US20020076527A1 - Panel units having in situ formed moldings - Google Patents

Panel units having in situ formed moldings Download PDF

Info

Publication number
US20020076527A1
US20020076527A1 US10/020,577 US2057701A US2002076527A1 US 20020076527 A1 US20020076527 A1 US 20020076527A1 US 2057701 A US2057701 A US 2057701A US 2002076527 A1 US2002076527 A1 US 2002076527A1
Authority
US
United States
Prior art keywords
panel
cover tape
windshield
molding
periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/020,577
Inventor
Naotaka Hanai
Tomohiro Sakagami
Toshiaki Kakuto
Takanori Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Kogyo Co Ltd
Original Assignee
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Kogyo Co Ltd filed Critical Tokai Kogyo Co Ltd
Assigned to TOKAI KOGYO KABUSHIKI KAISHA reassignment TOKAI KOGYO KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANAI, NAOTAKA, KAKUTO, TOSHIAKI, SAKAGAMI, TOMOHIRO, TANAKA, TAKANORI
Publication of US20020076527A1 publication Critical patent/US20020076527A1/en
Priority to US10/986,789 priority Critical patent/US7879278B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • B29C70/76Moulding on edges or extremities of the preformed part
    • B29C70/763Moulding on edges or extremities of the preformed part the edges being disposed in a substantial flat plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention relates to methods for manufacturing panels having molded articles (moldings) disposed thereon (hereinafter “a panel unit”) and to panel units produced by such methods.
  • a panel unit typically comprises a resin, glass or metal panel, and a frame-like or linear resin molded article that is attached to the periphery of the panel.
  • panels include resin window panes and glass window panes for vehicles and examples of molded articles include moldings (e.g., a weather strip), gaskets and static seals.
  • Such panel units have been manufactured by extrusion molding a resin molded article directly onto the periphery of the panel and simultaneously bonding the molded article thereto. In such a method for manufacturing a panel unit, an extrusion molding die is moved relative to the periphery of the panel while at least partially contacting at least one of the upper or lower surfaces of the panel.
  • a cover tape may be applied to a surface of the panel and is preferably disposed so as to substantially extend along a periphery of the panel.
  • the cover tape preferably has a width of about 1-5 centimeters.
  • an extrusion molding die having an opening may be moved relative to the panel (or vice versa) so that the extrusion molding die moves along the periphery of the panel.
  • the extrusion molding die at least partially contacts the cover tape disposed along the periphery of the panel, but does not directly contact the panel.
  • a molten or substantially liquid molding material is extruded from the opening of the extrusion molding die, thereby integrally forming a molded article on the periphery of the panel.
  • the molded article is disposed substantially adjacent to the cover tape.
  • the cover tape may be removed from the surface of the panel in order to produce a panel unit that includes the panel and the molded article.
  • a panel unit may include a panel, such as a glass window, a resin window or a metal plate.
  • An in situ formed molding is preferably disposed along at least one peripheral edge of the panel. Because the molding is formed in situ by directly forming the molding onto the panel, no gaps or air pockets will exist between the molding and the panel. Further, the molding will precisely follow the contour of the panel and always have a uniform outer dimension, even if the panel differs from an ideal size.
  • a cover tape is disposed on at least one surface of the panel adjacent to the molding.
  • an adhesive layer may be disposed between the panel and the molding. In addition, the adhesive layer may partially or completely overlap the cover tape.
  • FIG. 1 is a partial cross-sectional view of a windshield unit mounted on a vehicle body, which corresponds to a first embodiment of the present teachings, and corresponds to a sectional view taken along line I-I of FIG. 2;
  • FIG. 2 is an elevational view of the windshield unit
  • FIG. 3 is an elevational view similar to FIG. 2, illustrating an extended form of the molding
  • FIG. 4 is an elevational view similar to FIG. 2, illustrating a further extended form of the molding
  • FIG. 5 is a perspective view of a representative apparatus that can be used to manufacture the windshield unit of FIG. 1;
  • FIG. 6 is a perspective view of an extrusion molding die during formation of the molding on the periphery of a windshield
  • FIG. 7 is a partial cross-sectional view of a cover tape applied to the windshield before an unnecessary portion of the cover tape is cut away;
  • FIG. 8 is an enlarged, partial cross-sectional view of the cover tape
  • FIG. 9 is a partial cross-sectional view of the cover tape applied to the windshield and illustrating an unnecessary portion of the cover tape being cut away;
  • FIG. 10 is a partial cross-sectional view of the windshield shown in FIG. 9 after the unnecessary portion of the tape has been removed and an adhesive layer has been applied thereto;
  • FIG. 11 is a cross-sectional view of an extrusion molding die during formation of the molding on the periphery of the windshield;
  • FIG. 12 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not yet been removed;
  • FIG. 13 is a partial cross-sectional view of the windshield unit that is formed by removing the cover tape
  • FIG. 14 is a partial cross-sectional view of a cover tape applied to windshield and illustrating the cover tape being cut, which embodiment corresponds to a second representative embodiment of the present teachings;
  • FIG. 15 is a partial cross-sectional view of the windshield of FIG. 14 after an unnecessary portion of the cover tape has been removed and an adhesive layer has been applied thereto;
  • FIG. 16 is a cross-sectional view of an extrusion molding die during formation of a molding on the periphery of the windshield;
  • FIG. 17 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not yet been removed;
  • FIG. 18 is a partial cross-sectional view of a windshield unit that is formed by removing the cover tape
  • FIG. 19 is a partial cross-sectional view of a cover tape applied to windshield and illustrating the cover tape being cut, which embodiment corresponds to a third representative embodiment of the present teachings;
  • FIG. 20 is a partial cross-sectional view of the windshield of FIG. 19 after an unnecessary portion of the cover tape has been removed and an adhesive layer has been applied thereto;
  • FIG. 21 is a sectional view of an extrusion molding die during formation of a molding on the periphery of the windshield;
  • FIG. 22 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not been removed;
  • FIG. 23 is a partial cross-sectional view of the intermediate windshield unit and illustrating the cover tape being cut.
  • FIG. 24 is a partial cross-sectional view of a windshield unit formed by removing the cover tape.
  • a cover tape may be applied to a surface (e.g., the outer surface) of a panel and arranged so as to substantially extend along a periphery of the panel. Thereafter, an extrusion molding die can be moved relative to the panel in such a way that the extrusion molding die moves along the periphery of the panel while partially contacting the cover tape applied to the panel. At the same time, a molten (or substantially liquid) molding material may be extruded from the extrusion molding die, thereby integrally forming a molded article or molding on the periphery of the panel.
  • the cover tape may thereafter be removed from the surface of the panel.
  • the present methods are not limited to any particular use or application. However, the present methods may advantageously be utilized to manufacturing a windshield unit having a vehicle windshield and a molding disposed along a peripheral edge of the vehicle windshield.
  • an adhesive or adhesive layer may optionally be applied to the periphery of the panel before the molten molding material is extruded.
  • the adhesive or adhesive layer may help to ensure that the molding or molded article reliably bonds to the periphery of the panel.
  • the molded article may be formed so as to only cover an opposite surface (inner) and an end surface of the panel.
  • the formed molded article or molding may have a peripheral edge that aligns with a peripheral edge of the panel surface.
  • the cover tape may be cut or trimmed along the peripheral edge of the panel surface after the cover tape is attached to the panel surface. This cutting or trimming of the cover tape will ensure that a peripheral edge of the cover tape is aligned with the peripheral edge of the panel surface.
  • the cover tape may be partially cutting away along the periphery of the panel, to thereby form a desired width of uncovered panel surface portion that extends along the periphery of the panel.
  • the molded article may have a portion (extension) that may cover the surface of the panel.
  • the cover tape may be cut in such a way so as to provide a cutting surface that is inclined at an acute angle to the panel surface.
  • the extension may have an end surface that is inclined at an obtuse angle to the panel surface.
  • the molded article can be substantially formed in such a way as to provide a part (covering portion) that may cover the cover tape that was previously attached to the surface of the panel.
  • the covering portion and the cover tape may be cut along the periphery of the panel.
  • the formed molded article may have a desired width of extension that partially covers the panel surface when the cover tape is removed from the panel surface.
  • a portion of the cover tape may be left on the panel and may be interleaved between the extension and the panel surface.
  • the covering portion and the cover tape are cut in such a way that the extension provides a cutting surface that is inclined at an obtuse angle to the panel surface.
  • the cover tape may be cut or trimmed along the peripheral edge of the panel surface after the cover tape is attached to the panel surface.
  • FIGS. 1 to 24 Three detailed representative embodiments of the present teachings are shown in FIGS. 1 to 24 , in which a windshield and a molding for a vehicle are described as representative examples of a panel and a molded article, respectively. That is, in these embodiments, a windshield unit that comprises a windshield and a molding is described as a representative panel unit according to the present teachings.
  • a windshield (panel) unit 1 may include a windshield 2 and a molding (molded article) 20 .
  • the windshield 2 may be a substantially rectangular-shaped, laminated glass that is constructed from two glass plates 3 , 4 and a joining resin sheet 5 (e.g., a polyvinyl butyral sheet) that is interleaved therebetween.
  • the windshield 2 has an first surface 2 a that is exposed to the exterior of the vehicle and an second surface 2 b that faces the vehicle interior (cabin) when the windshield unit 1 is mounted on a window frame 9 of a vehicle body.
  • a peripheral edge of the second surface 2 b of the windshield 2 may be coated with a substantially opaque (e.g., opaque black) frit layer 6 , which layer has a suitable width and extends circumferentially along the periphery of the windshield 2 .
  • a substantially opaque (e.g., opaque black) frit layer 6 which layer has a suitable width and extends circumferentially along the periphery of the windshield 2 .
  • the windshield 2 may be circumferentially chamfered along its periphery, so as to form opposed inner and outer chamfered portions 8 . Because glass plates 3 , 4 are typically made from non-treated or normal glass, as opposed to tempered glass, the windshield 2 may be easily scratched or flawed, because the normal glass has a lesser hardness than tempered glass.
  • the molding 20 may be extrusion molded onto the periphery of the windshield 2 , so as to cover the end surface 7 and the second surface 2 b of the windshield 2 .
  • the molding 20 may optionally bond or adhere to the periphery of the windshield 2 via an adhesive layer 15 , which can be applied to the windshield 2 before extrusion molding the molding 20 .
  • the molding 20 may preferably extend along portions of the periphery of windshield that are required for suitably mounting the windshield 2 within the window frame 9 .
  • the molding 20 may extend along only the upper portion of the windshield periphery.
  • the molding 20 may extend along the upper portion and both side portions of the windshield periphery.
  • the molding 20 may extend along the upper portion, both side portions and the lower portion of the windshield periphery.
  • the molding 20 may include a gap G. If a complete molding is required, as shown by a broken line in FIG. 4, a spacer molding 20 a may be inserted into the gap G of the molding 20 .
  • the spacer molding 20 a may be, e.g., a separately formed molding produced by an extrusion molding technique or an injection molded spacer molding. If injection molding is utilized, the spacer molding 20 a may be formed either separately from the windshield 2 and then mounted within the gap G using an adhesive or may be directly injection molded onto the windshield 2 .
  • the molding 20 preferably is a single, continuous, elongated piece that includes a molding body 21 comprising a thermoplastic elastomer, a thermoplastic synthetic resin and/or a synthetic rubber.
  • a sealing lip 26 preferably extends from the molding body and also comprises an elastomer.
  • the elastomer of the sealing lip 26 is preferably more elastic than the elastomer of the molding body 21 .
  • the molding body 21 may preferably comprise hard or semi-hard polyvinyl chloride resins (PVC) and/or polyolefin resins.
  • the sealing lip 26 may preferably comprise soft PVC and/or chlorinated ethylene copolymer resins.
  • the molding body 21 preferably has a substantially L-shaped configuration in cross section. Further, the molding body 21 may include a side wall portion 22 , which has a shape that substantially conforms to the end surface 7 of the windshield 2 , and which is bonded to the end surface 7 of the windshield 2 via the adhesive layer 15 . In addition, the molding body 21 may include an inner wall portion 23 , which has a shape that substantially conforms to the second surface 2 b of the windshield 2 , and which is bonded to the second surface 2 b of the windshield 2 via the adhesive layer 15 .
  • the side wall portion 22 may have a rounded, outer ornamental surface 24 that has a downwardly slanted, substantially quadrant shape in cross section, in order to impart an attractive appearance to the molding 20 . Also, the side wall portion 22 preferably includes a peripheral edge 25 that substantially aligns with an outer peripheral edge 8 a of the outer chamfered portion 8 .
  • the sealing lip 26 has a curved or rounded profile that outwardly extends from the side wall portion 22 of the molding body 21 .
  • the sealing lip 26 is adapted to flex when the windshield unit 1 is mounted within the window frame 9 of the vehicle body, so as to seal the space between the windshield 2 and the window frame 9 .
  • the rectangular windshield 2 is optionally constructed from two glass plates 3 , 4 having a joining resin sheet 5 disposed between the two glass plates 3 , 4 .
  • a substantially opaque frit layer 6 optionally may be coated onto the second surface 2 b of the windshield 2 . More preferably, the frit layer 6 has a width of several centimeters along the periphery of the windshield 2 .
  • the windshield 2 also may be circumferentially chamfered along its periphery, so as to form the chamfered portions 8 .
  • a protective tape or cover tape 10 having a suitable width is preferably applied to the first surface 2 a of the windshield 2 , so as to extend circumferentially along the periphery of the windshield 2 .
  • the cover tape 10 is arranged on the windshield first surface 2 a so that its longitudinal edge projects over the outer chamfered portion 8 of the windshield 2 .
  • the cover tape 10 may be applied to only a portion of the upper, side and lower portions of the windshield periphery, as will be understood after reading the following description.
  • the cover tape 10 is manually applied to the first surface 2 a of the windshield 2 .
  • a preferred material for the cover tape 10 is MT-3155, which is supplied by Nitto Denko Kabushiki Kaisha of Japan.
  • the cover tape 10 may optionally include a substrate layer 11 and an adhesive layer 12 .
  • the cover tape has a thickness of about 0.03 to 0.1 mm.
  • the substrate layer 11 may comprise a synthetic resin sheet that has excellent heat resistance (e.g., which is sufficient to prevent the sheet from melting when the heated extrusion molding die contacts it), flex resistance and solidity, and may be for example, a sheet of PET (polyethylene terephthalate).
  • the adhesive layer 12 may comprise a removable self-adhesive material that will permit the cover tape 10 to be easily removed from the windshield 2 after the molding 20 has been formed on the windshield 2 .
  • the cover tape 10 may be trimmed or cut along the peripheral edge 8 a of the outer chamfered portion 8 , in order to remove an unnecessary portion 10 a
  • a trimmer or cutter blade 60 that is aligned with the surface of the chamfered portion 8 may obliquely cut the cover tape 10 . Therefore, the cutting surface (cut edge) of the cover tape 10 will be substantially coplanar with the surface of the chamfered portion 8 .
  • the adhesive layer 15 may be applied to the periphery of the windshield 2 , so as to cover a portion of the cover tape 10 on the windshield first surface 2 a.
  • the adhesive layer 15 may also cover the end surface 7 and a portion of the frit layer 6 that is disposed on the second surface 2 b of the windshield 2 .
  • the adhesive layer 15 may be preferably applied to the frit layer 6 and the cover tape 10 so as not to extend past the frit layer 6 and the cover tape 10 .
  • the adhesive layer 15 may preferably comprise an adhesive material that can reliably bond the molding 20 to the windshield 2 .
  • heat reactive adhesives e.g., modified nylon (modified polyamide) based adhesives
  • a preferred material for the heat reactive adhesives is TA-10S(Improved Version), which is supplied by Toa Gosei Kabushiki Kaisha of Japan.
  • an extrusion molding apparatus is preferably utilized to form the molding 20 on the windshield 2 .
  • a representative extrusion molding apparatus may include an extrusion molding die 51 that is capable of extrusion molding the molding 20 and is adapted to move along the periphery of the windshield 2 .
  • the extrusion molding die 51 may include a slot-shaped groove 52 that is designed to receive the peripheral edge of the windshield 2 . More preferably, the groove 52 may slidably and substantially sealingly receive the peripheral edge of the windshield 2 As best shown in FIG. 11, the groove 52 preferably defines a molding space 52 a that will be formed around the periphery of the windshield 2 when the windshield 2 is inserted into or engaged with the groove 52 . Naturally, the cross-section of the molding space 52 a will correspond to the cross section of the resulting molding 20 that is molded onto the windshield 2 .
  • the groove 52 preferably includes an upper or first contacting surface 52 b and a lower or second contacting surface 52 c.
  • the groove 52 has a width W 1 , which is the distance between the first contacting surface 52 b and the second contacting surface 52 c. Width W 1 is chosen so as to slidably and substantially sealingly receive the windshield 2 .
  • the first contacting surface 52 b will face the cover tape 10 and adhesive layer 15 that are attached to the windshield first surface 2 a.
  • the second contacting surface 52 c will face the frit layer 6 and the adhesive layer 15 that have been applied to the windshield second surface 2 b.
  • Groove 52 may also include a first molding surface 52 d that is defined to form the molding body side wall portion 22 , an enlarged second molding surface 52 c that is defined to form the molding body inner wall portion 23 , and an elongated third molding surface 52 f that is defined to form the sealing lip 26 .
  • width W 1 of groove 52 is preferably chosen to be slightly larger than the thickness of the windshield 2 , including the thickness of the cover tape 10 and the frit layer 6 that are fusion and/or chemically bonded to the windshield 2 .
  • the extrusion molding die 51 optionally may include first and second molding material feeder passages (not shown) that communicate with the molding space 52 a and are coupled to the first and second feeder pipes 55 , 56 , respectively, which are shown in FIG. 5 and 6 .
  • the feeder pipes 55 , 56 may be coupled to first and second extruders (not shown), respectively, so that first and second molding materials extruded by the first and second extruders are supplied to the feeder pipes 55 , 56 .
  • the first and second feeder passages may be utilized to supply two different extrusion materials to the extrusion molding die 51 , so that the molding body 21 and the sealing lip 26 can be formed from different materials.
  • a representative molding apparatus may optionally include a robot 30 for handling the windshield 2 .
  • a six-axes type robot 30 preferably may be used that includes a panel retainer unit 33 mounted on a retainer portion 32 that is provided on the distal end of a support arm 31 .
  • the panel retainer unit 33 has a suitable number of suction disks 34 (e.g., 4) that may releasably retain the windshield 2 .
  • the suction disks 34 may be coupled to a vacuum source (not shown). Upon energization of the vacuum source, the suction disks 34 stick to the windshield 2 so that the windshield 2 is retained on the panel retainer unit 33 .
  • the vacuum source may be coupled to the robot 30 and energized.
  • the robot 30 may be driven so as to retain the windshield 2 on the panel retainer unit 33 .
  • the robot 30 may then be further driven to move the panel retainer unit 33 retaining the windshield 2 so that the peripheral edge of the windshield 2 engages the groove 52 of the extrusion molding die 51 , as shown in FIGS. 5, 6 and 11 .
  • the groove 52 cooperates with the periphery of the windshield 2 to form the molding space 52 a around the periphery of the windshield 2 .
  • the first contacting surface 52 b of the groove 52 will contact the cover tape 10 (and the adhesive layer 15 ) on the windshield 2 .
  • the first contacting surface 52 b will not directly contact the outer surface 2 a of the windshield 2 .
  • the robot 30 may be driven according to a predetermined operational program in order to continuously move the windshield 2 with respect to the extrusion molding die 51 .
  • the windshield 2 moves relative to the extrusion molding die 51 , such that the first contacting surface 52 b of the groove 52 contacts the cover tape 10 on the windshield 2 .
  • the first extruder (not shown) is actuated, thereby feeding the first liquid or molten molding material (e.g., molten PVC) for the molding body 21 into the first feeder passage (not shown) of the extrusion molding die 51 through the first feeder pipe 55 .
  • first liquid or molten molding material e.g., molten PVC
  • the second extruder (not shown) is actuated, thereby feeding the second liquid or molten molding material (e.g., molten chlorinated ethylene copolymer resins) for the sealing lip 26 into the second feeder passage (not shown) of the extrusion molding die 51 through the second feeder pipe 56 .
  • the second liquid or molten molding material e.g., molten chlorinated ethylene copolymer resins
  • the first and second extruders are preferably controlled in response to the operational program of the robot 30 so that the required amounts of the first and second molding materials are extruded firm the first and second feeder passages, respectively.
  • the molding 20 is formed to include molding body 21 and sealing lip 26 and the molding 20 is continuously formed on and bonded to the periphery of the windshield 2 .
  • the adhesive layer 15 is disposed between the windshield 2 and the molding 20 .
  • the intermediate windshield unit 1 ′ shown in FIG. 12 can be formed according to this representative technique.
  • the peripheral edge 25 of the molding side wall portion 22 substantially corresponds to the cutting surface of the cover tape 10 .
  • the windshield 2 may be preferably preheated to about 60-120° C. Then, the molding materials at a temperature of about 150-200° C. may be extruded onto the peripheral edge of the windshield.
  • the molding materials at a temperature of about 150-200° C. may be extruded onto the peripheral edge of the windshield.
  • the windshield 2 it is possible to prevent early or rapid solidification of the extruded molding materials that may result in inferior performance of the formed molding 20 .
  • the extruded molding materials are substantially uniformly solidified. Thus, problems caused by non-uniform solidification of the extruded molding materials can be avoided.
  • the extruded molding materials will not lose its fluidity.
  • the preheating of the windshield 2 may reduce any possible temperature difference between the windshield 2 and the extruded molding material. Therefore, problems (e.g., thermal shock problems of the windshield 2 ) caused by such a temperature difference can be effectively eliminated.
  • the cover tape 10 may then be removed from the windshield 2 of the intermediate windshield unit 1 ′, thereby forming the windshield unit 1 .
  • the peripheral edge 25 of the molding side wall portion 22 is substantially aligned with the peripheral edge 8 a of the outer chamfered portion 8 .
  • the peripheral edge 25 terminates at a peripheral edge of the windshield first surface 2 a, because the peripheral edge 8 a of the outer chamfered portion 8 corresponds to the peripheral edge of the windshield first surface 2 a.
  • a spacer molding 20 a optionally may be inserted into gap G formed in the windshield unit 1 shown in FIG. 4, if desired. Further, the spacer molding 20 a may be separately formed or may be in situ formed. Further, the spacer molding 20 a may have a cross section that is substantially identical with the molding 20 or may have a different cross-section.
  • the first contacting surface 52 b of the groove 52 will contact and move along the cover tape 10 disposed on the windshield 2 .
  • the first contacting surface 52 b will not directly contact the windshield outer surface 2 a.
  • the width W 1 of the groove 52 is preferably slightly greater than the combined thickness of the windshield 2 , the cover tape 10 and the frit layer 6 . Therefore, the second contacting surface 52 c of the groove 52 will not substantially contact (or will only loosely or lightly contact) the frit layer 6 disposed on the windshield 2 . Therefore, the windshield 2 and the frit layer 6 will not be damaged by the second contacting surface 52 c of the extrusion molding die 51 . Naturally, the second contacting surface 52 c of the extrusion molding die 51 will not be excessively worn, even if the extrusion molding die 51 is made from a relatively soft material.
  • the trimmer 60 can accurately trim the cover tape 10 attached to the first surface 2 a of the windshield 2 along the peripheral edge 8 a of the outer chamfered portion 8 .
  • the trimmer 60 can be utilized to remove the unnecessary portion 10 a. Therefore, it is not necessary to carefully attach the cover tape 10 to the windshield first surface 2 a, so that the periphery of the cover tape 10 accurately extends along the outer peripheral edge 8 a of the chamfered portion 8 . As a result, the cover tape 10 can be easily and quickly attached to the windshield 2 .
  • the peripheral edge 25 of the molding side wall portion 22 can be reliably aligned with the peripheral edge 8 a of the windshield outer chamfered portion 8 by simply removing the cover tape 10 from the windshield 2 .
  • a flush 25 a may be produced by leakage of the extrusion molding material from the molding space 52 a and may extend from the peripheral edge 25 of the molding side wall portion 22 . Because the flush 25 a will reliably adhere to the cover tape 10 due to the adhesive layer 15 , such a flush 25 a can be easily removed together with the cover tape 10 by simply stripping away the cover tape 10 . For example, the peripheral edge of the cover tape 10 may function as a cutting device. Therefore, additional time-consuming work is not necessary in order to remove the flush 25 a. Thus, the peripheral edge 25 of the side wall portion 22 of the molding 20 will have a straight, attractive appearance.
  • the adhesive layer 15 disposed on the cover tape 10 can be completely removed from the first surface 2 a of the windshield 2 by simply peeling or stripping away the cover tape 10 .
  • additional time-consuming work is not necessary in order to remove the adhesive layer 15 from the windshield first surface 2 a.
  • the cover tape 10 has a width of several centimeters, the adhesive layer 15 can be easily disposed only on the cover tape 10 and without extending past the cover tape 10 .
  • the cover tape 10 is preferably a relatively thin tape and, e.g. may have a thickness of about 0.03 to 0.1 mm. Therefore, when the cover tape 10 is removed from the windshield 2 , the peripheral edge 25 of the molding side wall portion 22 will be substantially aligned with the peripheral edge of the first surface 2 a of the windshield 2 . As a result, the windshield unit 1 will have an attractive appearance. It should be noted that the distance between the peripheral edge 25 and the windshield first surface 2 a has been exaggerated in FIGS. 1 and 13 for purpose of illustration.
  • the cover tape 10 was applied to only the first surface 2 a of the windshield 2
  • the cover tape 10 also can be applied to the frit layer 6 on the second surface 2 b of the windshield 2 .
  • the robot 30 may be driven to continuously move the windshield 2 in such a manner that the extrusion molding die 51 will move along the periphery of windshield 2 while the second contacting surface 52 c of the groove 52 contacts the cover tape 10 that is provided on the second surface 2 b of the windshield 2 .
  • the cover tape 10 can be applied to both the first and second surfaces 2 a, 2 b of the windshield 2 , if desired.
  • FIGS. 14 to 18 A second detailed representative embodiment will now described with reference to FIGS. 14 to 18 . Because the second embodiment relates to the first embodiment, only constructions and elements that are different from the first embodiment will be explained in detail. Elements that are the same in the first and second embodiments will be identified by the same reference numerals and detailed description of such elements will be omitted.
  • windshield unit 101 may comprise a windshield 102 and a molding 120 , as shown in FIG. 18.
  • Windshield 102 may have the same construction as windshield 2 .
  • the molding 120 may be substantially identical to the molding 20 with the exception of the following difference.
  • the side wall portion 22 of the molding 120 may include a thin extension 27 that extends onto the windshield first surface 2 a (FIG. 18).
  • the molding 120 may partially cover a portion of the first surface 2 a, as well as the end surface 7 and a portion of the second surface 2 b, of the windshield 102 .
  • a cover tape 110 having a suitable width may be applied to the first surface 2 a of the windshield 102 .
  • the cover tape 110 can be arranged or disposed on the windshield first surface 2 a so that its longitudinal edge does not project over the periphery of the windshield 102 .
  • cover tape 110 may have substantially the same construction as the cover tape 10 of the first embodiment, cover tape 110 may preferably be thicker (e.g., about 0.3 to 1.0 mm).
  • the thickness of the cover tape 110 may be several times the thickness of the cover tape 10 .
  • the cover tape 110 is then cut along the periphery of the windshield 102 , in order to remove unnecessary portion 110 a.
  • the cover tape 110 is preferably cut along a predetermined cutting line (not shown) on the windshield first surface 2 a. Therefore, an uncovered or exposed portion S will be formed on the windshield first surface 2 a when the unnecessary portion 110 a is removed and the exposed portion S will extend along a portion of the periphery of the windshield 102 . Because the cutting line is positioned at a certain distance from the peripheral edge of the windshield first surface 2 a, the exposed portion S extends over a certain width from the peripheral edge of the windshield first surface 2 a.
  • a U-shaped cutting tool 80 having a retractable cutting blade 81 may be utilized to cut the cover tape 110 .
  • This cutting tool 80 may include a panel engagement groove that is adapted to receive the periphery of the windshield 102 . Naturally, the cutting tool 80 may be moved along the periphery of the windshield 102 with the cutting blade 81 contacting the windshield first surface 2 a, to thereby cut the cover tape 110 .
  • the cover tape 110 optionally may be obliquely cut, so as to form an oblique cutting surface 110 b.
  • the cutting surface 110 b cooperates with the windshield first surface 2 a to form a wedge-shaped groove therebetween.
  • the cutting surface 110 b is inclined at an acute angle ⁇ with respect to the windshield first surface 2 a.
  • the adhesive layer 15 may be applied to the periphery of the windshield 2 , so as to substantially continuously cover a portion of the cover tape 110 on the windshield first surface 2 a, the uncovered portion S, the windshield end surface 7 and a portion of the frit layer 6 on the windshield second surface 2 b.
  • an extrusion molding apparatus may be used to manufacture the windshield unit 101 that is similar to the representative apparatus of the first embodiment
  • the size of groove 52 may be modified in the extrusion molding die 151 of the second representative embodiment
  • the groove 52 may have a width W 2 that is greater than the width W 1 of the extrusion molding die 51 . Therefore extrusion molding die 151 will be capable of receiving the windshield 102 , which includes a relatively thicker cover tape 110 .
  • the groove 52 may be designed in such a way that an additional molding space 52 g is formed between the first contacting surface 52 b and the uncovered portion S, when the windshield 102 is inserted into or engaged with the panel receiving space 52 of the extrusion molding die 151 .
  • the additional molding space 52 g preferably continuously extends from the molding space 52 a.
  • the molding 120 is continuously formed on and bonded to the periphery of the windshield 102 , to thereby form an intermediate windshield unit 101 ′, as shown in FIG. 17.
  • the molding 120 of intermediate windshield unit 101 ′ includes the thin extension 27 that extends from the molding side wall portion 22 onto the first surface 2 a.
  • extension 27 is formed by the additional molding space 52 g that is defined between the first contacting surface 52 b of the groove 52 of the extrusion molding die 51 and the uncovered portion S of the windshield first surface 2 a when the windshield 102 is inserted into or engaged with the panel receiving space 52 .
  • the cover tape 110 is removed from the windshield 102 of the intermediate windshield unit 101 ′, to thereby form the windshield unit 101 , as shown in FIG. 18.
  • the cover tape 110 includes the oblique cutting surface 110 b, it can be easily removed from the windshield 120 .
  • the extension 27 of the molding 120 has an inclined end surface 28 that corresponds to the oblique cutting surface 110 b of the cover tape 110 .
  • This inclined end surface 28 is inclined at an obtuse angle ⁇ with respect to the windshield first surface 2 a (FIG. 18), because the cutting surface 110 b is inclined at an acute angle ⁇ with respect to the windshield first surface 2 a. Therefore, the possibility that the extension 27 may catch on a surrounding part is minimized As a result, the extension 27 may be effectively prevented from unexpectedly separating from the windshield first surface 2 a, and will provide an attractive appearance.
  • any flush 27 a that extends from the extension 27 can be easily removed by simply stripping away (removing) the cover tape 110 .
  • a windshield unit 201 may comprise a windshield 202 and a molding 220 .
  • the windshield 202 may have substantially the same construction as the windshield 2 .
  • the molding 220 may be substantially identical to the molding 20 with the following exception. Specifically, the molding 220 may differ from the molding 20 in that an extension 37 extends from the side wall portion 22 of the molding 220 onto the windshield first surface 2 a (FIG. 24). In other words, unlike the first embodiment, the molding 220 partially covers the first surface 2 a, as well as the end surface 7 and the second surface 2 b, of the windshield 202 .
  • a cover tape 210 may be applied to the first surface 2 a of the windshield 202 and the cover tape 210 may have substantially the same construction as the cover tapes 10 , 110 used in the first and second embodiments. Similar to the first embodiment, the cover tape 210 is then trimmed or cut along the periphery of the windshield 202 , in order to remove an unnecessary portion 210 a. Subsequently, similar to the first embodiment, the adhesive layer 15 may be applied to the periphery of the windshield 2 (FIG. 20).
  • the windshield unit 201 may be manufactured by utilizing an extrusion molding apparatus that is similar to the apparatus described with respect to the first embodiment
  • An appropriate apparatus may include an extrusion molding die 251 having a groove 52 that is modified in size and shape. That is, the groove 52 of the extrusion molding die 251 has a desired width W 3 for receiving the windshield 202 having the cover tape 210 disposed thereon. Further, as shown in FIG.
  • the first contacting surface 52 b of the groove 52 is partially shaped or engraved, so that an additional molding space 52 h continuously extends from the molding space 52 a and is defined between the first contacting surface 52 b and the cover tape 210 attached to the windshield first surface 2 a when the windshield 202 is inserted into the panel receiving space 52 of the extrusion molding die 251 .
  • the molding 220 is continuously formed on and bonded to the periphery of the windshield 202 , to thereby form an intermediate windshield unit 201 ′ (FIG. 22).
  • the molding 220 includes a covering portion 37 ′ that extends from the molding side wall portion 22 onto the cover tape 210 provided on the windshield first surface 2 a.
  • This covering portion 37 ′ is formed by the additional molding space 52 h that is defined between the first contacting surface 52 b of the groove 52 of the extrusion molding die 251 and the cover tape 210 attached to the windshield first surface 2 a.
  • the covering portion 37 ′ is bonded to the cover tape 210 and not to windshield first surface 2 a.
  • the covering portion 37 ′ is attached to the windshield first surface 2 a and the cover tape 210 is interleaved between the covering portion 37 ′ and the windshield first surface 2 a. Thereafter, the covering portion 37 ′ and the cover tape 210 may be cut along a predetermined cutting line (not shown) that extends along the periphery of the windshield 2 .
  • the covering portion 37 ′ and the cover tape 210 are cut with a L-shaped cutting tool 90 that has a retractable cutting blade 91 .
  • This cutting tool 90 has a contacting surface 92 that is adapted to contact the molding 220 , so as to appropriately position the cutting blade 91 on the windshield first surface 2 a.
  • the cutting tool 90 is moved along the periphery of the windshield 202 with the cutting blade 91 projecting toward the windshield first surface 2 a, to thereby cut the covering portion 37 ′ and the cover tape 210 along the cutting line.
  • the cover tape 210 is removed from the windshield 202 of the intermediate windshield unit 201 ′, to thereby form the windshield unit 201 (FIG. 24).
  • a cut strip 37 ′ a of the covering portion 37 ′ is also removed at the same time. Therefore, the molding 220 of the windshield unit 201 includes the extension 37 that partially covers the windshield first surface 2 a.
  • a cut portion 210 a of the cover tape 210 is left on the windshield 202 and the cut portion 210 a is interleaved between the extension 37 and the windshield first surface 2 a.
  • the covering portion 37 ′ and the cover tape 210 may be obliquely cut, so as to form an oblique cutting surface 29 on the extension 37 when the cover tape 210 is removed from the windshield 202 with the cut strip 37 ′ a.
  • the covering portion 37 ′ and the cover tape 210 may be obliquely cut in such a way that the cutting surface 29 is inclined at an obtuse angle ⁇ with respect to the windshield first surface 2 a (FIG. 24). Therefore, the possibility that the extension 37 may catch on a surrounding part is minimized As a result, the extension 37 may be effectively prevented from unexpectedly separating from the windshield first surface 2 a, and may have an attractive appearance.
  • the molding body covers the lower and end surfaces or all of the upper, lower and end surfaces of the periphery of the windshield
  • the construction of the molding body is not limited to the representative embodiments.
  • the molding body preferably may be modified to cover only the upper, lower or end surface of the periphery of the windshield.
  • the panels and the molded articles of the present teachings are not limited as such.
  • the panel may be a single tempered glass windshield or a resin windshield
  • the panel may be a resin or metal panel.
  • the molded article may be a gasket, a packing or an ornamental frame.

Abstract

Methods for manufacturing panel units may include applying a cover tape to a surface of a panel in such a way as to substantially extend along a periphery of the panel. An extrusion molding die may be moved relative to the panel in such a way that the extrusion molding die moves along the periphery of the panel while at least partially contacting the cover tape applied to the panel. At the same time, a molten molding material may be extruded from the extrusion molding die, thereby integrally forming a molded article on the periphery of the panel. The cover tape may be then removed from the surface of the panel in order to produce a panel unit having the molded article disposed along the periphery of the panel.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to methods for manufacturing panels having molded articles (moldings) disposed thereon (hereinafter “a panel unit”) and to panel units produced by such methods. [0002]
  • 2. Description of the Related Art [0003]
  • A panel unit typically comprises a resin, glass or metal panel, and a frame-like or linear resin molded article that is attached to the periphery of the panel. Examples of such panels include resin window panes and glass window panes for vehicles and examples of molded articles include moldings (e.g., a weather strip), gaskets and static seals. Such panel units have been manufactured by extrusion molding a resin molded article directly onto the periphery of the panel and simultaneously bonding the molded article thereto. In such a method for manufacturing a panel unit, an extrusion molding die is moved relative to the periphery of the panel while at least partially contacting at least one of the upper or lower surfaces of the panel. [0004]
  • SUMMARY OF THE INVENTION
  • When the extrusion molding die and the panel are moved relative to each other, frictional forces can be produced between the panel surface(s) and sliding-contact surface(s) of the extrusion molding die. Such frictional forces may cause damage to the panel, especially if the panel is a resin panel or a laminated soft glass panel. Further, the frictional forces may cause wear of the extrusion molding die, especially if the panel is made from a tempered glass and the extrusion molding die is made from a relatively soft material, e.g., an aluminum alloy. [0005]
  • It is, accordingly, one object of the present teachings to provide improved methods for manufacturing panel units. [0006]
  • In one embodiment of the present teachings, methods are taught for manufacturing a panel unit having a panel and a molded article disposed on a periphery of the panel. For example, a cover tape may be applied to a surface of the panel and is preferably disposed so as to substantially extend along a periphery of the panel. The cover tape preferably has a width of about 1-5 centimeters. Then, an extrusion molding die having an opening may be moved relative to the panel (or vice versa) so that the extrusion molding die moves along the periphery of the panel. Preferably, the extrusion molding die at least partially contacts the cover tape disposed along the periphery of the panel, but does not directly contact the panel. While moving the extrusion molding die relative to the panel (or vice versa), a molten or substantially liquid molding material is extruded from the opening of the extrusion molding die, thereby integrally forming a molded article on the periphery of the panel. Preferably, the molded article is disposed substantially adjacent to the cover tape. Finally, the cover tape may be removed from the surface of the panel in order to produce a panel unit that includes the panel and the molded article. [0007]
  • Thus, methods according to the present teachings enable panel units to be manufactured without damaging the panel or causing excessive wear to the extrusion molding die. [0008]
  • In another aspect of the present teachings, panel units are taught that may be formed by the methods taught herein. For example, a panel unit may include a panel, such as a glass window, a resin window or a metal plate. An in situ formed molding is preferably disposed along at least one peripheral edge of the panel. Because the molding is formed in situ by directly forming the molding onto the panel, no gaps or air pockets will exist between the molding and the panel. Further, the molding will precisely follow the contour of the panel and always have a uniform outer dimension, even if the panel differs from an ideal size. More preferably, a cover tape is disposed on at least one surface of the panel adjacent to the molding. Optionally, an adhesive layer may be disposed between the panel and the molding. In addition, the adhesive layer may partially or completely overlap the cover tape.[0009]
  • Other objects, features and advantage of the present invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims. [0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial cross-sectional view of a windshield unit mounted on a vehicle body, which corresponds to a first embodiment of the present teachings, and corresponds to a sectional view taken along line I-I of FIG. 2; [0011]
  • FIG. 2 is an elevational view of the windshield unit; [0012]
  • FIG. 3 is an elevational view similar to FIG. 2, illustrating an extended form of the molding; FIG. 4 is an elevational view similar to FIG. 2, illustrating a further extended form of the molding; [0013]
  • FIG. 5 is a perspective view of a representative apparatus that can be used to manufacture the windshield unit of FIG. 1; [0014]
  • FIG. 6 is a perspective view of an extrusion molding die during formation of the molding on the periphery of a windshield; [0015]
  • FIG. 7 is a partial cross-sectional view of a cover tape applied to the windshield before an unnecessary portion of the cover tape is cut away; [0016]
  • FIG. 8 is an enlarged, partial cross-sectional view of the cover tape; [0017]
  • FIG. 9 is a partial cross-sectional view of the cover tape applied to the windshield and illustrating an unnecessary portion of the cover tape being cut away; [0018]
  • FIG. 10 is a partial cross-sectional view of the windshield shown in FIG. 9 after the unnecessary portion of the tape has been removed and an adhesive layer has been applied thereto; [0019]
  • FIG. 11 is a cross-sectional view of an extrusion molding die during formation of the molding on the periphery of the windshield; [0020]
  • FIG. 12 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not yet been removed; [0021]
  • FIG. 13 is a partial cross-sectional view of the windshield unit that is formed by removing the cover tape; [0022]
  • FIG. 14 is a partial cross-sectional view of a cover tape applied to windshield and illustrating the cover tape being cut, which embodiment corresponds to a second representative embodiment of the present teachings; [0023]
  • FIG. 15 is a partial cross-sectional view of the windshield of FIG. 14 after an unnecessary portion of the cover tape has been removed and an adhesive layer has been applied thereto; [0024]
  • FIG. 16 is a cross-sectional view of an extrusion molding die during formation of a molding on the periphery of the windshield; [0025]
  • FIG. 17 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not yet been removed; [0026]
  • FIG. 18 is a partial cross-sectional view of a windshield unit that is formed by removing the cover tape; [0027]
  • FIG. 19 is a partial cross-sectional view of a cover tape applied to windshield and illustrating the cover tape being cut, which embodiment corresponds to a third representative embodiment of the present teachings; [0028]
  • FIG. 20 is a partial cross-sectional view of the windshield of FIG. 19 after an unnecessary portion of the cover tape has been removed and an adhesive layer has been applied thereto; [0029]
  • FIG. 21 is a sectional view of an extrusion molding die during formation of a molding on the periphery of the windshield; [0030]
  • FIG. 22 is a partial cross-sectional view of an intermediate windshield unit in which the cover tape has not been removed; [0031]
  • FIG. 23 is a partial cross-sectional view of the intermediate windshield unit and illustrating the cover tape being cut; and [0032]
  • FIG. 24 is a partial cross-sectional view of a windshield unit formed by removing the cover tape.[0033]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Representative methods for manufacturing panel units and the resulting panels are taught herein. For example, such methods may be utilized to form a panel unit having a panel and an in situ formed molded article or molding. [0034]
  • In one embodiment of the present teachings, a cover tape may be applied to a surface (e.g., the outer surface) of a panel and arranged so as to substantially extend along a periphery of the panel. Thereafter, an extrusion molding die can be moved relative to the panel in such a way that the extrusion molding die moves along the periphery of the panel while partially contacting the cover tape applied to the panel. At the same time, a molten (or substantially liquid) molding material may be extruded from the extrusion molding die, thereby integrally forming a molded article or molding on the periphery of the panel. Optionally, the cover tape may thereafter be removed from the surface of the panel. [0035]
  • The present methods are not limited to any particular use or application. However, the present methods may advantageously be utilized to manufacturing a windshield unit having a vehicle windshield and a molding disposed along a peripheral edge of the vehicle windshield. [0036]
  • In another embodiment of the present teachings, an adhesive or adhesive layer may optionally be applied to the periphery of the panel before the molten molding material is extruded. The adhesive or adhesive layer may help to ensure that the molding or molded article reliably bonds to the periphery of the panel. [0037]
  • In another embodiment of the present teachings the molded article may be formed so as to only cover an opposite surface (inner) and an end surface of the panel. Preferably, the formed molded article or molding may have a peripheral edge that aligns with a peripheral edge of the panel surface. Optionally, the cover tape may be cut or trimmed along the peripheral edge of the panel surface after the cover tape is attached to the panel surface. This cutting or trimming of the cover tape will ensure that a peripheral edge of the cover tape is aligned with the peripheral edge of the panel surface. [0038]
  • In an additional representative example of the present teachings, the cover tape may be partially cutting away along the periphery of the panel, to thereby form a desired width of uncovered panel surface portion that extends along the periphery of the panel. In this case, the molded article may have a portion (extension) that may cover the surface of the panel. For example, the cover tape may be cut in such a way so as to provide a cutting surface that is inclined at an acute angle to the panel surface. Further, the extension may have an end surface that is inclined at an obtuse angle to the panel surface. [0039]
  • In another embodiment of the present teachings, the molded article can be substantially formed in such a way as to provide a part (covering portion) that may cover the cover tape that was previously attached to the surface of the panel. In this case, the covering portion and the cover tape may be cut along the periphery of the panel. As a result, the formed molded article may have a desired width of extension that partially covers the panel surface when the cover tape is removed from the panel surface. In this embodiment, a portion of the cover tape may be left on the panel and may be interleaved between the extension and the panel surface. Preferably, the covering portion and the cover tape are cut in such a way that the extension provides a cutting surface that is inclined at an obtuse angle to the panel surface. Optionally, the cover tape may be cut or trimmed along the peripheral edge of the panel surface after the cover tape is attached to the panel surface. [0040]
  • Additional representative examples of the present teachings will be described in further detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed in the above detail description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention. In addition, the present teachings naturally may be combined in ways that are not specifically enumerated in order to provide additional useful embodiments of the present teachings. [0041]
  • Three detailed representative embodiments of the present teachings are shown in FIGS. [0042] 1 to 24, in which a windshield and a molding for a vehicle are described as representative examples of a panel and a molded article, respectively. That is, in these embodiments, a windshield unit that comprises a windshield and a molding is described as a representative panel unit according to the present teachings.
  • First Detailed Representative Embodiment [0043]
  • The first detailed representative embodiment will now described with reference to FIGS. [0044] 1 to 13. As shown in FIG. 1, a windshield (panel) unit 1 may include a windshield 2 and a molding (molded article) 20. The windshield 2 may be a substantially rectangular-shaped, laminated glass that is constructed from two glass plates 3, 4 and a joining resin sheet 5 (e.g., a polyvinyl butyral sheet) that is interleaved therebetween. The windshield 2 has an first surface 2 a that is exposed to the exterior of the vehicle and an second surface 2 b that faces the vehicle interior (cabin) when the windshield unit 1 is mounted on a window frame 9 of a vehicle body. Further, a peripheral edge of the second surface 2 b of the windshield 2 may be coated with a substantially opaque (e.g., opaque black) frit layer 6, which layer has a suitable width and extends circumferentially along the periphery of the windshield 2.
  • In addition, the [0045] windshield 2 may be circumferentially chamfered along its periphery, so as to form opposed inner and outer chamfered portions 8. Because glass plates 3, 4 are typically made from non-treated or normal glass, as opposed to tempered glass, the windshield 2 may be easily scratched or flawed, because the normal glass has a lesser hardness than tempered glass.
  • The [0046] molding 20 may be extrusion molded onto the periphery of the windshield 2, so as to cover the end surface 7 and the second surface 2 b of the windshield 2. The molding 20 may optionally bond or adhere to the periphery of the windshield 2 via an adhesive layer 15, which can be applied to the windshield 2 before extrusion molding the molding 20. The molding 20 may preferably extend along portions of the periphery of windshield that are required for suitably mounting the windshield 2 within the window frame 9. For example, as shown in FIG. 2, the molding 20 may extend along only the upper portion of the windshield periphery. Further, as shown in FIG. 3, the molding 20 may extend along the upper portion and both side portions of the windshield periphery. Moreover, as shown in FIG. 4, the molding 20 may extend along the upper portion, both side portions and the lower portion of the windshield periphery.
  • Because it is technically difficult to form a molding that completely encircles the peripheral edges of the [0047] windshield 2 using extrusion molding techniques, as shown in FIG. 4, the molding 20 may include a gap G. If a complete molding is required, as shown by a broken line in FIG. 4, a spacer molding 20 a may be inserted into the gap G of the molding 20. The spacer molding 20 a may be, e.g., a separately formed molding produced by an extrusion molding technique or an injection molded spacer molding. If injection molding is utilized, the spacer molding 20 a may be formed either separately from the windshield 2 and then mounted within the gap G using an adhesive or may be directly injection molded onto the windshield 2.
  • Referring back to FIG. 1, the [0048] molding 20 preferably is a single, continuous, elongated piece that includes a molding body 21 comprising a thermoplastic elastomer, a thermoplastic synthetic resin and/or a synthetic rubber. A sealing lip 26 preferably extends from the molding body and also comprises an elastomer. However, the elastomer of the sealing lip 26 is preferably more elastic than the elastomer of the molding body 21. For example, the molding body 21 may preferably comprise hard or semi-hard polyvinyl chloride resins (PVC) and/or polyolefin resins. Further, the sealing lip 26 may preferably comprise soft PVC and/or chlorinated ethylene copolymer resins.
  • As shown in FIGS. 1 and 13, the [0049] molding body 21 preferably has a substantially L-shaped configuration in cross section. Further, the molding body 21 may include a side wall portion 22, which has a shape that substantially conforms to the end surface 7 of the windshield 2, and which is bonded to the end surface 7 of the windshield 2 via the adhesive layer 15. In addition, the molding body 21 may include an inner wall portion 23, which has a shape that substantially conforms to the second surface 2 b of the windshield 2, and which is bonded to the second surface 2 b of the windshield 2 via the adhesive layer 15. The side wall portion 22 may have a rounded, outer ornamental surface 24 that has a downwardly slanted, substantially quadrant shape in cross section, in order to impart an attractive appearance to the molding 20. Also, the side wall portion 22 preferably includes a peripheral edge 25 that substantially aligns with an outer peripheral edge 8 a of the outer chamfered portion 8.
  • As shown in FIG. 1, the sealing [0050] lip 26 has a curved or rounded profile that outwardly extends from the side wall portion 22 of the molding body 21. The sealing lip 26 is adapted to flex when the windshield unit 1 is mounted within the window frame 9 of the vehicle body, so as to seal the space between the windshield 2 and the window frame 9.
  • A representative method for manufacturing [0051] windshield unit 1 according to the first representative embodiment will now be described. For example, the rectangular windshield 2 is optionally constructed from two glass plates 3, 4 having a joining resin sheet 5 disposed between the two glass plates 3, 4. A substantially opaque frit layer 6 optionally may be coated onto the second surface 2 b of the windshield 2. More preferably, the frit layer 6 has a width of several centimeters along the periphery of the windshield 2. The windshield 2 also may be circumferentially chamfered along its periphery, so as to form the chamfered portions 8.
  • As shown in FIG. 7, a protective tape or cover [0052] tape 10 having a suitable width (e.g., several centimeters) is preferably applied to the first surface 2 a of the windshield 2, so as to extend circumferentially along the periphery of the windshield 2. Preferably, the cover tape 10 is arranged on the windshield first surface 2 a so that its longitudinal edge projects over the outer chamfered portion 8 of the windshield 2. Optionally, the cover tape 10 may be applied to only a portion of the upper, side and lower portions of the windshield periphery, as will be understood after reading the following description.
  • Typically, the [0053] cover tape 10 is manually applied to the first surface 2 a of the windshield 2. However, it is possible to apply the cover tape 10 to the windshield first surface 2 a by utilizing an automated machine. Further, a preferred material for the cover tape 10 is MT-3155, which is supplied by Nitto Denko Kabushiki Kaisha of Japan.
  • As shown in FIG. 8, the [0054] cover tape 10 may optionally include a substrate layer 11 and an adhesive layer 12. Preferably, the cover tape has a thickness of about 0.03 to 0.1 mm. The substrate layer 11 may comprise a synthetic resin sheet that has excellent heat resistance (e.g., which is sufficient to prevent the sheet from melting when the heated extrusion molding die contacts it), flex resistance and solidity, and may be for example, a sheet of PET (polyethylene terephthalate). The adhesive layer 12 may comprise a removable self-adhesive material that will permit the cover tape 10 to be easily removed from the windshield 2 after the molding 20 has been formed on the windshield 2.
  • After suitably applying the [0055] cover tape 10 to the windshield 2, the cover tape 10 may be trimmed or cut along the peripheral edge 8 a of the outer chamfered portion 8, in order to remove an unnecessary portion 10 a As shown in FIG. 9, a trimmer or cutter blade 60 that is aligned with the surface of the chamfered portion 8 may obliquely cut the cover tape 10. Therefore, the cutting surface (cut edge) of the cover tape 10 will be substantially coplanar with the surface of the chamfered portion 8.
  • Subsequently, as shown in FIG. 10, the [0056] adhesive layer 15 may be applied to the periphery of the windshield 2, so as to cover a portion of the cover tape 10 on the windshield first surface 2 a. In addition, the adhesive layer 15 may also cover the end surface 7 and a portion of the frit layer 6 that is disposed on the second surface 2 b of the windshield 2. For example, the adhesive layer 15 may be preferably applied to the frit layer 6 and the cover tape 10 so as not to extend past the frit layer 6 and the cover tape 10.
  • The [0057] adhesive layer 15 may preferably comprise an adhesive material that can reliably bond the molding 20 to the windshield 2. For example, heat reactive adhesives, e.g., modified nylon (modified polyamide) based adhesives, are preferred in the present teachings. A preferred material for the heat reactive adhesives is TA-10S(Improved Version), which is supplied by Toa Gosei Kabushiki Kaisha of Japan.
  • Referring to FIGS. 6 and 11, an extrusion molding apparatus is preferably utilized to form the [0058] molding 20 on the windshield 2. A representative extrusion molding apparatus may include an extrusion molding die 51 that is capable of extrusion molding the molding 20 and is adapted to move along the periphery of the windshield 2. The extrusion molding die 51 may include a slot-shaped groove 52 that is designed to receive the peripheral edge of the windshield 2. More preferably, the groove 52 may slidably and substantially sealingly receive the peripheral edge of the windshield 2 As best shown in FIG. 11, the groove 52 preferably defines a molding space 52 a that will be formed around the periphery of the windshield 2 when the windshield 2 is inserted into or engaged with the groove 52. Naturally, the cross-section of the molding space 52 a will correspond to the cross section of the resulting molding 20 that is molded onto the windshield 2.
  • The [0059] groove 52 preferably includes an upper or first contacting surface 52 b and a lower or second contacting surface 52 c. The groove 52 has a width W1, which is the distance between the first contacting surface 52 b and the second contacting surface 52 c. Width W1 is chosen so as to slidably and substantially sealingly receive the windshield 2. When the windshield 2 is inserted into groove 52, the first contacting surface 52 b will face the cover tape 10 and adhesive layer 15 that are attached to the windshield first surface 2 a. On the other hand, the second contacting surface 52 c will face the frit layer 6 and the adhesive layer 15 that have been applied to the windshield second surface 2 b.
  • [0060] Groove 52 may also include a first molding surface 52 d that is defined to form the molding body side wall portion 22, an enlarged second molding surface 52 c that is defined to form the molding body inner wall portion 23, and an elongated third molding surface 52 f that is defined to form the sealing lip 26. Moreover, width W1 of groove 52 is preferably chosen to be slightly larger than the thickness of the windshield 2, including the thickness of the cover tape 10 and the frit layer 6 that are fusion and/or chemically bonded to the windshield 2.
  • The extrusion molding die [0061] 51 optionally may include first and second molding material feeder passages (not shown) that communicate with the molding space 52 a and are coupled to the first and second feeder pipes 55, 56, respectively, which are shown in FIG. 5 and 6. The feeder pipes 55, 56 may be coupled to first and second extruders (not shown), respectively, so that first and second molding materials extruded by the first and second extruders are supplied to the feeder pipes 55, 56. For example, the first and second feeder passages may be utilized to supply two different extrusion materials to the extrusion molding die 51, so that the molding body 21 and the sealing lip 26 can be formed from different materials.
  • As shown in FIG. 5, a representative molding apparatus may optionally include a [0062] robot 30 for handling the windshield 2. A six-axes type robot 30 preferably may be used that includes a panel retainer unit 33 mounted on a retainer portion 32 that is provided on the distal end of a support arm 31. The panel retainer unit 33 has a suitable number of suction disks 34 (e.g., 4) that may releasably retain the windshield 2. The suction disks 34 may be coupled to a vacuum source (not shown). Upon energization of the vacuum source, the suction disks 34 stick to the windshield 2 so that the windshield 2 is retained on the panel retainer unit 33.
  • A representative method for manufacturing the [0063] windshield unit 1 using the representative robot 30 shown in FIG. 5 will now be described. First, the vacuum source may be coupled to the robot 30 and energized. Then, the robot 30 may be driven so as to retain the windshield 2 on the panel retainer unit 33. The robot 30 may then be further driven to move the panel retainer unit 33 retaining the windshield 2 so that the peripheral edge of the windshield 2 engages the groove 52 of the extrusion molding die 51, as shown in FIGS. 5, 6 and 11.
  • When the extrusion molding die [0064] 51 is thus positioned with respect to the peripheral edge of the windshield 2, the groove 52 cooperates with the periphery of the windshield 2 to form the molding space 52 a around the periphery of the windshield 2. Further, as shown in FIG. 11, the first contacting surface 52 b of the groove 52 will contact the cover tape 10 (and the adhesive layer 15) on the windshield 2. However, the first contacting surface 52 b will not directly contact the outer surface 2 a of the windshield 2.
  • Thereafter, the [0065] robot 30 may be driven according to a predetermined operational program in order to continuously move the windshield 2 with respect to the extrusion molding die 51. Preferably, the windshield 2 moves relative to the extrusion molding die 51, such that the first contacting surface 52 b of the groove 52 contacts the cover tape 10 on the windshield 2. Simultaneously, the first extruder (not shown) is actuated, thereby feeding the first liquid or molten molding material (e.g., molten PVC) for the molding body 21 into the first feeder passage (not shown) of the extrusion molding die 51 through the first feeder pipe 55. Also, the second extruder (not shown) is actuated, thereby feeding the second liquid or molten molding material (e.g., molten chlorinated ethylene copolymer resins) for the sealing lip 26 into the second feeder passage (not shown) of the extrusion molding die 51 through the second feeder pipe 56.
  • These molten molding materials are simultaneously forced into the [0066] molding space 52 a defined around the periphery of the windshield 2. Preferably, the first and second extruders are preferably controlled in response to the operational program of the robot 30 so that the required amounts of the first and second molding materials are extruded firm the first and second feeder passages, respectively. Thus, the molding 20 is formed to include molding body 21 and sealing lip 26 and the molding 20 is continuously formed on and bonded to the periphery of the windshield 2. Naturally, the adhesive layer 15 is disposed between the windshield 2 and the molding 20.
  • Consequently, the [0067] intermediate windshield unit 1′ shown in FIG. 12 can be formed according to this representative technique. In the intermediate windshield unit 1′, the peripheral edge 25 of the molding side wall portion 22 substantially corresponds to the cutting surface of the cover tape 10.
  • In the representative methods described above, the [0068] windshield 2 may be preferably preheated to about 60-120° C. Then, the molding materials at a temperature of about 150-200° C. may be extruded onto the peripheral edge of the windshield. By preheating the windshield 2, it is possible to prevent early or rapid solidification of the extruded molding materials that may result in inferior performance of the formed molding 20. Also, if the windshield 2 is preheated, the extruded molding materials are substantially uniformly solidified. Thus, problems caused by non-uniform solidification of the extruded molding materials can be avoided. In addition, if the windshield 2 is preheated, the extruded molding materials will not lose its fluidity. As a result, problems caused by reduced fluidity of the extruded molding materials can be avoided. Moreover, the preheating of the windshield 2 may reduce any possible temperature difference between the windshield 2 and the extruded molding material. Therefore, problems (e.g., thermal shock problems of the windshield 2) caused by such a temperature difference can be effectively eliminated.
  • Referring to FIG. 13, the [0069] cover tape 10 may then be removed from the windshield 2 of the intermediate windshield unit 1′, thereby forming the windshield unit 1. In the windshield unit 1 thus formed, the peripheral edge 25 of the molding side wall portion 22 is substantially aligned with the peripheral edge 8 a of the outer chamfered portion 8. In other words, the peripheral edge 25 terminates at a peripheral edge of the windshield first surface 2 a, because the peripheral edge 8 a of the outer chamfered portion 8 corresponds to the peripheral edge of the windshield first surface 2 a.
  • When the [0070] robot 30 moves the windshield 2 so that the extrusion molding die 51 moves relative to only the upper portion of the peripheral edge of the windshield 2, the windshield unit 1 as shown in FIG. 2 will be produced When the robot 30 moves the windshield 2 so that the extrusion molding die 51 moves relative to the upper portion and the side portions of the peripheral edge of the windshield 2, the windshield unit 1 as shown in FIG. 3 will be produced. When the robot 30 moves the windshield 2 so that the extrusion molding die 51 moves relative to the upper portion, the side portions and the lower portion of the peripheral edge of the windshield 2, the windshield unit 1 as shown in FIG. 4 will be produced As described above, a spacer molding 20 a optionally may be inserted into gap G formed in the windshield unit 1 shown in FIG. 4, if desired. Further, the spacer molding 20 a may be separately formed or may be in situ formed. Further, the spacer molding 20 a may have a cross section that is substantially identical with the molding 20 or may have a different cross-section.
  • According to these representative methods, when the extrusion molding die [0071] 51 moves with respect to the periphery of windshield 2, the first contacting surface 52 b of the groove 52 will contact and move along the cover tape 10 disposed on the windshield 2. However, the first contacting surface 52 b will not directly contact the windshield outer surface 2 a. As a result, when the extrusion molding die 51 and the windshield 2 are moved relative to each other, the windshield 2 is effectively prevented from being scratched, and the extrusion molding die 51 is effectively prevented from excessively wearing.
  • Further, because the width W[0072] 1 of the groove 52 is preferably slightly greater than the combined thickness of the windshield 2, the cover tape 10 and the frit layer 6, the second contacting surface 52 c of the groove 52 will not substantially contact (or will only loosely or lightly contact) the frit layer 6 disposed on the windshield 2. Therefore, the windshield 2 and the frit layer 6 will not be damaged by the second contacting surface 52 c of the extrusion molding die 51. Naturally, the second contacting surface 52 c of the extrusion molding die 51 will not be excessively worn, even if the extrusion molding die 51 is made from a relatively soft material.
  • As shown in FIG. 9, the [0073] trimmer 60 can accurately trim the cover tape 10 attached to the first surface 2 a of the windshield 2 along the peripheral edge 8 a of the outer chamfered portion 8. Thus, the trimmer 60 can be utilized to remove the unnecessary portion 10 a. Therefore, it is not necessary to carefully attach the cover tape 10 to the windshield first surface 2 a, so that the periphery of the cover tape 10 accurately extends along the outer peripheral edge 8 a of the chamfered portion 8. As a result, the cover tape 10 can be easily and quickly attached to the windshield 2.
  • Because the [0074] cover tape 10 accurately extends along the peripheral edge 8 a of the windshield outer chamfered portion 8, the peripheral edge 25 of the molding side wall portion 22 can be reliably aligned with the peripheral edge 8 a of the windshield outer chamfered portion 8 by simply removing the cover tape 10 from the windshield 2.
  • As shown by a broken line in FIG. 12, a flush [0075] 25 a may be produced by leakage of the extrusion molding material from the molding space 52 a and may extend from the peripheral edge 25 of the molding side wall portion 22. Because the flush 25 a will reliably adhere to the cover tape 10 due to the adhesive layer 15, such a flush 25 a can be easily removed together with the cover tape 10 by simply stripping away the cover tape 10. For example, the peripheral edge of the cover tape 10 may function as a cutting device. Therefore, additional time-consuming work is not necessary in order to remove the flush 25 a. Thus, the peripheral edge 25 of the side wall portion 22 of the molding 20 will have a straight, attractive appearance.
  • In addition, the [0076] adhesive layer 15 disposed on the cover tape 10 can be completely removed from the first surface 2 a of the windshield 2 by simply peeling or stripping away the cover tape 10. As a result, additional time-consuming work is not necessary in order to remove the adhesive layer 15 from the windshield first surface 2 a. Moreover, if the cover tape 10 has a width of several centimeters, the adhesive layer 15 can be easily disposed only on the cover tape 10 and without extending past the cover tape 10.
  • As described above, the [0077] cover tape 10 is preferably a relatively thin tape and, e.g. may have a thickness of about 0.03 to 0.1 mm. Therefore, when the cover tape 10 is removed from the windshield 2, the peripheral edge 25 of the molding side wall portion 22 will be substantially aligned with the peripheral edge of the first surface 2 a of the windshield 2. As a result, the windshield unit 1 will have an attractive appearance. It should be noted that the distance between the peripheral edge 25 and the windshield first surface 2 a has been exaggerated in FIGS. 1 and 13 for purpose of illustration.
  • Various changes and modifications may be made to the first representative embodiment without departing from the scope of the present teachings. For example, although the [0078] cover tape 10 was applied to only the first surface 2 a of the windshield 2, the cover tape 10 also can be applied to the frit layer 6 on the second surface 2 b of the windshield 2. In such case, the robot 30 may be driven to continuously move the windshield 2 in such a manner that the extrusion molding die 51 will move along the periphery of windshield 2 while the second contacting surface 52 c of the groove 52 contacts the cover tape 10 that is provided on the second surface 2 b of the windshield 2. Also, the cover tape 10 can be applied to both the first and second surfaces 2 a, 2 b of the windshield 2, if desired.
  • Second Detailed Representative Embodiment [0079]
  • A second detailed representative embodiment will now described with reference to FIGS. [0080] 14 to 18. Because the second embodiment relates to the first embodiment, only constructions and elements that are different from the first embodiment will be explained in detail. Elements that are the same in the first and second embodiments will be identified by the same reference numerals and detailed description of such elements will be omitted.
  • Similar to the first embodiment, [0081] windshield unit 101 may comprise a windshield 102 and a molding 120, as shown in FIG. 18. Windshield 102 may have the same construction as windshield 2. Further, the molding 120 may be substantially identical to the molding 20 with the exception of the following difference. Fbr example, the side wall portion 22 of the molding 120 may include a thin extension 27 that extends onto the windshield first surface 2 a (FIG. 18). In other words, unlike the first embodiment, the molding 120 may partially cover a portion of the first surface 2 a, as well as the end surface 7 and a portion of the second surface 2 b, of the windshield 102.
  • A representative method for manufacturing a [0082] windshield unit 101 according to the second embodiment will now be described. As shown in FIG. 14, a cover tape 110 having a suitable width (e.g., several centimeters) may be applied to the first surface 2 a of the windshield 102. In this embodiment, unlike the first embodiment, the cover tape 110 can be arranged or disposed on the windshield first surface 2 a so that its longitudinal edge does not project over the periphery of the windshield 102. Further, although cover tape 110 may have substantially the same construction as the cover tape 10 of the first embodiment, cover tape 110 may preferably be thicker (e.g., about 0.3 to 1.0 mm). For example, the thickness of the cover tape 110 may be several times the thickness of the cover tape 10.
  • The [0083] cover tape 110 is then cut along the periphery of the windshield 102, in order to remove unnecessary portion 110 a. Unlike the first embodiment, as shown in FIG. 14, the cover tape 110 is preferably cut along a predetermined cutting line (not shown) on the windshield first surface 2 a. Therefore, an uncovered or exposed portion S will be formed on the windshield first surface 2 a when the unnecessary portion 110 a is removed and the exposed portion S will extend along a portion of the periphery of the windshield 102. Because the cutting line is positioned at a certain distance from the peripheral edge of the windshield first surface 2 a, the exposed portion S extends over a certain width from the peripheral edge of the windshield first surface 2 a.
  • As shown in FIG. 14, a [0084] U-shaped cutting tool 80 having a retractable cutting blade 81 may be utilized to cut the cover tape 110. This cutting tool 80 may include a panel engagement groove that is adapted to receive the periphery of the windshield 102. Naturally, the cutting tool 80 may be moved along the periphery of the windshield 102 with the cutting blade 81 contacting the windshield first surface 2 a, to thereby cut the cover tape 110.
  • The [0085] cover tape 110 optionally may be obliquely cut, so as to form an oblique cutting surface 110 b. As shown in FIG. 15, the cutting surface 110 b cooperates with the windshield first surface 2 a to form a wedge-shaped groove therebetween. In other words, the cutting surface 110 b is inclined at an acute angle α with respect to the windshield first surface 2 a. Subsequently, as shown in FIG. 15, the adhesive layer 15 may be applied to the periphery of the windshield 2, so as to substantially continuously cover a portion of the cover tape 110 on the windshield first surface 2 a, the uncovered portion S, the windshield end surface 7 and a portion of the frit layer 6 on the windshield second surface 2 b.
  • An extrusion molding apparatus may be used to manufacture the [0086] windshield unit 101 that is similar to the representative apparatus of the first embodiment However, as shown in FIG. 16, the size of groove 52 may be modified in the extrusion molding die 151 of the second representative embodiment For example, the groove 52 may have a width W2 that is greater than the width W1 of the extrusion molding die 51. Therefore extrusion molding die 151 will be capable of receiving the windshield 102, which includes a relatively thicker cover tape 110. Further, the groove 52 may be designed in such a way that an additional molding space 52 g is formed between the first contacting surface 52 b and the uncovered portion S, when the windshield 102 is inserted into or engaged with the panel receiving space 52 of the extrusion molding die 151. The additional molding space 52 g preferably continuously extends from the molding space 52 a.
  • Similar to the first embodiment, the [0087] molding 120 is continuously formed on and bonded to the periphery of the windshield 102, to thereby form an intermediate windshield unit 101′, as shown in FIG. 17. However, the molding 120 of intermediate windshield unit 101′ includes the thin extension 27 that extends from the molding side wall portion 22 onto the first surface 2 a. As will be easily recognized, extension 27 is formed by the additional molding space 52 g that is defined between the first contacting surface 52 b of the groove 52 of the extrusion molding die 51 and the uncovered portion S of the windshield first surface 2 a when the windshield 102 is inserted into or engaged with the panel receiving space 52.
  • Thereafter, the [0088] cover tape 110 is removed from the windshield 102 of the intermediate windshield unit 101′, to thereby form the windshield unit 101, as shown in FIG. 18. As described above, because the cover tape 110 includes the oblique cutting surface 110 b, it can be easily removed from the windshield 120.
  • In the [0089] windshield unit 101 thus formed, the extension 27 of the molding 120 has an inclined end surface 28 that corresponds to the oblique cutting surface 110 b of the cover tape 110. This inclined end surface 28 is inclined at an obtuse angle β with respect to the windshield first surface 2 a (FIG. 18), because the cutting surface 110 b is inclined at an acute angle α with respect to the windshield first surface 2 a. Therefore, the possibility that the extension 27 may catch on a surrounding part is minimized As a result, the extension 27 may be effectively prevented from unexpectedly separating from the windshield first surface 2 a, and will provide an attractive appearance. Furthermore, as shown by a broken line in FIGS. 17 and 18, any flush 27 a that extends from the extension 27 can be easily removed by simply stripping away (removing) the cover tape 110.
  • Third Detailed Representative Embodiment [0090]
  • The third detailed representative embodiment will now described with reference to FIGS. [0091] 19 to 24. Because the third embodiment relates to the first embodiment, only constructions and elements that are different from the first embodiment will be explained in detail Elements that are the same in the first and third embodiments will be identified by the same reference numerals and detailed description of such elements will be omitted.
  • Similar to the first embodiment, a [0092] windshield unit 201 may comprise a windshield 202 and a molding 220. The windshield 202 may have substantially the same construction as the windshield 2. Moreover, the molding 220 may be substantially identical to the molding 20 with the following exception. Specifically, the molding 220 may differ from the molding 20 in that an extension 37 extends from the side wall portion 22 of the molding 220 onto the windshield first surface 2 a (FIG. 24). In other words, unlike the first embodiment, the molding 220 partially covers the first surface 2 a, as well as the end surface 7 and the second surface 2 b, of the windshield 202.
  • A representative method for manufacturing the [0093] windshield unit 201 will now be described. As shown in FIG. 19, similar to the first embodiment, a cover tape 210 may be applied to the first surface 2 a of the windshield 202 and the cover tape 210 may have substantially the same construction as the cover tapes 10, 110 used in the first and second embodiments. Similar to the first embodiment, the cover tape 210 is then trimmed or cut along the periphery of the windshield 202, in order to remove an unnecessary portion 210 a. Subsequently, similar to the first embodiment, the adhesive layer 15 may be applied to the periphery of the windshield 2 (FIG. 20).
  • The [0094] windshield unit 201 may be manufactured by utilizing an extrusion molding apparatus that is similar to the apparatus described with respect to the first embodiment An appropriate apparatus may include an extrusion molding die 251 having a groove 52 that is modified in size and shape. That is, the groove 52 of the extrusion molding die 251 has a desired width W3 for receiving the windshield 202 having the cover tape 210 disposed thereon. Further, as shown in FIG. 21, the first contacting surface 52 b of the groove 52 is partially shaped or engraved, so that an additional molding space 52 h continuously extends from the molding space 52 a and is defined between the first contacting surface 52 b and the cover tape 210 attached to the windshield first surface 2 a when the windshield 202 is inserted into the panel receiving space 52 of the extrusion molding die 251.
  • Similar to the first embodiment, the [0095] molding 220 is continuously formed on and bonded to the periphery of the windshield 202, to thereby form an intermediate windshield unit 201′ (FIG. 22). In this intermediate windshield unit 201′, the molding 220 includes a covering portion 37′ that extends from the molding side wall portion 22 onto the cover tape 210 provided on the windshield first surface 2 a. This covering portion 37′ is formed by the additional molding space 52 h that is defined between the first contacting surface 52 b of the groove 52 of the extrusion molding die 251 and the cover tape 210 attached to the windshield first surface 2 a. As will be appreciated, in this embodiment, the covering portion 37′ is bonded to the cover tape 210 and not to windshield first surface 2 a. In other words, the covering portion 37′ is attached to the windshield first surface 2 a and the cover tape 210 is interleaved between the covering portion 37′ and the windshield first surface 2 a. Thereafter, the covering portion 37′ and the cover tape 210 may be cut along a predetermined cutting line (not shown) that extends along the periphery of the windshield 2.
  • Preferably, as shown in FIG. 23, the covering [0096] portion 37′ and the cover tape 210 are cut with a L-shaped cutting tool 90 that has a retractable cutting blade 91. This cutting tool 90 has a contacting surface 92 that is adapted to contact the molding 220, so as to appropriately position the cutting blade 91 on the windshield first surface 2 a. As will be appreciated, the cutting tool 90 is moved along the periphery of the windshield 202 with the cutting blade 91 projecting toward the windshield first surface 2 a, to thereby cut the covering portion 37′ and the cover tape 210 along the cutting line.
  • Thereafter, the [0097] cover tape 210 is removed from the windshield 202 of the intermediate windshield unit 201′, to thereby form the windshield unit 201 (FIG. 24). In this embodiment, when the cut cover tape 210 is removed, a cut strip 37a of the covering portion 37′ is also removed at the same time. Therefore, the molding 220 of the windshield unit 201 includes the extension 37 that partially covers the windshield first surface 2 a. As will be appreciated, in the windshield unit 201, a cut portion 210 a of the cover tape 210 is left on the windshield 202 and the cut portion 210 a is interleaved between the extension 37 and the windshield first surface 2 a.
  • The covering [0098] portion 37′ and the cover tape 210 may be obliquely cut, so as to form an oblique cutting surface 29 on the extension 37 when the cover tape 210 is removed from the windshield 202 with the cut strip 37a. As will be recognized, the covering portion 37′ and the cover tape 210 may be obliquely cut in such a way that the cutting surface 29 is inclined at an obtuse angle β with respect to the windshield first surface 2 a (FIG. 24). Therefore, the possibility that the extension 37 may catch on a surrounding part is minimized As a result, the extension 37 may be effectively prevented from unexpectedly separating from the windshield first surface 2 a, and may have an attractive appearance.
  • Furthermore, although in the above preferred embodiments, the molding body covers the lower and end surfaces or all of the upper, lower and end surfaces of the periphery of the windshield, the construction of the molding body is not limited to the representative embodiments. For example, the molding body preferably may be modified to cover only the upper, lower or end surface of the periphery of the windshield. [0099]
  • Although moldings for a laminated glass windshield were exemplified in the above representative embodiments, the panels and the molded articles of the present teachings are not limited as such. For instance, the panel may be a single tempered glass windshield or a resin windshield Further, the panel may be a resin or metal panel. In addition, the molded article may be a gasket, a packing or an ornamental frame. [0100]
  • Additional examples of related methods for manufacturing panel units are found in the assignee's prior U.S. Pat. Nos. 5,411,696, 5,445,780 and 5,558,828, the teachings of which are incorporated herein by reference in their entirety and may be advantageously utilized with the present teachings. For example, according to U.S. Pat. No. 5,411,696, the panel may be moved along a predetermined orbital path with respect to the extrusion die, whereby the molding will always have the some outer dimension, regardless of whether the panel size varies. Further, the panel may be tilted with respect to the extrusion die, so that the molding will always extend at the same angle from a curved panel. [0101]

Claims (27)

What is claimed is:
1. A method for manufacturing a panel unit comprising:
applying a cover tape to a surface of a panel so as to substantially extend along a periphery of the panel,
moving an extrusion molding die relative to the panel so that the extrusion molding die moves along the periphery of the panel while at least partially contacting the cover tape applied to the panel and
simultaneously extruding a molten molding material from the extrusion molding die, thereby integrally forming a molded article along the periphery of the panel.
2. A method as defined in claim 1, further comprising removing the cover tape from the surface of the panel after the molded article has been formed.
3. A method as defined in claim 1, further comprising applying an adhesive layer to the periphery of the panel before extruding the molten molding material.
4. A method as defined in claim 3, wherein the adhesive layer overlaps at least a portion of the cover tape.
5. A method as defined in claim 1, further comprising trimming the cover tape along a peripheral edge of the surface of the panel after it has been applied to the panel surface and before extruding the molten molding material.
6. A method as defined in claim 1, wherein the molded article has a peripheral edge that conforms to a peripheral edge of the surface of the panel.
7. A method as defined in claim 1, further comprising partially cutting away the cover tape along the periphery of the panel before extruding the molten molding material, thereby forming an uncovered panel surface portion extending along the periphery of the panel, and further comprising forming the molded article with an extension that partially covers the surface of the panel.
8. A method as defined in claim 7, further comprising cutting away the cover tape to provide a cutting surface that is inclined at an acute angle relative to the panel surface, wherein an end surface of the extension is inclined at an obtuse angle relative to the panel surface.
9. A method as defined in claim 1, further comprising forming the molded article with a covering portion that covers at least a portion of the cover tape and cutting the covering portion and the cover tape along the periphery of the panel.
10. A method as defined in claim 9, further comprising removing the cover tape from the panel surface, thereby forming the molded article with an extension that partially covers the panel surface.
11. A method as defined in claim 10, further comprising cutting the covering portion and the cover tape so that the extension has a cutting surface that is inclined at an obtuse angle relative to the panel surface.
12. A method as defined in claim 10, further comprising interleaving a portion of the cover tape between the extension and the panel surface.
13. A method as defined in claim 1, further comprising extruding the molded article so as to cover an opposite surface and an end surface of the panel.
14. A method as defined in claim 1, further comprising extruding the molded article so as to cover the surface, an opposite surface and an end surface of the panel.
15. A method as defined in claim 1, wherein the panel is a window pane that comprises glass or resin and the method further comprises trimming the cover tape along a peripheral edge of the window pane surface and disposing an adhesive layer along the periphery of the window pane before extruding the molten material.
16. A method as defined in claim 1, wherein the panel is a window pane that comprises glass or resin and the method further comprises partially cutting away the cover tape along the periphery of the window pane, thereby forming an uncovered panel surface portion extending along the periphery of the window pane and disposing an adhesive layer on the periphery of the window pane before extruding the molten molding material.
17. A method as defined in claim 1, wherein the panel is a window pane that comprises glass or resin and the method further comprises trimming the cover tape along a peripheral edge of the window pane, disposing an adhesive layer on the periphery of the window pane before extruding the molten material, cutting a portion of the molding article and the cover tape along the periphery of the window pane after the molten material has been extruded and removing the cover tape from the window pane surface, thereby producing a window pane unit that includes the molded article covering the surface, an opposite surface and an end surface of the window pane.
18. A method as defined in claim 1, wherein the panel comprises glass or resin and the method further comprises:
applying an adhesive layer to the periphery of the panel before extruding the molten molding material, wherein the adhesive layer overlaps at least a portion of the cover tape, forming the molded article with a covering portion that at least partially covers the adhesive layer and the cover tape, and
cutting the covering portion, adhesive layer and cover tape at an oblique angle with respect to the panel surface and removing the distal portion of the covering portion, adhesive layer and cover tape, thereby forming the molded article with an extension, wherein the cover tape and the adhesive layer are interleaved between the covering portion and the panel surface.
19. A method as in claim 18, wherein the cover tape has a thickness of about 0.03 to 1.0 mm and comprises a first layer comprising a synthetic resin and a second layer comprising a removable self-adhesive material.
20. A panel unit formed by the method of claim 18, comprising:
the panel comprising glass or resin,
the in situ formed molding formed along a peripheral edge of the panel by extruding a molten or substantially liquid molding material according to claim 18, the in situ formed molding having the extension that partially covers the surface of the panel and the end surface of the extension is inclined at an obtuse angle relative to the panel surface, and
the cover tape and adhesive layer interleaved between the extension of the in situ formed molding and the panel surface.
21. A panel unit as in claim 20, wherein the cover tape has a thickness of about 0.03 to 1.0 mm and comprises a first layer comprising a synthetic resin and a second layer comprising a removable self-adhesive material.
22. A panel unit formed by the method of claim 1, comprising:
the panel,
the in situ formed molding formed along a peripheral edge of the panel by extruding a molten or substantially liquid molding material according to claim 1, and
the cover tape applied according to claim 1 and disposed on the panel surface substantially adjacent to the in situ formed molding.
23. A panel unit as in claim 22, wherein the cover tape has a width between about 1 to 5 centimeters and a thickness of about 0.03 to 1.0 mm and comprises a first layer comprising a synthetic resin and a second layer comprising a removable self-adhesive material.
24. A panel unit, comprising:
a panel comprising glass or resin,
an in situ formed molding formed along a peripheral edge of the panel by extruding a molten or substantially liquid molding material, the in situ formed molding having an extension that partially covers a surface of the panel and an end surface of the extension is inclined at an obtuse angle relative to the panel surface, and
a cover tape disposed between the extension of the in situ formed molding and the panel surface.
25. A panel unit as in claim 24, wherein the cover tape has a thickness of about 0.03 to 1.0 mm and comprises a first layer comprising a synthetic resin and a second layer comprising a removable self-adhesive material.
26. A panel unit, comprising:
a panel,
an in situ formed molding formed along a peripheral edge of the panel by extruding a molten or substantially liquid molding material, and
a cover tape disposed on the panel surface substantially adjacent to the in situ formed molding.
27. A panel unit as in claim 26, wherein the cover tape has a width between about 1 to 5 centimeters and a thickness of about 0.03 to 1.0 mm and comprises a first layer comprising a synthetic resin and a second layer comprising a removable self-adhesive material.
US10/020,577 2000-12-18 2001-12-18 Panel units having in situ formed moldings Abandoned US20020076527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/986,789 US7879278B2 (en) 2000-12-18 2004-11-15 Method for forming panel units having in situ formed moldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000384176A JP3626091B2 (en) 2000-12-18 2000-12-18 Manufacturing method of panel with resin molded product
JP2000-384176 2000-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/986,789 Division US7879278B2 (en) 2000-12-18 2004-11-15 Method for forming panel units having in situ formed moldings

Publications (1)

Publication Number Publication Date
US20020076527A1 true US20020076527A1 (en) 2002-06-20

Family

ID=18851697

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/020,577 Abandoned US20020076527A1 (en) 2000-12-18 2001-12-18 Panel units having in situ formed moldings
US10/986,789 Expired - Fee Related US7879278B2 (en) 2000-12-18 2004-11-15 Method for forming panel units having in situ formed moldings

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/986,789 Expired - Fee Related US7879278B2 (en) 2000-12-18 2004-11-15 Method for forming panel units having in situ formed moldings

Country Status (3)

Country Link
US (2) US20020076527A1 (en)
JP (1) JP3626091B2 (en)
CA (1) CA2365058C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096363A1 (en) * 2003-12-12 2007-05-03 Aulis Jamia Method for furnishing a sheet edge by a strip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066983A (en) * 2002-08-07 2004-03-04 Asahi Glass Co Ltd Window glass molding for vehicle
US8911918B2 (en) * 2010-02-08 2014-12-16 GM Global Technology Operations LLC Hybrid seal application process
US10703178B2 (en) * 2016-11-07 2020-07-07 Ford Global Technologies, Llc Windshield wrapped vehicle pillar
US20210130048A1 (en) * 2018-04-09 2021-05-06 Abbott Laboratories Powder container with first and second hinged closures

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241281A (en) * 1963-04-24 1966-03-22 Ford Motor Co Motor vehicle window mounting
US3802143A (en) * 1970-07-03 1974-04-09 Volkswagenwerk Ag Window assembly especially for an automobile
US4571278A (en) * 1983-03-31 1986-02-18 Saint-Gobain Vitrage Glue mounting of a glass in a bay
US4604832A (en) * 1984-06-06 1986-08-12 U.S. Product Development Company Edge guard
US4793108A (en) * 1983-03-01 1988-12-27 The Boeing Company Enclosed interlayer plastic laminated window
US4817335A (en) * 1987-07-22 1989-04-04 Robert Adell Decorative clear plastic edge guard
US5233805A (en) * 1989-10-14 1993-08-10 Tokai Kogyo Kabushiki Kaisha Molding for automotive front glass and molding apparatus
US5558387A (en) * 1993-11-29 1996-09-24 Toyoda Gosei Co., Ltd. Fixing structure for a window glass
US5564249A (en) * 1993-02-19 1996-10-15 Borys; Tadeusz Automotive trim piece
US5822932A (en) * 1994-08-12 1998-10-20 Donnelly Corporation Method for making a vehicle window panel using a melt-processible gasket material
US6017038A (en) * 1996-07-18 2000-01-25 Honda Giken Kogyo Kabushiki Kaisha Moulding for window plate of vehicle
US6748706B2 (en) * 2000-11-30 2004-06-15 Weidmann Plastics Technology Ag Connection between the lower edge of a motor vehicle windshield and a water deflector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1669044A (en) * 1926-06-30 1928-05-08 Libbey Owens Sheet Glass Co Laminated glass
JPS58110786A (en) 1981-12-24 1983-07-01 橋本フオ−ミング工業株式会社 Production of window
US4781957A (en) * 1987-07-27 1988-11-01 Minnesota Mining And Manufacturing Company Easy tear masking tape
US5411696A (en) * 1990-12-27 1995-05-02 Tokai Kogyo Kabushiki Kaisha Process of making a panel unit
US5445780A (en) 1992-08-26 1995-08-29 Tokai Kogyo Kabushiki Kaisha Assembly of a windshield glass and a weather strip having a partly modified cross section and method of manufacturing same
JPH06246792A (en) 1993-02-24 1994-09-06 Asahi Glass Co Ltd Resin mold
JP3226717B2 (en) 1993-08-23 2001-11-05 東海興業株式会社 How to attach the trim member to the panel flange

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3241281A (en) * 1963-04-24 1966-03-22 Ford Motor Co Motor vehicle window mounting
US3802143A (en) * 1970-07-03 1974-04-09 Volkswagenwerk Ag Window assembly especially for an automobile
US4793108A (en) * 1983-03-01 1988-12-27 The Boeing Company Enclosed interlayer plastic laminated window
US4571278A (en) * 1983-03-31 1986-02-18 Saint-Gobain Vitrage Glue mounting of a glass in a bay
US4604832A (en) * 1984-06-06 1986-08-12 U.S. Product Development Company Edge guard
US4817335A (en) * 1987-07-22 1989-04-04 Robert Adell Decorative clear plastic edge guard
US5233805A (en) * 1989-10-14 1993-08-10 Tokai Kogyo Kabushiki Kaisha Molding for automotive front glass and molding apparatus
US5564249A (en) * 1993-02-19 1996-10-15 Borys; Tadeusz Automotive trim piece
US5558387A (en) * 1993-11-29 1996-09-24 Toyoda Gosei Co., Ltd. Fixing structure for a window glass
US5822932A (en) * 1994-08-12 1998-10-20 Donnelly Corporation Method for making a vehicle window panel using a melt-processible gasket material
US6017038A (en) * 1996-07-18 2000-01-25 Honda Giken Kogyo Kabushiki Kaisha Moulding for window plate of vehicle
US6748706B2 (en) * 2000-11-30 2004-06-15 Weidmann Plastics Technology Ag Connection between the lower edge of a motor vehicle windshield and a water deflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096363A1 (en) * 2003-12-12 2007-05-03 Aulis Jamia Method for furnishing a sheet edge by a strip
US7799257B2 (en) * 2003-12-12 2010-09-21 Jaemiae Aulis Method for furnishing a sheet edge by a strip

Also Published As

Publication number Publication date
CA2365058C (en) 2008-04-08
CA2365058A1 (en) 2002-06-18
US7879278B2 (en) 2011-02-01
JP3626091B2 (en) 2005-03-02
US20050087907A1 (en) 2005-04-28
JP2002178382A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
US20210102423A1 (en) Composite glass pane with a border seal and method for producing same
US5057265A (en) Method of making a spacer for a windshield bracket
US5424019A (en) Method for manufacturing weather strips for motor vehicles
GB2160920A (en) Sealing strip
CA2095379A1 (en) Vehicular panel assembly and method for making same
JPH10507721A (en) Sealed rim for automobile
EP0686227A1 (en) Vehicular panel assembly, method and apparatus for making same
US3434903A (en) Method of producing a pressure sensitive sealing strip
CA2512501A1 (en) Trim molding for a motor vehicle window panel
FR2635300A1 (en) DECORATIVE, FINISHING, OR SEALING PROFILE AND METHOD FOR MANUFACTURING THE SAME
US7879278B2 (en) Method for forming panel units having in situ formed moldings
JPH07179122A (en) Glass panel with frame
EP1361098A1 (en) Method for adhering an edge seal to an edge of a window panel
US6616878B2 (en) Method and apparatus for bonding extrusion-molded or die-molded pieces
US6926335B2 (en) Method and device for producing a profiled trim section for a glass pane
US5846465A (en) Method for preparing a plate member for a window with a resinous frame
JP3555220B2 (en) Method for manufacturing glass plate with synthetic resin frame
JP3269295B2 (en) How to attach molded strip to window glass
JPH0825391B2 (en) Method for manufacturing glass run with corner pieces
JP2003237376A (en) Manufacturing method of vehicular window edge molding
WO2003016039A1 (en) Continuous flocked extrudate and process for its production
JP3395013B2 (en) Method of forming weatherstrip for sealing the inner peripheral surface of automobile door panel or trunk panel
EP0881113A1 (en) Method of manufacturing panel with frame
JP2909799B2 (en) Method of forming weather strip for automobile
JPH08174624A (en) Panel having frame and manufacture thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKAI KOGYO KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HANAI, NAOTAKA;SAKAGAMI, TOMOHIRO;KAKUTO, TOSHIAKI;AND OTHERS;REEL/FRAME:012557/0962

Effective date: 20020118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION