein by reference. The optical system and transport mechanisms are described in subsequent sections.
  • FIGS. [0043] 9-12 show an optical system (and related components) 390 for use in system 350. The optical system may include components for generating and/or detecting light, and for transmitting light to and/or from a sample. These components may include (1) a stage for supporting the sample, (2) one or more light sources for delivering light to the sample, (3) one or more detectors for receiving light transmitted from the sample and converting it to a signal, (4) first and second optical relay structures for relaying light between the light source, sample, and detector, and/or (5) a processor for analyzing the signal from the detector. System components may be chosen to optimize speed, sensitivity, and/or dynamic range for one or more assays. For example, optical components with low intrinsic luminescence may be used to enhance sensitivity in luminescence assays by reducing background. System components also may be shared by different assays, or dedicated to particular assays. For example, steady-state photoluminescence assays may use a continuous light source, time-resolved photoluminescence assays may use a time-varying light source, and chemiluminescence assays may not use a light source. Similarly, steady-state and time-resolved photoluminescence assays may both use a first detector, and chemiluminescence assays may use a second detector.
  • [0044] Optical system 390 includes (a) a photoluminescence optical system, and (b) a chemiluminescence optical system, as described below. Further aspects of the optical system are described in the following patent applications, which are incorporated herein by reference: U.S. patent application Ser. No. 09/160,533, filed Sep. 24, 1998; U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999; PCT patent application Ser. No. PCT/US99/16287, filed Jul. 26, 1999; and PCT patent application Ser. No. PCT/US00/04543, filed Feb. 22, 2000.
  • a. Photoluminescence Optical System [0045]
  • FIGS. [0046] 9-11 show the photoluminescence (or incident light-based) optical system of optical system 390. As configured here, optical system 390 includes a continuous light source 400 and a time-modulated light source 402. Optical system 390 includes light source slots 403 a-d for four light sources, although other numbers of light source slots and light sources also could be provided. Light source slots 403 a-d function as housings that may surround at least a portion of each light source, providing some protection from radiation and explosion. The direction of light transmission through the incident light based optical system is indicated by arrows.
  • [0047] Continuous source 400 provides light for absorbance, scattering, photoluminescence intensity, and steady-state photoluminescence polarization assays. Continuous light source 400 may include arc lamps, incandescent lamps, fluorescent lamps, electroluminescent devices, lasers, laser diodes, and light-emitting diodes (LEDs), among others. A preferred continuous source is a high-intensity, high color temperature xenon arc lamp, such as a Model LX175F CERMAX xenon lamp from ILC Technology, Inc. Color temperature is the absolute temperature in Kelvin at which a blackbody radiator must be operated to have a chromaticity equal to that of the light source. A high color temperature lamp produces more light than a low color temperature lamp, and it may have a maximum output shifted toward or into visible wavelengths and ultraviolet wavelengths where many luminophores absorb. The preferred continuous source has a color temperature of 5600 Kelvin, greatly exceeding the color temperature of about 3000 Kelvin for a tungsten filament source. The preferred source provides more light per unit time than flash sources, averaged over the flash source duty cycle, increasing sensitivity and reducing read times. Optical system 390 may include a modulator mechanism configured to vary the intensity of light incident on the sample without varying the intensity of light produced by the light source. Further aspects of the continuous light source are described in U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999, which is incorporated herein by reference.
  • Time-modulated [0048] source 402 provides light for time-resolved absorbance and/or photoluminescence assays, such as photoluminescence lifetime and time-resolved photoluminescence polarization assays. A preferred time-modulated source is a xenon flash lamp, such as a Model FX-1160 xenon flash lamp from EG&G Electro-Optics. The preferred source produces a “flash” of light for a brief interval before signal detection and is especially well suited for time-domain measurements. Other time-modulated sources include pulsed lasers, electronically modulated lasers and LEDs, and continuous lamps and other sources whose intensity can be modulated extrinsically using a Pockels cell, Kerr cell, or other mechanism. Such other mechanisms may include an amplitude modulator such as a chopper as described in PCT patent application Ser. No. PCT/US99/16287, filed Jul. 26, 1999, which is incorporated herein by reference. Extrinsically modulated continuous light sources are especially well suited for frequency domain measurements.
  • In [0049] optical system 390, continuous source 400 and time-modulated source 402 produce multichromatic, unpolarized, and incoherent light. Continuous source 400 produces substantially continuous illumination, whereas time-modulated source 402 produces time-modulated illumination. Light from these light sources may be delivered to the sample without modification, or it may be filtered to alter its intensity, spectrum, polarization, or other properties.
  • Light produced by the light sources follows an excitation optical path to an examination site or measurement region. Such light may pass through one or more “spectral filters,” which generally comprise any mechanism for altering the spectrum of light that is delivered to the sample. Spectrum refers to the wavelength composition of light. A spectral filter may be used to convert white or multichromatic light, which includes light of many colors, into red, blue, green, or other substantially monochromatic light, which includes light of one or only a few colors. In [0050] optical system 390, spectrum is altered by an excitation interference filter 404, which preferentially transmits light of preselected wavelengths and preferentially absorbs light of other wavelengths. For convenience, excitation interference filters 404 may be housed in an excitation filter wheel 406, which allows the spectrum of excitation light to be changed by rotating a preselected filter into the optical path. Spectral filters also may separate light spatially by wavelength. Examples include gratings, monochromators, and prisms.
  • Spectral filters are not required for monochromatic (“single color”) light sources, such as certain lasers, which output light of only a single wavelength. Therefore, [0051] excitation filter wheel 406 may be mounted in the optical path of some light source slots 403 a,b, but not other light source slots 403 c,d. Alternatively, the filter wheel may include a blank station that does not affect light passage.
  • Light next passes through an excitation optical shuttle (or switch) [0052] 408, which positions an excitation fiber optic cable 410 a,b in front of the appropriate light source to deliver light to top or bottom optics heads 412 a,b, respectively. Light is transmitted through a fiber optic cable much like water is transmitted through a garden hose. Fiber optic cables can be used easily to turn light around corners and to route light around opaque components of the apparatus. Moreover, fiber optic cables give the light a more uniform intensity profile. A preferred fiber optic cable is a fused silicon bundle, which has low autoluminescence. Despite these advantages, light also can be delivered to the optics heads using other mechanisms, such as mirrors.
  • Light arriving at the optics head may pass through one or more excitation “polarization filters,” which generally comprise any mechanism for altering the polarization of light. Excitation polarization filters may be included with the top and/or bottom optics head. In [0053] optical system 390, polarization is altered by excitation polarizers 414, which are included only with top optics head 412 a for top reading; however, such polarizers also can be included with bottom optics head 412 b for bottom reading. Excitation polarization filters 414 may include an s-polarizer S that passes only spolarized light, a p-polarizer P that passes only p-polarized light, and a blank O that passes substantially all light, where polarizations are measured relative to the beamsplitter. Excitation polarizers 414 also may include a standard or ferro-electric liquid crystal display (LCD) polarization switching system. Such a system may be faster than a mechanical switcher. Excitation polarizers 414 also may include a continuous mode LCD polarization rotator with synchronous detection to increase the signal-to-noise ratio in polarization assays. Excitation polarizers 414 may be incorporated as an inherent component in some light sources, such as certain lasers, that intrinsically produce polarized light. Further aspects of the polarization filters and their use in polarization assay are described in U.S. patent application Ser. No. 09/349,733, filed Jul. 8, 1999, which is incorporated herein by reference.
  • Light at one or both optics heads also may pass through an excitation “confocal optics element,” which generally comprises any mechanism for focusing light into a “sensed volume.” In [0054] optical system 390, the confocal optics element includes a set of lenses 417 a-c and an excitation aperture 416 placed in an image plane conjugate to the sensed volume, as shown in FIG. 11. Aperture 416 may be implemented directly, as an aperture, or indirectly, as the end of a fiber optic cable. Preferred apertures have diameters of 1 mm and 1.5 mm. Lenses 417 a,b project an image of aperture 416 onto the sample, so that only a preselected or sensed volume of the sample is illuminated. The area of illumination will have a diameter corresponding to the diameter of the excitation aperture.
  • Light traveling through the optics head is directed onto a [0055] beamsplitter 418, which reflects light toward a sample 420 and transmits light toward a light monitor 422. The reflected light passes through lens 417 b, which is operatively positioned between beamsplitter 418 and sample 420.
