US20020065560A1 - Intervertebral spacing implant system - Google Patents

Intervertebral spacing implant system Download PDF

Info

Publication number
US20020065560A1
US20020065560A1 US10/055,673 US5567302A US2002065560A1 US 20020065560 A1 US20020065560 A1 US 20020065560A1 US 5567302 A US5567302 A US 5567302A US 2002065560 A1 US2002065560 A1 US 2002065560A1
Authority
US
United States
Prior art keywords
spacing member
spacing
intervertebral
vertebral bodies
adjacent vertebral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/055,673
Inventor
Peter Varga
James Ogilvie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortho Development Corp
Original Assignee
Ortho Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortho Development Corp filed Critical Ortho Development Corp
Priority to US10/055,673 priority Critical patent/US20020065560A1/en
Assigned to ORTHO DEVELOPMENT CORPORATION reassignment ORTHO DEVELOPMENT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: VARGA, PETER PAL, M.D., OGILVIE, JAMES A. M.D.
Publication of US20020065560A1 publication Critical patent/US20020065560A1/en
Priority to US10/814,352 priority patent/US20040186574A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/4465Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or kidney shaped cross-section substantially perpendicular to the axis of the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4684Trial or dummy prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30133Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3082Grooves
    • A61F2002/30827Plurality of grooves
    • A61F2002/30828Plurality of grooves parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0015Kidney-shaped, e.g. bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/908Bone

Definitions

  • the present invention relates generally to an intervertebral spacer, and more particularly, but not necessarily entirely, to a interbody spacing system for accomplishing enhanced intervertebral fusion between adjacent vertebral bodies of a human spine.
  • the human spine is a complex, sophisticated mechanical system.
  • the vertebrate spine operates as a structural member, providing structural support for the other body parts.
  • a normal human spine is segmented with seven cervical, twelve thoracic and five lumbar segments.
  • the lumbar portion of the spine resides on the sacrum, which is attached to the pelvis.
  • the pelvis is supported by the hips and leg bones.
  • the bony vertebral bodies of the spine are separated by intervertebral discs, which reside sandwiched between the vertebral bodies and operate as joints allowing known degrees of flexion, extension, lateral bending and axial rotation.
  • the intervertebral disc primarily serves as a mechanical cushion between adjacent vertebral bodies, and permits controlled motions within vertebral segments of the axial skeleton.
  • the disc is a multi-element system, having three basic components: the nucleus pulposus (“nucleus”), the anulus fibrosus (“anulus”) and two vertebral end plates.
  • the end plates are made of thin cartilage overlying a thin layer of hard, cortical bone that attaches to the spongy, richly vascular, cancellous bone of the vertebral body. The plates thereby operate to attach adjacent vertebrae to the disc. In other words, a transitional zone is created by the end plates between the malleable disc and the bony vertebrae.
  • the anulus of the disc forms the disc perimeter, and is a tough, outer fibrous ring that binds adjacent vertebrae together.
  • the fiber layers of the anulus include fifteen to twenty overlapping plies, which are inserted into the superior and inferior vertebral bodies at roughly a 40 degree angle in both directions. This causes bi-directional torsional resistance, as about half of the angulated fibers will tighten when the vertebrae rotate in either direction.
  • the damaged disc may be replaced with a disc prosthesis intended to duplicate the function of the natural spinal disc.
  • U.S. Pat. No. 4,863,477 discloses a resilient spinal disc prosthesis intended to replace the resiliency of a natural human spinal disc.
  • U.S. Pat. No. 5,192,326 teaches a prosthetic nucleus for replacing just the nucleus portion of a human spinal disc.
  • intervertebral fusion In other cases it is desired to fuse the adjacent vertebrae together after removal of the disc, sometimes referred to as “intervertebral fusion” or “interbody fusion.”
  • Another disadvantage of known spacing techniques and intervertebral spacers are the additional surgical complications that arise in the use of multiple spacers in a single disc space.
  • surgeons will often first perform a posterior surgery to remove the affected disc and affix posterior instrumentation to the posterior side of the vertebrae to hold the posterior portions of the vertebrae in a desired position.
  • Placement of the multiple spacers is often too difficult to accomplish from the posterior side of the patient, at least without causing with undue trauma to the patient, because a surgeon would need to retract the dura nerve as well as the anterior longitudinal ligament, thereby increasing damage, pain and morbidity to the patient.
  • Surgeons have therefore often chosen to turn the patient over after completing the posterior surgical portion, to perform an anterior operative procedure, through the patient's belly, in order to insert multiple spacers between the vertebrae from the anterior side instead of from the posterior side.
  • U.S. Pat. No. 5,961,554 (granted Oct. 5, 1999 to Janson et al.) illustrates a spacer having a high degree of porosity throughout, for enhanced tissue ingrowth characteristics. This patent does not address the problem of compromising the sagittal alignment, or of increased pain and trauma to the patient by implantation of multiple spacers in a single disk space.
  • the prior art is thus characterized by several disadvantages that are addressed by the present invention.
  • the present invention minimizes, and in some aspects eliminates, the above-mentioned failures, and other problems, by utilizing the methods and structural features described herein.
  • the above objects and others not specifically recited are realized in a specific illustrative embodiment of an intervertebral spacer adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc.
  • the spacing member includes an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member.
  • the spacing member is preferably constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation.
  • the spacing member is inserted with the aid of a sheathed trocar device that is releasably attached to the spacer, to enable implantation and selective positioning of the spacer by the surgeon from the posterior side of the spine, without the need to retract the dural nerve or the posterior longitudinal ligament.
  • FIG. 1 is a perspective view of an intervertebral spacer, made in accordance with the principles of the present invention
  • FIG. 2 is a plan view of the intervertebral spacer of FIG. 1;
  • FIG. 3 is a frontal view of the intervertebral spacer of FIGS. 1 and 2;
  • FIG. 4 is a side view of the intervertebral spacer of FIGS. 1, 2 and 3 ;
  • FIG. 5 is side view of a pair of adjacent vertebral bodies from the lumbar region of a human spine
  • FIG. 6 is a schematic view of a sheathed trocar device releasably attached to a trial spacer shaped similarly to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention
  • FIG. 7 is a schematic view of a sheathed trocar device releasably attached to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention
  • FIGS. 8 A- 8 D illustrate a schematic progression of the placement of the intervertebral spacer of FIG. 1 between vertebral bodies of a human spine
  • FIG. 9 illustrates posterior instrumentation by which compression is applied to the posterior sides of a paid of adjacenet vertebral bodies of a human spine.
  • Applicants have discovered that several of the disadvantages of the prior art spinal disc replacement systems can be minimized, or even eliminated, by the use of a cashew-shaped interbody spacer having a tapered external shape, placing it is far anteriorly as possible between adjacent vertebral bodies, filling in the remaining posterior space with bone graft material, and applying compression to posterior portions of the vertebral bodies to load the bone graft in compression and restore sagittal alignment.
  • FIGS. 1 - 4 there is shown a spacing member, referred to also herein as an intervertebral spacer or an interbody spacer, designated generally at 10 .
  • the spacer 10 is utilized, along with autogenous bone grafting material, to replace a diseased or damaged spinal disc.
  • FIGS. 5 - 7 the procedure is implemented by making an incision 32 in the anulus 34 connecting adjacent vertebral bodies 31 .
  • the spinal disc (not shown) is surgically removed from the incision 32 , after which the spacer 10 is placed through the incision 32 into position between the vertebral bodies 31 .
  • the spacer is preferably placed with its convex, anterior sidewall 12 facing anteriorly, and with its concave, posterior sidewall 14 facing posteriorly.
  • Bone grafting material is placed through the incision 32 to reside behind the spacer 10 , after which posterior instrumentation is attached to pedicle areas 34 to force the vertebral bodies 31 together in compression, as illustrated schematically in FIG. 8D and more particularly in FIG. 9.
  • the spacer 10 is preferably made of titanium, thus having a non-porous quality with a preferably smooth finish.
  • the spacer 10 could also be made of ceramic, or any other suitable material that is inert and biologically compatible.
  • the spacer 10 is thus constructed from a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation.
  • the spacer 10 by its anterior, convex sidewall 12 and its posterior, concave sidewall 14 , has thereby a concavo-convex contour with respect to one dimension.
  • an object being concavo-convex in a single dimension shall thereby include an object that has concave and convex sides 14 and 12 in a horizontal dimension 16 , even though those very same sides are linear in a vertical dimension 20 at all points, such as in the case of the spacer 10 shown in FIG. 1.
  • the spacer 10 is concavo-convex in the anterior-posterior direction 16 , though not in a medial-lateral direction 18 or vertical direction 20 .
  • the upper surface 22 of the spacer 10 is preferably a planer, discontinuous surface having a plurality of spaced-apart elongate recesses 24 , with preferably a corner point 28 whereby one side 26 of the spacer 10 begins tapering in the medial-lateral direction 18 , as shown most clearly in FIG. 3.
  • the primary taper of the spacer 10 occurs in the anterio-to-posterior direction 16 , in that the spacer 10 narrows in thickness in a continuous manner along substantially the entire spacer 10 as shown most clearly in FIG. 4.
  • the upper surface 22 and lower surface 30 form an acute angle relative to a horizontal plane 23 , the angle being with a range of preferably two to eight degrees, most preferably four degrees.
  • the entire taper is therefore most preferably an eight degree total taper, with four degrees of taper resulting from the upper surface 22 and the other four degrees of taper resulting from the lower surface 30 .
  • the spacer 10 has an arc-length AL that is preferably 1.218 inches, a width W that is preferably 0.320 inches, a depth D that is preferably 0.532 inches, an inner radius R 2 that is 0.271 inches, an outer radius R 1 that is preferably 0.591 inches, and side radii R 3 and R 4 that are each preferably 0.160 inches.
  • anterior, convex sidewall 12 and the posterior, concave sidewall 14 of the spacer 10 are each preferably linear in the vertical dimension 20 , and are most preferably parallel relative to one another.
  • the primary goal in intervertebral fusion are immobilization of the affected vertebrae, restoration of the spinal disc space and sagittal alignment, and to provide an environment for bony fusion between vertebral bodies.
  • Applicants have discovered that these goals are most effectively accomplished by the mechanical principle of a cantilever.
  • a cantilever is constructed within the disc space as shown most clearly in FIG. 8D. The procedure for accomplishing this is as follows.
  • FIG. 8A is a schematic side, internal view of the vertebral bodies 31 indicated in FIG. 5.
  • the spinal disc 33 resides between the vertebral bodies 31 , all of which reside between the anterior longitudinal ligament (ALL) 36 and the posterior longitudinal ligament (PLL) 38 .
  • the dural nerve (Dura) 40 resides posteriorly to the vertebral bodies 31 and the PLL 38 .
  • Posterior instrumentation preferably pedicle screws 42 (FIG. 9)
  • pedicle screws 42 are affixed to posterior pedicle portions 34 of the vertebral bodies 31 .
  • the associated rods 44 and structure interconnecting the rods 44 with the pedicle screws 42 are not affixed until later on in the procedure.
  • a posterior portion of the lower vertebral body involved in the fusion namely, the left inferior articular facet, is removed and saved for future autogenous bone grafting.
  • a lamina spreader (not shown, but indicated in FIGS. 8B and 8C), is placed between the spinous processes 35 (shown in FIG. 5), and is operated to spread the adjacent vertebral bodies 31 apart.
  • the anterior longitudinal ligament 36 and posterior longitudinal ligament 38 are left intact and need not be retracted.
  • the incision 32 (FIG. 5) is made, preferably with a #15 scalpel, or any suitable surgical instrument, in a side section of the anulus 37 .
  • the disc 33 is then detached from the vertebral end plates (not shown) with the proper surgical instrumentation, and is removed through the incision 32 . Care is taken not to violate the bony vertebral end plate, which would cause excessive bleeding and compromise the resistance to axial load when the spacer 10 is inserted.
  • a trial spacer 50 is used to determine the correct spacer size.
  • the trial spacer 50 preferably has the same shape as the spacer 10 , both of which are part of a set having various sizes, except that the trial spacer 50 does not include the recesses 24 .
  • the trial spacer 50 is inserted into the incision 32 with a sheathed trocar device 52 .
  • the main purpose of trial spacer 50 is to evaluate a snugness of fit of said trial spacer 50 as it resides between the adjacent vertebral bodies 31 , which enables the surgeon to determine a spacer size thereby.
  • the trial spacer 50 may also have sharp edging, and is useable to clear away any remaining unwanted tissue.
  • a bone graft is prepared, preferably autogenous bone graft material 54 as shown in FIG. 8C. Care is taken to remove all soft tissue from the autogenous bone, which will facilitate successful osseointegration of the graft. Additional bone can also be harvested from the spinous processes 35 . The harvested autogenous bone is then passed through a bone mill (not shown) to form suitable bone grafting material as known and understood to those having ordinary skill in the art.
  • the spacer 10 is inserted through the incision 32 with the sheathed trocar device 52 .
  • the sheathed trocar device 52 includes a trocar rod 56 preferably slidably disposed within a hollow sheath 58 .
  • the trocar rod 56 and the hollow sheath 58 may moveably engaged with each other in any suitable manner.
  • Both the trial spacer 50 and the spacer 10 preferably include a female-threaded opening 50 a and 10 a formed therein, respectively, in which a male-threaded portion 57 of the trocar rod 56 may be releasably inserted.
  • the trocar rod 56 may of course be releasably attached to the trial spacer 50 and spacer 10 in any other suitable manner.
  • the trocar rod 56 has a longer length than the sheath member 58 , such that a proximal portion 60 of the trocar rod 56 protrudes from the sheath member 58 when the trocar rod 56 is attached to the trial spacer 50 or the spacer 10 .
  • the sheathed trocar device 52 accordingly provides an efficiently stabilized, releasable connection with the spacer 10 .
  • the sheath member 58 provides additional support by abutting up against the spacer and contactably circumscribing the point of the attachment of the trocar rod 56 with the spacer 10 , thereby providing additional stability and control over the positioning of the spacer 10 .
  • the surgeon then selectively positions the spacer 10 within the space residing between the adjacent vertebral bodies 31 , preferably as far anteriorly as possible and most preferably such that the spacer 10 resides in contact with the anterior longitudinal ligament 36 .
  • the bone grafting material 54 is placed through the incision 32 and into position between the adjacent vertebral bodies 31 , such that said bone grafting material 54 resides posteriorly to the concave sidewall 14 of the spacer 10 , and thus between the sidewall 14 and the posterior longitudinal ligament 38 .
  • a bone funnel (not shown) as known to those having ordinary skill in the field may be used to funnel morselized bone grafting material into the incision 32 .
  • the concavo-convex shape of the spacer 10 and the method of implantation with the spacer 10 residing as far anteriorly as possible, operates to provide a larger bone-graft interface between the adjacent vertebral bodies 31 .
  • FIG. 8D and FIG. 9 the lamina spreader is removed and the pedicle screws 42 are interconnected with the rods 44 as known in the field. Mild compression is applied by a compression instrument 46 to thereby slide rods 44 downwardly, after which the pedicle screws 42 are tightened to hold the rods 44 in place and maintain the compression. Further compression is applied as desired, with the result being illustrated schematically in FIG. 8D.
  • the bone grafting material 54 is thereby loaded in compression by the posteriorly compressed adjacent vertebral bodies 31 as shown. After final inspection of the placement of the bone grafting material 54 , routine closure of the wound is completed. The use of drains may be made at the discretion of the surgeon.
  • the spacer 10 thus operates to cause the adjacent vertebral bodies 31 to be suspended in the manner of a cantilever.
  • the posterior compression provided by the pedicle screws 42 and rods 44 which may alternatively be provided by any other suitable holding structure, causes the adjacent vertebral bodies 31 to be brought closer together on their posterior side than on their anterior side, consistent with the natural sagittal alignment in which they were originally positioned, as understood by those having ordinary skill in the field.
  • the structure and apparatus of the trocar rod 56 and sheath 58 constitute a positioning means for enabling a surgeon to adjust a position of the spacer 10 when the spacer 10 resides between the adjacent intervertebral bodies 31 .
  • That structure is merely one example of a means for positioning the spacer 10 , and it should be appreciated that any structure, apparatus or system for positioning which performs functions that are the same as, or equivalent to, those disclosed herein are intended to fall within the scope of a means for positioning, including those structures, apparatus or systems for positioning which are presently known, or which may become available in the future. Anything which functions the same as, or equivalently to, a means for positioning falls within the scope of this element.
  • a preferred method of implanting an artificial intervertebral disc includes:

Abstract

An intervertebral spacer adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc. The spacing member includes an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member. The spacing member is preferably constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation. The spacing member is inserted with the aid of a sheathed trocar device that is releasably attached to the spacer, to enable implantation and selective positioning of the spacer by the surgeon from the posterior side of the spine, without the need to retract the dural nerve or the posterior longitudinal ligament.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • Not Applicable. [0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • Not Applicable. [0002]
  • BACKGROUND OF THE INVENTION
  • 1. The Field of the Invention [0003]
  • The present invention relates generally to an intervertebral spacer, and more particularly, but not necessarily entirely, to a interbody spacing system for accomplishing enhanced intervertebral fusion between adjacent vertebral bodies of a human spine. [0004]
  • 2. Description of Related Art [0005]
  • The human spine is a complex, sophisticated mechanical system. The vertebrate spine operates as a structural member, providing structural support for the other body parts. A normal human spine is segmented with seven cervical, twelve thoracic and five lumbar segments. The lumbar portion of the spine resides on the sacrum, which is attached to the pelvis. The pelvis is supported by the hips and leg bones. The bony vertebral bodies of the spine are separated by intervertebral discs, which reside sandwiched between the vertebral bodies and operate as joints allowing known degrees of flexion, extension, lateral bending and axial rotation. [0006]
  • The intervertebral disc primarily serves as a mechanical cushion between adjacent vertebral bodies, and permits controlled motions within vertebral segments of the axial skeleton. The disc is a multi-element system, having three basic components: the nucleus pulposus (“nucleus”), the anulus fibrosus (“anulus”) and two vertebral end plates. The end plates are made of thin cartilage overlying a thin layer of hard, cortical bone that attaches to the spongy, richly vascular, cancellous bone of the vertebral body. The plates thereby operate to attach adjacent vertebrae to the disc. In other words, a transitional zone is created by the end plates between the malleable disc and the bony vertebrae. [0007]
  • The anulus of the disc forms the disc perimeter, and is a tough, outer fibrous ring that binds adjacent vertebrae together. The fiber layers of the anulus include fifteen to twenty overlapping plies, which are inserted into the superior and inferior vertebral bodies at roughly a 40 degree angle in both directions. This causes bi-directional torsional resistance, as about half of the angulated fibers will tighten when the vertebrae rotate in either direction. [0008]
  • It is common practice to remove a spinal disc in cases of spinal disc deterioration, disease or spinal injury. The discs sometimes become diseased or damaged such that the intervertebral separation is reduced. Such events cause the height of the disc nucleus to decrease, which in turn causes the anulus to buckle in areas where the laminated plies are loosely bonded. As the overlapping laminated plies of the anulus begin to buckle and separate, either circumferential or radial anular tears may occur. Such disruption to the natural intervertebral separation produces pain, which can be alleviated by removal of the disc and maintenance of the natural separation distance. In cases of chronic back pain resulting from a degenerated or herniated disc, removal of the disc becomes medically necessary. [0009]
  • In some cases, the damaged disc may be replaced with a disc prosthesis intended to duplicate the function of the natural spinal disc. U.S. Pat. No. 4,863,477 (granted Sep. 5, 1989 to Monson) discloses a resilient spinal disc prosthesis intended to replace the resiliency of a natural human spinal disc. U.S. Pat. No. 5,192,326 (granted Mar. 9, 1993 to Bao et al.) teaches a prosthetic nucleus for replacing just the nucleus portion of a human spinal disc. [0010]
  • In other cases it is desired to fuse the adjacent vertebrae together after removal of the disc, sometimes referred to as “intervertebral fusion” or “interbody fusion.”[0011]
  • In cases of intervertebral fusion, it is known to position a spacer centrally within the space where the spinal disc once resided, or to position multiple spacers within that space. Such practices are characterized by certain disadvantages, including a disruption in the natural curvature of the spine. For example, the vertebrae in the lower “lumbar” region of the spine reside in an arch referred to in the medical field as having a sagittal alignment. The sagittal alignment is compromised when adjacent vertebral bodies that were once angled toward each other on their posterior side become fused in a different, less angled orientation relative to one another. [0012]
  • Another disadvantage of known spacing techniques and intervertebral spacers are the additional surgical complications that arise in the use of multiple spacers in a single disc space. In such cases, surgeons will often first perform a posterior surgery to remove the affected disc and affix posterior instrumentation to the posterior side of the vertebrae to hold the posterior portions of the vertebrae in a desired position. Placement of the multiple spacers is often too difficult to accomplish from the posterior side of the patient, at least without causing with undue trauma to the patient, because a surgeon would need to retract the dura nerve as well as the anterior longitudinal ligament, thereby increasing damage, pain and morbidity to the patient. Surgeons have therefore often chosen to turn the patient over after completing the posterior surgical portion, to perform an anterior operative procedure, through the patient's belly, in order to insert multiple spacers between the vertebrae from the anterior side instead of from the posterior side. [0013]
  • U.S. Pat. No. 5,961,554 (granted Oct. 5, 1999 to Janson et al.) illustrates a spacer having a high degree of porosity throughout, for enhanced tissue ingrowth characteristics. This patent does not address the problem of compromising the sagittal alignment, or of increased pain and trauma to the patient by implantation of multiple spacers in a single disk space. [0014]
  • The prior art is thus characterized by several disadvantages that are addressed by the present invention. The present invention minimizes, and in some aspects eliminates, the above-mentioned failures, and other problems, by utilizing the methods and structural features described herein. [0015]
  • BRIEF SUMMARY AND OBJECTS OF THE INVENTION
  • It is therefore an object of the present invention to provide an intervertebral spacing system that does not require an additional, anterior surgical procedure. [0016]
  • It is another object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system by which sagittal alignment of the spine is restored. [0017]
  • It is a further object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system that can accommodate a larger host-graft interface between adjacent vertebral bodies. [0018]
  • It is an additional object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system in which bone grafting material is loaded in compression between adjacent vertebral bodies of the spine. [0019]
  • It is yet another object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system that does not require retraction of the dural nerve, or of the anterior or posterior longitudinal ligaments, for implantation of the spacer. [0020]
  • The above objects and others not specifically recited are realized in a specific illustrative embodiment of an intervertebral spacer adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc. The spacing member includes an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member. The spacing member is preferably constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation. The spacing member is inserted with the aid of a sheathed trocar device that is releasably attached to the spacer, to enable implantation and selective positioning of the spacer by the surgeon from the posterior side of the spine, without the need to retract the dural nerve or the posterior longitudinal ligament. [0021]
  • Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by the practice of the invention without undue experimentation. The objects and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the invention will become apparent from a consideration of the subsequent detailed description presented in connection with the accompanying drawings in which: [0023]
  • FIG. 1 is a perspective view of an intervertebral spacer, made in accordance with the principles of the present invention; [0024]
  • FIG. 2 is a plan view of the intervertebral spacer of FIG. 1; [0025]
  • FIG. 3 is a frontal view of the intervertebral spacer of FIGS. 1 and 2; [0026]
  • FIG. 4 is a side view of the intervertebral spacer of FIGS. 1, 2 and [0027] 3;
  • FIG. 5 is side view of a pair of adjacent vertebral bodies from the lumbar region of a human spine; [0028]
  • FIG. 6 is a schematic view of a sheathed trocar device releasably attached to a trial spacer shaped similarly to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention; [0029]
  • FIG. 7 is a schematic view of a sheathed trocar device releasably attached to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention; [0030]
  • FIGS. [0031] 8A-8D illustrate a schematic progression of the placement of the intervertebral spacer of FIG. 1 between vertebral bodies of a human spine; and
  • FIG. 9 illustrates posterior instrumentation by which compression is applied to the posterior sides of a paid of adjacenet vertebral bodies of a human spine. [0032]
  • DETAILED DESCRIPTION OF THE INVENTION
  • For the purposes of promoting an understanding of the principles in accordance with the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention claimed. [0033]
  • Before the apparatus and methods of the present invention are described further, it is to be understood that the invention is not limited to the particular configurations, process steps, and materials disclosed herein as such configurations, process steps, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof. [0034]
  • The publications and other reference materials referred to herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference. The references discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as a suggestion or admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention. [0035]
  • In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below. [0036]
  • As used herein, “comprising,” “including,” “containing,” “characterized by,” and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps. [0037]
  • Applicants have discovered that several of the disadvantages of the prior art spinal disc replacement systems can be minimized, or even eliminated, by the use of a cashew-shaped interbody spacer having a tapered external shape, placing it is far anteriorly as possible between adjacent vertebral bodies, filling in the remaining posterior space with bone graft material, and applying compression to posterior portions of the vertebral bodies to load the bone graft in compression and restore sagittal alignment. [0038]
  • Referring now to FIGS. [0039] 1-4, there is shown a spacing member, referred to also herein as an intervertebral spacer or an interbody spacer, designated generally at 10.
  • Briefly stated, the [0040] spacer 10 is utilized, along with autogenous bone grafting material, to replace a diseased or damaged spinal disc. Referring now to FIGS. 5-7, the procedure is implemented by making an incision 32 in the anulus 34 connecting adjacent vertebral bodies 31. The spinal disc (not shown) is surgically removed from the incision 32, after which the spacer 10 is placed through the incision 32 into position between the vertebral bodies 31. The spacer is preferably placed with its convex, anterior sidewall 12 facing anteriorly, and with its concave, posterior sidewall 14 facing posteriorly. Bone grafting material is placed through the incision 32 to reside behind the spacer 10, after which posterior instrumentation is attached to pedicle areas 34 to force the vertebral bodies 31 together in compression, as illustrated schematically in FIG. 8D and more particularly in FIG. 9.
  • The unique aspects and procedures relating to the [0041] spacer 10 will now be explained in more detail. Some of the key features of the invention comprise the size, shape and placement of spacer 10. The spacer 10 is preferably made of titanium, thus having a non-porous quality with a preferably smooth finish. The spacer 10 could also be made of ceramic, or any other suitable material that is inert and biologically compatible. The spacer 10 is thus constructed from a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation. The spacer 10, by its anterior, convex sidewall 12 and its posterior, concave sidewall 14, has thereby a concavo-convex contour with respect to one dimension.
  • It is to be understood that the concept of an object having a concavo-convex contour with respect to one dimension of the object, as referred to herein, shall not require the concave and convex sides of the object to be parallel to one another, although such is preferred. The concept does however refer to a dimension in which the concave and convex sides of the object are at least partially facing the direction of that dimension, as indicated by the [0042] dimension 16 of FIG. 1 in relation to the spacer 10. It is also to be understood that the concept of an object being concavo-convex in a single dimension shall thereby include an object that has concave and convex sides 14 and 12 in a horizontal dimension 16, even though those very same sides are linear in a vertical dimension 20 at all points, such as in the case of the spacer 10 shown in FIG. 1. For example, the spacer 10 is concavo-convex in the anterior-posterior direction 16, though not in a medial-lateral direction 18 or vertical direction 20.
  • The [0043] upper surface 22 of the spacer 10 is preferably a planer, discontinuous surface having a plurality of spaced-apart elongate recesses 24, with preferably a corner point 28 whereby one side 26 of the spacer 10 begins tapering in the medial-lateral direction 18, as shown most clearly in FIG. 3. The primary taper of the spacer 10 occurs in the anterio-to-posterior direction 16, in that the spacer 10 narrows in thickness in a continuous manner along substantially the entire spacer 10 as shown most clearly in FIG. 4. The upper surface 22 and lower surface 30 form an acute angle relative to a horizontal plane 23, the angle being with a range of preferably two to eight degrees, most preferably four degrees. The entire taper is therefore most preferably an eight degree total taper, with four degrees of taper resulting from the upper surface 22 and the other four degrees of taper resulting from the lower surface 30.
  • As shown most clearly in FIG. 2, the [0044] spacer 10 has an arc-length AL that is preferably 1.218 inches, a width W that is preferably 0.320 inches, a depth D that is preferably 0.532 inches, an inner radius R2 that is 0.271 inches, an outer radius R1 that is preferably 0.591 inches, and side radii R3 and R4 that are each preferably 0.160 inches.
  • The anterior, [0045] convex sidewall 12 and the posterior, concave sidewall 14 of the spacer 10 are each preferably linear in the vertical dimension 20, and are most preferably parallel relative to one another.
  • The primary goal in intervertebral fusion are immobilization of the affected vertebrae, restoration of the spinal disc space and sagittal alignment, and to provide an environment for bony fusion between vertebral bodies. Applicants have discovered that these goals are most effectively accomplished by the mechanical principle of a cantilever. Using the [0046] spacer 10 as a compression point, a cantilever is constructed within the disc space as shown most clearly in FIG. 8D. The procedure for accomplishing this is as follows.
  • FIG. 8A is a schematic side, internal view of the [0047] vertebral bodies 31 indicated in FIG. 5. The spinal disc 33 resides between the vertebral bodies 31, all of which reside between the anterior longitudinal ligament (ALL) 36 and the posterior longitudinal ligament (PLL) 38. The dural nerve (Dura) 40 resides posteriorly to the vertebral bodies 31 and the PLL 38.
  • Referring now to FIG. 8B and FIG. 9, posterior access to the spine of the patient (not shown) is accomplished. Posterior instrumentation, preferably pedicle screws [0048] 42 (FIG. 9), are affixed to posterior pedicle portions 34 of the vertebral bodies 31. The associated rods 44 and structure interconnecting the rods 44 with the pedicle screws 42 are not affixed until later on in the procedure. A posterior portion of the lower vertebral body involved in the fusion, namely, the left inferior articular facet, is removed and saved for future autogenous bone grafting. A lamina spreader (not shown, but indicated in FIGS. 8B and 8C), is placed between the spinous processes 35 (shown in FIG. 5), and is operated to spread the adjacent vertebral bodies 31 apart. The anterior longitudinal ligament 36 and posterior longitudinal ligament 38 are left intact and need not be retracted.
  • After coagulation of the veins (not shown), the incision [0049] 32 (FIG. 5) is made, preferably with a #15 scalpel, or any suitable surgical instrument, in a side section of the anulus 37. The disc 33 is then detached from the vertebral end plates (not shown) with the proper surgical instrumentation, and is removed through the incision 32. Care is taken not to violate the bony vertebral end plate, which would cause excessive bleeding and compromise the resistance to axial load when the spacer 10 is inserted.
  • When as much disc material has been removed as can safely be accomplished, a [0050] trial spacer 50 is used to determine the correct spacer size. The trial spacer 50 preferably has the same shape as the spacer 10, both of which are part of a set having various sizes, except that the trial spacer 50 does not include the recesses 24. The trial spacer 50 is inserted into the incision 32 with a sheathed trocar device 52. The main purpose of trial spacer 50 is to evaluate a snugness of fit of said trial spacer 50 as it resides between the adjacent vertebral bodies 31, which enables the surgeon to determine a spacer size thereby. The trial spacer 50 may also have sharp edging, and is useable to clear away any remaining unwanted tissue.
  • When the spacer size has been determined, a bone graft is prepared, preferably autogenous [0051] bone graft material 54 as shown in FIG. 8C. Care is taken to remove all soft tissue from the autogenous bone, which will facilitate successful osseointegration of the graft. Additional bone can also be harvested from the spinous processes 35. The harvested autogenous bone is then passed through a bone mill (not shown) to form suitable bone grafting material as known and understood to those having ordinary skill in the art.
  • The [0052] spacer 10 is inserted through the incision 32 with the sheathed trocar device 52. The sheathed trocar device 52 includes a trocar rod 56 preferably slidably disposed within a hollow sheath 58. The trocar rod 56 and the hollow sheath 58 may moveably engaged with each other in any suitable manner.
  • Both the [0053] trial spacer 50 and the spacer 10 preferably include a female-threaded opening 50 a and 10 a formed therein, respectively, in which a male-threaded portion 57 of the trocar rod 56 may be releasably inserted. The trocar rod 56 may of course be releasably attached to the trial spacer 50 and spacer 10 in any other suitable manner. The trocar rod 56 has a longer length than the sheath member 58, such that a proximal portion 60 of the trocar rod 56 protrudes from the sheath member 58 when the trocar rod 56 is attached to the trial spacer 50 or the spacer 10.
  • The sheathed [0054] trocar device 52 accordingly provides an efficiently stabilized, releasable connection with the spacer 10. With the trocar rod 56 being attached directly to the spacer 10, the sheath member 58 provides additional support by abutting up against the spacer and contactably circumscribing the point of the attachment of the trocar rod 56 with the spacer 10, thereby providing additional stability and control over the positioning of the spacer 10.
  • The surgeon then selectively positions the [0055] spacer 10 within the space residing between the adjacent vertebral bodies 31, preferably as far anteriorly as possible and most preferably such that the spacer 10 resides in contact with the anterior longitudinal ligament 36.
  • With the [0056] spacer 10 in place, the bone grafting material 54 is placed through the incision 32 and into position between the adjacent vertebral bodies 31, such that said bone grafting material 54 resides posteriorly to the concave sidewall 14 of the spacer 10, and thus between the sidewall 14 and the posterior longitudinal ligament 38. A bone funnel (not shown) as known to those having ordinary skill in the field may be used to funnel morselized bone grafting material into the incision 32.
  • It is noted that the concavo-convex shape of the [0057] spacer 10, and the method of implantation with the spacer 10 residing as far anteriorly as possible, operates to provide a larger bone-graft interface between the adjacent vertebral bodies 31.
  • Referring now to FIG. 8D and FIG. 9, the lamina spreader is removed and the pedicle screws [0058] 42 are interconnected with the rods 44 as known in the field. Mild compression is applied by a compression instrument 46 to thereby slide rods 44 downwardly, after which the pedicle screws 42 are tightened to hold the rods 44 in place and maintain the compression. Further compression is applied as desired, with the result being illustrated schematically in FIG. 8D. The bone grafting material 54 is thereby loaded in compression by the posteriorly compressed adjacent vertebral bodies 31 as shown. After final inspection of the placement of the bone grafting material 54, routine closure of the wound is completed. The use of drains may be made at the discretion of the surgeon.
  • The [0059] spacer 10 thus operates to cause the adjacent vertebral bodies 31 to be suspended in the manner of a cantilever. The posterior compression provided by the pedicle screws 42 and rods 44, which may alternatively be provided by any other suitable holding structure, causes the adjacent vertebral bodies 31 to be brought closer together on their posterior side than on their anterior side, consistent with the natural sagittal alignment in which they were originally positioned, as understood by those having ordinary skill in the field.
  • It will be appreciated that the structure and apparatus of the [0060] trocar rod 56 and sheath 58 constitute a positioning means for enabling a surgeon to adjust a position of the spacer 10 when the spacer 10 resides between the adjacent intervertebral bodies 31. That structure is merely one example of a means for positioning the spacer 10, and it should be appreciated that any structure, apparatus or system for positioning which performs functions that are the same as, or equivalent to, those disclosed herein are intended to fall within the scope of a means for positioning, including those structures, apparatus or systems for positioning which are presently known, or which may become available in the future. Anything which functions the same as, or equivalently to, a means for positioning falls within the scope of this element.
  • In accordance with the features and combinations described above, a preferred method of implanting an artificial intervertebral disc includes: [0061]
  • (a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies; [0062]
  • (b) inserting a spacing member through the incision and into position between the adjacent vertebral bodies, and positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than anteriorly thereto; [0063]
  • (c) applying compression to posterior portions of the adjacent vertebral bodies. [0064]
  • It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended are intended to cover such modifications and arrangements. Thus, while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein. [0065]

Claims (43)

What is claimed is:
1. An intervertebral spacing implant comprising:
a spacing member adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc, said spacing member further comprising an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member.
2. The intervertebral spacing implant of claim 1, wherein the spacing member is constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation.
3. The intervertebral spacing implant of claim 2, wherein the spacing member comprises metal.
4. The intervertebral spacing implant of claim 3, wherein the spacing member comprises titanium.
5. The intervertebral spacing implant of claim 2, wherein the spacing member comprises ceramic.
6. The intervertebral spacing implant of claim 1, wherein the spacing member includes an anterior wall and a posterior wall, and wherein the external concavo-convex contour of the spacer is defined by the posterior wall being concave in a horizontal dimension and by the anterior wall being convex in a horizontal dimension.
7. The intervertebral spacing implant of claim 6, wherein the anterior wall and the posterior wall of the spacing member are each linear in a vertical dimension.
8. The intervertebral spacing implant of claim 7, wherein the concavo-convex contour comprises a concave posterior side, and a convex anterior side disposed in a substantial parallel orientation with respect to the concave posterior side.
9. The intervertebral spacing implant of claim 1, wherein the spacing member defines an imaginary arcuate centerline residing between opposing sides of the external concavo-convex contour of said spacing member to thereby enable said spacing member to be inserted thorough an incision along an arcuate insertion path.
10. The intervertebral spacing implant of claim 9, wherein the spacing member is configured and adapted to be inserted along said arcuate movement path in a manner such that said arcuate movement path coincides with the imaginary arcuate centerline of said spacing member.
11. The intervertebral spacing implant of claim 1, wherein the spacing member further comprises a disc-like member having a thickness, and a length that is greater in length than said thickness, and a width that is greater in width than said thickness.
12. The intervertebral spacing implant of claim 11, wherein the thickness of the spacing member is defined by a perimeter wall that constitutes the concave side and the convex side of the external concavo-convex contour of said spacing member.
13. The intervertebral spacing implant of claim 1, wherein the spacing member further comprises un upper side having a plurality of spaced-apart recesses formed therein.
14. The intervertebral spacing implant of claim 13, wherein the recesses are elongate and are disposed in a substantial parallel orientation with respect to each other.
15. An intervertebral spacing implant comprising:
a spacing member adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc, said spacing member further comprising a non-porous body having a tapered external shape such that said spacing member narrows in thickness in a first direction.
16. The intervertebral spacing implant of claim 15, said spacing member having a discontinuous upper surface.
17. The intervertebral spacing implant of claim 15, wherein the tapered external shape of said spacing member narrows in thickness in a continuous manner along a majority width of said spacing member in an anterior-to-posterior direction.
18. The intervertebral spacing implant of claim 17, wherein the spacing member include an upper surface that forms an acute angle with respect to a horizontal plan, said acute angle being in a range of two to six degrees.
19. The intervertebral spacing implant of claim 18, the spacing member having a discontinuous upper surface.
20. The intervertebral spacing implant of claim 19, wherein the upper surface includes a plurality of elongate recesses formed therein, said recesses extending in an anterior-to-posterior direction.
21. The intervertebral spacing implant of claim 18, wherein the spacing member includes a lower surface that forms an acute angle with respect to a horizontal plan, said acute angle being in a range of approximately two degrees to eight degrees.
22. The intervertebral spacing implant of claim 21, wherein the upper and lower surface of the spacing member each form a continuous acute angle of approximately four degrees with respect to a horizontal plane, for a total continuous taper of approximately eight degrees.
23. The intervertebral spacing implant of claim 15, wherein said spacing member further comprises a convex side, and wherein the tapered external shape of said spacing member is adapted such that said spacing member narrows in thickness in an anterior-to-posterior direction when implanted with said convex side facing an anterior direction.
24. The intervertebral spacing implant of claim 23, wherein the spacing member further comprises an upper surface, and wherein the tapered external shape of the spacing member is such that the upper surface of said spacing member defines a first acute angle with respect to a plane that is orthogonal to the convex side of the spacing member.
25. The intervertebral spacing implant of claim 15, wherein the tapered external shape of said spacing member comprises a taper sufficient in degree to permit a lordosis spinal configuration to be restored when said spacing member is sandwiched between adjacent intervertebral bodies.
26. An intervertebral spacing implant system comprising:
a spacing member adapted for implanting between adjacent intervertebral bodies of a human spine;
positioning means for enabling a surgeon to adjust a position of the spacing member when said spacing member resides between adjacent intervertebral bodies, said positioning means comprising a sheath member, a rod member slidably insertable into the sheath member, and a means for releasably attaching the rod member to the spacing member.
27. The intervertebral spacing implant system of claim 26, wherein the rod member has a longer length than the sheath member, such that a proximal portion of the rod member protrudes from the sheath member when said rod member resides within said sheath member and is attached to the spacing member.
28. The intervertebral spacing implant system of claim 26, wherein the means for releasably attaching the rod member to the spacing member further comprises a threaded engagement.
29. The intervertebral spacing implant system of claim 28, wherein the means for releasably attaching the rod member to the spacing member further comprises a female threaded recess formed in the spacing member, and wherein the rod member comprises a male threaded distal end having a size and configuration sufficient to permit threaded engagement between said male threaded distal end of the rod member and the female threaded recess formed in the spacing member.
30. An intervertebral spacing implant system comprising:
a spacing member adapted for implanting between adjacent intervertebral bodies of a human spine;
positioning means for enabling a surgeon to adjust a position of the spacing member when said spacing member resides between adjacent intervertebral bodies, said positioning means further comprising an attachment means for becoming releasably attached to the spacing member at a first area of attachment, and a stabilizing means for removably contacting the spacing member along a contact line that surrounds the first area of attachment.
31. The intervertebral spacing implant system of claim 30, wherein the stabilizing means further comprises means for contacting the spacing member along a circular contact line that circumscribes the first area of attachment, said circular contact line being disposed in a substantially co-axial orientation with respect to the first area of attachment.
32. A method of implanting an artificial intervertebral disc comprising:
(a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies;
(b) inserting a spacing member through the incision and into position between the adjacent vertebral bodies, and positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than anteriorly thereto;
(c) applying compression to posterior portions of the adjacent vertebral bodies.
33. The method of claim 32, further comprising:
(d) removing a natural human disc from the space, prior to part (b).
34. The method of claim 32, wherein part (c) further comprises compressing the posterior portions of the adjacent vertebral bodies toward each other to a degree sufficient to move said adjacent vertebral bodies into a sagittal alignment.
35. The method of claim 34, further comprising:
(e) attaching a holding means to the adjacent vertebral bodies for holding said adjacent vertebral bodies in the sagittal alignment to thereby inhibit said vertebral bodies from moving out of sagittal alignment.
36. The method of claim 32, wherein part (b) further comprises positioning the spacing member sufficiently anteriorly such that said spacing member resides in contact with an anterior longitudinal ligament of the spinal column.
37. A method of implanting an artificial intervertebral disc comprising:
(a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies;
(b) inserting a spacing member through the incision and into position between the adjacent vertebral bodies, and positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than anteriorly thereto;
(c) placing bone grafting material through the incision and into position between the adjacent vertebral bodies such that said bone grafting material resides between the spacing member and a posterior longitudinal ligament of the spinal column; and
(d) attaching a compression means to posterior portions of the adjacent vertebral bodies to thereby force said posterior portions of the adjacent vertebral bodies toward each other and thereby compress the bone grafting material, said compression means comprising pedicle screws and rod members intercoupling said screws.
38. The method of claim 37, wherein the bone grafting material comprises autogenous bone.
39. A method of implanting an artificial intervertebral disc comprising:
(a) inserting a spacing member into position between adjacent vertebral bodies of a human spinal column, and positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than anteriorly thereto; and
(b) applying compression to posterior portions of the adjacent vertebral bodies.
40. The method of claim 39, further comprising additional parts to be performed prior to part (b), said additional parts comprising:
(i) placing bone grafting material into position between the adjacent vertebral bodies such that said bone grafting material resides between the spacing member and a posterior longitudinal ligament of the spinal column; and
(ii) attaching a compression means to posterior portions of the adjacent vertebral bodies to thereby force said posterior portions of the adjacent vertebral bodies toward each other and thereby compress the bone grafting material, said compression means comprising pedicle screws and rod members intercoupling said screws.
41. A method of implanting an artificial intervertebral disc comprising:
(a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies;
(b) selecting a spacing member comprising an external concavo-convex contour with respect to one dimension of said spacing member, wherein the spacing member defines an imaginary arcuate centerline residing between opposing sides of the external concavo-convex contour of said spacing member;
(c) inserting the spacing member along an arcuate insertion path through the incision such that the imaginary arcuate centerline follows said arcuate insertion path during the insertion.
42. A method of implanting an artificial intervertebral disc comprising:
(a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies;
(b) inserting a trial spacer through the incision and into position between the adjacent vertebral bodies, and evaluating a snugness of fit of said spacer as it resides between said adjacent vertebral bodies and determining a spacer size thereby;
(c) selecting a spacing member having the spacer size determined in part (b) and inserting said spacing member through the incision and into position between the adjacent vertebral bodies.
43. The method of claim 42, wherein part (b) further comprises dislodging any unwanted soft tissue from between the vertebral bodies with the trial spacer.
US10/055,673 2000-06-12 2002-01-22 Intervertebral spacing implant system Abandoned US20020065560A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/055,673 US20020065560A1 (en) 2000-06-12 2002-01-22 Intervertebral spacing implant system
US10/814,352 US20040186574A1 (en) 2000-06-12 2004-03-31 Intervertebral spacing implant system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/592,072 US6579318B2 (en) 2000-06-12 2000-06-12 Intervertebral spacer
US10/055,673 US20020065560A1 (en) 2000-06-12 2002-01-22 Intervertebral spacing implant system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/592,072 Division US6579318B2 (en) 2000-06-12 2000-06-12 Intervertebral spacer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/814,352 Division US20040186574A1 (en) 2000-06-12 2004-03-31 Intervertebral spacing implant system

Publications (1)

Publication Number Publication Date
US20020065560A1 true US20020065560A1 (en) 2002-05-30

Family

ID=24369156

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/592,072 Expired - Fee Related US6579318B2 (en) 2000-06-12 2000-06-12 Intervertebral spacer
US10/055,673 Abandoned US20020065560A1 (en) 2000-06-12 2002-01-22 Intervertebral spacing implant system
US10/055,783 Expired - Fee Related US6852127B2 (en) 2000-06-12 2002-01-22 Method of implanting an intervertebral spacer
US10/814,389 Abandoned US20040186575A1 (en) 2000-06-12 2004-03-31 Method of implanting an intervertebral spacer
US10/814,352 Abandoned US20040186574A1 (en) 2000-06-12 2004-03-31 Intervertebral spacing implant system
US11/327,298 Abandoned US20060212119A1 (en) 2000-06-12 2006-01-06 Intervertebral spacer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/592,072 Expired - Fee Related US6579318B2 (en) 2000-06-12 2000-06-12 Intervertebral spacer

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/055,783 Expired - Fee Related US6852127B2 (en) 2000-06-12 2002-01-22 Method of implanting an intervertebral spacer
US10/814,389 Abandoned US20040186575A1 (en) 2000-06-12 2004-03-31 Method of implanting an intervertebral spacer
US10/814,352 Abandoned US20040186574A1 (en) 2000-06-12 2004-03-31 Intervertebral spacing implant system
US11/327,298 Abandoned US20060212119A1 (en) 2000-06-12 2006-01-06 Intervertebral spacer

Country Status (4)

Country Link
US (6) US6579318B2 (en)
EP (1) EP1294321A1 (en)
AU (1) AU2001275467A1 (en)
WO (1) WO2001095838A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
WO2004037074A2 (en) * 2002-10-25 2004-05-06 Endius Incorporated Method of securing vertebrae
US20040176853A1 (en) * 2003-03-05 2004-09-09 Sennett Andrew R. Apparatus and method for spinal fusion using posteriorly implanted devices
US20050038511A1 (en) * 2003-08-15 2005-02-17 Martz Erik O. Transforaminal lumbar interbody fusion (TLIF) implant, surgical procedure and instruments for insertion of spinal implant in a spinal disc space
US20050149193A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technology, Inc. Intervertebral body fusion cage with keels and implantation methods
US20060069436A1 (en) * 2004-09-30 2006-03-30 Depuy Spine, Inc. Trial disk implant
US20060106460A1 (en) * 2001-05-03 2006-05-18 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20060235426A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Instruments, implants and methods for positioning implants into a spinal disc space
US20070093898A1 (en) * 2005-09-26 2007-04-26 Schwab Frank J Transforaminal hybrid implant
US20070142843A1 (en) * 2005-12-21 2007-06-21 Justin Dye Articulated delivery instrument
US20070164464A1 (en) * 2003-09-09 2007-07-19 Spinemedica Corporation Flexible spinal disc
US20070225810A1 (en) * 2006-03-23 2007-09-27 Dennis Colleran Flexible cage spinal implant
US20080027544A1 (en) * 2006-07-28 2008-01-31 Warsaw Orthopedic Inc. Instruments and techniques for engaging spinal implants for insertion into a spinal space
US20080039860A1 (en) * 2006-08-10 2008-02-14 Pioneer Laboratories, Inc. Insertion Instrument for Artificial Discs
US20080065219A1 (en) * 2006-09-08 2008-03-13 Justin Dye Offset radius lordosis
US20080071279A1 (en) * 2006-06-07 2008-03-20 Stryker Spine Collet-activated distraction wedge inserter
US20080077153A1 (en) * 2006-09-22 2008-03-27 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US20080109005A1 (en) * 2006-08-10 2008-05-08 Trudeau Jeffrey L System and Methods for Inserting a Spinal Disc Device Into an Intervertebral Space
US20080108997A1 (en) * 2006-09-12 2008-05-08 Pioneer Surgical Technology, Inc. Mounting Devices for Fixation Devices and Insertion Instruments Used Therewith
US20080154263A1 (en) * 2006-12-22 2008-06-26 Janowski Brian P Implant Retention Device and Method
US20090164020A1 (en) * 2007-11-28 2009-06-25 Pioneer Surgical Technology, Inc. Device for Securing an Implant to Tissue
US20090265008A1 (en) * 2008-03-31 2009-10-22 Stryker Spine Spinal implant apparatus and methods
US20100131069A1 (en) * 2007-08-01 2010-05-27 Jeffrey Halbrecht Method and system for patella tendon realignment
US20100198354A1 (en) * 2007-08-01 2010-08-05 Jeffrey Halbrecht Method and system for patella tendon realignment
US7776049B1 (en) * 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
US20100249797A1 (en) * 2006-08-10 2010-09-30 Trudeau Jeffrey L Insertion Instrument for Artificial Discs
US20110106259A1 (en) * 2009-11-05 2011-05-05 Synthes Usa, L.L.C. Self-Pivoting Spinal Implant and Associated Instrumentation
US7976549B2 (en) 2006-03-23 2011-07-12 Theken Spine, Llc Instruments for delivering spinal implants
US7985247B2 (en) 2000-08-01 2011-07-26 Zimmer Spine, Inc. Methods and apparatuses for treating the spine through an access device
US8002837B2 (en) 2006-05-19 2011-08-23 Pioneer Surgical Technology Spinal stabilization device and methods
US20120310287A1 (en) * 2002-05-23 2012-12-06 Pioneer Surgical Technology, Inc. Artificial Disc Device
US8425529B2 (en) 2010-09-30 2013-04-23 Stryker Spine Instrument for inserting surgical implant with guiding rail
US8603175B2 (en) 2010-09-30 2013-12-10 Stryker Spine Method of inserting surgical implant with guiding rail
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
US8858637B2 (en) 2010-09-30 2014-10-14 Stryker Spine Surgical implant with guiding rail
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
USD773047S1 (en) * 2009-07-20 2016-11-29 Teknimed S.A. Bone filler particle
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9795410B2 (en) 2009-08-27 2017-10-24 Cotera, Inc. Method and apparatus for force redistribution in articular joints
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US10624760B2 (en) 2017-05-22 2020-04-21 Warsaw Orthopedic, Inc. Spinal implant system and method
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD993452S1 (en) * 2021-09-13 2023-07-25 Regenbiotech, Inc. Medical filler for scaffold for optimizing tissue regeneration

Families Citing this family (275)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7178698A (en) * 1996-11-15 1998-06-03 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US7306628B2 (en) 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
FR2767675B1 (en) * 1997-08-26 1999-12-03 Materiel Orthopedique En Abreg INTERSOMATIC IMPLANT AND ANCILLARY OF PREPARATION SUITABLE FOR ALLOWING ITS POSITION
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
ES2303381T3 (en) 1999-07-02 2008-08-01 Spine Solutions Inc. INTERVERTEBRAL IMPLANT.
WO2001028469A2 (en) 1999-10-21 2001-04-26 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6764491B2 (en) 1999-10-21 2004-07-20 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
US6830570B1 (en) * 1999-10-21 2004-12-14 Sdgi Holdings, Inc. Devices and techniques for a posterior lateral disc space approach
DE19952939A1 (en) * 1999-11-03 2001-05-10 Tutogen Medical Gmbh Bone material implant
US6648915B2 (en) * 1999-12-23 2003-11-18 John A. Sazy Intervertebral cage and method of use
EP1578315B2 (en) 2000-02-16 2011-12-07 TRANS1, Inc. Apparatus for spinal distraction and fusion
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6740090B1 (en) 2000-02-16 2004-05-25 Trans1 Inc. Methods and apparatus for forming shaped axial bores through spinal vertebrae
US7744599B2 (en) 2000-02-16 2010-06-29 Trans1 Inc. Articulating spinal implant
US7169183B2 (en) * 2000-03-14 2007-01-30 Warsaw Orthopedic, Inc. Vertebral implant for promoting arthrodesis of the spine
CN1419431A (en) * 2000-03-22 2003-05-21 斯科里欧有限公司 Cage-tybe intervertebral implant
WO2002098332A1 (en) * 2001-02-16 2002-12-12 Sulzer Spine-Tech Inc. Bone implants and methods
US7371238B2 (en) * 2001-02-16 2008-05-13 Queen's University At Kingston Method and device for treating scoliosis
US8038713B2 (en) 2002-04-23 2011-10-18 Spinecore, Inc. Two-component artificial disc replacements
US6706068B2 (en) 2002-04-23 2004-03-16 Bret A. Ferree Artificial disc replacements with natural kinematics
US7063725B2 (en) 2002-10-21 2006-06-20 Sdgi Holdings, Inc. Systems and techniques for restoring and maintaining intervertebral anatomy
US7125425B2 (en) * 2002-10-21 2006-10-24 Sdgi Holdings, Inc. Systems and techniques for restoring and maintaining intervertebral anatomy
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US7909853B2 (en) 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US7549999B2 (en) 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US7223269B2 (en) * 2002-12-02 2007-05-29 Chappuis James L Facet fusion system
US7500991B2 (en) * 2002-12-31 2009-03-10 Depuy Acromed, Inc. Banana cage
WO2004073563A2 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US8613772B2 (en) * 2003-04-21 2013-12-24 Rsb Spine Llc Lateral mount implant device
US7491204B2 (en) 2003-04-28 2009-02-17 Spine Solutions, Inc. Instruments and method for preparing an intervertebral space for receiving an artificial disc implant
JP2004337277A (en) * 2003-05-14 2004-12-02 Pentax Corp Intervertebral spacer
US7806932B2 (en) 2003-08-01 2010-10-05 Zimmer Spine, Inc. Spinal implant
US20060229627A1 (en) 2004-10-29 2006-10-12 Hunt Margaret M Variable angle spinal surgery instrument
US7204853B2 (en) * 2003-08-05 2007-04-17 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7316714B2 (en) * 2003-08-05 2008-01-08 Flexuspine, Inc. Artificial functional spinal unit assemblies
US7753958B2 (en) * 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US8052723B2 (en) 2003-08-05 2011-11-08 Flexuspine Inc. Dynamic posterior stabilization systems and methods of use
US7909869B2 (en) * 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
JP2007519429A (en) * 2003-10-17 2007-07-19 スパインコア,インコーポレイテッド Intervertebral disc replacement trial
AU2004283727A1 (en) 2003-10-23 2005-05-06 Trans1 Inc. Tools and tool kits for performing minimally invasive procedures on the spine
WO2005041793A2 (en) * 2003-10-23 2005-05-12 Trans1, Inc. Spinal mobility preservation apparatus and method
JP2007509716A (en) * 2003-10-29 2007-04-19 ジェンティス インコーポレイテッド Polymerizable emulsions for tissue engineering
US20050149192A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7670377B2 (en) 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US7846183B2 (en) 2004-02-06 2010-12-07 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
EP1722722A1 (en) * 2004-03-10 2006-11-22 Sepitec Foundation Implant used in stabilising operations on the thoracic and lumbar vertebral column
US7005665B2 (en) * 2004-03-18 2006-02-28 International Business Machines Corporation Phase change memory cell on silicon-on insulator substrate
US7524324B2 (en) * 2004-04-28 2009-04-28 Kyphon Sarl System and method for an interspinous process implant as a supplement to a spine stabilization implant
US20050256576A1 (en) * 2004-05-13 2005-11-17 Moskowitz Nathan C Artificial expansile total lumbar and thoracic discs for posterior placement without supplemental instrumentation and its adaptation for anterior placement of artificial cervical, thoracic and lumbar discs
US7854766B2 (en) 2004-05-13 2010-12-21 Moskowitz Nathan C Artificial total lumbar disc for unilateral safe and simple posterior placement in the lumbar spine, and removable bifunctional screw which drives vertical sliding expansile plate expansion, and interplate widening, and angled traction spikes
US8535379B2 (en) 2006-04-04 2013-09-17 Nathan C. Moskowitz Artificial cervical and lumbar discs, disc plate insertion gun for performing sequential single plate intervertebral implantation enabling symmetric bi-disc plate alignment for interplate mobile core placement
US11806244B2 (en) 2004-05-13 2023-11-07 Moskowitz Family Llc Artificial cervical and lumbar disc system
US8251891B2 (en) 2004-05-14 2012-08-28 Nathan Moskowitz Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms
US9504583B2 (en) 2004-06-10 2016-11-29 Spinal Elements, Inc. Implant and method for facet immobilization
US7470273B2 (en) * 2004-06-25 2008-12-30 Ebi, Llc Tool for intervertebral implant manipulation
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US20060129243A1 (en) * 2004-09-21 2006-06-15 Wong Hee K Interbody spinal device
US8012209B2 (en) 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
US7766940B2 (en) * 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US20060084976A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
US7896906B2 (en) 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US8092496B2 (en) * 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
WO2006044920A2 (en) * 2004-10-19 2006-04-27 Osteotech, Inc. Adjustable instrumentation for spinal implant insertion
US8029512B2 (en) * 2004-10-26 2011-10-04 Pioneer Surgical Technology Spinal stabilization device and methods
WO2006058221A2 (en) 2004-11-24 2006-06-01 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
US20060247633A1 (en) * 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet implant with surface enhancements
US8029540B2 (en) * 2005-05-10 2011-10-04 Kyphon Sarl Inter-cervical facet implant with implantation tool
US20070016218A1 (en) * 2005-05-10 2007-01-18 Winslow Charles J Inter-cervical facet implant with implantation tool
US8066749B2 (en) 2004-12-13 2011-11-29 Warsaw Orthopedic, Inc. Implant for stabilizing a bone graft during spinal fusion
US20060247650A1 (en) * 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet joint fusion implant
US8118838B2 (en) * 2004-12-13 2012-02-21 Kyphon Sarl Inter-cervical facet implant with multiple direction articulation joint and method for implanting
US8100944B2 (en) 2004-12-13 2012-01-24 Kyphon Sarl Inter-cervical facet implant and method for preserving the tissues surrounding the facet joint
US7601170B2 (en) 2004-12-13 2009-10-13 Kyphon Sarl Inter-cervical facet implant and method
PT1841385E (en) 2005-01-28 2010-07-01 Advanced Med Tech Implant for transforaminal intracorporeal fusion
US20060235279A1 (en) * 2005-03-18 2006-10-19 Hawkes David T Less invasive access port system and method for using the same
US7749269B2 (en) 2005-03-28 2010-07-06 Warsaw Orthopedic, Inc. Spinal system and method including lateral approach
US7763078B2 (en) 2005-03-28 2010-07-27 Warsaw Orthopedic, Inc. Spinal device including lateral approach
US20060276801A1 (en) * 2005-04-04 2006-12-07 Yerby Scott A Inter-cervical facet implant distraction tool
US7972363B2 (en) 2005-04-12 2011-07-05 Moskowitz Ahmnon D Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs and posterior cervical and lumbar interarticulating joint stapling guns and devices for spinal fusion
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US9744052B2 (en) 2005-04-12 2017-08-29 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US8257370B2 (en) * 2005-04-12 2012-09-04 Moskowitz Ahmnon D Posterior cervical and lumbar interarticulating joint staples, stapling guns, and devices for spinal fusion
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US7704279B2 (en) * 2005-04-12 2010-04-27 Moskowitz Mosheh T Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, expansile intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US9532821B2 (en) 2005-04-12 2017-01-03 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs with vertical hemi-bracket screw locking mechanism
US9675385B2 (en) 2005-04-12 2017-06-13 Nathan C. Moskowitz Spinous process staple with interdigitating-interlocking hemi-spacers for adjacent spinous process separation and distraction
US9814601B2 (en) 2005-04-12 2017-11-14 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US9888918B2 (en) 2005-04-12 2018-02-13 Nathan C. Moskowitz Horizontal-transvertebral curvilinear nail-screws with inter-locking rigid or jointed flexible rods for spinal fusion
DE102005018972B3 (en) * 2005-04-19 2006-10-05 Ohst Medizintechnik Ag Implant for insertion between vertebrae is kidney shaped, with flat central section, convex ends and corrugated upper and lower surfaces
US20060253199A1 (en) * 2005-05-03 2006-11-09 Disc Dynamics, Inc. Lordosis creating nucleus replacement method and apparatus
US20060253198A1 (en) * 2005-05-03 2006-11-09 Disc Dynamics, Inc. Multi-lumen mold for intervertebral prosthesis and method of using same
US8585765B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant having a raised expulsion-resistant edge
US8545568B2 (en) 2005-05-06 2013-10-01 Titan Spine, Llc Method of using instruments and interbody spinal implants to enhance distraction
US8262737B2 (en) 2005-05-06 2012-09-11 Titan Spine, Llc Composite interbody spinal implant having openings of predetermined size and shape
US8403991B2 (en) 2005-05-06 2013-03-26 Titan Spine Llc Implant with critical ratio of load bearing surface area to central opening area
US11096796B2 (en) 2005-05-06 2021-08-24 Titan Spine, Llc Interbody spinal implant having a roughened surface topography on one or more internal surfaces
US8562684B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having a roughened surface topography
US8435302B2 (en) 2005-05-06 2013-05-07 Titan Spine, Llc Instruments and interbody spinal implants enhancing disc space distraction
US8617248B2 (en) 2005-05-06 2013-12-31 Titan Spine, Llc Spinal implant having variable ratios of the integration surface area to the axial passage area
US20120312779A1 (en) 2005-05-06 2012-12-13 Titian Spine, LLC Methods for manufacturing implants having integration surfaces
US8758442B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Composite implants having integration surfaces composed of a regular repeating pattern
US8591590B2 (en) 2005-05-06 2013-11-26 Titan Spine, Llc Spinal implant having a transverse aperture
US8562685B2 (en) 2005-05-06 2013-10-22 Titan Spine, Llc Spinal implant and integration plate for optimizing vertebral endplate contact load-bearing edges
US8551176B2 (en) 2005-05-06 2013-10-08 Titan Spine, Llc Spinal implant having a passage for enhancing contact between bone graft material and cortical endplate bone
US9125756B2 (en) 2005-05-06 2015-09-08 Titan Spine, Llc Processes for producing regular repeating patterns on surfaces of interbody devices
US8585767B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US8585766B2 (en) 2005-05-06 2013-11-19 Titan Spine, Llc Endplate-preserving spinal implant with an integration plate having durable connectors
US8758443B2 (en) 2005-05-06 2014-06-24 Titan Spine, Llc Implants with integration surfaces having regular repeating surface patterns
US8814939B2 (en) 2005-05-06 2014-08-26 Titan Spine, Llc Implants having three distinct surfaces
US8480749B2 (en) 2005-05-06 2013-07-09 Titan Spine, Llc Friction fit and vertebral endplate-preserving spinal implant
US8992622B2 (en) 2005-05-06 2015-03-31 Titan Spine, Llc Interbody spinal implant having a roughened surface topography
US9168147B2 (en) 2005-05-06 2015-10-27 Titan Spine, Llc Self-deploying locking screw retention device
US20080234550A1 (en) * 2005-05-26 2008-09-25 Hawkes David T Minimally Traumatic Portal
DE102005028887A1 (en) * 2005-06-22 2007-01-04 Tutogen Medical Gmbh Implant for correction of position of vertebral canal, comprises upper and lower part and made of bone substance
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
CA2617872C (en) 2005-08-16 2013-12-24 Benvenue Medical, Inc. Spinal tissue distraction devices
US8454617B2 (en) 2005-08-16 2013-06-04 Benvenue Medical, Inc. Devices for treating the spine
US20070073397A1 (en) * 2005-09-15 2007-03-29 Mckinley Laurence M Disc nucleus prosthesis and its method of insertion and revision
US7901458B2 (en) * 2005-12-16 2011-03-08 Warsaw Orthopedic, Inc. Intervertebral spacer and insertion tool
US7935148B2 (en) * 2006-01-09 2011-05-03 Warsaw Orthopedic, Inc. Adjustable insertion device for a vertebral implant
US20070161962A1 (en) * 2006-01-09 2007-07-12 Edie Jason A Device and method for moving fill material to an implant
EP1978900B1 (en) * 2006-02-01 2012-03-07 Synthes GmbH Interspinous process spacer
WO2007095333A2 (en) * 2006-02-15 2007-08-23 Abdou M S Devices and methods for inter-vertebral orthopedic device placement
US8409290B2 (en) * 2006-03-08 2013-04-02 Seaspine, Inc. Interbody device for spinal applications
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
WO2007124467A2 (en) * 2006-04-20 2007-11-01 Re Spine, Llc Intervertebral disc and facet joint prosthesis
EP2023864B1 (en) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Expandable support device
US20070276491A1 (en) * 2006-05-24 2007-11-29 Disc Dynamics, Inc. Mold assembly for intervertebral prosthesis
US8092536B2 (en) * 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US20080015417A1 (en) * 2006-07-11 2008-01-17 Hawkes David T Selectively locking minimally traumatic access port
CA2658876C (en) 2006-07-24 2015-03-17 Spine Solutions, Inc. Intervertebral implant with keel
ES2687619T3 (en) 2006-07-31 2018-10-26 Centinel Spine Schweiz Gmbh Milling guide and keel trimming preparation system
US20080177311A1 (en) * 2006-10-30 2008-07-24 St. Francis Medical Technologies, Inc. Facet joint implant sizing tool
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US8377098B2 (en) 2007-01-19 2013-02-19 Flexuspine, Inc. Artificial functional spinal unit system and method for use
EP2124777A4 (en) 2007-02-21 2013-06-05 Benvenue Medical Inc Devices for treating the spine
US8992533B2 (en) 2007-02-22 2015-03-31 Spinal Elements, Inc. Vertebral facet joint drill and method of use
EP2129304B1 (en) 2007-02-22 2014-09-03 Spinal Elements, Inc. Vertebral articular process drill
US20080228275A1 (en) * 2007-03-14 2008-09-18 Heather Cannon Intervertebral implant component with three points of contact
EP2134274A2 (en) * 2007-03-22 2009-12-23 Novalign Orthopaedics, Inc. Fracture fixation device with support rods and sheath
US20080243252A1 (en) * 2007-04-02 2008-10-02 Centra-Fuse, Inc. Spinal implant system
US20080306598A1 (en) * 2007-04-02 2008-12-11 Eric Hansen Spinal implant with biologic sponge
WO2008128047A1 (en) * 2007-04-11 2008-10-23 Spinal U.S.A. Recessed plate system
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
FR2919490B1 (en) * 2007-08-02 2010-06-04 Vitatech INTERSOMATIC IMPLANT
US8157844B2 (en) 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8523912B2 (en) 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8162994B2 (en) 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8182514B2 (en) 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8267965B2 (en) 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
AU2009205896A1 (en) 2008-01-17 2009-07-23 Synthes Gmbh An expandable intervertebral implant and associated method of manufacturing the same
US20090187246A1 (en) * 2008-01-22 2009-07-23 Foley Kevin T Interbody implants for spinal alignment procedures
US20090240699A1 (en) * 2008-03-18 2009-09-24 Morgan Christopher B Integration for intelligence data systems
US8202299B2 (en) * 2008-03-19 2012-06-19 Collabcom II, LLC Interspinous implant, tools and methods of implanting
BRPI0910325A8 (en) 2008-04-05 2019-01-29 Synthes Gmbh expandable intervertebral implant
US8425514B2 (en) * 2008-06-25 2013-04-23 Westmark Medical, Llc. Spinal fixation device
US8172902B2 (en) * 2008-07-17 2012-05-08 Spinemedica, Llc Spinal interbody spacers
US8147554B2 (en) * 2008-10-13 2012-04-03 Globus Medical, Inc. Intervertebral spacer
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
WO2010056895A1 (en) 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US8216316B2 (en) * 2008-12-17 2012-07-10 X-Spine Systems, Inc. Prosthetic implant with biplanar angulation and compound angles
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
JP5699143B2 (en) 2009-07-09 2015-04-08 アール ツリー イノベーションズ エルエルシー Interbody device with flexibility
US20110112644A1 (en) * 2009-11-12 2011-05-12 Zilberstein Boris Disc prosthetic implant device
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
WO2012174485A1 (en) 2011-06-17 2012-12-20 Jcbd, Llc Sacroiliac joint implant system
EP3138533B1 (en) 2010-01-13 2021-12-01 Jcbd, Llc Sacroiliac joint fixation fusion system
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
WO2014015309A1 (en) 2012-07-20 2014-01-23 Jcbd, Llc Orthopedic anchoring system and methods
US9333090B2 (en) 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US8444699B2 (en) * 2010-02-18 2013-05-21 Biomet Manufacturing Corp. Method and apparatus for augmenting bone defects
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
EP2635201A4 (en) * 2010-11-02 2015-01-21 Thompson Mis Bone collection system
US8353964B2 (en) 2010-11-04 2013-01-15 Carpenter Clyde T Anatomic total disc replacement
US8951288B2 (en) 2010-11-09 2015-02-10 Benvenue Medical, Inc. Devices and methods for treatment of a bone fracture
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9271765B2 (en) 2011-02-24 2016-03-01 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
USD724733S1 (en) 2011-02-24 2015-03-17 Spinal Elements, Inc. Interbody bone implant
US8740949B2 (en) 2011-02-24 2014-06-03 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
WO2012129197A1 (en) 2011-03-22 2012-09-27 Depuy Spine, Inc. Universal trial for lateral cages
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US20120310351A1 (en) * 2011-06-02 2012-12-06 Farley Daniel K Lordotic spacer
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
CN103930058A (en) 2011-08-23 2014-07-16 弗雷科斯米德克斯有限公司 Tissue removal device and method
US9398960B2 (en) 2011-09-16 2016-07-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9539109B2 (en) 2011-09-16 2017-01-10 Globus Medical, Inc. Low profile plate
US10881526B2 (en) 2011-09-16 2021-01-05 Globus Medical, Inc. Low profile plate
US9149365B2 (en) 2013-03-05 2015-10-06 Globus Medical, Inc. Low profile plate
US9770340B2 (en) 2011-09-16 2017-09-26 Globus Medical, Inc. Multi-piece intervertebral implants
US9681959B2 (en) 2011-09-16 2017-06-20 Globus Medical, Inc. Low profile plate
US9848994B2 (en) 2011-09-16 2017-12-26 Globus Medical, Inc. Low profile plate
US10245155B2 (en) 2011-09-16 2019-04-02 Globus Medical, Inc. Low profile plate
US9237957B2 (en) 2011-09-16 2016-01-19 Globus Medical, Inc. Low profile plate
US8961606B2 (en) 2011-09-16 2015-02-24 Globus Medical, Inc. Multi-piece intervertebral implants
US9204975B2 (en) 2011-09-16 2015-12-08 Globus Medical, Inc. Multi-piece intervertebral implants
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
USD739935S1 (en) 2011-10-26 2015-09-29 Spinal Elements, Inc. Interbody bone implant
US8992619B2 (en) 2011-11-01 2015-03-31 Titan Spine, Llc Microstructured implant surfaces
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
EP2827806B1 (en) 2012-03-20 2020-06-24 Titan Spine, Inc. Process of fabricating bioactive spinal implant endplates
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
EP2716261A1 (en) 2012-10-02 2014-04-09 Titan Spine, LLC Implants with self-deploying anchors
US9498349B2 (en) 2012-10-09 2016-11-22 Titan Spine, Llc Expandable spinal implant with expansion wedge and anchor
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9095385B2 (en) 2012-11-21 2015-08-04 K2M, Inc. Adjustable spinal implant insertion instrument
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
WO2014159225A2 (en) 2013-03-14 2014-10-02 Baxano Surgical, Inc. Spinal implants and implantation system
US9820784B2 (en) 2013-03-14 2017-11-21 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
US9421044B2 (en) 2013-03-14 2016-08-23 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US10327910B2 (en) 2013-03-14 2019-06-25 X-Spine Systems, Inc. Spinal implant and assembly
USD765853S1 (en) 2013-03-14 2016-09-06 Spinal Elements, Inc. Flexible elongate member with a portion configured to receive a bone anchor
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US9510872B2 (en) 2013-03-15 2016-12-06 Jcbd, Llc Spinal stabilization system
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
US9839450B2 (en) 2013-09-27 2017-12-12 Spinal Elements, Inc. Device and method for reinforcement of a facet
US9456855B2 (en) 2013-09-27 2016-10-04 Spinal Elements, Inc. Method of placing an implant between bone portions
US10478313B1 (en) 2014-01-10 2019-11-19 Nuvasive, Inc. Spinal fusion implant and related methods
US9615935B2 (en) 2014-01-30 2017-04-11 Titan Spine, Llc Thermally activated shape memory spring assemblies for implant expansion
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
US10117690B2 (en) * 2014-09-09 2018-11-06 Warsaw Orthopedic, Inc. Spinal implant system and method
WO2016044432A1 (en) 2014-09-17 2016-03-24 Spinal Elements, Inc. Flexible fastening band connector
US10568672B2 (en) * 2014-10-16 2020-02-25 Arthrex, Inc. Anatomic osteotomy wedge
JP2018502693A (en) 2015-01-27 2018-02-01 スパイナル・エレメンツ・インコーポレーテッド Facet joint implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10610376B2 (en) 2015-10-16 2020-04-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method
US10137006B2 (en) 2016-01-28 2018-11-27 Warsaw Orthopedic, Inc. Geared cam expandable interbody implant and method of implanting same
EP4233801A3 (en) 2016-06-28 2023-09-06 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
EP3474782A2 (en) 2016-06-28 2019-05-01 Eit Emerging Implant Technologies GmbH Expandable and angularly adjustable articulating intervertebral cages
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10238503B2 (en) 2016-11-01 2019-03-26 Warsaw Orthopedic, Inc. Expandable spinal implant system with a biased tip and method of using same
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US11452608B2 (en) 2017-04-05 2022-09-27 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US10376385B2 (en) 2017-04-05 2019-08-13 Globus Medical, Inc. Decoupled spacer and plate and method of installing the same
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
US10973658B2 (en) 2017-11-27 2021-04-13 Titan Spine, Inc. Rotating implant and associated instrumentation
US11135070B2 (en) 2018-02-14 2021-10-05 Titan Spine, Inc. Modular adjustable corpectomy cage
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
AU2020278453A1 (en) 2019-05-22 2022-01-20 Spinal Elements, Inc. Bone tie and bone tie inserter
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
KR102195236B1 (en) * 2019-06-21 2020-12-28 (주)엘앤케이바이오메드 Anterior To Psoas Fusion Cage for Lumbar Spine Surgery
WO2021138081A1 (en) 2020-01-02 2021-07-08 Zkr Orthopedics, Inc. Patella tendon realignment implant with changeable shape
US11304733B2 (en) 2020-02-14 2022-04-19 Spinal Elements, Inc. Bone tie methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11166825B1 (en) 2020-07-01 2021-11-09 Warsaw Orthopedic, Inc. Spinal implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Citations (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US532A (en) * 1837-12-26 Machine for reducing and cutting dye woods and bark
US1129A (en) * 1839-04-20 hillyer
US4479491A (en) * 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
US4627853A (en) * 1985-05-29 1986-12-09 American Hospital Supply Corporation Method of producing prostheses for replacement of articular cartilage and prostheses so produced
US4678470A (en) * 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US4714469A (en) * 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
US4863477A (en) * 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US4904261A (en) * 1987-08-06 1990-02-27 A. W. Showell (Surgicraft) Limited Spinal implants
US4932969A (en) * 1987-01-08 1990-06-12 Sulzer Brothers Limited Joint endoprosthesis
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5053049A (en) * 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5092893A (en) * 1990-09-04 1992-03-03 Smith Thomas E Human orthopedic vertebra implant
US5123926A (en) * 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
US5171281A (en) * 1988-08-18 1992-12-15 University Of Medicine & Dentistry Of New Jersey Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5275954A (en) * 1991-03-05 1994-01-04 Lifenet Process for demineralization of bone using column extraction
US5306303A (en) * 1991-11-19 1994-04-26 The Medical College Of Wisconsin, Inc. Bone induction method
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5344459A (en) * 1991-12-03 1994-09-06 Swartz Stephen J Arthroscopically implantable prosthesis
US5425772A (en) * 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5458643A (en) * 1991-03-29 1995-10-17 Kyocera Corporation Artificial intervertebral disc
US5458638A (en) * 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5571192A (en) * 1994-07-02 1996-11-05 Heinrich Ulrich Prosthetic vertebral implant
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5609637A (en) * 1993-07-09 1997-03-11 Biedermann; Lutz Space keeper, in particular for an intervertebral disk
US5653762A (en) * 1994-03-18 1997-08-05 Pisharodi; Madhavan Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer
US5658337A (en) * 1994-05-23 1997-08-19 Spine-Tech, Inc. Intervertebral fusion implant
US5674295A (en) * 1994-10-17 1997-10-07 Raymedica, Inc. Prosthetic spinal disc nucleus
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US5702451A (en) * 1995-02-14 1997-12-30 Biedermann; Lutz Space holder, in particular for a vertebra or an intervertebral disk
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US5725579A (en) * 1992-12-21 1998-03-10 Bioland Process for treating bone tissue and corresponding implantable biomaterials
US5728159A (en) * 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US5755798A (en) * 1995-10-26 1998-05-26 Artos Medizinische Produkte Gmbh Intervertebral implant
US5766252A (en) * 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5767702A (en) * 1996-06-07 1998-06-16 Kabushiki Kaisha Toshiba Switched pull down emitter coupled logic circuits
US5766253A (en) * 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
US5776199A (en) * 1988-06-28 1998-07-07 Sofamor Danek Properties Artificial spinal fusion implants
US5797871A (en) * 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5820581A (en) * 1994-08-19 1998-10-13 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5824094A (en) * 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US5856545A (en) * 1996-06-12 1999-01-05 Dow Corning Toray Silicone Co., Ltd. Method for preparation of organopentasiloxane
US5861041A (en) * 1997-04-07 1999-01-19 Arthit Sitiso Intervertebral disk prosthesis and method of making the same
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5876457A (en) * 1997-05-20 1999-03-02 George J. Picha Spinal implant
US5888227A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Inter-vertebral implant
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5888228A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Intervertebral implant with cage and rotating element
US5888223A (en) * 1995-12-08 1999-03-30 Bray, Jr.; Robert S. Anterior stabilization device
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US5888222A (en) * 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US5897593A (en) * 1997-03-06 1999-04-27 Sulzer Spine-Tech Inc. Lordotic spinal implant
US5897556A (en) * 1997-06-02 1999-04-27 Sdgi Holdings, Inc. Device for supporting weak bony structures
US5961554A (en) * 1996-12-31 1999-10-05 Janson; Frank S Intervertebral spacer
US5972368A (en) * 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US6045580A (en) * 1996-09-06 2000-04-04 Osteotech, Inc. Fusion implant device and method of use
US6059829A (en) * 1995-03-08 2000-05-09 Synthese Intervertebral implant
US6080168A (en) * 1997-08-28 2000-06-27 Levin; John M. Compression pad for laparoscopic/thorascopic surgery
US6093205A (en) * 1997-06-25 2000-07-25 Bridport-Gundry Plc C/O Pearsalls Implants Surgical implant
US6117174A (en) * 1998-09-16 2000-09-12 Nolan; Wesley A. Spinal implant device
US6132465A (en) * 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6139579A (en) * 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
US6143031A (en) * 1995-10-20 2000-11-07 Synthes (U.S.A.) Intervertebral implant with compressible shaped hollow element
US6143032A (en) * 1997-11-12 2000-11-07 Schafer Micomed Gmbh Intervertebral implant
US6143033A (en) * 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US6146422A (en) * 1999-01-25 2000-11-14 Lawson; Kevin Jon Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
US6149651A (en) * 1997-06-02 2000-11-21 Sdgi Holdings, Inc. Device for supporting weak bony structures
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6217579B1 (en) * 1994-07-22 2001-04-17 Tibor Koros Expandable spinal implants
US6235059B1 (en) * 1996-04-03 2001-05-22 Scient'x (Societe A Responsabilite Limitee) Intersomatic setting and fusion system
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6245072B1 (en) * 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6264656B1 (en) * 1988-06-13 2001-07-24 Gary Karlin Michelson Threaded spinal implant
US6264655B1 (en) * 1995-06-07 2001-07-24 Madhavan Pisharodi Cervical disk and spinal stabilizer
US6277149B1 (en) * 1999-06-08 2001-08-21 Osteotech, Inc. Ramp-shaped intervertebral implant
US6296641B2 (en) * 1998-04-03 2001-10-02 Bionx Implants Oy Anatomical fixation implant
US6296647B1 (en) * 1998-08-07 2001-10-02 Stryker Trauma Gmbh Instrument for the positioning of an implant in the human spine
US6302914B1 (en) * 1995-06-07 2001-10-16 Gary Karlin Michelson Lordotic interbody spinal fusion implants
US6306170B2 (en) * 1997-04-25 2001-10-23 Tegementa, L.L.C. Threaded fusion cage anchoring device and method
US6309421B1 (en) * 1994-03-18 2001-10-30 Madhavan Pisharodi Rotating, locking intervertebral disk stabilizer and applicator
US6315797B1 (en) * 1998-06-17 2001-11-13 Surgical Dynamics, Inc. Artificial intervertebral disc
US20030074081A1 (en) * 2000-09-22 2003-04-17 Ayers Reed A. Non-uniform porosity tissue implant

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2649042B1 (en) * 1976-10-28 1978-01-05 Ulrich Max Bernhard Corrective implant for anterior derotation spondylodesis and device for adjusting the corrective implant
JPS579912U (en) * 1980-06-18 1982-01-19
US4843757A (en) * 1986-04-18 1989-07-04 Hara Jr James C O Root ball watering device
US4717469A (en) * 1986-10-29 1988-01-05 Anton Pirc Device for scavenging metal from earth deposits
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US5320644A (en) 1991-08-30 1994-06-14 Sulzer Brothers Limited Intervertebral disk prosthesis
JP3350080B2 (en) * 1992-01-31 2002-11-25 京セラ株式会社 Artificial vertebral body spacer
DE9216092U1 (en) * 1992-11-26 1993-01-14 S + G Implants Gmbh, 2400 Luebeck, De
WO1994017759A1 (en) 1993-02-10 1994-08-18 Spine-Tech, Inc. Spinal stabilization surgical tool set
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
FR2728159B1 (en) 1994-12-16 1997-06-27 Tornier Sa ELASTIC DISC PROSTHESIS
FR2736537A1 (en) * 1995-07-12 1997-01-17 Vila Thierry Intersomatic implant for restoring normal anatomical space between vertebrae, to relieve pressure on nerve roots
DE19549426C2 (en) 1995-08-11 1997-10-09 Bernhard Zientek Intervertebral implant and instrument therefor
JP3692169B2 (en) * 1995-10-31 2005-09-07 京セラ株式会社 Artificial intervertebral spacer
US5865845A (en) 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5702455A (en) 1996-07-03 1997-12-30 Saggar; Rahul Expandable prosthesis for spinal fusion
US6159214A (en) 1996-07-31 2000-12-12 Michelson; Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
US6050829A (en) * 1996-08-28 2000-04-18 Formfactor, Inc. Making discrete power connections to a space transformer of a probe card assembly
US20010001129A1 (en) 1997-12-10 2001-05-10 Mckay William F. Osteogenic fusion device
US6162252A (en) 1997-12-12 2000-12-19 Depuy Acromed, Inc. Artificial spinal disc
US6258125B1 (en) 1998-08-03 2001-07-10 Synthes (U.S.A.) Intervertebral allograft spacer
US6159244A (en) 1999-07-30 2000-12-12 Suddaby; Loubert Expandable variable angle intervertebral fusion implant
DE19903762C1 (en) * 1999-01-30 2000-11-16 Aesculap Ag & Co Kg Surgical instrument for inserting intervertebral implants
AU4246000A (en) 1999-04-16 2000-11-02 Nuvasive, Inc. Articulation systems for positioning minimally invasive surgical tools
CA2376097A1 (en) * 1999-06-04 2000-12-14 Sdgi Holdings, Inc. Artificial disc implant
US6080158A (en) 1999-08-23 2000-06-27 Lin; Chih-I Intervertebral fusion device
US6648915B2 (en) * 1999-12-23 2003-11-18 John A. Sazy Intervertebral cage and method of use

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US532A (en) * 1837-12-26 Machine for reducing and cutting dye woods and bark
US1129A (en) * 1839-04-20 hillyer
US4479491A (en) * 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
US4627853A (en) * 1985-05-29 1986-12-09 American Hospital Supply Corporation Method of producing prostheses for replacement of articular cartilage and prostheses so produced
US4678470A (en) * 1985-05-29 1987-07-07 American Hospital Supply Corporation Bone-grafting material
US5053049A (en) * 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same
US4932969A (en) * 1987-01-08 1990-06-12 Sulzer Brothers Limited Joint endoprosthesis
US4714469A (en) * 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
US4863477A (en) * 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
US4904261A (en) * 1987-08-06 1990-02-27 A. W. Showell (Surgicraft) Limited Spinal implants
US4950296A (en) * 1988-04-07 1990-08-21 Mcintyre Jonathan L Bone grafting units
US5593409A (en) * 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5741253A (en) * 1988-06-13 1998-04-21 Michelson; Gary Karlin Method for inserting spinal implants
US6210412B1 (en) * 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6264656B1 (en) * 1988-06-13 2001-07-24 Gary Karlin Michelson Threaded spinal implant
US5785710A (en) * 1988-06-13 1998-07-28 Sofamor Danek Group, Inc. Interbody spinal fusion implants
US5776199A (en) * 1988-06-28 1998-07-07 Sofamor Danek Properties Artificial spinal fusion implants
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5171281A (en) * 1988-08-18 1992-12-15 University Of Medicine & Dentistry Of New Jersey Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5071437A (en) * 1989-02-15 1991-12-10 Acromed Corporation Artificial disc
US5458638A (en) * 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US5306308A (en) * 1989-10-23 1994-04-26 Ulrich Gross Intervertebral implant
US5092893A (en) * 1990-09-04 1992-03-03 Smith Thomas E Human orthopedic vertebra implant
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
US5123926A (en) * 1991-02-22 1992-06-23 Madhavan Pisharodi Artificial spinal prosthesis
US5275954A (en) * 1991-03-05 1994-01-04 Lifenet Process for demineralization of bone using column extraction
US5192327A (en) * 1991-03-22 1993-03-09 Brantigan John W Surgical prosthetic implant for vertebrae
US5458643A (en) * 1991-03-29 1995-10-17 Kyocera Corporation Artificial intervertebral disc
US5306303A (en) * 1991-11-19 1994-04-26 The Medical College Of Wisconsin, Inc. Bone induction method
US5344459A (en) * 1991-12-03 1994-09-06 Swartz Stephen J Arthroscopically implantable prosthesis
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5725579A (en) * 1992-12-21 1998-03-10 Bioland Process for treating bone tissue and corresponding implantable biomaterials
US5534030A (en) * 1993-02-09 1996-07-09 Acromed Corporation Spine disc
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
US5609637A (en) * 1993-07-09 1997-03-11 Biedermann; Lutz Space keeper, in particular for an intervertebral disk
US5425772A (en) * 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5888224A (en) * 1993-09-21 1999-03-30 Synthesis (U.S.A.) Implant for intervertebral space
US5514180A (en) * 1994-01-14 1996-05-07 Heggeness; Michael H. Prosthetic intervertebral devices
US6309421B1 (en) * 1994-03-18 2001-10-30 Madhavan Pisharodi Rotating, locking intervertebral disk stabilizer and applicator
US5653762A (en) * 1994-03-18 1997-08-05 Pisharodi; Madhavan Method of stabilizing adjacent vertebrae with rotating, lockable, middle-expanded intervertebral disk stabilizer
US5658337A (en) * 1994-05-23 1997-08-19 Spine-Tech, Inc. Intervertebral fusion implant
US5571192A (en) * 1994-07-02 1996-11-05 Heinrich Ulrich Prosthetic vertebral implant
US6217579B1 (en) * 1994-07-22 2001-04-17 Tibor Koros Expandable spinal implants
US5820581A (en) * 1994-08-19 1998-10-13 Lifenet Research Foundation Process for cleaning large bone grafts and bone grafts produced thereby
US5797871A (en) * 1994-08-19 1998-08-25 Lifenet Research Foundation Ultrasonic cleaning of allograft bone
US5674295A (en) * 1994-10-17 1997-10-07 Raymedica, Inc. Prosthetic spinal disc nucleus
US5766252A (en) * 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5702451A (en) * 1995-02-14 1997-12-30 Biedermann; Lutz Space holder, in particular for a vertebra or an intervertebral disk
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US6059829A (en) * 1995-03-08 2000-05-09 Synthese Intervertebral implant
US6245072B1 (en) * 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6302914B1 (en) * 1995-06-07 2001-10-16 Gary Karlin Michelson Lordotic interbody spinal fusion implants
US6264655B1 (en) * 1995-06-07 2001-07-24 Madhavan Pisharodi Cervical disk and spinal stabilizer
US5702449A (en) * 1995-06-07 1997-12-30 Danek Medical, Inc. Reinforced porous spinal implants
US5989289A (en) * 1995-10-16 1999-11-23 Sdgi Holdings, Inc. Bone grafts
US5888222A (en) * 1995-10-16 1999-03-30 Sdgi Holding, Inc. Intervertebral spacers
US5888227A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Inter-vertebral implant
US5888228A (en) * 1995-10-20 1999-03-30 Synthes (U.S.A.) Intervertebral implant with cage and rotating element
US6143031A (en) * 1995-10-20 2000-11-07 Synthes (U.S.A.) Intervertebral implant with compressible shaped hollow element
US5755798A (en) * 1995-10-26 1998-05-26 Artos Medizinische Produkte Gmbh Intervertebral implant
US5888223A (en) * 1995-12-08 1999-03-30 Bray, Jr.; Robert S. Anterior stabilization device
US5766253A (en) * 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
US6096081A (en) * 1996-01-16 2000-08-01 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5722977A (en) * 1996-01-24 1998-03-03 Danek Medical, Inc. Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
US6235059B1 (en) * 1996-04-03 2001-05-22 Scient'x (Societe A Responsabilite Limitee) Intersomatic setting and fusion system
US5767702A (en) * 1996-06-07 1998-06-16 Kabushiki Kaisha Toshiba Switched pull down emitter coupled logic circuits
US5856545A (en) * 1996-06-12 1999-01-05 Dow Corning Toray Silicone Co., Ltd. Method for preparation of organopentasiloxane
US6045580A (en) * 1996-09-06 2000-04-04 Osteotech, Inc. Fusion implant device and method of use
US6315795B1 (en) * 1996-09-06 2001-11-13 Osteotech, Inc. Fusion implant device and method of use
US5961554A (en) * 1996-12-31 1999-10-05 Janson; Frank S Intervertebral spacer
US5728159A (en) * 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US5897593A (en) * 1997-03-06 1999-04-27 Sulzer Spine-Tech Inc. Lordotic spinal implant
US5861041A (en) * 1997-04-07 1999-01-19 Arthit Sitiso Intervertebral disk prosthesis and method of making the same
US6306170B2 (en) * 1997-04-25 2001-10-23 Tegementa, L.L.C. Threaded fusion cage anchoring device and method
US5876457A (en) * 1997-05-20 1999-03-02 George J. Picha Spinal implant
US5897556A (en) * 1997-06-02 1999-04-27 Sdgi Holdings, Inc. Device for supporting weak bony structures
US6149651A (en) * 1997-06-02 2000-11-21 Sdgi Holdings, Inc. Device for supporting weak bony structures
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
US5972368A (en) * 1997-06-11 1999-10-26 Sdgi Holdings, Inc. Bone graft composites and spacers
US6261586B1 (en) * 1997-06-11 2001-07-17 Sdgi Holdings, Inc. Bone graft composites and spacers
US6093205A (en) * 1997-06-25 2000-07-25 Bridport-Gundry Plc C/O Pearsalls Implants Surgical implant
US6080168A (en) * 1997-08-28 2000-06-27 Levin; John M. Compression pad for laparoscopic/thorascopic surgery
US5824094A (en) * 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US6139579A (en) * 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
US6143032A (en) * 1997-11-12 2000-11-07 Schafer Micomed Gmbh Intervertebral implant
US5888226A (en) * 1997-11-12 1999-03-30 Rogozinski; Chaim Intervertebral prosthetic disc
US6143033A (en) * 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US6296641B2 (en) * 1998-04-03 2001-10-02 Bionx Implants Oy Anatomical fixation implant
US6179874B1 (en) * 1998-04-23 2001-01-30 Cauthen Research Group, Inc. Articulating spinal implant
US6132465A (en) * 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6315797B1 (en) * 1998-06-17 2001-11-13 Surgical Dynamics, Inc. Artificial intervertebral disc
US6296647B1 (en) * 1998-08-07 2001-10-02 Stryker Trauma Gmbh Instrument for the positioning of an implant in the human spine
US6117174A (en) * 1998-09-16 2000-09-12 Nolan; Wesley A. Spinal implant device
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6146422A (en) * 1999-01-25 2000-11-14 Lawson; Kevin Jon Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
US6245108B1 (en) * 1999-02-25 2001-06-12 Spineco Spinal fusion implant
US6277149B1 (en) * 1999-06-08 2001-08-21 Osteotech, Inc. Ramp-shaped intervertebral implant
US20030074081A1 (en) * 2000-09-22 2003-04-17 Ayers Reed A. Non-uniform porosity tissue implant

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277486B2 (en) 2000-08-01 2012-10-02 Zimmer Spine, Inc. System for performing a procedure at a spinal location
US9101353B2 (en) 2000-08-01 2015-08-11 Zimmer Spine, Inc. Method of securing vertebrae
US7722530B2 (en) 2000-08-01 2010-05-25 Zimmer Spine, Inc. Method of securing vertebrae
US9622735B2 (en) 2000-08-01 2017-04-18 Zimmer Spine, Inc. Method for securing vertebrae
US7699877B2 (en) 2000-08-01 2010-04-20 Zimmer Spine, Inc. Method of securing vertebrae
US7850695B2 (en) 2000-08-01 2010-12-14 Zimmer Spine, Inc. Method of securing vertebrae
US7985247B2 (en) 2000-08-01 2011-07-26 Zimmer Spine, Inc. Methods and apparatuses for treating the spine through an access device
USRE46647E1 (en) 2001-05-03 2017-12-26 DePuy Synthes Products, Inc. Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6719794B2 (en) 2001-05-03 2004-04-13 Synthes (U.S.A.) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US8690949B2 (en) 2001-05-03 2014-04-08 DePuy Synthes Products, LLC Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US8435300B2 (en) 2001-05-03 2013-05-07 DePuy Synthes Products, LLC Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20060106460A1 (en) * 2001-05-03 2006-05-18 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20110160864A1 (en) * 2001-05-03 2011-06-30 Dominique Messerli Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US20040167538A1 (en) * 2001-05-03 2004-08-26 Synthes (U.S.A.) Method of performing a transforaminal posterior lumbar interbody fusion procedure
US20040172133A1 (en) * 2001-05-03 2004-09-02 Synthes(U.S.A.) Intervertebral Implant for transforaminal posterior lumbar interbody fusion procedure
US20120310287A1 (en) * 2002-05-23 2012-12-06 Pioneer Surgical Technology, Inc. Artificial Disc Device
US9351852B2 (en) * 2002-05-23 2016-05-31 Pioneer Surgical Technology, Inc. Artificial disc device
US7776049B1 (en) * 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
WO2004037074A3 (en) * 2002-10-25 2004-07-22 Endius Inc Method of securing vertebrae
WO2004037074A2 (en) * 2002-10-25 2004-05-06 Endius Incorporated Method of securing vertebrae
US20040176853A1 (en) * 2003-03-05 2004-09-09 Sennett Andrew R. Apparatus and method for spinal fusion using posteriorly implanted devices
WO2004078070A2 (en) * 2003-03-05 2004-09-16 Cortek, Inc. Apparatus and method for spinal fusion using posteriorly implanted devices
WO2004078070A3 (en) * 2003-03-05 2005-01-13 Cortek Inc Apparatus and method for spinal fusion using posteriorly implanted devices
US20050038511A1 (en) * 2003-08-15 2005-02-17 Martz Erik O. Transforaminal lumbar interbody fusion (TLIF) implant, surgical procedure and instruments for insertion of spinal implant in a spinal disc space
US20070164464A1 (en) * 2003-09-09 2007-07-19 Spinemedica Corporation Flexible spinal disc
US7837732B2 (en) * 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US8491653B2 (en) 2003-11-20 2013-07-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US20050149193A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technology, Inc. Intervertebral body fusion cage with keels and implantation methods
US20110022176A1 (en) * 2003-11-20 2011-01-27 Zucherman James F Intervertebral body fusion cage with keels and implantation methods
US20060069436A1 (en) * 2004-09-30 2006-03-30 Depuy Spine, Inc. Trial disk implant
US8231633B2 (en) 2005-04-15 2012-07-31 Warsaw Orthopedic Instruments, implants and methods for positioning implants into a spinal disc space
US20090198246A1 (en) * 2005-04-15 2009-08-06 Roy Lim Instruments, implants and methods for positioning implants into a spinal disc space
US7575580B2 (en) 2005-04-15 2009-08-18 Warsaw Orthopedic, Inc. Instruments, implants and methods for positioning implants into a spinal disc space
US8540725B2 (en) 2005-04-15 2013-09-24 Roy Lim Instruments, implants and methods for positioning implants into a spinal disc space
US20060235426A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Instruments, implants and methods for positioning implants into a spinal disc space
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
US20070093898A1 (en) * 2005-09-26 2007-04-26 Schwab Frank J Transforaminal hybrid implant
US7998212B2 (en) 2005-09-26 2011-08-16 Warsaw Orthopedic, Inc. Transforaminal hybrid implant
US20070142843A1 (en) * 2005-12-21 2007-06-21 Justin Dye Articulated delivery instrument
US7988695B2 (en) 2005-12-21 2011-08-02 Theken Spine, Llc Articulated delivery instrument
US20070225810A1 (en) * 2006-03-23 2007-09-27 Dennis Colleran Flexible cage spinal implant
US7976549B2 (en) 2006-03-23 2011-07-12 Theken Spine, Llc Instruments for delivering spinal implants
US8002837B2 (en) 2006-05-19 2011-08-23 Pioneer Surgical Technology Spinal stabilization device and methods
US8303601B2 (en) 2006-06-07 2012-11-06 Stryker Spine Collet-activated distraction wedge inserter
US20080071279A1 (en) * 2006-06-07 2008-03-20 Stryker Spine Collet-activated distraction wedge inserter
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US20100256767A1 (en) * 2006-07-28 2010-10-07 Melkent Anthony J Instruments and techniques for engaging spinal implants for insertion into a spinal space
US20080027544A1 (en) * 2006-07-28 2008-01-31 Warsaw Orthopedic Inc. Instruments and techniques for engaging spinal implants for insertion into a spinal space
US8409213B2 (en) 2006-08-10 2013-04-02 Pioneer Surgical Technology, Inc. Insertion instrument for artificial discs
US20080109005A1 (en) * 2006-08-10 2008-05-08 Trudeau Jeffrey L System and Methods for Inserting a Spinal Disc Device Into an Intervertebral Space
US8118872B2 (en) 2006-08-10 2012-02-21 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US7976550B2 (en) 2006-08-10 2011-07-12 Pioneer Surgical Technology Insertion instrument for artificial discs
US20080039860A1 (en) * 2006-08-10 2008-02-14 Pioneer Laboratories, Inc. Insertion Instrument for Artificial Discs
US20100249797A1 (en) * 2006-08-10 2010-09-30 Trudeau Jeffrey L Insertion Instrument for Artificial Discs
US9101493B2 (en) 2006-08-10 2015-08-11 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US20080065219A1 (en) * 2006-09-08 2008-03-13 Justin Dye Offset radius lordosis
US8506636B2 (en) 2006-09-08 2013-08-13 Theken Spine, Llc Offset radius lordosis
US20080108997A1 (en) * 2006-09-12 2008-05-08 Pioneer Surgical Technology, Inc. Mounting Devices for Fixation Devices and Insertion Instruments Used Therewith
US8414616B2 (en) 2006-09-12 2013-04-09 Pioneer Surgical Technology, Inc. Mounting devices for fixation devices and insertion instruments used therewith
US8372084B2 (en) 2006-09-22 2013-02-12 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US20080077153A1 (en) * 2006-09-22 2008-03-27 Pioneer Surgical Technology, Inc. System and methods for inserting a spinal disc device into an intervertebral space
US20080154263A1 (en) * 2006-12-22 2008-06-26 Janowski Brian P Implant Retention Device and Method
US8114160B2 (en) * 2006-12-22 2012-02-14 Pioneer Surgical Technology, Inc. Implant retention device and method
US20100131069A1 (en) * 2007-08-01 2010-05-27 Jeffrey Halbrecht Method and system for patella tendon realignment
US20100198354A1 (en) * 2007-08-01 2010-08-05 Jeffrey Halbrecht Method and system for patella tendon realignment
US9808287B2 (en) 2007-08-01 2017-11-07 Jeffrey Halbrecht Method and system for patella tendon realignment
US20090164020A1 (en) * 2007-11-28 2009-06-25 Pioneer Surgical Technology, Inc. Device for Securing an Implant to Tissue
US9717604B2 (en) 2008-03-31 2017-08-01 Stryker European Holdings I, Llc Spinal implant apparatus and methods
US20090265008A1 (en) * 2008-03-31 2009-10-22 Stryker Spine Spinal implant apparatus and methods
US8690926B2 (en) 2008-03-31 2014-04-08 Stryker Spine Spinal implant apparatus and methods
US8216317B2 (en) 2008-03-31 2012-07-10 Stryker Spine Spinal implant apparatus and methods
US9060874B2 (en) 2008-03-31 2015-06-23 Stryker Spine Spinal implant apparatus and methods
USD773047S1 (en) * 2009-07-20 2016-11-29 Teknimed S.A. Bone filler particle
US9861408B2 (en) 2009-08-27 2018-01-09 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US11730519B2 (en) 2009-08-27 2023-08-22 The Foundry, Llc Method and apparatus for force redistribution in articular joints
US11517360B2 (en) 2009-08-27 2022-12-06 The Foundry, Llc Method and apparatus for treating canine cruciate ligament disease
US10695094B2 (en) 2009-08-27 2020-06-30 The Foundry, Llc Method and apparatus for altering biomechanics of articular joints
US10349980B2 (en) 2009-08-27 2019-07-16 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US9278004B2 (en) 2009-08-27 2016-03-08 Cotera, Inc. Method and apparatus for altering biomechanics of the articular joints
US9668868B2 (en) 2009-08-27 2017-06-06 Cotera, Inc. Apparatus and methods for treatment of patellofemoral conditions
US9931136B2 (en) 2009-08-27 2018-04-03 The Foundry, Llc Method and apparatus for altering biomechanics of articular joints
US9795410B2 (en) 2009-08-27 2017-10-24 Cotera, Inc. Method and apparatus for force redistribution in articular joints
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US10195049B2 (en) 2009-11-05 2019-02-05 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US9358133B2 (en) 2009-11-05 2016-06-07 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US11712349B2 (en) 2009-11-05 2023-08-01 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US20110106259A1 (en) * 2009-11-05 2011-05-05 Synthes Usa, L.L.C. Self-Pivoting Spinal Implant and Associated Instrumentation
US9931224B2 (en) 2009-11-05 2018-04-03 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US10792166B2 (en) 2009-11-05 2020-10-06 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US10182919B2 (en) 2010-09-30 2019-01-22 Stryker European Holdings I, Llc Surgical implant with guiding rail
US8858637B2 (en) 2010-09-30 2014-10-14 Stryker Spine Surgical implant with guiding rail
US11850159B2 (en) 2010-09-30 2023-12-26 Stryker European Operations Holdings Llc Surgical implant with guiding rail
US8603175B2 (en) 2010-09-30 2013-12-10 Stryker Spine Method of inserting surgical implant with guiding rail
US9867713B2 (en) 2010-09-30 2018-01-16 Stryker European Holdings I, Llc Surgical implant with guiding rail
US8425529B2 (en) 2010-09-30 2013-04-23 Stryker Spine Instrument for inserting surgical implant with guiding rail
US9445914B2 (en) 2010-09-30 2016-09-20 Stryker European Holdings I, Llc Surgical implant with guiding rail
US11076965B2 (en) 2010-09-30 2021-08-03 Stryker European Operations Holdings Llc Surgical implant with guiding rail
US9468466B1 (en) 2012-08-24 2016-10-18 Cotera, Inc. Method and apparatus for altering biomechanics of the spine
US10898237B2 (en) 2012-08-24 2021-01-26 The Foundry, Llc Method and apparatus for altering biomechanics of the spine
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US11241256B2 (en) 2015-10-15 2022-02-08 The Foundry, Llc Method and apparatus for altering biomechanics of the shoulder
US11446159B2 (en) * 2017-05-22 2022-09-20 Warsaw Orthopedic, Inc. Spinal implant system and method
US10624760B2 (en) 2017-05-22 2020-04-21 Warsaw Orthopedic, Inc. Spinal implant system and method
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US11690734B2 (en) 2017-08-14 2023-07-04 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
USD993452S1 (en) * 2021-09-13 2023-07-25 Regenbiotech, Inc. Medical filler for scaffold for optimizing tissue regeneration

Also Published As

Publication number Publication date
US6579318B2 (en) 2003-06-17
EP1294321A1 (en) 2003-03-26
US20020065558A1 (en) 2002-05-30
AU2001275467A1 (en) 2001-12-24
US6852127B2 (en) 2005-02-08
US20020077700A1 (en) 2002-06-20
US20040186575A1 (en) 2004-09-23
US20040186574A1 (en) 2004-09-23
US20060212119A1 (en) 2006-09-21
WO2001095838A1 (en) 2001-12-20

Similar Documents

Publication Publication Date Title
US6852127B2 (en) Method of implanting an intervertebral spacer
US11759331B2 (en) Stabilized expandable intervertebral spacer
US11701236B2 (en) Articulating expandable intervertebral implant
US20210128314A1 (en) Spinal Surgical Implant and Related Methods
US7815682B1 (en) Spinal fusion implant and related methods
KR100488032B1 (en) Spinal fusion implant
US8900309B2 (en) Spinal implants
EP2328495B1 (en) Intervertebral fusion implant
US10016286B2 (en) Method of inserting an interbody fusion device
US7887595B1 (en) Methods and apparatus for spinal fusion
EP1889587A2 (en) Intersomatic cage for posterior fusion surgery to the lumbar column and for surgery involving the insertion of a transforaminal implant
US20090182428A1 (en) Flanged interbody device
EP1051134A2 (en) Allogenic intervertebral implant
US20090012620A1 (en) Implantable Cervical Fusion Device
US20080234825A1 (en) Modular Lumbar Interbody Fixation Systems and Methods
US20090088801A1 (en) Spinal fixation device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTHO DEVELOPMENT CORPORATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VARGA, PETER PAL, M.D.;OGILVIE, JAMES A. M.D.;REEL/FRAME:012523/0670;SIGNING DATES FROM 20000728 TO 20001211

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION