US20020065531A1 - Method and apparatus for facilitating removal of a corneal graft - Google Patents

Method and apparatus for facilitating removal of a corneal graft Download PDF

Info

Publication number
US20020065531A1
US20020065531A1 US09/726,959 US72695900A US2002065531A1 US 20020065531 A1 US20020065531 A1 US 20020065531A1 US 72695900 A US72695900 A US 72695900A US 2002065531 A1 US2002065531 A1 US 2002065531A1
Authority
US
United States
Prior art keywords
cornea
stem
cap
outer sleeve
artificial chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/726,959
Other versions
US6425905B1 (en
Inventor
Ricardo Guimaraes
Rod Ross
Gregg Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MED-LOGICS Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/726,959 priority Critical patent/US6425905B1/en
Assigned to MED-LOGICS, INC. reassignment MED-LOGICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUIMARAES, RICARDO, HUGHES, GREGG, ROSS, ROD
Assigned to ENLIGHTEN TECHNOLOGIES, INC. reassignment ENLIGHTEN TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MED-LOGICS, INC.
Assigned to MED-LOGICS, INC. reassignment MED-LOGICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENLIGHTEN TECHNOLOGIES, INC.
Publication of US20020065531A1 publication Critical patent/US20020065531A1/en
Application granted granted Critical
Publication of US6425905B1 publication Critical patent/US6425905B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/142Cornea, e.g. artificial corneae, keratoprostheses or corneal implants for repair of defective corneal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea

Definitions

  • the present invention relates to an artificial chamber that is used to support and pressurize a donor cornea to facilitate the removal of a corneal graft.
  • LASIK Las in situ Keratomileusis
  • a LASIK procedure is performed by initially cutting a flap in the cornea to expose the stroma layer of the eye. A laser beam is then directed onto the stroma to ablate corneal tissue. After ablation the flap is placed back onto the stroma. The result is a variation in the refractive characteristics of the eye.
  • the flap may become severed from the cornea either during or after the procedure. This may require obtaining another flap from a donor eye that must then be attached to the patient's cornea.
  • the donor corneal must be pressurized to create the proper radius of curvature. Therefore, to create a flap the donor cornea must not only be secured but also pressurized.
  • U.S. Pat. No. 6,045,563 issued to Duprat and assigned to Moria SA (“Moria”) discloses an artificial chamber that can be used to support and pressurize a cornea to extract a corneal graft.
  • the Moria chamber includes a clamping cap that can be removed from a chamber stand to expose an internal stem. The donor cornea can be placed onto a pedestal portion of the internal stem. The clamping cap is then reattached to the stand.
  • An operator rotates a thumb wheel that moves the stem in an upward direction until the cornea engages the bottom surface of the clamping cap.
  • the cornea is pressurized with air that flows through a center channel of the stem.
  • a portion of the pressurized donor cornea extends through an opening in the clamping cap.
  • a keratome can be attached to the cap and actuated to slice a graft from the cornea.
  • the Moria artificial chamber requires the operator to rotate the wheel until the cornea is secured to the clamping cap. This manual actuation may result in a deficient, or an excessive, clamping force on the cornea. It is desirable to have a clamping force that is the same for each procedure.
  • the Moria patent discloses a second pneumatically actuated embodiment that would provide a repeatable clamping force, but the pressure required to move the stem may be less, or more, than the desired clamping force exerted onto the cornea. It would be desirable to provide an artificial chamber that can provide a repeatable desired clamping force on a cornea during a grafting procedure.
  • One embodiment of the present invention is an artificial chamber that can be used to support and pressurize a cornea to extract a corneal graft.
  • the artificial chamber may include a stem that is attached to a stand. The stem is adapted to support and pressurize a cornea.
  • the chamber may further have an outer sleeve and a cap that can move relative to the stem. The sleeve and cap can be moved by an actuator to secure the cornea.
  • FIG. 1 is a cross-sectional view of an embodiment of an artificial chamber of the present invention
  • FIG. 2 is a cross-sectional view similar to FIG. 1 showing a cornea secured by the chamber.
  • the present invention provides an artificial chamber that can support and pressurize a donor cornea to extract a corneal graft.
  • the artificial chamber has a stationary stem that is adapted to support a cornea.
  • the stem has an inner channel that allows air to pressurize the cornea.
  • the artificial chamber has an outer cap that can be moved in a downward direction to secure the cornea.
  • the cap has an opening that exposes a portion of the cornea to allow for the extraction of a corneal graft.
  • the outer cap is attached to an outer sleeve that is moved by rotation of a cam.
  • the chamber includes a spring that exerts a clamping force onto the cornea.
  • the clamping force can be adjusted by rotating an adjustment wheel.
  • the adjustable spring force allows an operator to set a desired clamping force that is then repeated for each grafting procedure.
  • FIG. 1 shows an embodiment of an artificial chamber 10 of the present invention.
  • the artificial chamber 10 may include a stem 12 that is coupled to a stand 14 .
  • the stem 12 is coupled in a manner to allow movement relative to the stand 14 .
  • the stem 12 may have a countersunk opening 16 in a pedestal portion 17 .
  • the countersink 16 and pedestal portion 17 are configured to support a cornea (not shown).
  • the opening 16 may be in fluid communication with a center fluid channel 18 .
  • the fluid channel 18 may be in fluid communication with inlet/outlet ports 20 and 22 .
  • the inlet/outlet ports 20 and 22 are typically coupled to a source of pressurized air through a control valve (not shown).
  • the source of pressurized air may be an air line in a commercial building structure.
  • the artificial chamber 10 may further have an outer sleeve 24 that can move relative to the stem 12 .
  • the stem 12 may have an outer upper bearing surface 26 to insure translational movement of the outer sleeve 24 .
  • the outer sleeve 24 may include a slot 28 that receives an actuator 30 .
  • the actuator 30 may include a threaded stem portion 32 that screws into a corresponding threaded aperture 34 of the stand 14 .
  • the actuator 30 may also have a cam portion 36 that is off-center from the stem portion 32 so that rotation of the cam 36 moves the outer sleeve 24 in an up and down direction as indicated by the arrows.
  • An outer cap 38 is attached to the outer sleeve 24 .
  • the cap 38 may have internal threads 40 that screw onto corresponding external threads 42 of the outer sleeve 24 .
  • the cap 38 is adapted to engage and secure a donor cornea that is placed onto the pedestal portion 17 of the stem 12 .
  • the cap 38 further has an opening 44 that allows a portion of the donor cornea to be exposed so that a graft can be extracted from the cornea.
  • the cap 38 may have an external thread 45 that allows a keratome to be attached to the chamber 10 and actuated to create the corneal graft.
  • the chamber 10 may further have a spring 46 that exerts a spring force onto stem 12 .
  • the spring force can be adjusted by rotating an adjustment wheel 48 that can vary the compression length of the spring 46 .
  • the adjustment wheel 48 can be accessed through an opening 50 in the outer sleeve 24 . Rotating the wheel 48 varies the clamping force exerted by the cap 38 onto the cornea.
  • the spring 46 and wheel 48 provide a mechanism to repeatedly provide a desired clamping force onto the cornea that is neither inadequate nor excessive.
  • the cap 38 is removed from the outer sleeve 24 and a cornea 52 is placed onto the pedestal portion 17 of the stem 12 .
  • the cap 38 is then reattached to the outer sleeve 24 .
  • the actuator 30 is rotated to move the cap 38 down into the cornea 52 . Air is then introduced to the inner channel 18 to pressurize the cornea 52 . A portion of the cornea 52 will extend through the cap opening 44 .
  • An external device such as a keratome (not shown) can be attached to the cap 38 and actuated to extract a graft from the cornea 52 . Once the graft is removed, the cornea 52 can be depressurized.
  • the actuator 30 can then be rotated to move the cap 38 away from the donor cornea 52 , wherein the cap 38 can be detached from the outer sleeve 24 and the cornea 52 removed from the stem 12 to complete the procedure.

Abstract

An artificial chamber that can support and pressurize a donor cornea to extract a corneal graft. The artificial chamber has a stationary stem that is adapted to support a cornea. The stem has an inner channel that allows air to pressurize the cornea. The artificial chamber has an outer cap that can be moved in a downward direction to secure the cornea. The cap has an opening that exposes a portion of the cornea to allow for the extraction of a corneal graft. The outer cap is attached to an outer sleeve that is moved by rotation of a cam. The chamber includes a spring that exerts a clamping force onto the cornea. The clamping force can be adjusted by rotating an adjustment wheel. The adjustable spring force allows an operator to set a desired clamping force that is then repeated for each grafting procedure.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to an artificial chamber that is used to support and pressurize a donor cornea to facilitate the removal of a corneal graft. [0002]
  • 2. Background Information [0003]
  • There have been developed various techniques to correct the vision of a patient. For example, there is a medical procedure that varies the curvature of a cornea using a laser. This technique is commonly referred to as Las in situ Keratomileusis (LASIK). [0004]
  • A LASIK procedure is performed by initially cutting a flap in the cornea to expose the stroma layer of the eye. A laser beam is then directed onto the stroma to ablate corneal tissue. After ablation the flap is placed back onto the stroma. The result is a variation in the refractive characteristics of the eye. [0005]
  • The flap may become severed from the cornea either during or after the procedure. This may require obtaining another flap from a donor eye that must then be attached to the patient's cornea. To create a replicant corneal flap the donor corneal must be pressurized to create the proper radius of curvature. Therefore, to create a flap the donor cornea must not only be secured but also pressurized. [0006]
  • U.S. Pat. No. 6,045,563 issued to Duprat and assigned to Moria SA (“Moria”), discloses an artificial chamber that can be used to support and pressurize a cornea to extract a corneal graft. The Moria chamber includes a clamping cap that can be removed from a chamber stand to expose an internal stem. The donor cornea can be placed onto a pedestal portion of the internal stem. The clamping cap is then reattached to the stand. [0007]
  • An operator rotates a thumb wheel that moves the stem in an upward direction until the cornea engages the bottom surface of the clamping cap. The cornea is pressurized with air that flows through a center channel of the stem. A portion of the pressurized donor cornea extends through an opening in the clamping cap. A keratome can be attached to the cap and actuated to slice a graft from the cornea. [0008]
  • The Moria artificial chamber requires the operator to rotate the wheel until the cornea is secured to the clamping cap. This manual actuation may result in a deficient, or an excessive, clamping force on the cornea. It is desirable to have a clamping force that is the same for each procedure. The Moria patent discloses a second pneumatically actuated embodiment that would provide a repeatable clamping force, but the pressure required to move the stem may be less, or more, than the desired clamping force exerted onto the cornea. It would be desirable to provide an artificial chamber that can provide a repeatable desired clamping force on a cornea during a grafting procedure. [0009]
  • BRIEF SUMMARY OF THE INVENTION
  • One embodiment of the present invention is an artificial chamber that can be used to support and pressurize a cornea to extract a corneal graft. The artificial chamber may include a stem that is attached to a stand. The stem is adapted to support and pressurize a cornea. The chamber may further have an outer sleeve and a cap that can move relative to the stem. The sleeve and cap can be moved by an actuator to secure the cornea. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of an embodiment of an artificial chamber of the present invention; [0011]
  • FIG. 2 is a cross-sectional view similar to FIG. 1 showing a cornea secured by the chamber. [0012]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • In general the present invention provides an artificial chamber that can support and pressurize a donor cornea to extract a corneal graft. The artificial chamber has a stationary stem that is adapted to support a cornea. The stem has an inner channel that allows air to pressurize the cornea. The artificial chamber has an outer cap that can be moved in a downward direction to secure the cornea. The cap has an opening that exposes a portion of the cornea to allow for the extraction of a corneal graft. The outer cap is attached to an outer sleeve that is moved by rotation of a cam. The chamber includes a spring that exerts a clamping force onto the cornea. The clamping force can be adjusted by rotating an adjustment wheel. The adjustable spring force allows an operator to set a desired clamping force that is then repeated for each grafting procedure. [0013]
  • Referring to the drawings more particularly by reference numbers, FIG. 1 shows an embodiment of an [0014] artificial chamber 10 of the present invention. The artificial chamber 10 may include a stem 12 that is coupled to a stand 14. The stem 12 is coupled in a manner to allow movement relative to the stand 14. The stem 12 may have a countersunk opening 16 in a pedestal portion 17. The countersink 16 and pedestal portion 17 are configured to support a cornea (not shown). The opening 16 may be in fluid communication with a center fluid channel 18. The fluid channel 18 may be in fluid communication with inlet/ outlet ports 20 and 22. The inlet/ outlet ports 20 and 22 are typically coupled to a source of pressurized air through a control valve (not shown). By way of example, the source of pressurized air may be an air line in a commercial building structure.
  • The [0015] artificial chamber 10 may further have an outer sleeve 24 that can move relative to the stem 12. The stem 12 may have an outer upper bearing surface 26 to insure translational movement of the outer sleeve 24. The outer sleeve 24 may include a slot 28 that receives an actuator 30. The actuator 30 may include a threaded stem portion 32 that screws into a corresponding threaded aperture 34 of the stand 14. The actuator 30 may also have a cam portion 36 that is off-center from the stem portion 32 so that rotation of the cam 36 moves the outer sleeve 24 in an up and down direction as indicated by the arrows.
  • An [0016] outer cap 38 is attached to the outer sleeve 24. The cap 38 may have internal threads 40 that screw onto corresponding external threads 42 of the outer sleeve 24. The cap 38 is adapted to engage and secure a donor cornea that is placed onto the pedestal portion 17 of the stem 12. The cap 38 further has an opening 44 that allows a portion of the donor cornea to be exposed so that a graft can be extracted from the cornea. The cap 38 may have an external thread 45 that allows a keratome to be attached to the chamber 10 and actuated to create the corneal graft.
  • The [0017] chamber 10 may further have a spring 46 that exerts a spring force onto stem 12. The spring force can be adjusted by rotating an adjustment wheel 48 that can vary the compression length of the spring 46. The adjustment wheel 48 can be accessed through an opening 50 in the outer sleeve 24. Rotating the wheel 48 varies the clamping force exerted by the cap 38 onto the cornea. The spring 46 and wheel 48 provide a mechanism to repeatedly provide a desired clamping force onto the cornea that is neither inadequate nor excessive.
  • In operation, the [0018] cap 38 is removed from the outer sleeve 24 and a cornea 52 is placed onto the pedestal portion 17 of the stem 12. The cap 38 is then reattached to the outer sleeve 24. As shown in FIG. 2, the actuator 30 is rotated to move the cap 38 down into the cornea 52. Air is then introduced to the inner channel 18 to pressurize the cornea 52. A portion of the cornea 52 will extend through the cap opening 44. An external device such as a keratome (not shown) can be attached to the cap 38 and actuated to extract a graft from the cornea 52. Once the graft is removed, the cornea 52 can be depressurized. The actuator 30 can then be rotated to move the cap 38 away from the donor cornea 52, wherein the cap 38 can be detached from the outer sleeve 24 and the cornea 52 removed from the stem 12 to complete the procedure.
  • While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art. [0019]

Claims (14)

What is claimed is:
1. An artificial chamber that can support a cornea to create a corneal graft, comprising:
a stand;
a stem attached to said stand, said stem having a pedestal portion adapted to support the cornea and an air channel that can be in fluid communication with the cornea;
an outer sleeve that can move relative to said stem;
a cap attached to said outer sleeve; and,
an actuator that can move said outer sleeve and said cap relative to said stem.
2. The artificial chamber of claim 1, further comprising a spring that exerts a biasing force on said stem.
3. The artificial chamber of claim 2, further comprising an adjustment wheel that is coupled to said spring.
4. The artificial chamber of claim 1, wherein said actuator includes a cam.
5. The artificial chamber of claim 1, wherein said cap has an opening.
6. The artificial chamber of claim 3, wherein said outer sleeve has an opening that provides access to said adjustment wheel.
7. An artificial chamber that can support a cornea to create a corneal graft, comprising:
a stand;
a stem attached to said stand, said stem having a pedestal portion adapted to support the cornea and an air channel that can be in fluid communication with the cornea;
an outer sleeve that can move relative to said stem;
a cap attached to said outer sleeve, said cap having an opening that can expose a portion of the cornea;
a spring that exerts a biasing force on said stem; and,
a cam that can be rotated to move said cap into the cornea.
8. The artificial chamber of claim 7, further comprising an adjustment wheel that is coupled to said spring.
9. The artificial chamber of claim 8, wherein said outer sleeve has an opening that provides access to said adjustment wheel.
10. A method for removing a corneal graft from a cornea, comprising:
placing the cornea on a stem;
moving an outer sleeve and a cap relative to the stem until the cap engages and secures the cornea;
pressurizing the cornea; and,
removing a corneal graft from the cornea.
11. The method of claim 10, wherein the outer sleeve and the cap are moved by rotating a cam.
12. The method of claim 10, further comprising moving the cap away from the cornea and removing the cornea from the stem.
13. The method of claim 10, further comprising adjusting a spring force that is exerted by the stem onto the cornea.
14. The method of claim 13, wherein the spring force is adjusted by rotating an adjustment wheel.
US09/726,959 2000-11-29 2000-11-29 Method and apparatus for facilitating removal of a corneal graft Expired - Lifetime US6425905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/726,959 US6425905B1 (en) 2000-11-29 2000-11-29 Method and apparatus for facilitating removal of a corneal graft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/726,959 US6425905B1 (en) 2000-11-29 2000-11-29 Method and apparatus for facilitating removal of a corneal graft

Publications (2)

Publication Number Publication Date
US20020065531A1 true US20020065531A1 (en) 2002-05-30
US6425905B1 US6425905B1 (en) 2002-07-30

Family

ID=24920739

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/726,959 Expired - Lifetime US6425905B1 (en) 2000-11-29 2000-11-29 Method and apparatus for facilitating removal of a corneal graft

Country Status (1)

Country Link
US (1) US6425905B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129741A1 (en) * 2005-12-07 2007-06-07 Weston Philip D Artificial anterior chamber for use in keratoplasty
GB2448170A (en) * 2007-04-04 2008-10-08 Philip Douglas Weston Improvements relating to corneal graft preparation
WO2008134660A2 (en) * 2007-04-27 2008-11-06 Azd Holding, Llc System and method for preparing a corneal graft
US20100014480A1 (en) * 2002-12-20 2010-01-21 Interdigital Technology Corporation Scheduling data transmission by medium access control (mac) layer in a mobile network
WO2021195733A1 (en) * 2020-04-01 2021-10-07 Moraes Filho Leiser Franco De Arrangement applied to an artificial chamber for simulating cornea transplant surgery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125731B2 (en) * 2006-03-01 2015-09-08 Med-Logics, Inc. Artificial anterior chamber system
WO2014047060A1 (en) * 2012-09-18 2014-03-27 Saimovici Liviu B Cataract removal device and integrated tip
WO2014150288A2 (en) 2013-03-15 2014-09-25 Insera Therapeutics, Inc. Vascular treatment devices and methods
EP3416568A4 (en) 2016-02-16 2019-10-16 Insera Therapeutics, Inc. Aspiration devices and anchored flow diverting devices
US10994061B2 (en) 2017-09-26 2021-05-04 William F. WILEY Self-contained ocular surgery instrument
USD847864S1 (en) 2018-01-22 2019-05-07 Insera Therapeutics, Inc. Pump

Family Cites Families (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE23496E (en) 1952-05-20 Seeler
US1841968A (en) 1924-08-16 1932-01-19 William J Cameron Radio-surgical apparatus
US1847658A (en) 1925-01-26 1932-03-01 Lasker Edward Breast pump
US2070281A (en) 1935-07-12 1937-02-09 Leggiadro Vincent Surgical knife
US2480737A (en) 1948-03-08 1949-08-30 Jayle Gaetan Jean-Edward Cutting instrument particularly useful in connection with corneal grafting
US2708437A (en) 1952-03-31 1955-05-17 Elizabeth Painter Hutchins Surgical instrument
US2824455A (en) 1952-06-27 1958-02-25 Milwaukee Electric Tool Corp Portable reciprocating saw
US3033196A (en) 1957-09-16 1962-05-08 Air Reduction Artificial respiration apparatus
US3308828A (en) 1963-08-08 1967-03-14 Eugene E Bernard Craniotomy instrument
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3252623A (en) 1965-07-22 1966-05-24 C F Liquidation Corp Apparatus for monitoring dispensing of liquid
US3399677A (en) 1966-07-01 1968-09-03 Goodrich Co B F Catheter and valve therefor
US3583403A (en) 1967-06-27 1971-06-08 Austenal Europa Inc Dermatome
NL145136C (en) 1967-07-25 1900-01-01
US3561429A (en) 1968-05-23 1971-02-09 Eversharp Inc Instrument for obtaining a biopsy specimen
US3511162A (en) 1969-02-20 1970-05-12 Johnson & Johnson Apparatus and method for isolating a patient zone
US3624821A (en) 1969-09-17 1971-11-30 Stanford A Henderson Suction pump
US3882872A (en) 1970-01-05 1975-05-13 Nicholas G Douvas Method and apparatus for cataract surgery
US3763862A (en) 1970-02-06 1973-10-09 Duerr Dental Kg Arrangement at a suction installation for medicinal hygienic and cosmetic purposes
US3693613A (en) 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith
US3723030A (en) 1971-03-03 1973-03-27 Buchler Instr Division Peristaltic pump with stacked components
US3752161A (en) 1971-08-02 1973-08-14 Minnesota Mining & Mfg Fluid operated surgical tool
US3841799A (en) 1971-08-23 1974-10-15 East West Med Prod Medical cassette pump
US3920014A (en) 1971-12-15 1975-11-18 Anton Banko Surgical system for controlling the infusion of fluid to and the evacuation of fluid and material from an operating field
US3812855A (en) 1971-12-15 1974-05-28 Surgical Design Corp System for controlling fluid and suction pressure
US3884238A (en) 1972-06-19 1975-05-20 Malley Conor C O Apparatus for intraocular surgery
US3815604A (en) 1972-06-19 1974-06-11 Malley C O Apparatus for intraocular surgery
US3977425A (en) 1972-12-04 1976-08-31 Tokico Ltd. Hydraulic pressure control valve
US3842839A (en) 1973-04-05 1974-10-22 L Malis Rongeur
CH586036A5 (en) 1973-12-21 1977-03-31 Schaerer Ag M
US3899829A (en) 1974-02-07 1975-08-19 Fred Storm Ind Designs Inc Holder and actuator means for surgical instruments
US3903881A (en) 1974-04-12 1975-09-09 Bourns Inc Respirator system and method
US3930505A (en) 1974-06-24 1976-01-06 Hydro Pulse Corporation Surgical apparatus for removal of tissue
US3913584A (en) 1974-06-28 1975-10-21 Xomox Corp Combination myringotomy scalpel, aspirator and otological vent tube inserter
US3982539A (en) 1974-08-16 1976-09-28 Health Technology Labs, Inc. Medical/surgical suction equipment
US4043342A (en) 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US4004590A (en) 1974-11-15 1977-01-25 Health Technology Laboratories, Inc. Medical/surgical suction equipment
US3983474A (en) 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4011869A (en) 1975-08-01 1977-03-15 David Kopf Instruments Tubular cutting instrument
DE2547185A1 (en) 1975-10-22 1977-04-28 Hennig Juergen Hand operated surgical instrument with hinged arms - has pneumatic or hydraulic power system to provide motion energy for the hinged arms
US4034712A (en) 1975-11-24 1977-07-12 Duncan Lloyd P Pulsation system
US4135515A (en) 1975-12-03 1979-01-23 Health Technology Laboratories, Inc. Medical/surgical suction equipment
DE2601802C3 (en) 1976-01-20 1979-02-08 Richard Wolf Gmbh, 7134 Knittlingen Instruments for the treatment of urethral strictures
CH620111A5 (en) 1976-09-17 1980-11-14 Univ Melbourne
US4308835A (en) 1980-01-25 1982-01-05 Abbey Harold Closed-loop fluidic control system for internal combustion engines
US4108182A (en) 1977-02-16 1978-08-22 Concept Inc. Reciprocation vitreous suction cutter head
US4173980A (en) 1977-02-25 1979-11-13 Curtin Brian J Corneal resurfacing apparatus and method
US4168707A (en) 1977-06-13 1979-09-25 Douvas Nicholas G Control apparatus for microsurgical instruments
US4178707A (en) 1977-07-18 1979-12-18 Littlefield John V Display apparatus utilizing magnetic materials
US4204328A (en) 1977-11-14 1980-05-27 Kutner Barry S Variable diameter aspirating tip
US4217993A (en) 1977-12-02 1980-08-19 Baxter Travenol Laboratories, Inc. Flow metering apparatus for a fluid infusion system
US4223676A (en) 1977-12-19 1980-09-23 Cavitron Corporation Ultrasonic aspirator
US4246902A (en) 1978-03-10 1981-01-27 Miguel Martinez Surgical cutting instrument
US4210146A (en) 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
US4320761A (en) 1979-02-06 1982-03-23 Haddad Heskel M Surgical device for excision of tissue
US4245815A (en) 1979-02-23 1981-01-20 Linear Dynamics, Inc. Proportional solenoid valve and connector
US4274411A (en) 1979-03-30 1981-06-23 Dotson Robert S Jun Fluid operated ophthalmic irrigation and aspiration device
NL179781C (en) 1979-04-11 Westfalia Separator Ag
NL7903623A (en) 1979-05-09 1980-11-11 Stamicarbon METHOD FOR PURIFYING UREAUS WASTE WATER AND METHOD FOR PREPARING MELAMINE.
US4314560A (en) 1979-11-28 1982-02-09 Helfgott Maxwell A Powered handpiece for endophthalmic surgery
US4301802A (en) 1980-03-17 1981-11-24 Stanley Poler Cauterizing tool for ophthalmological surgery
US4428748A (en) 1980-04-09 1984-01-31 Peyman Gholam A Combined ultrasonic emulsifier and mechanical cutter for surgery
US4319899A (en) 1980-04-28 1982-03-16 Pure Air Corporation Air handling system for laminar flow clean enclosure
DE3017245A1 (en) 1980-05-06 1981-11-12 Ritter Ag, 7500 Karlsruhe ADJUSTMENT DEVICE FOR CONTROLLING THE OPERATING DENTAL INSTRUMENTS
FR2489141A1 (en) 1980-09-03 1982-03-05 Sevifra SURGICAL APPARATUS FOR PRECISE CUTTING OF THE CORNEA
US4395258A (en) 1980-11-03 1983-07-26 Cooper Medical Devices Linear intra-ocular suction device
US4493698A (en) 1980-11-03 1985-01-15 Cooper Medical Devices Method of performing opthalmic surgery utilizing a linear intra-ocular suction device
DE3042203A1 (en) 1980-11-08 1982-07-15 Gewerkschaft Eisenhütte Westfalia, 4670 Lünen WINNING MACHINE GUIDE, PARTICULARLY PLANING GUIDE
US4805616A (en) 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4476862A (en) 1980-12-08 1984-10-16 Pao David S C Method of scleral marking
US4674499A (en) 1980-12-08 1987-06-23 Pao David S C Coaxial bipolar probe
US4481948A (en) 1980-12-29 1984-11-13 Sole Gary M Medical instrument, and methods of constructing and utilizing same
US4344784A (en) 1981-02-27 1982-08-17 Dexon, Inc. Filter assembly for clean air rooms and work stations
US4674503A (en) 1981-03-05 1987-06-23 Peyman Gholam A Controlled depth penetrant apparatus and method
US4688570A (en) 1981-03-09 1987-08-25 The Regents Of The University Of California Ophthalmologic surgical instrument
US4396386A (en) 1981-05-07 1983-08-02 Bioresearch Inc. Surgical drainage apparatus with suction control and indication
US4598729A (en) 1981-06-19 1986-07-08 Nippondenso Co., Ltd. Negative pressure control valve
FR2508160A1 (en) 1981-06-23 1982-12-24 Cilas DEVICE FOR DETERMINING THE POSITION OF AN OBJECT
US4445517A (en) 1981-09-28 1984-05-01 Feild James Rodney Suction dissector
US4427427A (en) 1982-01-19 1984-01-24 Veco S.A. Vertical laminar flow filter module
SU1050702A1 (en) 1982-04-13 1983-10-30 Горьковский государственный медицинский институт им.С.М.Кирова Device for breaking and aspirating cataracta
US4493695A (en) 1982-06-01 1985-01-15 Site Microsurgical Systems, Inc. Opthalmic microsurgical system cassette assembly
USRE33250E (en) 1982-06-01 1990-07-03 Site Microsurgical Systems, Inc. Microsurgical system cassette assembly
US4555645A (en) 1982-12-01 1985-11-26 Snyder Laboratories, Inc. Moveable coil linear motor
US4475904A (en) 1982-12-29 1984-10-09 Medical Instrument Dev. Labs., Inc. Fast response vacuum aspiration collection system
DE3302558A1 (en) 1983-01-26 1984-07-26 Kaltenbach & Voigt Gmbh & Co, 7950 Biberach FOOT CONTROL DEVICE, IN PARTICULAR FOR DENTAL APPARATUS
US4530357A (en) 1983-04-18 1985-07-23 Pawloski James A Fluid actuated orthopedic tool
JPS59200644A (en) 1983-04-27 1984-11-14 オリンパス光学工業株式会社 Surgical incision instrument
US4540406A (en) 1983-05-02 1985-09-10 Thoratec Laboratories Corporation Anticoagulant delivery system for use with an auto-transfusion system
IL70243A (en) 1983-05-13 1988-07-31 Fidelity Medical Ltd Method and apparatus for the non-invasive monitoring of arterial blood pressure waves
US4522371A (en) 1983-06-20 1985-06-11 Borg-Warner Corporation Proportional solenoid valve
NL8302228A (en) 1983-06-22 1985-01-16 Optische Ind De Oude Delft Nv MEASURING SYSTEM FOR USING A TRIANGULAR PRINCIPLE, CONTACT-FREE MEASURING A DISTANCE GIVEN BY A SURFACE CONTOUR TO AN OBJECTIVE LEVEL.
FR2549727B1 (en) 1983-07-08 1986-11-28 Andre Zoulalian DESOBSTRUCTION APPARATUS, IN PARTICULAR DEVICE FOR SUCTION OF MUCOSITES
US4524948A (en) 1983-09-09 1985-06-25 Ranco Incorporated Electrically controlled pressure transducer valve
DE3342675A1 (en) 1983-11-25 1985-06-05 Fa. Carl Zeiss, 7920 Heidenheim METHOD AND DEVICE FOR CONTACTLESS MEASUREMENT OF OBJECTS
CH661981A5 (en) 1984-02-13 1987-08-31 Haenni & Cie Ag OPTICAL MEASURING DEVICE FOR CONTACTLESS DISTANCE MEASUREMENT.
DE3409798C1 (en) * 1984-03-16 1985-10-24 Jörg Dr.med. 4630 Bochum Krumeich Fixing arrangement for holding a corneal disk removed from the human eye
US4560395A (en) 1984-04-17 1985-12-24 Environmental Air Control, Inc. Compact blower and filter assemblies for use in clean air environments
US4678459A (en) 1984-07-23 1987-07-07 E-Z-Em, Inc. Irrigating, cutting and aspirating system for percutaneous surgery
DE3433581C2 (en) 1984-09-13 1986-08-07 Fa. Carl Zeiss, 7920 Heidenheim Device for laminating, refractive corneal surgery
US4705395A (en) 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
NZ210351A (en) 1984-11-27 1988-05-30 Alfa Laval Nz Ltd Milking machine pulsator control system using modular rate, ratio and timing delay units
US4838281A (en) 1985-02-28 1989-06-13 Alcon Laboratories, Inc. Linear suction control system
US4706687A (en) 1985-02-28 1987-11-17 Alcon Instrumentation, Inc. Linear suction control system
US4757814A (en) 1985-02-28 1988-07-19 Alcon Laboratories, Inc. Proportional control for pneumatic cutting device
US4782239A (en) 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
US4805615A (en) 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4770654A (en) 1985-09-26 1988-09-13 Alcon Laboratories Inc. Multimedia apparatus for driving powered surgical instruments
US4768506A (en) 1985-09-26 1988-09-06 Alcon Laboratories, Inc. Handpiece drive apparatus for powered surgical scissors
US4665914A (en) 1985-12-27 1987-05-19 Emanuel Tanne Automatic corneal surgery system
US4723545A (en) 1986-02-03 1988-02-09 Graduate Hospital Foundation Research Corporation Power assisted arthroscopic surgical device
US4807623A (en) 1986-05-30 1989-02-28 David M. Lieberman Device for simultaneously forming two incisions along a path on an eye
US4791934A (en) 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
DE3626971A1 (en) * 1986-08-08 1988-02-18 Joerg Dr Med Krumeich DEVICE FOR HOLDING THE CORNUT TAKEN FROM A DISPENSER EYE
EP0393021A1 (en) 1986-09-12 1990-10-24 Oral Roberts University Radio frequency surgical tool
US4743770A (en) 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4837857A (en) 1986-11-06 1989-06-06 Storz Instrument Company Foot pedal assembly for ophthalmic surgical instrument
US4840175A (en) 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
DE3703422A1 (en) 1987-02-05 1988-08-18 Zeiss Carl Fa OPTOELECTRONIC DISTANCE SENSOR
US4782849A (en) 1987-02-09 1988-11-08 The Boc Group, Inc. Control unit for intermittent suction system
US4767403A (en) 1987-02-09 1988-08-30 The Boc Group, Inc. Positive pulse device and system
US4830047A (en) 1987-02-09 1989-05-16 The Boc Group, Inc. Control unit for intermittent suction system
US4947871A (en) 1987-08-10 1990-08-14 Grieshaber & Co. Ag Schaffhausen Process the surgical correction of ametropia of one or both eyes of living beings
US4819635A (en) 1987-09-18 1989-04-11 Henry Shapiro Tubular microsurgery cutting apparatus
US4828306A (en) 1988-03-07 1989-05-09 Blatt John A Vacuum cup control system
US5215104A (en) 1988-08-16 1993-06-01 Steinert Roger F Method for corneal modification
US4909815A (en) 1988-10-24 1990-03-20 International Air Filter, Inc. Mobile air cleaning apparatus
US5013310A (en) 1988-11-09 1991-05-07 Cook Pacemaker Corporation Method and apparatus for removing an implanted pacemaker lead
US5207683A (en) 1988-11-09 1993-05-04 Cook Pacemaker Corporation Apparatus for removing an elongated structure implanted in biological tissue
US4943289A (en) 1989-05-03 1990-07-24 Cook Pacemaker Corporation Apparatus for removing an elongated structure implanted in biological tissue
US4988347A (en) 1988-11-09 1991-01-29 Cook Pacemaker Corporation Method and apparatus for separating a coiled structure from biological tissue
US5507751A (en) 1988-11-09 1996-04-16 Cook Pacemaker Corporation Locally flexible dilator sheath
US5011482A (en) 1989-01-17 1991-04-30 Cook Pacemaker Corporation Apparatus for removing an elongated structure implanted in biological tissue
US4903695C1 (en) 1988-11-30 2001-09-11 Lri L P Method and apparatus for performing a keratomileusis or the like operation
US4886085A (en) 1988-11-30 1989-12-12 General Motors Corporation Vacuum check valve and method of control
US4965417A (en) 1989-03-27 1990-10-23 Massie Philip E Foot-operated control
US5226910A (en) 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
US5106364A (en) 1989-07-07 1992-04-21 Kabushiki Kaisha Topcon Surgical cutter
US5817075A (en) 1989-08-14 1998-10-06 Photogenesis, Inc. Method for preparation and transplantation of planar implants and surgical instrument therefor
US5059204A (en) 1989-10-26 1991-10-22 Site Microsurgical Systems, Inc. Ocular cutter with enhanced cutting action
US5176628A (en) 1989-10-27 1993-01-05 Alcon Surgical, Inc. Vitreous cutter
US5152744A (en) 1990-02-07 1992-10-06 Smith & Nephew Dyonics Surgical instrument
US5133726A (en) 1990-02-14 1992-07-28 Ruiz Luis A Automatic corneal shaper
EP0448857A1 (en) 1990-03-27 1991-10-02 Jong-Khing Huang An apparatus of a spinning type of resectoscope for prostatectomy
US5092874A (en) * 1990-05-07 1992-03-03 Rogers James C Penetrating keratoplasty trephination press
DE4029676C2 (en) 1990-09-19 1997-02-27 Hans Prof Dr Med Sachse Circularly oscillating saw
DE69133603D1 (en) 1990-10-19 2008-10-02 Univ St Louis System for localizing a surgical probe relative to the head
US5083558A (en) 1990-11-06 1992-01-28 Thomas William R Mobile surgical compartment with micro filtered laminar air flow
DE4122219A1 (en) 1991-07-04 1993-01-07 Delma Elektro Med App ELECTRO-SURGICAL TREATMENT INSTRUMENT
US5271379A (en) 1991-07-26 1993-12-21 The Regents Of The University Of California Endoscopic device actuator and method
US5217459A (en) 1991-08-27 1993-06-08 William Kamerling Method and instrument for performing eye surgery
US5285795A (en) 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5273406A (en) 1991-09-12 1993-12-28 American Dengi Co., Inc. Pressure actuated peristaltic pump
US5273524A (en) 1991-10-09 1993-12-28 Ethicon, Inc. Electrosurgical device
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5242404A (en) 1992-02-12 1993-09-07 American Cyanamid Company Aspiration control system
DE69331381T2 (en) 1992-04-10 2002-08-08 Surgilight Inc DEVICE FOR PERFORMING EYE SURGERY
US5354268A (en) 1992-11-04 1994-10-11 Medical Instrument Development Laboratories, Inc. Methods and apparatus for control of vacuum and pressure for surgical procedures
US5437678A (en) 1992-11-30 1995-08-01 Neomedix Corporation Ophthalmic lens removal method and apparatus
DE4300064A1 (en) 1993-01-05 1994-07-07 Wolf Gmbh Richard Tissue punch
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
US5643304A (en) 1993-02-16 1997-07-01 Danek Medical, Inc. Method and apparatus for minimally invasive tissue removal
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
AU6667494A (en) 1993-05-07 1994-12-12 Danek Medical, Inc. Surgical cutting instrument
US5364395A (en) 1993-05-14 1994-11-15 West Jr Hugh S Arthroscopic surgical instrument with cauterizing capability
US5395368A (en) 1993-05-20 1995-03-07 Ellman; Alan G. Multiple-wire electrosurgical electrodes
CA2164860C (en) 1993-06-10 2005-09-06 Mir A. Imran Transurethral radio frequency ablation apparatus
US5374188A (en) 1993-07-19 1994-12-20 Bei Medical Systems, Inc. Electro-surgical instrument and method for use with dental implantations
US5810857A (en) 1993-08-12 1998-09-22 Mackool; Richard J. Surgical knife for controlled lengthening of an incision
US5380280A (en) 1993-11-12 1995-01-10 Peterson; Erik W. Aspiration system having pressure-controlled and flow-controlled modes
US5787760A (en) 1993-11-24 1998-08-04 Thorlakson; Richard G. Method and foot pedal apparatus for operating a microscope
US5591127A (en) 1994-01-28 1997-01-07 Barwick, Jr.; Billie J. Phacoemulsification method and apparatus
US5465633A (en) 1994-02-07 1995-11-14 Johnson Fishing, Inc. Foot actuated trolling motor control
US5496339A (en) 1994-05-17 1996-03-05 Koepnick; Russell G. Universal automated keratectomy apparatus and method
US5584824A (en) 1994-06-08 1996-12-17 Syntec, Inc. Controlled vacuum cassette in ophthalmic retinal surgery
US5578040A (en) 1994-06-14 1996-11-26 Smith; Albert C. Ocular repair system and apparatus
US5527356A (en) 1994-08-02 1996-06-18 Syntec, Inc. Retinal plug
US5476448A (en) 1994-10-19 1995-12-19 Urich; Alex Apparatus for suppressing a vacuum surge in eye surgery
US5556397A (en) 1994-10-26 1996-09-17 Laser Centers Of America Coaxial electrosurgical instrument
US5624394A (en) 1994-10-28 1997-04-29 Iolab Corporation Vacuum system and a method of operating a vacuum system
US5527332A (en) 1994-11-02 1996-06-18 Mectra Labs, Inc. Tissue cutter for surgery
US5474532A (en) 1994-11-22 1995-12-12 Alcon Laboratories, Inc. Cutting blade for a vitreous cutter
DE19502305C2 (en) 1995-01-26 2002-01-17 Geuder Hans Gmbh Apparatus for aspirating lens debris in cataract surgery
US5868728A (en) 1995-02-28 1999-02-09 Photogenesis, Inc. Medical linear actuator for surgical delivery, manipulation, and extraction
US5566681A (en) 1995-05-02 1996-10-22 Manwaring; Kim H. Apparatus and method for stabilizing a body part
US5814010A (en) 1995-08-08 1998-09-29 Allergan, Inc. Safety-vac capsule polisher
USD377524S (en) 1995-10-05 1997-01-21 Megadyne Medical Products, Inc. Insulated electrosurgical needle
DE19540439C2 (en) 1995-10-30 1999-04-22 Schwind Gmbh & Co Kg Herbert Device for corneal surgery
US6007553A (en) * 1996-02-07 1999-12-28 Hellenkamp; Johann F. Automatic surgical device control assembly for cutting a cornea
US6051009A (en) 1996-02-07 2000-04-18 Hellenkamp; Johann F. Automatic surgical device for cutting a cornea and a cutting blade assembly and control assembly
US5957921A (en) 1996-11-07 1999-09-28 Optex Ophthalmologics, Inc. Devices and methods useable for forming small openings in the lens capsules of mammalian eyes
US5941250A (en) 1996-11-21 1999-08-24 University Of Louisville Research Foundation Inc. Retinal tissue implantation method
US5916330A (en) 1997-01-15 1999-06-29 Ford Global Technologies, Inc. Cable operated releasable brake pedal assembly
FR2767054B1 (en) 1997-08-05 1999-09-10 Khalil Hanna SURGICAL APPARATUS FOR MAKING A LAMELLAR CUT OF THE CORNEA
DE69930335T2 (en) 1998-03-31 2006-08-03 Nidek Co., Ltd., Gamagori Device for the surgery of the cornea
FR2779943B1 (en) 1998-06-19 2000-11-10 Moria Sa ARTIFICIAL CHAMBER FOR SAMPLING A CORNEAL GRAFT
US6083236A (en) 1998-08-12 2000-07-04 Feingold; Vladimir Keratome method and apparatus
US5989272A (en) 1998-10-05 1999-11-23 Barron Precision Instruments L.L.C. Keratome for performing eye surgery and method for using same
US6019754A (en) 1998-10-29 2000-02-01 Kawesch; Glenn Method and apparatus for improving lasik flap adherence
US6013049A (en) 1998-10-29 2000-01-11 Allergan Sales, Inc. Controlled outflow sleeve
US6165189A (en) 1999-02-10 2000-12-26 Sis, Ltd. Microkeratome for performing lasik surgery
DE60022413T2 (en) 1999-03-03 2006-01-19 Nidek Co., Ltd., Gamagori Operating device for the cornea
US6086544A (en) 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100014480A1 (en) * 2002-12-20 2010-01-21 Interdigital Technology Corporation Scheduling data transmission by medium access control (mac) layer in a mobile network
US20070129741A1 (en) * 2005-12-07 2007-06-07 Weston Philip D Artificial anterior chamber for use in keratoplasty
GB2433031A (en) * 2005-12-07 2007-06-13 Philip Douglas Weston Cornea retaining device for keratoplasty
GB2433031B (en) * 2005-12-07 2011-06-08 Philip Douglas Weston Artificial anterior chamber for use in keratoplasty
GB2448170A (en) * 2007-04-04 2008-10-08 Philip Douglas Weston Improvements relating to corneal graft preparation
US20080249548A1 (en) * 2007-04-04 2008-10-09 Philip Douglas Weston Corneal graft preparation
WO2008134660A2 (en) * 2007-04-27 2008-11-06 Azd Holding, Llc System and method for preparing a corneal graft
WO2008134660A3 (en) * 2007-04-27 2009-05-22 Azd Holding Llc System and method for preparing a corneal graft
WO2021195733A1 (en) * 2020-04-01 2021-10-07 Moraes Filho Leiser Franco De Arrangement applied to an artificial chamber for simulating cornea transplant surgery

Also Published As

Publication number Publication date
US6425905B1 (en) 2002-07-30

Similar Documents

Publication Publication Date Title
US7147648B2 (en) Device for cutting and holding a cornea during a transplant procedure
US6425905B1 (en) Method and apparatus for facilitating removal of a corneal graft
US5011498A (en) Cutting apparatus for the cutting of a round corneal disc
US4903695A (en) Method and apparatus for performing a keratomileusis or the like operation
US3074407A (en) Surgical devices for keratoplasty and methods thereof
US5556406A (en) Corneal template and surgical procedure for refractive vision correction
US7156859B2 (en) Device for separating the epithelium layer from the surface of the cornea of an eye
RU2157679C2 (en) Surgical method and device for correcting presbyopia
US5833701A (en) Procedure and device for corrective and therapeutic eye treatment
DE69818043T2 (en) SURGICAL MICROTOMAS
DE69736781T2 (en) Implantierungsinstrument
US5658303A (en) Universal automated keratectomy apparatus and method
EP2413856B1 (en) Device for the laser radiation treatment of an eye
US5312428A (en) Corneal punch and method of use
US5464417A (en) Apparatus and method for supporting and cutting cornea tissue
US20050288696A1 (en) Device for separating the epithelial layer from the surface of the cornea of an eye
US6045563A (en) Artificial chamber for extracting a corneal graft
JPH06501636A (en) Method and apparatus for surgically shaping a corneal profile using a vacuum
Waring et al. The Hanna suction punch block and trephine system for penetrating keratoplasty
US20060190004A1 (en) Cutting device
US4724837A (en) Method and apparatus for performing radial keratotomy refractive eye surgery
US6036709A (en) Ophthalmic instrument and method for preparing an eye for LASIK
KR20040010629A (en) A positioning assembly for retaining and positioning a cornea
Viestenz et al. Evaluation of corneal flap dimensions and cut quality using the SKBM automated microkeratome
US20050065540A1 (en) Medical instrument for cornea operation

Legal Events

Date Code Title Description
AS Assignment

Owner name: MED-LOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUIMARAES, RICARDO;ROSS, ROD;HUGHES, GREGG;REEL/FRAME:011320/0708

Effective date: 20001103

AS Assignment

Owner name: ENLIGHTEN TECHNOLOGIES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MED-LOGICS, INC.;REEL/FRAME:011546/0425

Effective date: 20010220

AS Assignment

Owner name: MED-LOGICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENLIGHTEN TECHNOLOGIES, INC.;REEL/FRAME:012621/0406

Effective date: 20020115

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12