  • [0056] Beamsplitter 418 is used to direct excitation or incident light toward the sample and light monitor, and to direct light leaving the sample toward the detector. The beamsplitter is changeable, so that it may be optimized for different assay modes or samples. In some embodiments, switching between beamsplitters may be performed manually, whereas in other embodiments, such switching may be performed automatically. Automatic switching may be performed based on direct operator command, or based on an analysis of the sample by the instrument. If a large number or variety of photoactive molecules are to be studied, the beamsplitter must be able to accommodate light of many wavelengths; in this case, a “50:50” beamsplitter that reflects half and transmits half of the incident light independent of wavelength is optimal. Such a beamsplitter can be used with many types of molecules, while still delivering considerable excitation light onto the sample, and while still transmitting considerable light leaving the sample to the detector. If one or a few related photoactive molecules are to be studied, the beamsplitter needs only to be able to accommodate light at a limited number of wavelengths; in this case, a “dichroic” or “multidichroic” beamsplitter is optimal. Such a beamsplitter can be designed with cutoff wavelengths for the appropriate sets of molecules and will reflect most or substantially all of the excitation and background light, while transmitting most or substantially all of the emission light in the case of luminescence. This is possible because the beamsplitter may have a reflectivity and transmissivity that varies with wavelength.
  • The beamsplitter more generally comprises any optical device for dividing a beam of light into two or more separate beams. A simple beamsplitter (such as a 50:50 beamsplitter) may include a very thin sheet of glass inserted in the beam at an angle, so that a portion of the beam is transmitted in a first direction and a portion of the beam is reflected in a different second direction. A more sophisticated beamsplitter (such as a dichroic or multi-dichroic beamsplitter) may include other prismatic materials, such as fused silica or quartz, and may be coated with a metallic or dielectric layer having the desired transmission and reflection properties, including dichroic and multi-dichroic transmission and reflection properties. In some beamsplitters, two right-angle prisms are cemented together at their hypotenuse faces, and a suitable coating is included on one of the cemented faces. Further aspects of the beamsplitter are described in PCT patent application Ser. No. PCT/US00/06841, filed Mar. 15, 2000, which is incorporated herein by reference. [0057]
  • [0058] Light monitor 422 is used to correct for fluctuations in the intensity of light provided by the light sources. Such corrections may be performed by reporting detected intensities as a ratio over corresponding times of the luminescence intensity measured by the detector to the excitation light intensity measured by the light monitor. The light monitor also can be programmed to alert the user if the light source fails. A preferred light monitor is a silicon photodiode with a quartz window for low autoluminescence.
  • The sample (or composition) may be held in a substrate (or sample holder) supported by a [0059] stage 423. The sample can include compounds, mixtures, surfaces, solutions, emulsions, suspensions, cell cultures, fermentation cultures, cells, tissues, secretions, and/or derivatives and/or extracts thereof. Analysis of the sample may involve measuring the presence, concentration, or physical properties (including interactions) of a photoactive analyte in such a sample. Sample may refer to the contents of a single microplate well, or several microplate wells, depending on the assay.
  • The system and its components may be used with a variety of substrates. As used here, “substrate” generally comprises any material, surface, or other holder capable of supporting a sample for use in optical spectroscopy, and preferably for use with automated sample handling equipment. The substrate may support discrete or continuous samples, where sample sites refer to the locations of discrete samples or the locations of different regions within a continuous sample, respectively. The substrate may support samples at low, intermediate, or high density, and be designed for single or multiple use. [0060]
  • Representative sample holders include microplates, PCR plates, biochips, and chromatography plates, among others. A microplate is a multi-well sample holder, typically but not exclusively used for luminescence applications. A PCR plate is a multiwell sample holder used for performing PCR. Preferred PCR plates would include a footprint, well spacing, and well shape similar to those of the preferred microplates, while possessing a stiffness adequate for automated handling and a thermal stability adequate for PCR. A biochip is a small, flat surface (such as a glass or silicon wafer, a semiconductor chip, or a multiple-well CCD) onto which biomolecules (such as nucleic acids and proteins) are immobilized in distinct spots or arrays. Biochips include DNA chips, DNA microarrays, gene arrays, and gene chips, among others. Preferred biochips are described in Bob Sinclair, [0061] Everything's Great When It Sits on a Chip: A Bright Future for DNA Arrays, 13 THE SCIENTIST, May 24, 1999, at 18. As defined here, a chromatography plate is a flat surface used for performing chromatography, electrophoresis, or other separations.
  • In [0062] optical system 390, the preferred sample holder is a microplate 424, which includes a plurality of discrete microplate wells 426 for holding samples. Microplates are typically substantially rectangular holders that include a plurality of sample wells for holding a corresponding plurality of samples. These sample wells are normally cylindrical in shape although rectangular or other shaped wells are sometimes used. The sample wells are typically disposed in regular arrays. The “standard” microplate includes 96 cylindrical sample wells disposed in an 8×12 rectangular array on 9-millimeter centers. Preferred microplates are described in U.S. patent application Ser. No. 09/478,819, filed Jan. 5, 2000, which is incorporated herein by reference.
  • The sensed volume generally comprises any volume from which light is detected, and preferably any volume from which light is substantially exclusively detected. The sensed volume may have an hourglass shape, with a cone angle of about 25° and a minimum diameter ranging between 0.1 mm and 2.0 mm. For 96-well and 384-well microplates, a preferred minimum diameter is about 1.5 mm. For 1536-well microplates, a preferred minimum diameter is about 1.0 mm. The size and shape of the sample holder may be matched to the size and shape of the sensed volume, as described in U.S. patent application Ser. No. 09/478,819, filed Jan. 5, 2000, which is incorporated herein by reference. [0063]
  • The position of the sensed volume can be moved precisely within the sample to optimize the signal-to-noise and signal-to-background ratios. For example, the sensed volume may be moved away from walls or other boundary interfaces in the sample holder to optimize signal-to-noise and signal-to-background ratios, reducing spurious signals that might arise from luminophores bound to the walls and thereby immobilized. In [0064] optical system 390, position in the X,Y-plane perpendicular to the optical path is controlled by moving the stage supporting the sample, whereas position along the Z-axis parallel to the optical path is controlled by moving the optics heads using a Z-axis adjustment mechanism 430, as shown in FIGS. 9 and 10. However, any mechanism for bringing the sensed volume into alignment or register with the appropriate portion of the sample also may be employed. In particular, mechanisms such as those presented above in Examples 1-4 may be employed for bringing the sensed volume into alignment with a preselected portion of a moving sample holder and for maintaining that alignment during sample reading.
  • The combination of top and bottom optics permits assays to combine: (1) top illumination and top detection, or (2) top illumination and bottom detection, or (3) bottom illumination and top detection, or (4) bottom illumination and bottom detection. Same side illumination and detection, (1) and (4), is referred to as “epi” and is preferred for photoluminescence and scattering assays. Opposite-side illumination and detection, (2) and (3), is referred to as “trans” and has been used in the past for absorbance assays. In [0065] optical system 390, epi modes are supported, so the excitation and emission light travel the same path in the optics head, albeit in opposite or anti-parallel directions. However, trans modes also can be used with additional sensors, as described below. In optical system 390, top and bottom optics heads move together and share a common focal plane. However, in other embodiments, top and bottom optics heads may move independently, so that each can focus independently on the same or different sample planes.
  • Generally, top optics can be used with any sample holder having an open top, whereas bottom optics can be used only with sample holders having optically transparent bottoms, such as glass or thin plastic bottoms. Clear bottom sample holders are particularly suited for measurements involving analytes that accumulate on the bottom of the holder. [0066]
  • Light may be transmitted by the sample in multiple directions. A portion of the transmitted light will follow an emission pathway to a detector. Transmitted light passes through [0067] lens 417 c and may pass through an emission aperture 431 and/or an emission polarizer 432. In optical system 390, the emission aperture is placed in an image plane conjugate to the sensed volume and transmits light substantially exclusively from this sensed volume. In optical system 390, the emission apertures in the top and bottom optical systems are the same size as the associated excitation apertures, although other sizes also may be used. The emission polarizers are included only with top optics head 412 a. The emission aperture and emission polarizer are substantially similar to their excitation counterparts. Emission polarizer 432 may be included in detectors that intrinsically detect the polarization of light.
  • [0068] Excitation polarizers 414 and emission polarizers 432 may be used together in nonpolarization assays to reject certain background signals. Luminescence from the sample holder and from luminescent molecules adhered to the sample holder is expected to be polarized, because the rotational mobility of these molecules should be hindered. Such polarized background signals can be eliminated by “crossing” the excitation and emission polarizers, that is, setting the angle between their transmission axes at 90°. As described above, such polarized background signals also can be reduced by moving the sensed volume away from walls of the sample holder. To increase signal level, beamsplitter 418 should be optimized for reflection of one polarization and transmission of the other polarization. This method will work best where the luminescent molecules of interest emit relatively unpolarized light, as will be true for small luminescent molecules in solution.
  • Transmitted light next passes through an emission [0069] fiber optic cable 434a b to an emission optical shuttle (or switch) 436. This shuttle positions the appropriate emission fiber optic cable in front of the appropriate detector. In optical system 390, these components are substantially similar to their excitation counterparts, although other mechanisms also could be employed.
  • Light exiting the fiber optic cable next may pass through one or more emission “intensity filters,” which generally comprise any mechanism for reducing the intensity of light. Intensity refers to the amount of light per unit area per unit time. In [0070] optical system 390, intensity is altered by emission neutral density filters 438, which absorb light substantially independent of its wavelength, dissipating the absorbed energy as heat. Emission neutral density filters 438 may include a high-density filter H that absorbs most incident light, a medium-density filter M that absorbs somewhat less incident light, and a blank O that absorbs substantially no incident light. These filters may be changed manually, or they may be changed automatically, for example, by using a filter wheel. Intensity filters also may divert a portion of the light away from the sample without absorption. Examples include beam splitters, which transmit some light along one path and reflect other light along another path, and diffractive beam splitters (e.g., acousto-optic modulators), which deflect light along different paths through diffraction. Examples also include hot mirrors or windows that transmit light of some wavelengths and absorb light of other wavelengths.
  • Light next may pass through an [0071] emission interference filter 440, which may be housed in an emission filter wheel 442. In optical system 390, these components are substantially similar to their excitation counterparts, although other mechanisms also could be employed. Emission interference filters block stray excitation light, which may enter the emission path through various mechanisms, including reflection and scattering. If unblocked, such stray excitation light could be detected and misidentified as photoluminescence, decreasing the signal-to-background ratio. Emission interference filters can separate photoluminescence from excitation light because photoluminescence has longer wavelengths than the associated excitation light. Luminescence typically has wavelengths between 200 and 2000 nanometers.
  • The relative positions of the spectral, intensity, polarization, and other filters presented in this description may be varied without departing from the spirit of the invention. For example, filters used here in only one optical path, such as intensity filters, also may be used in other optical paths. In addition, filters used here in only top or bottom optics, such as polarization filters, may also be used in the other of top or bottom optics or in both top and bottom optics. The optimal positions and combinations of filters for a particular experiment will depend on the assay mode and the sample, among other factors. [0072]
  • Light last passes to a detector, which is used in absorbance, scattering and photoluminescence assays, among others. In [0073] optical system 390, there is one detector 444, which detects light from all modes. A preferred detector is a photomultiplier tube (PMT). Optical system 390 includes detector slots 4145 a-d for four detectors, although other numbers of detector slots and detectors also could be provided.
  • More generally, detectors comprise any mechanism capable of converting energy from detected light into signals that may be processed by the apparatus, and by the processor in particular. Suitable detectors include photomultiplier tubes, photodiodes, avalanche photodiodes, charge-coupled devices (CCDs), and intensified CCDs, among others. Depending on the detector, light source, and assay mode, such detectors may be used in a variety of detection modes. These detection modes include (1) discrete (e.g., photon-counting) modes, (2) analog (e.g., current-integration) modes, and/or (3) imaging modes, among others, as described in PCT patent application Ser. No. PCT/US99/03678. [0074]
  • b. Chemiluminescence Optical System [0075]
  • FIGS. 9, 10, and [0076] 12 show the chemiluminescence optical system of optical system 390. Because chemiluminescence follows a chemical event rather than the absorption of light, the chemiluminescence optical system does not require a light source or other excitation optical components. Instead, the chemiluminescence optical system requires only selected emission optical components. In optical system 390, a separate lensless chemiluminescence optical system is employed, which is optimized for maximum sensitivity in the detection of chemiluminescence.
  • Generally, components of the chemiluminescence optical system perform the same functions and are subject to the same caveats and alternatives as their counterparts in the incident light-based optical system. The chemiluminescence optical system also can be used for other assay modes that do not require illumination, such as electrochemiluminescence. [0077]
  • The chemiluminescence optical path begins with a [0078] chemiluminescent sample 420 held in a sample holder 426. The sample and sample holder are analogous to those used in photoluminescence assays; however, analysis of the sample involves measuring the intensity of light generated by a chemiluminescence reaction within the sample rather than by light-induced photoluminescence. A familiar example of chemiluminescence is the glow of the firefly.
  • Chemiluminescence light typically is transmitted from the sample in all directions, although most will be absorbed or reflected by the walls of the sample holder. A portion of the light transmitted through the top of the well is collected using a [0079] chemiluminescence head 450, as shown in FIG. 9, and will follow a chemiluminescence optical pathway to a detector. The direction of light transmission through the chemiluminescence optical system is indicated by arrows.
  • The chemiluminescence head includes a nonconfocal mechanism for transmitting light from a sensed volume within the sample. Detecting from a sensed volume reduces contributions to the chemiluminescence signal resulting from “cross talk,” which is pickup from neighboring wells. The nonconfocal mechanism includes a [0080] chemiluminescence baffle 452, which includes rugosities 453 that absorb or reflect light from other wells. The nonconfocal mechanism also includes a chemiluminescence aperture 454 that further confines detection to a sensed volume.
  • Light next passes through a chemiluminescence [0081] fiber optic cable 456, which may be replaced by any suitable mechanism for directing light from the sample toward the detector. Fiber optic cable 456 is analogous to excitation and emission fiber optic cables 410 a,b and 434 a,b in the photoluminescence optical system. Fiber optic cable 456 may include a transparent, open-ended lumen that may be filled with fluid. This lumen would allow the fiber optic to be used both to transmit luminescence from a microplate well and to dispense fluids into the microplate well. The effect of such a lumen on the optical properties of the fiber optic could be minimized by employing transparent fluids having optical indices matched to the optical index of the fiber optic.
  • Light next passes through one or more chemiluminescence intensity filters, which generally comprise any mechanism for reducing the intensity of light. In [0082] optical system 390, intensity is altered by chemiluminescence neutral density filters 458. Light also may pass through other filters, if desired.
  • Light last passes to a detector, which converts light into signals that may be processed by the apparatus. In [0083] optical system 390, there is one chemiluminescence detector 460. This detector may be selected to optimize detection of blue/green light, which is the type most often produced in chemiluminescence. A preferred detection is a photomultiplier tube, selected for high quantum efficiency and low dark count at chemiluminescence wavelengths (400-500 nanometers).
  • Although the invention has been disclosed in its preferred forms, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. For example, the apparatus and methods described herein may be used with any of the light detection devices, light detection methods, and/or sample holders described in the above-identified patent applications. The invention may be used for fluorescence and phosphorescence measurements, which involve illuminating with light of one wavelength and detecting light of a longer wavelength. The invention also may be used for epi-absorption measurements, which involve illuminating with and detecting light of the same wavelength. The invention also may be used for chemiluminescence measurements, which involve only detecting light. Applicants regard the subject matter of their invention to include all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. No single feature, function, element, or property of the disclosed embodiments is essential. The following claims define certain combinations and subcombinations of features, functions, elements, and/or properties that are regarded as novel and nonobvious. Other combinations and subcombinations may be claimed through amendment of the present claims or presentation of new claims in this or a related application. Such claims, whether they are broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of applicants' invention. [0084]

Claims (19)

We claim:
1. An apparatus for detecting light transmitted from a substrate having a plurality of sample sites, the apparatus comprising:
a stage for supporting the substrate, the stage being configured to move the substrate in a first direction so that the sample sites pass sequentially through an examination region delimited by a detection initiation position and a detection termination position;
a detector configured to detect light;
an optical relay structure configured to transmit light from a sensed volume within the examination region to the detector, the sensed volume being smaller than the examination region; and
an automated scanning mechanism configured to move the sensed volume in the first direction between the detection initiation position and the detection termination position;
wherein the sensed volume tracks a first sample site as it moves between the initiation position and the termination position, so that light transmitted by the first sample can be detected by the detector.
2. The apparatus of claim 1, wherein the sensed volume returns to the initiation position after the first sample site passes the termination position to track the next sample site as it moves between the initiation position and the termination position.
3. The apparatus of claim 1 further comprising a light source, where the optical relay structure further is configured to transmit light from the light source to the sensed volume.
4. The apparatus of claim 1, wherein the sample sites move at a substantially constant speed through the examination region.
5. The apparatus of claim 1, wherein the time required for the sensed volume to return to the initiation position is less than the time required for the sensed volume to track a sample site as it moves between the initiation position and the termination position.
6. The apparatus of claim 1, wherein the scanning mechanism includes reflective optics.
7. The apparatus of claim 6, wherein the reflective optics is selected from the group consisting of a parabolic mirror, a polygonal mirror, and a galvanometer mirror.
8. The apparatus of claim 6, wherein at least a portion of the reflective optics undergoes translational motion to track the sample sites.
9. The apparatus of claim 6, wherein at least a portion of the reflective optics undergoes rotational motion to track the sample sites.
10. The apparatus of claim 1, wherein the scanning mechanism includes refractive optics.
11. The apparatus of claim 6, wherein the detector includes a wide area detection device, and the scanning mechanism includes a light blocking member having an aperture positioned between the detection device and the examination region so that sensed volume tracking through the examination region is facilitated by moving the light blocking member relative to the wide area detection device.
12. The apparatus of claim 1, wherein the substrate is selected from the group consisting of a microplate, a biochip, and a chromatography plate.
13. The apparatus of claim 12, wherein the substrate is a microplate and the sample sites are wells in the microplate.
14. The apparatus of claim 1, wherein the separation between the first and second sample sites exceeds the separation between the initiation position and the termination position.
15. The apparatus of claim 1 further comprising a housing configured to support and enclose a least a portion of the apparatus, where the initiation position and the termination position are referenced relative to a fixed portion of the housing.
16. The apparatus of claim 1, wherein the first sample site moves past the termination position before the second sample site moves into the initiation position.
17. The apparatus of claim 1, wherein the light transmitted from the substrate includes light selected from the group consisting of fluorescence, phosphorescence, and chemiluminescence.
18. The apparatus of claim 1, the composition being contained in a spatial volume lying between boundary interfaces located at different points along a Z-axis, wherein the Z-axis is substantially perpendicular to the stage.
19. The apparatus of claim 1, wherein the substrate further includes a third sample site, and wherein the sensed volume returns to the initiation position after the second sample site passes the termination position to track the third sample site as it moves between the initiation position and the termination position.
US10/041,532 1997-09-20 2002-01-07 Light detection device Abandoned US20020060791A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/041,532 US20020060791A1 (en) 1999-07-07 2002-01-07 Light detection device
US10/218,897 US6982431B2 (en) 1998-08-31 2002-08-13 Sample analysis systems
US10/445,292 US6992761B2 (en) 1997-09-20 2003-05-22 Broad range light detection system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14272199P 1999-07-07 1999-07-07
PCT/US2000/018547 WO2001004608A1 (en) 1999-07-07 2000-07-07 Light detection device
US10/041,532 US20020060791A1 (en) 1999-07-07 2002-01-07 Light detection device

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2000/018547 Continuation WO2001004608A1 (en) 1997-09-20 2000-07-07 Light detection device
US10/012,255 Continuation-In-Part US20020158212A1 (en) 1997-09-20 2001-11-12 Apparatus and methods for time-resolved optical spectroscopy
US10/004,647 Continuation-In-Part US6498335B2 (en) 1997-09-20 2001-12-03 Broad range light detection system

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/629,599 Continuation-In-Part US6469311B1 (en) 1997-07-16 2000-07-31 Detection device for light transmitted from a sensed volume
US10/218,897 Continuation-In-Part US6982431B2 (en) 1997-09-20 2002-08-13 Sample analysis systems

Publications (1)

Publication Number Publication Date
US20020060791A1 true US20020060791A1 (en) 2002-05-23

Family

ID=22501017

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/768,765 Expired - Fee Related US6310687B1 (en) 1999-07-07 2001-01-23 Light detection device with means for tracking sample sites
US10/041,532 Abandoned US20020060791A1 (en) 1997-09-20 2002-01-07 Light detection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/768,765 Expired - Fee Related US6310687B1 (en) 1999-07-07 2001-01-23 Light detection device with means for tracking sample sites

Country Status (3)

Country Link
US (2) US6310687B1 (en)
AU (1) AU6075100A (en)
WO (1) WO2001004608A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071394A1 (en) * 2001-01-26 2004-04-15 Andreas Gfrorer Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent pigments
US20050105080A1 (en) * 2001-05-23 2005-05-19 Richard Landlinger Fluorometer
US20050122521A1 (en) * 2003-12-09 2005-06-09 Michael Katzlinger Multimode reader
US20050279949A1 (en) * 1999-05-17 2005-12-22 Applera Corporation Temperature control for light-emitting diode stabilization
US7008789B2 (en) 1998-05-16 2006-03-07 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US20060121602A1 (en) * 2001-11-29 2006-06-08 Hoshizaki Jon A Optical scanning configurations, systems, and methods
EP1750115A1 (en) * 2005-08-05 2007-02-07 Sanyo Electric Co., Ltd. Reaction Detecting Device
US20070059754A1 (en) * 2003-05-08 2007-03-15 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US20070153279A1 (en) * 2003-12-23 2007-07-05 Soren Aasmul Fluorometers
US20070183931A1 (en) * 2006-02-08 2007-08-09 Stock Daniel M Multimode reader
US20070238161A1 (en) * 1998-05-16 2007-10-11 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
KR100817702B1 (en) * 2005-08-05 2008-03-27 산요덴키가부시키가이샤 Reaction Detecting Device
US7387891B2 (en) 1999-05-17 2008-06-17 Applera Corporation Optical instrument including excitation source
US7498164B2 (en) 1998-05-16 2009-03-03 Applied Biosystems, Llc Instrument for monitoring nucleic acid sequence amplification reaction
WO2009049740A1 (en) * 2007-10-09 2009-04-23 Carl Zeiss Microlmaging Gmbh Method for positioning biological samples in a microscopic arrangement
WO2009056670A1 (en) * 2007-10-31 2009-05-07 Wallac Oy Multi-purpose measurement system
US20090128804A1 (en) * 2007-11-20 2009-05-21 Mitsuru Namiki Optical unit
US20090212235A1 (en) * 2008-02-15 2009-08-27 Bio-Rad Laboratories, Inc. Scanning fluorescent reader with diffuser system
US20090317044A1 (en) * 2002-09-05 2009-12-24 Nanosys, Inc. Nanocomposites
WO2012149555A1 (en) * 2011-04-28 2012-11-01 Bio-Rad Laboratories, Inc. Fluorescence scanning head with multiband detection
US8492138B2 (en) 1999-05-17 2013-07-23 Applied Biosystems, Llc Optical instrument including excitation source
US8496879B2 (en) 2006-02-08 2013-07-30 Molecular Devices, Llc Optical detection utilizing cartridge with tunable filter assembly
US20140008539A1 (en) * 2012-07-09 2014-01-09 John Magie Coffin Motorized Variable Path Length Cell for Spectroscopy
WO2014081899A1 (en) * 2012-11-21 2014-05-30 Kla-Tencor Corporation Multi-spectral defect inspection for 3d wafers
US8860937B1 (en) 2012-10-24 2014-10-14 Kla-Tencor Corp. Metrology systems and methods for high aspect ratio and large lateral dimension structures
US8968658B2 (en) 2006-02-08 2015-03-03 Molecular Devices, Llc Luminescence measurement utilizing cartridge with integrated detector
US9719925B2 (en) 2002-05-17 2017-08-01 Applied Biosystems, Llc Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070921B2 (en) 2000-04-28 2006-07-04 Molecular Devices Corporation Molecular modification assays
US6628385B1 (en) * 1999-02-05 2003-09-30 Axon Instruments, Inc. High efficiency, large field scanning microscope
US7138254B2 (en) * 1999-08-02 2006-11-21 Ge Healthcare (Sv) Corp. Methods and apparatus for performing submicroliter reactions with nucleic acids or proteins
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
TW430738B (en) * 2000-05-22 2001-04-21 Acer Peripherals Inc A detection device to detect the light emitted from a planar light source
US6795189B2 (en) * 2000-06-15 2004-09-21 Packard Instrument Company Universal microplate analyzer
DE10029680B4 (en) * 2000-06-23 2016-06-16 Leica Microsystems Cms Gmbh The microscope assemblage
US6563581B1 (en) * 2000-07-14 2003-05-13 Applera Corporation Scanning system and method for scanning a plurality of samples
WO2002018921A2 (en) * 2000-08-29 2002-03-07 Glaxo Group Limited Method and system for real-time fluorescent determination of trace elements
US6930314B2 (en) 2000-10-27 2005-08-16 Molecular Devices Corporation Light detection device
US7714301B2 (en) 2000-10-27 2010-05-11 Molecular Devices, Inc. Instrument excitation source and calibration method
US6403970B1 (en) * 2000-12-05 2002-06-11 Industrial Technology Research Institute Matrix biochip sensing system
JP4391746B2 (en) * 2001-03-06 2009-12-24 エヴォテック オーアーイー アクチエンゲゼルシャフト Methods for testing chemical and / or biological samples
US20020140682A1 (en) * 2001-03-29 2002-10-03 Brown Frank T. Optical drawing tablet
JP3695340B2 (en) * 2001-03-30 2005-09-14 株式会社日立製作所 DNA testing method and apparatus, and fluorescence detection method
EP1397668A2 (en) * 2001-06-06 2004-03-17 Digital Optical Imaging Corporation Light modulated microarray reader and methods relating thereto
DE10136863A1 (en) * 2001-07-28 2003-02-20 Berthold Tech Gmbh & Co Kg Device for the optional measurement of in particular luminescence and / or fluorescence radiation
US6891618B2 (en) 2001-09-07 2005-05-10 Wallac Oy Optical instrument and process for measurement of samples
US7218810B2 (en) * 2001-09-27 2007-05-15 Bio-Rad Laboratories, Inc. Biochemical assay detection in a liquid receptacle using a fiber optic exciter
US7376304B2 (en) * 2001-09-27 2008-05-20 Bio-Rad Laboratories, Inc. Biochemical assay detection using a fiber optic exciter
US20030228703A1 (en) * 2002-04-05 2003-12-11 The Regents Of The University Of Michigan Fluorescence resonance energy transfer quantitation and stoichiometry in living cells
GB0209329D0 (en) * 2002-04-24 2002-06-05 Imp College Innovations Ltd A device
US20040126275A1 (en) * 2002-07-31 2004-07-01 Klaus Doering Method and device for measuring the lifetime of the fluorescence of fluorophores in samples
GB0226863D0 (en) * 2002-11-19 2002-12-24 Biogene Ltd Improvements in and relating to reaction vessels and reaction apparatus for use with such vessels
US7190460B2 (en) * 2002-11-26 2007-03-13 Therma-Wave, Inc. Focusing optics for small spot optical metrology
WO2004053468A1 (en) * 2002-12-10 2004-06-24 Symyx Technologies, Inc. Image analysis of heterogeneous mixtures
DE10333445B4 (en) * 2003-07-23 2021-10-14 Leica Microsystems Cms Gmbh Scanning confocal microscope
JP2007504445A (en) * 2003-08-26 2007-03-01 ブルーシフト・バイオテクノロジーズ・インコーポレーテッド Time-dependent fluorescence measurement
WO2005054854A1 (en) * 2003-11-05 2005-06-16 The United States Of America As Represented By The Secretary Of The Navy Naval Medical Research Center Fluorescence polarization instruments and methods for detection of exposure to biological materials by fluorescence polarization immunoassay of saliva, oral or bodily fluids
US7327457B2 (en) * 2003-12-19 2008-02-05 N&K Technology, Inc. Apparatus and method for optical characterization of a sample over a broadband of wavelengths while minimizing polarization changes
US7248364B2 (en) * 2003-12-19 2007-07-24 N&K Technology, Inc. Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
US20050233376A1 (en) * 2004-01-21 2005-10-20 Kaiwood Technology Co., Ltd. Biochip scanner device
US20050157300A1 (en) * 2004-01-21 2005-07-21 Jiann-Hua Wang Biochip scanner device
US20050264805A1 (en) * 2004-02-09 2005-12-01 Blueshift Biotechnologies, Inc. Methods and apparatus for scanning small sample volumes
US20050269523A1 (en) * 2004-03-24 2005-12-08 Macaulay Calum E Light modulated microarray reader and methods relating thereto
DE102004016361B4 (en) * 2004-04-01 2006-07-06 Cybio Ag Optical analyzer for fluorescence measurements on multiprobe carriers
US6987563B2 (en) * 2004-04-14 2006-01-17 Hudson Gordon S Luminescense validation microplate
JP2008505321A (en) 2004-07-02 2008-02-21 ブルーシフト・バイオテクノロジーズ・インコーポレーテッド Search for phosphor microenvironment
US7075046B2 (en) * 2004-07-28 2006-07-11 University Of Vermont And State Agricultural College Objective lens reference system and method
GB0419059D0 (en) 2004-08-26 2004-09-29 Ici Plc Sediment assessment
EP1930730B1 (en) * 2005-03-10 2019-08-14 Gen-Probe Incorporated Systems and methods to perform assays for detecting or quantifying analytes
CA2871777C (en) 2005-03-10 2015-07-28 Matthew J. Hayes System and methods for detecting multiple optical signals
JP4979941B2 (en) * 2005-03-30 2012-07-18 Hoya株式会社 Manufacturing method of glass substrate for mask blanks, manufacturing method of mask blanks
US20070132831A1 (en) * 2005-12-13 2007-06-14 Bio-Rad Laboratories, Inc. Masking to prevent overexposure and light spillage in microarray scanning
MX2008008281A (en) 2005-12-21 2008-11-06 Meso Scale Technologies Llc Assay apparatuses, methods and reagents.
DE102006027836B4 (en) * 2006-06-16 2020-02-20 Carl Zeiss Microscopy Gmbh Microscope with auto focus device
JP5256201B2 (en) * 2006-08-24 2013-08-07 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ Compact optical detection system
JP5399250B2 (en) * 2006-09-15 2014-01-29 コーニング インコーポレイテッド Optical interrogation system and microplate position correction method
GB2445160B (en) * 2006-12-29 2011-08-10 Mologic Ltd Diagnostic test device
DE102007009550B4 (en) 2007-02-27 2008-12-18 Ludwig-Maximilian-Universität Method and microscope device for observing a moving sample
DE102007016699A1 (en) * 2007-04-04 2008-10-09 Synentec Gmbh Biochip for the fluorescence analysis of individual transporters
JP4475311B2 (en) * 2007-09-28 2010-06-09 カシオ計算機株式会社 Penetration state discrimination device and electronic timepiece
WO2009048833A1 (en) * 2007-10-09 2009-04-16 Siemens Healthcare Diagnostics Inc. Two dimensional imaging of reacted areas on a reagent
DE102007059166A1 (en) * 2007-12-06 2009-06-10 Synentec Gmbh Device for measuring transport systems
EP2269026B1 (en) * 2008-04-11 2019-06-19 Meso Scale Technologies, LLC Apparatus with plate-handling subsystem for conducting luminescence assays in multi-well plates
JP2013531787A (en) 2010-05-25 2013-08-08 アリックス インコーポレイテッド Holographic fluctuation microscope apparatus and method for determining particle motility and / or cell dispersion
US9046507B2 (en) 2010-07-29 2015-06-02 Gen-Probe Incorporated Method, system and apparatus for incorporating capacitive proximity sensing in an automated fluid transfer procedure
WO2012116308A1 (en) 2011-02-24 2012-08-30 Gen-Probe Incorporated Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector
JP5591747B2 (en) * 2011-03-30 2014-09-17 株式会社日立製作所 Luminescence measuring device and microorganism counting device
DE102011055070B3 (en) 2011-11-04 2013-03-07 Seramun Diagnostica Gmbh A sample analysis apparatus for determining samples in a sample matrix and methods for determining samples in one or more sample matrices
DE102013100658A1 (en) 2013-01-23 2014-07-24 Seramun Diagnostica Gmbh Optical assaying of test array arrangement in sample volume by sample analysis device, comprises e.g. providing sample matrix, optically detecting measuring array arrangement, digital processing of image recording, and mapping results
CN104111250B (en) * 2013-04-16 2018-05-15 深圳迈瑞生物医疗电子股份有限公司 Weak light detection device and its method
US10132743B2 (en) 2016-01-25 2018-11-20 General Electric Company Fixed optics photo-thermal spectroscopy reader and method of use
WO2019018152A1 (en) * 2017-07-18 2019-01-24 Molecular Devices, Llc Object picking apparatus with imaging-based locating of pipette tip
US10684226B2 (en) * 2018-03-09 2020-06-16 Samsung Electronics Co., Ltd. Raman probe, Raman spectrum obtaining apparatus, and method of obtaining Raman spectrum and detecting distribution of target material using Raman probe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565699A1 (en) * 1991-10-31 1993-10-20 Dade MicroScan Inc. Specimen processing and analyzing systems with associated fluid dispensing apparatus
DE19704732A1 (en) * 1997-02-07 1998-08-13 Stratec Elektronik Gmbh Luminescence measurement device

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921098B2 (en) 1998-05-16 2014-12-30 Applied Biosystems, Llc Instrument for monitoring DNA replication
US20070148761A1 (en) * 1998-05-16 2007-06-28 Cerrone Anthony L Instrument for monitoring polymerase chain reaction of DNA
US20070238161A1 (en) * 1998-05-16 2007-10-11 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US8361785B2 (en) 1998-05-16 2013-01-29 Applied Biosystems, Llc Optical instrument comprising multi-notch beam splitter
US7008789B2 (en) 1998-05-16 2006-03-07 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US8557566B2 (en) 1998-05-16 2013-10-15 Applied Biosystems, Llc Instrument for monitoring polymerase chain reaction of DNA
US20060128009A1 (en) * 1998-05-16 2006-06-15 Cerrone Anthony L Instrument for monitoring polymerase chain reaction of DNA
US20060199259A1 (en) * 1998-05-16 2006-09-07 Applera Corporation Instrument for monitoring DNA replication
US20090141272A1 (en) * 1998-05-16 2009-06-04 Applied Biosystems, Llc Optical instrument comprising multi-notch beam splitter
US9273353B2 (en) 1998-05-16 2016-03-01 Life Technologies Corporation Instrument for monitoring polymerase chain reaction of DNA
US7498164B2 (en) 1998-05-16 2009-03-03 Applied Biosystems, Llc Instrument for monitoring nucleic acid sequence amplification reaction
US9671342B2 (en) 1998-05-16 2017-06-06 Life Technologies Corporation Instrument for monitoring polymerase chain reaction of DNA
US7183103B2 (en) 1998-05-16 2007-02-27 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US9823195B2 (en) 1998-05-16 2017-11-21 Life Technologies Corporation Optical instrument comprising multi-notch beam splitter
US20070154939A1 (en) * 1998-05-16 2007-07-05 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
US20050279949A1 (en) * 1999-05-17 2005-12-22 Applera Corporation Temperature control for light-emitting diode stabilization
US9285318B2 (en) 1999-05-17 2016-03-15 Applied Biosystems, Llc Optical instrument including excitation source
US20110159549A1 (en) * 1999-05-17 2011-06-30 Life Technologies Corporation Temperature control for light-emitting diode stabilization
US8492138B2 (en) 1999-05-17 2013-07-23 Applied Biosystems, Llc Optical instrument including excitation source
US8557569B2 (en) 1999-05-17 2013-10-15 Applied Biosystems, Llc Optical instrument including excitation source
US7599060B2 (en) 1999-05-17 2009-10-06 Applied Biosystems, Llc Optical scanning configurations, systems, and methods involving at least one actuator for scanning a scan head
US20080316482A1 (en) * 1999-05-17 2008-12-25 Applera Corporation Optical scanning configurations, systems, and methods
US20070105212A1 (en) * 1999-05-17 2007-05-10 Applera Corporation Temperature control for light-emitting diode stabilization
US7387891B2 (en) 1999-05-17 2008-06-17 Applera Corporation Optical instrument including excitation source
US7355710B2 (en) * 2001-01-26 2008-04-08 Tecan Trading Ag Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent pigments
US7158226B2 (en) * 2001-01-26 2007-01-02 Tecan Trading Ag Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent
US20070086005A1 (en) * 2001-01-26 2007-04-19 Andreas Gfrorer Optical System and Method for Exciting and Measuring Fluorescence on or in Samples Treated with Fluorescent Pigments
US20040071394A1 (en) * 2001-01-26 2004-04-15 Andreas Gfrorer Optical system and method for exciting and measuring fluorescence on or in samples treated with fluorescent pigments
US20050105080A1 (en) * 2001-05-23 2005-05-19 Richard Landlinger Fluorometer
US20060121602A1 (en) * 2001-11-29 2006-06-08 Hoshizaki Jon A Optical scanning configurations, systems, and methods
US7423750B2 (en) 2001-11-29 2008-09-09 Applera Corporation Configurations, systems, and methods for optical scanning with at least one first relative angular motion and at least one second angular motion or at least one linear motion
US9719925B2 (en) 2002-05-17 2017-08-01 Applied Biosystems, Llc Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength
US10768110B2 (en) 2002-05-17 2020-09-08 Applied Biosystems, Llc Apparatus and method for differentiating multiple fluorescence signals by excitation wavelength
US20090317044A1 (en) * 2002-09-05 2009-12-24 Nanosys, Inc. Nanocomposites
US8236504B2 (en) 2003-05-08 2012-08-07 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US20070059754A1 (en) * 2003-05-08 2007-03-15 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US8835118B2 (en) 2003-05-08 2014-09-16 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US20110160073A1 (en) * 2003-05-08 2011-06-30 Bio-Rad Laboratories Systems and methods for fluorescence detection with a movable detection module
US7749736B2 (en) 2003-05-08 2010-07-06 Bio-Rad Labortories Systems and methods for fluorescence detection with a movable detection module
US10724084B2 (en) 2003-05-08 2020-07-28 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US10669576B2 (en) 2003-05-08 2020-06-02 Bio-Rad Laboratories, Inc. Systems and methods for fluorescence detection with a movable detection module
US7113285B2 (en) 2003-12-09 2006-09-26 Beckman Coulter, Inc. Multimode reader
US20050122521A1 (en) * 2003-12-09 2005-06-09 Michael Katzlinger Multimode reader
US20100090126A1 (en) * 2003-12-23 2010-04-15 Precisense A/S Fluorometers
US20070153279A1 (en) * 2003-12-23 2007-07-05 Soren Aasmul Fluorometers
US7869042B2 (en) * 2003-12-23 2011-01-11 Precisense A/S Fluorometers
US20110089341A1 (en) * 2003-12-23 2011-04-21 Precisense A/S Fluorometers
US7567347B2 (en) * 2003-12-23 2009-07-28 Precisense A/S Fluorometers
US8305580B2 (en) 2003-12-23 2012-11-06 Precisense A/S Fluorometers
EP1750115A1 (en) * 2005-08-05 2007-02-07 Sanyo Electric Co., Ltd. Reaction Detecting Device
US20070031290A1 (en) * 2005-08-05 2007-02-08 Sanyo Electric Co., Ltd. Reaction detecting device
KR100817702B1 (en) * 2005-08-05 2008-03-27 산요덴키가부시키가이샤 Reaction Detecting Device
CN100432210C (en) * 2005-08-05 2008-11-12 三洋电机株式会社 Reaction detecting device
US7628958B2 (en) 2005-08-05 2009-12-08 Sanyo Electric Co., Ltd. Reaction detecting device
US20070183931A1 (en) * 2006-02-08 2007-08-09 Stock Daniel M Multimode reader
US8496879B2 (en) 2006-02-08 2013-07-30 Molecular Devices, Llc Optical detection utilizing cartridge with tunable filter assembly
US8119066B2 (en) 2006-02-08 2012-02-21 Molecular Devices, Llc Multimode reader
US8968658B2 (en) 2006-02-08 2015-03-03 Molecular Devices, Llc Luminescence measurement utilizing cartridge with integrated detector
WO2009049740A1 (en) * 2007-10-09 2009-04-23 Carl Zeiss Microlmaging Gmbh Method for positioning biological samples in a microscopic arrangement
US8228499B2 (en) 2007-10-09 2012-07-24 Carl Zeiss Microimaging Gmbh Method for positioning biological samples in a microscopic arrangement
US20100239138A1 (en) * 2007-10-09 2010-09-23 Helmut Lippert Method for positioning biological samples in a microscopic arrangement
WO2009056670A1 (en) * 2007-10-31 2009-05-07 Wallac Oy Multi-purpose measurement system
US20100252748A1 (en) * 2007-10-31 2010-10-07 Wallac Oy Multi-Purpose Measurement System
US8742367B2 (en) 2007-10-31 2014-06-03 Wallac Oy Multi-purpose measurement system
US20090128804A1 (en) * 2007-11-20 2009-05-21 Mitsuru Namiki Optical unit
US7728980B2 (en) * 2007-11-20 2010-06-01 Olympus Corporation Optical unit
US20090212235A1 (en) * 2008-02-15 2009-08-27 Bio-Rad Laboratories, Inc. Scanning fluorescent reader with diffuser system
US9329127B2 (en) * 2011-04-28 2016-05-03 Bio-Rad Laboratories, Inc. Fluorescence scanning head with multiband detection
US20130102481A1 (en) * 2011-04-28 2013-04-25 Bio-Rad Laboratories, Inc. (002558) Fluorescence Scanning Head With Multiband Detection
WO2012149555A1 (en) * 2011-04-28 2012-11-01 Bio-Rad Laboratories, Inc. Fluorescence scanning head with multiband detection
US9170191B2 (en) * 2012-07-09 2015-10-27 Thermo Electron Scientific Instruments Llc Motorized variable path length cell for spectroscopy
US20160033390A1 (en) * 2012-07-09 2016-02-04 Thermo Electron Scientific Instruments Llc Motorized Variable Path Length Cell for Spectroscopy
US20140008539A1 (en) * 2012-07-09 2014-01-09 John Magie Coffin Motorized Variable Path Length Cell for Spectroscopy
US9952138B2 (en) * 2012-07-09 2018-04-24 Thermo Electron Scientific Instruments Llc Motorized variable path length cell for spectroscopy
US8860937B1 (en) 2012-10-24 2014-10-14 Kla-Tencor Corp. Metrology systems and methods for high aspect ratio and large lateral dimension structures
US8912495B2 (en) 2012-11-21 2014-12-16 Kla-Tencor Corp. Multi-spectral defect inspection for 3D wafers
WO2014081899A1 (en) * 2012-11-21 2014-05-30 Kla-Tencor Corporation Multi-spectral defect inspection for 3d wafers

Also Published As

Publication number Publication date
US6310687B1 (en) 2001-10-30
WO2001004608A9 (en) 2002-07-25
US20010033381A1 (en) 2001-10-25
AU6075100A (en) 2001-01-30
WO2001004608A1 (en) 2001-01-18

Similar Documents

Publication Publication Date Title
US6310687B1 (en) Light detection device with means for tracking sample sites
US6825921B1 (en) Multi-mode light detection system
US6488892B1 (en) Sample-holding devices and systems
US6187267B1 (en) Chemiluminescence detection device
US6097025A (en) Light detection device having an optical-path switching mechanism
US6466316B2 (en) Apparatus and methods for spectroscopic measurements
US6982431B2 (en) Sample analysis systems
US6469311B1 (en) Detection device for light transmitted from a sensed volume
US20030205681A1 (en) Evanescent field illumination devices and methods
US7714301B2 (en) Instrument excitation source and calibration method
EP1403645B1 (en) Detector and screening device for ion channels
US7113285B2 (en) Multimode reader
WO2000006990A2 (en) Apparatus and methods for time-resolved spectroscopic measurements
US6349160B2 (en) Detector and screening device for ion channels
EP0858592B1 (en) Analyser
AU2002336771B2 (en) Imaging of microarrays using fiber optic exciter
US6576476B1 (en) Chemiluminescence detection method and device
US20010016330A1 (en) Apparatus and methods for identifying quenching effects in luminescence assays
US7632463B2 (en) Analysis apparatus and condenser
WO1999023466A2 (en) Apparatus and methods for measuring fluorescence polarization
WO2000004364A2 (en) Evanescent field illumination devices and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: LJL BIOSYSTEMS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STUMBO, DAVID P.;MODLIN, DOUGLAS N.;REEL/FRAME:012461/0571;SIGNING DATES FROM 20000803 TO 20000809

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION