US20020172739A1 - Microcellular extrusion/blow molding process and aricle made thereby - Google Patents

Microcellular extrusion/blow molding process and aricle made thereby Download PDF

Info

Publication number
US20020172739A1
US20020172739A1 US10/121,449 US12144902A US2002172739A1 US 20020172739 A1 US20020172739 A1 US 20020172739A1 US 12144902 A US12144902 A US 12144902A US 2002172739 A1 US2002172739 A1 US 2002172739A1
Authority
US
United States
Prior art keywords
article
parison
blowing agent
polymeric
microcellular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/121,449
Inventor
Jere Anderson
Richard Straff
Kelvin Okamoto
Kent Blisard
David Pieriak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26748661&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020172739(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/121,449 priority Critical patent/US20020172739A1/en
Publication of US20020172739A1 publication Critical patent/US20020172739A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/08Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles using several expanding or moulding steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/325Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/783Measuring, controlling or regulating blowing pressure
    • B29C2049/7831Measuring, controlling or regulating blowing pressure characterised by pressure values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92076Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • B29C2948/92095Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92314Particular value claimed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92685Density, e.g. per unit length or area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92695Viscosity; Melt flow index [MFI]; Molecular weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249976Voids specified as closed
    • Y10T428/249977Specified thickness of void-containing component [absolute or relative], numerical cell dimension or density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/253Cellulosic [e.g., wood, paper, cork, rayon, etc.]

Definitions

  • the present invention relates generally to extrusion blow molding, and more particularly to a technique for extrusion blow molding of microcellular polymeric material.
  • Polymeric extrusion blow molding is a known process in which a molten polymeric material is extruded from an extruder die as a parison (an essentially cylindrical polymeric sleeve).
  • the parison is placed in a mold and, typically while still warm enough to be soft and moldable, is subjected to significant gas pressure internal of the cylinder and expanded against the mold.
  • Many common articles such as beverage bottles, motor oil bottles, pharmaceutical packaging, cosmetic packaging, and the like are manufactured using this technique.
  • a parison is extruded so as to have differing thickness along its length.
  • Thicker portions may correspond to locations where the article needs to be reinforced to a relatively greater extent, or to provide for expansion in some regions to a greater extent than in other regions (in the blow-molding formation of, for example, a plastic detergent bottle), while maintaining an essentially constant thickness in the molded article.
  • Foamed polymeric materials are well known, and can be produced by introducing a physical blowing agent into a molten polymeric stream, mixing the blowing agent with the polymer, and extruding the mixture into the atmosphere while shaping the mixture. Exposure to atmospheric conditions causes the blowing agent to gasify, thereby forming cells in the polymer. Alternatively, a chemical blowing agent can be added and caused to react in the molten polymeric stream, resulting in the generation of gas that forms cells in the polymer. In both cases, nucleating agents are normally used to control cell size and uniformity.
  • U.S. Pat. No. 4,444,702 (Thomas, et al.) describes a system for producing tubular extruded parisons of thermoplastic material, the wall thickness of the extruded parison being varied during extrusion.
  • U.S. Pat. No. 3,225,127 (Scott) describes a process involving extruding molten plastic containing a foaming agent through an annular orifice to form a foamed parison, then placing the parison in a blow mold cavity and expanding the parison within the mold.
  • U.S. Pat. No. 4,874,649 states that major difficulties exist in extrusion blow molding of foam articles in which a preform that has already been foamed is expanded.
  • Daubenbüchel, et al. state that foamed material of a preform that is still in a thermoplastic condition has regions that exhibit different strength and expandability values over the length and periphery of the preform, with the result that weak points are formed under the effect of internal pressure within the preform, and that in many circumstances these weak points cause the wall of the preform or the molded article produced therefrom to tear open, giving rise to wastage.
  • Daubenbüchel, et al. states that major difficulties exist in extrusion blow molding of foam articles in which a preform that has already been foamed is expanded.
  • Daubenbüchel, et al. state that foamed material of a preform that is still in a thermoplastic condition has regions that exhibit different strength and expandability values over the length and periphery of the preform, with the result that weak points are
  • the present invention provides a series of articles, systems, devices, and methods associated with foam, blow-molded articles.
  • the invention provides an article.
  • an article comprising a blow-molded, foam, microcellular, polymeric article.
  • the invention provides an extruded, microcellular parison suitable for blow-molding.
  • the invention provides systems.
  • One system includes extrusion apparatus having an extruder with an inlet designed to receive a precursor of polymeric microcellular material, constructed and arranged to provide a single-phase, non-nucleated solution of polymeric material and a blowing agent.
  • a blow-molding forming die is fluidly connected to the extruder and has an outlet designed to release a parison of microcellular material.
  • the apparatus includes an enclosed passageway connecting the extruder inlet to a blow molding forming die outlet.
  • the passageway includes a nucleating pathway having length and cross-sectional dimensions selected to creates in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material, a pressure drop at a rate sufficient to cause microcellular nucleation.
  • a blow mold also is included, and is positionable to receive a parison of microcellular material from the die outlet.
  • a system in another embodiment, includes an extruder constructed and arranged to provide a polymeric foam precursor material, and an accumulator associated with the extruder.
  • the accumulator is able to receive polymeric foam precursor material from the extruder and to accumulate a charge of polymeric foam precursor material.
  • Blow molding apparatus also is provided in this system, and is positionable to receive a product of the accumulator, via a forming die. The blow molding apparatus is constructed and arranged to blow mold the material to form a blow-molded foam polymeric article.
  • a system that includes a combination of some aspects described above as provided.
  • the system includes an extruder having an inlet to receive a precursor of polymeric microcellular material that is constructed and arranged to provide a single-phase non-nucleated solution of polymeric material and a blowing agent.
  • An accumulator is provided and is positionable to receive polymeric foam precursor material from the extruder and to accumulate a charge of the polymeric foam precursor material.
  • a blow-molding forming die is fluidly connected to the accumulator and has an outlet designed to release a parison of microcellular material.
  • a blow mold is positionable to receive a parison of microcellular material from the die outlet and is constructed and arranged to form a blow-molded, foam, microcellular, polymeric article.
  • the apparatus includes an enclosed passageway connecting the extruder inlet with the die outlet, the passageway including a nucleating pathway defined above.
  • the invention provides a forming die device.
  • the die includes an inlet at an upstream end constructed and arranged to receive a single-phase, homogeneous solution of polymeric material and a blowing agent that is a gas under ambient conditions, and an outlet at a downstream end thereof, defining a die gap, for releasing foamed polymeric material.
  • a fluid pathway connects the inlet with the outlet and includes a nucleating pathway.
  • the die is constructed and arranged to vary the width of the die gap during extrusion while maintaining a constant nucleating pathway gap.
  • the invention provides a series of methods.
  • a method is provided that involves extruding polymeric foam extrudate from an extruder die while varying the thickness of the extrudate.
  • a method in another embodiment, includes providing an extrudate polymeric microcellular foam parison and subjecting the parison to blow molding conditions.
  • a method in another embodiment, involves extruding a polymeric foam extrudate from an extruder die in a machine direction while varying the temperature of the extrudate exiting the die.
  • An extrudate thereby is formed having a first portion and a second portion spaced from the first portion in the machine direction, the first portion and second portion differing in material density by a factor of at least 1.1.
  • a method in another embodiment, involves subjecting a foam polymeric parison to relatively severe blow-molding conditions while maintaining relatively constant density in the parison.
  • a parison can be subjected to blow-molding conditions of at least about 15 psi thereby expanding at least a portion of the parison at least about 50% in circumference. This takes place while the density of the parison remains relatively constant, in particular the density is increased by no more than about 20%.
  • FIG. 1 is a schematic illustration of an injection blow molding system of the invention.
  • FIG. 2 illustrates a multihole blowing agent feed orifice arrangement and extrusion screw.
  • FIG. 3 is a schematic illustration of a die for the injection blow molding system of FIG. 1.
  • FIG. 4 is a schematic illustration of the die of FIG. 1, adjusted to extrude relatively thicker microcellular material.
  • FIG. 5 is a schematic illustration of a other embodiment of the die of FIG. 1.
  • nucleation defines a process by which a homogeneous, single-phase solution of polymeric material, in which is dissolved molecules of a species that is a gas under ambient conditions, undergoes formations of clusters of molecules of the species that define “nucleation sites”, from which cells will grow. That is, “nucleation” means a change from a homogeneous, single-phase solution to a mixture in which sites of aggregation of at least several molecules of blowing agent are formed. Nucleation defines that transitory state when gas, in solution in a polymer melt, comes out of solution to form a suspension of bubbles within the polymer melt.
  • this transition state forced to occur by changing the solubility of the polymer melt from a state of sufficient solubility to contain a certain quantity of gas in solution to a state of insufficient solubility to contain the same quantity of gas in solution.
  • Nucleation can be effected by subjecting the homogeneous, single-phase solution to rapid thermodynamic instability, such as rapid temperature change, rapid pressure drop, or both. Rapid pressure drop can be created using a nucleating pathway, defined below. Rapid temperature change can be created using a heated portion of an extruder, a hot glycerine bath, or the like.
  • nucleating agent is a dispersed agent, such as talc or other filler particles, added to a polymer and able to promote formation of nucleation sites from a single-phase, homogeneous solution.
  • nucleation sites do not define locations, within a polymer, at which nucleating agent particles reside.
  • Nucleated refers to a state of a fluid polymeric material that had contained a single-phase, homogeneous solution including a dissolved species that is a gas under ambient conditions, following an event (typically thermodynamic instability) leading to the formation of nucleation sites.
  • Non-nucleated refers to a state defined by a homogeneous, single-phase solution of polymeric material and dissolved species that is a gas under ambient conditions, absent nucleation sites.
  • a “non-nucleated” material can include nucleating agent such as talc.
  • a “polymeric material/blowing agent mixture” can be a single-phase, non-nucleated solution of at least the two, a nucleated solution of at least the two, or a mixture in which blowing agent cells have grown.
  • “Essentially closed-cell” microcellular material is meant to define material that, at a thickness of about 100 microns, contains no connected cell pathway through the material.
  • Nucleating pathway is meant to define a pathway that forms part of microcellular polymeric foam extrusion apparatus and in which, under conditions in which the apparatus is designed to operate (typically at pressures of from about 1500 to about 30,000 psi upstream of the nucleator and at flow rates of greater than about 10 pounds polymeric material per hour), the pressure of a single-phase solution of polymeric material admixed with blowing agent in the system drops below the saturation pressure for the particular blowing agent concentration at a rate or rates facilitating rapid nucleation.
  • a nucleating pathway defines, optionally with other nucleating pathways, a nucleation or nucleating region of a device of the invention.
  • Reinforcing agent refers to auxiliary, essentially solid material constructed and arranged to add dimensional stability, or strength or toughness, to material. Such agents are typified by fibrous material as described in U.S. Pat. Nos. 4,643,940 and 4,426,470. “Reinforcing agent” does not, by definition, necessarily include filler or other additives that are not constructed and arranged to add dimensional stability. Those of ordinary skill in the art can test an additive to determine whether it is a reinforcing agent in connection with a particular material.
  • microcellular material of the invention is produced having average cell size of less than about 50 microns.
  • material of the invention has average cell size of less than about 30 microns, more preferably less than about 20 microns, more preferably less than about 10 microns, and more preferably still less than about 5 microns.
  • the microcellular material preferably has a maximum cell size of about 100 microns or preferably less than about 75 microns.
  • the material can have maximum cell size of about 50 microns, more preferably about 35 microns, and more preferably still about 25 microns.
  • a set of embodiments includes all combinations of these noted average cell sizes and maximum cell sizes.
  • one embodiment in this set of embodiments includes microcellular material having an average cell size of less than about 30 microns with a maximum cell size of about 50 microns, and as another example an average cell size of less than about 30 microns with a maximum cell size of about 35 microns, etc. That is, microcellular material designed for a variety of purposes can be produced having a particular combination of average cell size and a maximum cell size preferable for that purpose. Control of cell size is described in greater detail below.
  • the present invention provides systems and techniques for extrusion blow molding of microcellular and other polymeric foam material, and microcellular parisons suitable for blow molding, that is, parisons that can be subjected to blow molding conditions as described herein to produce articles as described herein.
  • the invention provides techniques for production of lightweight, strong microcelluler articles that can be blow molded to form microcellular polymeric blow molded parisons that can have particularly thin walls.
  • articles of the invention can be produced that are free of a non-foam, structurally-supporting material positioned to support the foam article. This means that where a plastic bottle, for example, is produced, the walls of the bottle can be composed entirely of the microcellular foam material, without an auxiliary layer of solid supporting plastic.
  • microcellular material of the present invention surprisingly can be blow molded at relatively high pressures, in particular a pressure of at least about 1.5 bar internal of a microcellular parison, in some cases at least about 2.5 bar, in some cases at least about 5 bar, in some cases at least about 7 bar, and in some cases still at least about 10 bar internal of the parison.
  • microcellular blow molded articles are produced having less than about 10% reinforcing agent by weight, more preferably less than about 5% reinforcing agent, more preferably still less than about 2%, and in particularly preferred embodiments the articles of the invention are essentially free of reinforcing agent.
  • microcellular foam parisons of the invention can be blow molded under relatively severe conditions without a significant change in density in the material.
  • a foam parison of the invention can be subjected to blow-molding conditions of at least about 15 psi, or 18 or 20 psi or other pressures described above, thereby expanding at least a portion of the parison by at least about 50% and forming a blow-molded article while maintaining a relatively constant density in the material, specifically, increasing the density of the parison by no more than about 20% in going from the parison to the blow-molded article.
  • At least a portion of the parison is expanded by at least about 75%, 100%, 150%, 200%, 300%, or at least about 400% in circumference while the density of the parison is increased by no more than about 15%, 10%, 8%, 5% or preferably 3%.
  • the microcellular material of the invention is particularly suitable to the relatively harsh conditions of blow molding because the cells of the invention, of very small size, are not easily crushed or otherwise distorted. It is believed that as the size of the cells decreases, the force required to cause collapse of an individual cell significantly increases.
  • the die of the invention can be shaped and controlled to produce blow-molded articles that have sections with differing thicknesses and sections with differing void volume.
  • a blow-molded, square-shaped bottle can be formed that has sections defining its corners that are thicker than remaining portions of the bottle wall.
  • the thicker portions can, e.g., have a void volume of 50% and the thinner wall a void volume of about 10%.
  • These thicker regions are reinforcing regions. Reinforcing regions also can be provided at corners that define the boundary between the bottle wall and the bottle bottom, or the bottle wall and bottle top, or vertical corners, or all of these.
  • auxiliary opacifer in the present invention, is meant to define pigments, dies, or other species that are designed specifically to absorb light, or talc or other materials that can block or diffract light. Those of ordinary skill in the art can test whether an additive is an opacifer.
  • Microcellular blow molded articles of the invention have the appearance of essentially solid, white, plastic articles, which offers significant commercial appeal.
  • Material of the present invention is, in preferred embodiments, blown with a physical blowing agent such as an atmospheric gas, in particular carbon dioxide, and thus in this embodiment does not require the added expense and complication of formulating a polymeric precursor to include a chemical blowing agent, that is, a species that will react under extrusion conditions to form a blowing agent.
  • a physical blowing agent such as an atmospheric gas, in particular carbon dioxide
  • material of the present invention in this set of embodiments includes residual chemical blowing agent, or reaction by-product of chemical blowing agent, in an amount less than that inherently found in articles blown with 0.1% by weight chemical blowing agent or more, preferably in an amount less than that inherently found in articles blown with 0.05% by weight chemical blowing agent or more.
  • the material is characterized by being essentially free of residual chemical blowing agent or free of reaction by-products of chemical blowing agent. That is, they include less residual chemical blowing agent or by-product that is inherently found in articles blown with any chemical blowing agent.
  • One advantage of embodiments in which a chemical blowing agent is not used or used in very minute quantities is that recyclability of product is maximized.
  • Use of a chemical blowing agent typically reduces the attractiveness of a polymer to recycling since residual chemical blowing agent and blowing agent by-products contribute to non-uniformity in the recyclable material pool.
  • the present invention provides for blow-molding of relatively high void-volume articles having thin walls, in some embodiments.
  • the articles of the invention have a wall thickness less than about 0.100 inch, more preferably less than about 0.075 inch, more preferably less than about 0.050 inch, more preferably still less than about 0.040 inch, and in some cases as low as 0.025 inch, 0.01 inch, or 0.010 inch or less.
  • the invention represents the solution of problems associated with the extrusion of polymeric foam parison having a variety of conventional cell sizes, in addition to microcellular parisons, for blow molding, that must be varied in thickness or density.
  • the invention provides techniques for producing a polymeric foam parison, which can be microcellular, that varies in thickness, and/or varies in material density, along its length.
  • the preferred extruded polymeric foam parison has a first portion and a second portion spaced from the first potion in the parison machine direction, the first portion and the second portion differing in thickness by a factor of at least about 1.1.
  • first and second portions differ in thickness by factors of at least about 1.3, 1.5, or 1.7.
  • the first and second portions can differ in material density by a factor of at least about 1.1, and in other embodiments by a factor of at least about 1.3, 1.5, or 1.7.
  • the parison is suitable for blow-molding to produce an article including a first portion expanded to a first extent and a second portion expanded at least 1.5 times the first extent, the first and second portions, after expansion, differing in each of thickness, material density, and cellular density by no more than about 5%.
  • a polymeric extrusion die is provided that is constructed and arranged to subject a flowing, single-phase solution of molten polymeric material and physical blowing agent that is a gas under atmospheric conditions to a consistent pressure drop rate while varying the annular gap at the die exit to facilitate production of a microcellular polymeric foam parison that varies in thickness along its length.
  • the die is effective in this task by providing the physical separation of nucleation from shaping. That is, nucleation occurs in a consistent manner (an essentially constant pressure drop rate) upstream of shaping, thus differential shaping does not effect cell size, cell density, or material density, substantially.
  • the parison can be subjected, during extrusion, to differing temperature resulting in differential material density as a function of position in the machine direction.
  • System 6 includes an extruder 8 fluidly connected to a blow-molding extrusion die 10 , and a blow mold 11 positionable to receive a parison of microcellular material from the outlet of the die.
  • Blow mold 11 can be a conventional mold, and is not described in detail here except to say that foam parisons of the invention can be blow molded without heating, thus mold 11 need not include auxiliary heating systems. That is, a foam parison of the invention, preferably a microcellular foam parison, can be extruded and then blow molded in mold 11 without applying heat to the parison in the mold.
  • Extruder 8 includes a barrel 32 having a first, upstream end 34 , and a second, downstream end 36 connected to die 10 .
  • a screw 38 mounted for rotation within barrel 32 is a screw 38 operably connected, at its upstream end, to a drive motor 40 .
  • screw 38 includes feed, transition, gas injection, mixing, and metering sections.
  • Control units 42 Positioned along barrel 32 , optionally, are temperature control units 42 .
  • Control units 42 can be electrical heaters, can include passageways for temperature control fluid, and or the like. Units 42 can be used to heat a stream of pelletized or fluid polymeric material within the barrel to facilitate melting, and/or to cool the stream to control viscosity and, in some cases, blowing agent solubility.
  • the temperature control units can operate differently at different locations along the barrel, that is, to heat at one or more locations, and to cool at one or more different locations. Any number of temperature control units can be provided.
  • Barrel 32 is constructed and arranged to receive a precursor of polymeric material.
  • precursor of polymeric material is meant to include all materials that are fluid, or can form a fluid and that subsequently can harden to form a microcellular polymeric article.
  • the precursor is defined by thermoplastic polymer pellets, but can include other species.
  • the precursor can be defined by species that will react to form microcellular polymeric material as described, under a variety of conditions.
  • the invention is meant to embrace production of microcellular material from any combination of species that together can react to form a polymer, typically monomers or low-molecular-weight polymeric precursors which are mixed and foamed as the reaction takes place.
  • thermoplastic polymer or combination of thermoplastic polymers is selected from among amorphous, semicrystalline, and crystalline material including polyaromatics such as styrenic polymers including polystyrene, polyolefins such as polyethylene and polypropylene, fluoropolymers, crosslinkable polyolefins, and polyamides.
  • polyaromatics such as styrenic polymers including polystyrene, polyolefins such as polyethylene and polypropylene, fluoropolymers, crosslinkable polyolefins, and polyamides.
  • introduction of the pre-polymeric precursor utilizes a standard hopper 44 for containing pelletized polymeric material to be into the extruder barrel through orifice 46 , although a precursor can be a fluid prepolymeric material injected through an orifice and polymerized within the barrel via, for example, auxiliary polymerization agents.
  • a precursor can be a fluid prepolymeric material injected through an orifice and polymerized within the barrel via, for example, auxiliary polymerization agents.
  • region 50 Immediately downstream of the downstream end 48 of screw 38 in FIG. 1 is a region 50 which can be a temperature adjustment and control region, auxiliary mixing region, auxiliary pumping region, or the like.
  • region 50 can include temperature control units to adjust the temperature of a fluid polymeric stream prior to nucleation, as described below.
  • Region 50 can include instead, or in addition, additional, standard mixing units (not shown), or a flow-control unit such as a gear pump (not shown).
  • region 50 can be replaced by a second screw in tandem which can include a cooling region.
  • Microcellular material production according to the present invention preferably uses a physical blowing agent, that is, an agent that is a gas under ambient conditions.
  • a physical blowing agent that is, an agent that is a gas under ambient conditions.
  • chemical blowing agents can be used and can be formulated with polymeric pellets introduced into hopper 44 .
  • Suitable chemical blowing agents include those typically relatively low molecular weight organic compounds that decompose at a critical temperature or another condition achievable in extrusion and release a gas or gases such as nitrogen, carbon dioxide, or carbon monoxide. Examples include azo compounds such as azo dicarbonamide.
  • a port 54 in fluid communication with a source 56 of a physical blowing agent.
  • a source 56 of a physical blowing agent Any of a wide variety of physical blowing agents known to those of ordinary skill in the art such as hydrocarbons, chlorofluorocarbons, nitrogen, carbon dioxide, and the like, and mixtures, can be used in connection with the invention and, according to a preferred embodiment, source 56 provides carbon dioxide, or nitrogen, or a mixture thereof as a blowing agent.
  • Supercritical fluid blowing agents are preferred, particularly supercritical carbon dioxide and/or nitrogen.
  • blowing agent source 56 and port 54 typically is provided between blowing agent source 56 and port 54 .
  • Device 58 can be used to meter the blowing agent so as to control the amount of the blowing agent in the polymeric stream within the extruder to maintain a level of blowing agent at a level, according to one set of embodiments, between about 1% and 15% by weight, preferably between about 3% and 12% by weight, more preferably between about 5% and 10% by weight, more preferably still between about 7% and 9% by weight, based on the weight of the polymeric stream and blowing agent. In other embodiments very low levels of blowing agents are suitable, for example less than about 3%, less than about 2%, or less than about 1.5% by weight blowing agent. These blowing agent levels can find use, in some instances, where a nucleating agent is used.
  • the systems and methods of the invention allow formation of microcellular material without use of a nucleating agent.
  • a nucleating agent such as talc
  • polymeric material including a nucleating agent such as talc
  • polymeric material including a filler such as talc adds to the ability to make thicker parts at higher pressures, and improves cell structure.
  • a nucleating agent such as talc reduces the amount of blowing agent such as carbon dioxide or nitrogen needed, thus the material will have a higher viscosity (since carbon dioxide or nitrogen reduces viscosity in such material).
  • nucleating agents and exit gaps can be increased while maintaining similar extrusion conditions otherwise, resulting in thicker parts.
  • a nucleating agent such as talc adds to the viscosity of molten polymeric material inherently, allowing formation of thicker parts.
  • nucleating agent such as talc can be added in an amount of at least 1%, or 2%, or 4%, 5.5% or even 7% or more.
  • carbon dioxide is used in combination with other blowing agents such as nitrogen, and in other embodiments carbon dioxide is used alone with no other blowing agents present. In other embodiments carbon dioxide can be used with other blowing agents so long as the other blowing agents do not materially alter the blowing process.
  • nitrogen similarly it can be used alone, in combination with another blowing agent that adds to or changes the blowing agent properties, or in combination with another agent that does not materially change the blowing process.
  • the pressure and metering device can be connected to a controller (not shown) that also is connected to drive motor 40 and/or a drive mechanism of a gear pump (not shown) to control metering of blowing agent in relationship to low of polymeric material to very precisely control the weight percent blowing agent in the fluid polymeric mixture.
  • the described arrangement facilitates a method that is practiced according to several embodiments of the invention, in combination with blow molding.
  • the method involves introducing, into fluid polymeric material flowing at a rate of at least about 10 lbs/hr., a blowing agent that is a gas under ambient conditions and, in a period of less than about 1 minute, creating a single-phase solution of the blowing agent fluid in the polymer.
  • the blowing agent fluid is present in the solution in an amount of at least about 2.0% by weight based on the weight of the solution in this arrangement.
  • the rate of flow of the fluid polymeric material is at least about 40 or 60 lbs/hr., more preferably at least about 80 lbs/hr., and in a particularly preferred embodiment greater than at least about 100 lbs/hr.
  • the blowing agent fluid is added and a single-phase solution formed within one minute with blowing agent present in the solution in an amount of at least about 3% by weight, more preferably at least about 5% by weight, more preferably at least about 7%, and more preferably still at least about 10% (although, as mentioned, in a another set of preferred embodiments lower levels of blowing agent are used).
  • blowing agent preferably CO 2
  • the rate of introduction of blowing agent is matched with the rate of flow of polymer to achieve the optimum blowing agent concentration.
  • port 54 can be located at any of a variety of locations along the barrel, according to a preferred embodiment it is located just upstream from a mixing section 60 of the screw and at a location 62 of the screw where the screw includes unbroken flights.
  • blowing agent port 154 is located in the gas injection section of the screw at a region upstream from mixing section 60 of screw 38 (including highly-broken flights) at a distance upstream of the mixing section of no more than about 4 full flights, preferably no more than about 2 full flights, or no more than 1 full flight. Positioned as such, injected blowing agent is very rapidly and evenly mixed into a fluid polymeric stream to promote production of a single-phase solution of the foamed material precursor and the blowing agent.
  • Port 154 in the preferred embodiment illustrated, is a multi-hole port including a plurality of orifices 164 connecting the blowing agent source with the extruder barrel. As shown, in preferred embodiments a plurality of ports 154 are provided about the extruder barrel at various positions radially and can be in alignment longitudinally with each other. For example, a plurality of ports 154 can be placed at the 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock positions about the extruder barrel, each including multiple orifices 164 .
  • each orifice 164 is considered a blowing agent orifice
  • the invention includes extrusion apparatus having at least about 10, preferably at least about 40, more preferably at least about 100, more preferably at least about 300, more preferably at least about 500, and more preferably still at least about 700 blowing agent orifices in fluid communication with the extruder barrel, fluidly connecting the barrel with a source of blowing agent.
  • blowing agent orifice or orifices are positioned along the extruder barrel at a location where, when a preferred screw is mounted in the barrel, the orifice or orifices are adjacent full, unbroken flights 165 .
  • each flight passes, or “wipes” each orifice periodically.
  • This wiping increases rapid mixing of blowing agent and fluid foamed material precursor by, in one embodiment, essentially rapidly opening and closing each orifice by periodically blocking each orifice, when the flight is large enough relative to the orifice to completely block the orifice when in alignment therewith.
  • each orifice is passed by a flight at a rate of at least about 0.5 passes per second, more preferably at least about 1 pass per second, more preferably at least about 1.5 passes per second, and more preferably still at least about 2 passes per second.
  • orifices 154 are positioned at a distance of from about 15 to about 30 barrel diameters from the beginning of the screw (at upstream end 34 ).
  • a die 10 of the invention is illustrated schematically in cross-section and includes an annular outer die body 26 surrounding an inner die body 24 which, in turn, surrounds an inner mandrel 31 .
  • the die includes a fluid inlet 12 , constructed and arranged to receive a single-phase, homogeneous solution of polymeric fluid and blowing agent that is a gas under ambient conditions, defined by the junction of the outlet of extruder 30 and a sidewall entrance of the die.
  • Fluid inlet 12 communicates with an annular ring-like void 18 between the outer die body and inner die body that is in fluid communication with an annular channel 20 defined as a gap between the inner die body 24 and outer die body 26 .
  • Channel 20 fluidly communicates with an annular section 28 of the die that is of greater width than that of channel 20 .
  • Section 28 communicates, in turn, with narrowed annular portion 29 defining a nucleating pathway having a gap 22 that is of a dimension that creates a rapid pressure drop facilitating nucleation of the single-phase solution fed to the die.
  • nucleating pathway 29 fluidly communicates with an exit 32 of the die having a gap 34 .
  • Nucleating pathway 29 has an essentially constant cross-sectional dimension along its length. The pathway can change in cross-sectional dimension along its length as well, for example decreasing in cross-sectional dimension in a downstream direction for particularly high pressure drop rates, as disclosed in U.S. patent application Ser. No.
  • a single-phase solution can be continuously nucleated by experiencing continuously decreasing pressure within successive, continuous portions of the flowing, single-phase stream at a rate which increases.
  • Die 10 is constructed such that inner die body 24 can move axially relative to outer die body 26 .
  • Inner die body 24 can move from an upstream position as illustrated in FIG. 3 to a downstream position in which it almost fills a region indicated as 25 .
  • region 25 defines an accumulator.
  • a single-phase solution 23 of polymeric material and blowing agent is fed from extruder 30 to the die 10 , first into annular ring 18 , then through channel 20 , accumulator 25 (to the extent that inner die body 24 is positioned upstream) and section 28 of the die as a single-phase, non-nucleated solution, is nucleated through a rapid pressure drop occurring at nucleating pathway 29 , and is extruded at exit 32 as a parison suitable for blow molding.
  • exit 32 can be closed (described below) and non-nucleated, single-phase solution 23 of polymeric material and blowing agent can be fed from extruder 30 into accumulator 25 while inner die body 24 moves in an upstream direction.
  • a load can be applied to inner die body 24 in a downstream direction, during this procedure, to maintain in accumulator 25 an essentially constant pressure that maintains the polymer/blowing agent solution in a non-nucleated, single-phase condition.
  • exit 32 can be opened and inner die body 24 driven in a downstream direction to nucleate and extrude a microcellular parison. This feature allows for an extruder to be run continuously while parison extrusion occurs periodically.
  • nucleating pathway 29 can include nucleating agent in some embodiments, in other embodiments no nucleating agent is used. In either case, the pathway is constructed so as to be able to create sites of nucleation in the absence of nucleating agent whether or not nucleating agent is present.
  • the nucleating pathway has dimensions creating a desired pressure drop rate through the pathway. In one set of embodiments, the pressure drop rate is relatively high, and a wide range of pressure drop rates are achievable.
  • a pressure drop rate can be created, through the pathway, of at least about 0.1 GPa/sec in molten polymeric material admixed homogeneously with about 6 wt % CO 2 passing through the pathway of a rate of about 40 pounds fluid per hour.
  • the dimensions create a pressure drop rate through the pathway of at least about 0.3 GPa/sec under these conditions, more preferably at least about 1 GPa/sec, more preferably at least about 3 GPa/sec, more preferably at least about 5 GPa/sec, and more preferably still at least about 7, 10, or 15 GPa/sec.
  • the nucleator is constructed and arranged to subject the flowing stream to a pressure drop at a rate sufficient to create sites of nucleation at a density of at least about 10 7 or, preferably, 10 8 sights/cm 3 .
  • the apparatus is constructed and arranged to continuously nucleate a fluid stream of single-phase solution of polymeric material and flowing agent flowing at a rate of at least 20 lbs/hour, preferably at least about 40 lbs/hour, more preferably at least about 60 lbs/hour, more preferably at least about 80 lbs/hour, and more preferably still at least about 100, 200, or 400 lbs/hour.
  • Die 10 is constructed such that mandrel 31 can move axially relative to the remainder of the die. This allows for exit 32 to be closed, if desired, by moving mandrel 31 in an upstream direction so as to seal the inner die lip against the outer die lip.
  • die 10 is illustrated with mandrel 31 extended distally such that exit 32 includes a gap 33 that is significantly widened relative to gap 34 as illustrated in FIG. 3. This can be effected while maintaining a constant gap 22 in nucleating section 29 of the die.
  • nucleation of the single-phase polymer/blowing agent fluid stream takes place at a constant pressure drop rate while the die can produce a parison that varies in thickness.
  • a controller actuates the mandrel such that exit 32 widens and narrows to produce a parison having varied thickness as desired.
  • a microcellular product varying in thickness in a machine direction while having essentially uniform microcellular structure as is produced using die 10 are described above.
  • a multi-layer extrusion die in one embodiment, includes co-axial, separate, pathways defining nucleating sections that feed together into a single exit 32 . That is, the die includes a nucleating section 29 as illustrated in FIG. 3, and an additional nucleating section spaced radially outwardly from nucleating section 29 and fed by a separate section similar to section 28 . Simultaneous, separate nucleation of separate layers is followed by joining of the nucleated layers slightly before or at gap 32 where combination of the layers and shaping and ejection of the layers takes place.
  • a microcellular polymeric parison is extruded that differs in material density along its length.
  • the parison can differ in thickness along its length, as well. This can be accomplished using the system illustrated in FIG. 5 in which the die portion of an extruder 70 is provided that is similar to extruder 30 of FIG. 1. Die portion of extruder 70 need not necessarily include a mandrel that is movable axially during extrusion to produce a parison of varying thickness, but includes an air ring 52 for subjecting the parison, during extrusion, to varying conditions of cooling.
  • the air ring can subject different portions of the parison to different cooling conditions, thus reducing cell growth in certain portions of the parison relative to other portions.
  • selected sections of the internal surface of the parison can be cooled by passing air through a channel 60 formed in mandrel 31 between an inner mandrel part 61 , and an outer mandrel part 62 .
  • Internal air cooling can be used alternately or in conjunction with external air cooling via air ring 52 .
  • the resulting parison can be blow molded and can be created such that some sections are relatively higher in material density than others. Sections subjected to different cooling immediately post-extrusion experience different cell growth and therefor different density.
  • the system of FIG. 5 can be used also to produce a blow-molded article having increased density at locations where greater strength is required.
  • the threaded mouth might desirably be made of higher material density for added strength than the remainder of the bottle.
  • the microcellular extruded parison of the invention is better able to withstand blowing conditions than many prior art foam parisons. This is because of the greater resistance of smaller cells the pressure exerted during blowing. Many prior art foams will exhibit cell collapse when exposed to blow molding conditions. However, as cell size decreases, greater pressure is required to cause cell collapse.
  • microcellular parison is co-extruded with an auxiliary polymeric layer that can be internal of or external of the microcellular parison, or both.
  • the auxiliary material can be foam or non-foam and can be added to create a particular appearance (for example when a colored article is desired, a microcellular foam core can be covered with a colored, co-extruded layer).
  • a co-extruded layer may be added to provide good printability on an article or to provide a particular surface texture. Other characteristics such as chemical compatibility, and the like are contemplated.
  • a co-extruded layer may be used, internally or externally of a microcellular parison core, to isolate the core from internal contents of the article, or external environment. This can be useful to increase the use of recycled material in the core.
  • the auxiliary, co-extruded layer in preferred embodiments, is not necessary for structural support. That is, the microcellular parison could be blow-molded and would provide adequate structural support on its own, and the co-extruded layer is for purposes of surface modification only.
  • an auxiliary non-foam, non-structurally-supporting layer is provided adjacent the foam article. This layer can be designed for specific barrier properties (for example, for compatibility with material to be contained in the article, Federal regulation requirements, etc.).
  • blow-molded microcellular polymeric articles in accordance with the invention is surprising since desirable characteristics for polymers for blow molding are different from those characteristics desired in typical extrusion processes.
  • For blow molding typically high-molecular-weight, high-viscosity polymers are needed to withstand, successfully, blow molding conditions.
  • in standard extrusion it is desirable to use lower-molecular weight, lower-viscosity polymers for high throughput.
  • extrusion blow molding includes an inherent dichotomy that adds even more complication when foams are used.
  • higher-molecular weight, higher-viscosity polymers are favored to prevent uncontrolled foaming resulting in open-celled material.
  • the present invention provides successful high-throughput microcellular polymeric extrusion blow molding since higher-molecular weight polymers can be used while reducing viscosity via supercritical fluid blowing agent incorporation. Relatively high molecular weight polymers are reduced in viscosity via the supercritical fluid blowing agent for high-throughput extrusion, yet at extrusion and gasification of the blowing agent the high-molecular weight polymer provides the strength needed for well-controlled microcellular foaming.
  • extrusion and blow molding of foam polymeric material can be accomplished with material of melt flow ono more than about 0.2 g/10 min, preferably no more than about 0.12 g/10 min, more preferably no more than about 0.1 g/10 min.
  • a volumetric feeder capable of supplying up to 30 lb/hr was mounted in the feed throat of the primary extruder such that compounded talc additive pellets could be metered into the primary extruder.
  • An injection system for the injection of CO 2 into the secondary was placed at approximately 8 diameters from the inlet to the secondary.
  • the injection system included 4 equally spaced circumferential, radially-positioned ports, each port including 176 orifices, each orifice of 0.02 inch diameter, for a total of 704 orifices.
  • the injection system included an air actuated control valve to precisely meter a mass flow rate of blowing agent at rates from 0.2 to 12 lbs/hr at pressures up to 5500 psi.
  • the screw of the primary extruder was specially designed screw to provide feeding, melting and mixing of the polymer/talc concentrate followed by a mixing section for the dispersion of blowing agent in the polymer.
  • the outlet of this primary extruder was connected to the inlet of the secondary extruder using a transfer pipe of about 24 inches in length.
  • the secondary extruder was equipped with specially designed deep channel, multi-flighted screw design to cool the polymer and maintain the pressure profile of the microcellular material precursor, between injection of blowing agent and entrance to a gear pump (LCI Corporation, Charlotte, N.C.) attached to the exit of the secondary.
  • the gear pump was equipped with an integral jacket for heating/cooling and sized to operate at a maximum output of 250 lb/hr with a rated maximum discharge pressure of 10,000 psi.
  • the system was equipped, at exit from the gear pump, with a die adapter and a vertically mounted blow molding die (Magic Company, Monza, Italy).
  • the die adapter was equipped with taps for measurement of melt temperature and pressure just prior to entry into the die.
  • the blow molding head included a conventional spider type flow distribution channel and a die adjustment system that allowed movement of the die relative to the fixed position tip providing a variety of exit gaps depending on the chosen tooling.
  • a two-piece bottle mold was mounted in a fixture for the hand molding of sample bottles as a secondary process.
  • One half of the mold was mounted stationary in the fixture with the other half mounted on linear slides.
  • Quick acting clamps mounted on the stationery half of the mold provided the mechanism to clap the mold shut.
  • a short section of steel tubing sharpened to a point attached to a 0-50 psi regulator using a length of flexible hose provided the blow system. Mold diameter varied from approximately 1 inch in the cap area to 2 to 3 inches in the body of the bottle.
  • the overall cavity length of the bottle mold was approximately 10 inches.
  • High density polyethylene (Equistar LR 5403) pellets were introduced into the main hopper of extrusion line described in example 1 and a precompounded talc concentrate (50% talc in a HDPE base) was introduced in the additive feeder hopper.
  • the tooling attached to the blow molding head included a die with a 0.663 inch exit diameter and 6.2° taper angle and a tip of 0.633 inch exit diameter and 2° taper angle. The combination of this tip and die provides an 8.2° included convergence angle.
  • the extruder and gear pump rpm were adjusted to provide an output of approximately 210 lb/hr at speeds of approximately 78 rpm on the primary, 32 rpm on the secondary and 50 rpm of the gear pump. Secondary barrel temperatures were set to maintain a melt temperature of approximately 315° F. at entrance to the die.
  • the additive feeder was set to provide an output of approximately 11 lb/hr resulting in a 2.7% by polymer weight talc in the material.
  • CO 2 blowing agent was injected at a nominal rate of 3.3 lb/hr resulting in a 1.6% by polymer weight blowing agent in the material.
  • Sample bottles were produced in the following manner: A parison of approximately 16 inches in length was extruded, manually removed from the extruder and immediately positioned in the mold. The mold halves were quickly closed and clamped. With the air regulator set to 20 psi, the sharpened tube was then used to pierce the parison at the top of the mold and introduce the air into the ID of the parison now closed at end of the mold.
  • High density polyethylene (Equistar LR 5403) pellets were introduced into the main hopper of an extrusion line described in example 1 and a precompounded talc concentrate (50% talc in a HDPE base) was introduced in the additive feeder hopper.
  • the tooling attached to the blow molding head included a die with a 0.675 exit diameter and 4.0° taper angle and a tip of 0.633 exit diameter and 2° taper angle. The combination of this tip and die provided a 6.0° included convergence angle.
  • the extruder and gear pump rpm were adjusted to provide an output of approximately 180 lb/hr at speeds of approximately 66 rpm on the primary, 30 rpm on the secondary and 40 rpm of the gear pump.
  • Secondary barrel temperatures were set to maintain a melt temperature of approximately 310° F. at entrance to the die.
  • the additive feeder was set to provide an output of approximately 18 lb/hr resulting in a 5.3% by polymer weight talc in the material.
  • N 2 blowing agent was injected at a nominal rate of 0.6 lb/hr resulting in a 0.33% by polymer weight blowing agent in the material.
  • Sample bottles were produced in the following manner: A parison of approximately 16 inches in length was extruded, manually removed from the extruder and immediately positioned in the mold. The mold halves were quickly closed and clamped. With the air regulator set to 40 psi, the sharpened tube was then used to pierce the parison at the top of the mold and introduce the air into the ID of the parison now closed at end of the mold.

Abstract

A microcellular injection blow molding system and method, and microcellular blow molded articles produced thereby, are described. The system is equipped to extrude microcellular material that changes in thickness, material density, or both in the machine direction while maintaining a constant pressure drop rate during nucleation just prior to extrusion, providing the ability to produce consistent uniform microcellular material independent of material thickness. The systems and methods are particularly useful in production of strong, thin-walled, non-liquid-permeable, opaque containers that do not contain reinforcing agent, chromophore, or residue of chemical blowing agent or chemical blowing agent by-product.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part of PCT application serial no. PCT/US98/27118, filed Dec. 18, 1998, which is a continuation-in-part of U.S. patent application Ser. No. 60/107,754 filed Nov. 10, 1998, and a continuation-in-part of U.S. patent application Ser. No. 60/068,173 filed Dec. 19, 1997.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to extrusion blow molding, and more particularly to a technique for extrusion blow molding of microcellular polymeric material. [0002]
  • BACKGROUND OF THE INVENTION
  • Polymeric extrusion blow molding is a known process in which a molten polymeric material is extruded from an extruder die as a parison (an essentially cylindrical polymeric sleeve). The parison is placed in a mold and, typically while still warm enough to be soft and moldable, is subjected to significant gas pressure internal of the cylinder and expanded against the mold. Many common articles such as beverage bottles, motor oil bottles, pharmaceutical packaging, cosmetic packaging, and the like are manufactured using this technique. [0003]
  • In many cases, a parison is extruded so as to have differing thickness along its length. Thicker portions may correspond to locations where the article needs to be reinforced to a relatively greater extent, or to provide for expansion in some regions to a greater extent than in other regions (in the blow-molding formation of, for example, a plastic detergent bottle), while maintaining an essentially constant thickness in the molded article. [0004]
  • Foamed polymeric materials are well known, and can be produced by introducing a physical blowing agent into a molten polymeric stream, mixing the blowing agent with the polymer, and extruding the mixture into the atmosphere while shaping the mixture. Exposure to atmospheric conditions causes the blowing agent to gasify, thereby forming cells in the polymer. Alternatively, a chemical blowing agent can be added and caused to react in the molten polymeric stream, resulting in the generation of gas that forms cells in the polymer. In both cases, nucleating agents are normally used to control cell size and uniformity. [0005]
  • U.S. Pat. No. 4,444,702 (Thomas, et al.) describes a system for producing tubular extruded parisons of thermoplastic material, the wall thickness of the extruded parison being varied during extrusion. [0006]
  • U.S. Pat. No. 3,939,236 (Hahn) describes a technique involving extruding a cellular polymeric tubular parison, then blow molding the parison. [0007]
  • U.S. Pat. No. 3,225,127 (Scott) describes a process involving extruding molten plastic containing a foaming agent through an annular orifice to form a foamed parison, then placing the parison in a blow mold cavity and expanding the parison within the mold. [0008]
  • U.S. Pat. No. 4,874,649 (Daubenbüchel, et al.) states that major difficulties exist in extrusion blow molding of foam articles in which a preform that has already been foamed is expanded. Daubenbüchel, et al. state that foamed material of a preform that is still in a thermoplastic condition has regions that exhibit different strength and expandability values over the length and periphery of the preform, with the result that weak points are formed under the effect of internal pressure within the preform, and that in many circumstances these weak points cause the wall of the preform or the molded article produced therefrom to tear open, giving rise to wastage. Daubenbüchel, et al. purportedly solve this problem by co-extruding a multi-layer thermoplastic preform in which at least one layer is non-foamable. Using a non-foamable layer purportedly allows the preform to be expanded, after the material has been foamed, without giving rise to the danger of forming weak points or holes through the wall of the article. When the layer of non-foamable material is arranged on the outside of the article, an article is produced having a smooth exterior surface. Daubenbüchel, et al. also describe blow-molding expansion of the preforms at a pressure on the order of 1 bar, or less than around 0.5 bar, which they characterize as markedly lower than in the case of conventional extrusion blowing process, to avoid bubbles or pores in the foamed material from being compressed. [0009]
  • While processes for the extrusion blow molding of foamed polymeric material are known, a need exists for simplified processes for production of extruded blow-molded products having good physical qualities. It is an object of the invention, therefore, to provide extrusion blow-molded foam articles of good physical properties, and techniques for producing these articles. It is another object to provide relatively thin-walled extruded, blow-molded foam articles and techniques for producing these articles that involve controlling foam uniformity and density. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention provides a series of articles, systems, devices, and methods associated with foam, blow-molded articles. [0011]
  • In one aspect, the invention provides an article. In one embodiment, an article is provided comprising a blow-molded, foam, microcellular, polymeric article. [0012]
  • In another embodiment, the invention provides an extruded, microcellular parison suitable for blow-molding. [0013]
  • In another aspect, the invention provides systems. One system includes extrusion apparatus having an extruder with an inlet designed to receive a precursor of polymeric microcellular material, constructed and arranged to provide a single-phase, non-nucleated solution of polymeric material and a blowing agent. A blow-molding forming die is fluidly connected to the extruder and has an outlet designed to release a parison of microcellular material. The apparatus includes an enclosed passageway connecting the extruder inlet to a blow molding forming die outlet. The passageway includes a nucleating pathway having length and cross-sectional dimensions selected to creates in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material, a pressure drop at a rate sufficient to cause microcellular nucleation. A blow mold also is included, and is positionable to receive a parison of microcellular material from the die outlet. [0014]
  • In another embodiment, a system is provided that includes an extruder constructed and arranged to provide a polymeric foam precursor material, and an accumulator associated with the extruder. The accumulator is able to receive polymeric foam precursor material from the extruder and to accumulate a charge of polymeric foam precursor material. Blow molding apparatus also is provided in this system, and is positionable to receive a product of the accumulator, via a forming die. The blow molding apparatus is constructed and arranged to blow mold the material to form a blow-molded foam polymeric article. [0015]
  • In another embodiment a system that includes a combination of some aspects described above as provided. The system includes an extruder having an inlet to receive a precursor of polymeric microcellular material that is constructed and arranged to provide a single-phase non-nucleated solution of polymeric material and a blowing agent. An accumulator is provided and is positionable to receive polymeric foam precursor material from the extruder and to accumulate a charge of the polymeric foam precursor material. A blow-molding forming die is fluidly connected to the accumulator and has an outlet designed to release a parison of microcellular material. A blow mold is positionable to receive a parison of microcellular material from the die outlet and is constructed and arranged to form a blow-molded, foam, microcellular, polymeric article. The apparatus includes an enclosed passageway connecting the extruder inlet with the die outlet, the passageway including a nucleating pathway defined above. [0016]
  • In another aspect, the invention provides a forming die device. The die includes an inlet at an upstream end constructed and arranged to receive a single-phase, homogeneous solution of polymeric material and a blowing agent that is a gas under ambient conditions, and an outlet at a downstream end thereof, defining a die gap, for releasing foamed polymeric material. A fluid pathway connects the inlet with the outlet and includes a nucleating pathway. The die is constructed and arranged to vary the width of the die gap during extrusion while maintaining a constant nucleating pathway gap. [0017]
  • In another aspect, the invention provides a series of methods. In one embodiment, a method is provided that involves extruding polymeric foam extrudate from an extruder die while varying the thickness of the extrudate. [0018]
  • In another embodiment, a method is provided that includes providing an extrudate polymeric microcellular foam parison and subjecting the parison to blow molding conditions. [0019]
  • In another embodiment, a method is provided that involves extruding a polymeric foam extrudate from an extruder die in a machine direction while varying the temperature of the extrudate exiting the die. An extrudate thereby is formed having a first portion and a second portion spaced from the first portion in the machine direction, the first portion and second portion differing in material density by a factor of at least 1.1. [0020]
  • In another embodiment, a method is provided that involves subjecting a foam polymeric parison to relatively severe blow-molding conditions while maintaining relatively constant density in the parison. A parison can be subjected to blow-molding conditions of at least about 15 psi thereby expanding at least a portion of the parison at least about 50% in circumference. This takes place while the density of the parison remains relatively constant, in particular the density is increased by no more than about 20%. [0021]
  • Other advantages, novel features, and objects of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings, which are schematic and which are not intended to be drawn to scale. In the figures, each identical or nearly identical component that is illustrated in various figures is represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic illustration of an injection blow molding system of the invention. [0023]
  • FIG. 2 illustrates a multihole blowing agent feed orifice arrangement and extrusion screw. [0024]
  • FIG. 3 is a schematic illustration of a die for the injection blow molding system of FIG. 1. [0025]
  • FIG. 4 is a schematic illustration of the die of FIG. 1, adjusted to extrude relatively thicker microcellular material. [0026]
  • FIG. 5 is a schematic illustration of a other embodiment of the die of FIG. 1.[0027]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Commonly-owned, co-pending U.S. patent application Ser. No. 08/777,709 “Method and Apparatus for Microcellular Polymer Extrusion”, filed Dec. 20, 1996, commonly-owned co-pending International patent application serial no. PCT/US98/27118, filed Dec. 18, 1998, and commonly-owned, co-pending International patent application serial no. PCT/US97/15088, filed Aug. 26, 1997 are incorporated herein by reference. [0028]
  • The various embodiments and aspects of the invention will be better understood from the following definitions. As used herein, “nucleation” defines a process by which a homogeneous, single-phase solution of polymeric material, in which is dissolved molecules of a species that is a gas under ambient conditions, undergoes formations of clusters of molecules of the species that define “nucleation sites”, from which cells will grow. That is, “nucleation” means a change from a homogeneous, single-phase solution to a mixture in which sites of aggregation of at least several molecules of blowing agent are formed. Nucleation defines that transitory state when gas, in solution in a polymer melt, comes out of solution to form a suspension of bubbles within the polymer melt. Generally this transition state forced to occur by changing the solubility of the polymer melt from a state of sufficient solubility to contain a certain quantity of gas in solution to a state of insufficient solubility to contain the same quantity of gas in solution. Nucleation can be effected by subjecting the homogeneous, single-phase solution to rapid thermodynamic instability, such as rapid temperature change, rapid pressure drop, or both. Rapid pressure drop can be created using a nucleating pathway, defined below. Rapid temperature change can be created using a heated portion of an extruder, a hot glycerine bath, or the like. A “nucleating agent” is a dispersed agent, such as talc or other filler particles, added to a polymer and able to promote formation of nucleation sites from a single-phase, homogeneous solution. Thus “nucleation sites” do not define locations, within a polymer, at which nucleating agent particles reside. “Nucleated” refers to a state of a fluid polymeric material that had contained a single-phase, homogeneous solution including a dissolved species that is a gas under ambient conditions, following an event (typically thermodynamic instability) leading to the formation of nucleation sites. “Non-nucleated” refers to a state defined by a homogeneous, single-phase solution of polymeric material and dissolved species that is a gas under ambient conditions, absent nucleation sites. A “non-nucleated” material can include nucleating agent such as talc. A “polymeric material/blowing agent mixture” can be a single-phase, non-nucleated solution of at least the two, a nucleated solution of at least the two, or a mixture in which blowing agent cells have grown. “Essentially closed-cell” microcellular material is meant to define material that, at a thickness of about 100 microns, contains no connected cell pathway through the material. “Nucleating pathway” is meant to define a pathway that forms part of microcellular polymeric foam extrusion apparatus and in which, under conditions in which the apparatus is designed to operate (typically at pressures of from about 1500 to about 30,000 psi upstream of the nucleator and at flow rates of greater than about 10 pounds polymeric material per hour), the pressure of a single-phase solution of polymeric material admixed with blowing agent in the system drops below the saturation pressure for the particular blowing agent concentration at a rate or rates facilitating rapid nucleation. A nucleating pathway defines, optionally with other nucleating pathways, a nucleation or nucleating region of a device of the invention. “Reinforcing agent”, as used herein, refers to auxiliary, essentially solid material constructed and arranged to add dimensional stability, or strength or toughness, to material. Such agents are typified by fibrous material as described in U.S. Pat. Nos. 4,643,940 and 4,426,470. “Reinforcing agent” does not, by definition, necessarily include filler or other additives that are not constructed and arranged to add dimensional stability. Those of ordinary skill in the art can test an additive to determine whether it is a reinforcing agent in connection with a particular material. [0029]
  • In preferred embodiments, microcellular material of the invention is produced having average cell size of less than about 50 microns. In some embodiments particularly small cell size is desired, and in these embodiments material of the invention has average cell size of less than about 30 microns, more preferably less than about 20 microns, more preferably less than about 10 microns, and more preferably still less than about 5 microns. The microcellular material preferably has a maximum cell size of about 100 microns or preferably less than about 75 microns. In embodiments where particularly small cell size is desired, the material can have maximum cell size of about 50 microns, more preferably about 35 microns, and more preferably still about 25 microns. A set of embodiments includes all combinations of these noted average cell sizes and maximum cell sizes. For example, one embodiment in this set of embodiments includes microcellular material having an average cell size of less than about 30 microns with a maximum cell size of about 50 microns, and as another example an average cell size of less than about 30 microns with a maximum cell size of about 35 microns, etc. That is, microcellular material designed for a variety of purposes can be produced having a particular combination of average cell size and a maximum cell size preferable for that purpose. Control of cell size is described in greater detail below. [0030]
  • The present invention provides systems and techniques for extrusion blow molding of microcellular and other polymeric foam material, and microcellular parisons suitable for blow molding, that is, parisons that can be subjected to blow molding conditions as described herein to produce articles as described herein. In particular, the invention provides techniques for production of lightweight, strong microcelluler articles that can be blow molded to form microcellular polymeric blow molded parisons that can have particularly thin walls. It is a feature that articles of the invention can be produced that are free of a non-foam, structurally-supporting material positioned to support the foam article. This means that where a plastic bottle, for example, is produced, the walls of the bottle can be composed entirely of the microcellular foam material, without an auxiliary layer of solid supporting plastic. [0031]
  • The invention involves the discovery that microcellular material overcomes problems associated with certain prior art techniques, in particular, problems in blow molding associated with the inherent relative weakness of conventional thermoplastic polymer foams. Microcellular material of the present invention surprisingly can be blow molded at relatively high pressures, in particular a pressure of at least about 1.5 bar internal of a microcellular parison, in some cases at least about 2.5 bar, in some cases at least about 5 bar, in some cases at least about 7 bar, and in some cases still at least about 10 bar internal of the parison. This strength is achieved even in microcellular parisons including at least some portion having a void volume of at least about 5%, preferably at least about 10%, preferably at least about 20%, more preferably at least about 30%, and in some cases as high as at least about 50% or at least about 70%, even without reinforcing agents, and while forming final microcellular foam products having thin walls, in particular at thicknesses described below. In this regard, microcellular blow molded articles are produced having less than about 10% reinforcing agent by weight, more preferably less than about 5% reinforcing agent, more preferably still less than about 2%, and in particularly preferred embodiments the articles of the invention are essentially free of reinforcing agent. [0032]
  • It also has been surprisingly found that microcellular foam parisons of the invention can be blow molded under relatively severe conditions without a significant change in density in the material. Specifically, a foam parison of the invention can be subjected to blow-molding conditions of at least about 15 psi, or 18 or 20 psi or other pressures described above, thereby expanding at least a portion of the parison by at least about 50% and forming a blow-molded article while maintaining a relatively constant density in the material, specifically, increasing the density of the parison by no more than about 20% in going from the parison to the blow-molded article. In preferred embodiments at least a portion of the parison is expanded by at least about 75%, 100%, 150%, 200%, 300%, or at least about 400% in circumference while the density of the parison is increased by no more than about 15%, 10%, 8%, 5% or preferably 3%. [0033]
  • Without wishing to be bound by any theory, it is believed that the microcellular material of the invention is particularly suitable to the relatively harsh conditions of blow molding because the cells of the invention, of very small size, are not easily crushed or otherwise distorted. It is believed that as the size of the cells decreases, the force required to cause collapse of an individual cell significantly increases. [0034]
  • The die of the invention can be shaped and controlled to produce blow-molded articles that have sections with differing thicknesses and sections with differing void volume. For example, a blow-molded, square-shaped bottle can be formed that has sections defining its corners that are thicker than remaining portions of the bottle wall. The thicker portions can, e.g., have a void volume of 50% and the thinner wall a void volume of about 10%. These thicker regions are reinforcing regions. Reinforcing regions also can be provided at corners that define the boundary between the bottle wall and the bottle bottom, or the bottle wall and bottle top, or vertical corners, or all of these. [0035]
  • It is a feature of the present invention that strong, thin-walled articles can be produced that are opaque without the use of opacifiers. This is because polymeric foam diffracts light, thus it is essentially opaque and has a white appearance. It is a feature of the invention that microcellular foams are more opaque, and uniformly so, than conventional foams. This is a significant advantage in connection with articles constructed and arranged to contain material that is subject to destruction upon exposure to light, such as food containers. Such material can involve food consumable by animals such as humans, containing vitamins that can be destroyed upon exposure to light. In a preferred embodiment the invention provides microcellular blow-molded milk containers, as it is particularly known that vitamins in milk can be lost upon exposure to fluorescent light. Milk bottle container producers are reported to introduce pigments into milk bottles, typically high density polyethylene milk bottles, so as to protect milk from vitamin-destroying light. However, pigmented polymeric material is less amenable to recycling. The present invention provides, in one embodiment, thin, opaque, blow-molded containers that include less than about 1% by weight auxiliary opacifer, preferably less than about 0.05% by weight auxiliary opacifer, and more preferable still material that is essentially free of auxiliary opacifer. “Auxiliary opacifer”, in the present invention, is meant to define pigments, dies, or other species that are designed specifically to absorb light, or talc or other materials that can block or diffract light. Those of ordinary skill in the art can test whether an additive is an opacifer. Microcellular blow molded articles of the invention have the appearance of essentially solid, white, plastic articles, which offers significant commercial appeal. [0036]
  • Material of the present invention is, in preferred embodiments, blown with a physical blowing agent such as an atmospheric gas, in particular carbon dioxide, and thus in this embodiment does not require the added expense and complication of formulating a polymeric precursor to include a chemical blowing agent, that is, a species that will react under extrusion conditions to form a blowing agent. Since foams blown with chemical blowing agents inherently include a residual, unreacted chemical blowing agent after a final foam product has been produced, as well as chemical by-products of the reaction that forms a blowing agent, material of the present invention in this set of embodiments includes residual chemical blowing agent, or reaction by-product of chemical blowing agent, in an amount less than that inherently found in articles blown with 0.1% by weight chemical blowing agent or more, preferably in an amount less than that inherently found in articles blown with 0.05% by weight chemical blowing agent or more. In particularly preferred embodiments the material is characterized by being essentially free of residual chemical blowing agent or free of reaction by-products of chemical blowing agent. That is, they include less residual chemical blowing agent or by-product that is inherently found in articles blown with any chemical blowing agent. [0037]
  • One advantage of embodiments in which a chemical blowing agent is not used or used in very minute quantities is that recyclability of product is maximized. Use of a chemical blowing agent typically reduces the attractiveness of a polymer to recycling since residual chemical blowing agent and blowing agent by-products contribute to non-uniformity in the recyclable material pool. [0038]
  • As mentioned, the present invention provides for blow-molding of relatively high void-volume articles having thin walls, in some embodiments. In particular, the articles of the invention have a wall thickness less than about 0.100 inch, more preferably less than about 0.075 inch, more preferably less than about 0.050 inch, more preferably still less than about 0.040 inch, and in some cases as low as 0.025 inch, 0.01 inch, or 0.010 inch or less. [0039]
  • In one set of embodiments the invention represents the solution of problems associated with the extrusion of polymeric foam parison having a variety of conventional cell sizes, in addition to microcellular parisons, for blow molding, that must be varied in thickness or density. In this set of embodiments the invention provides techniques for producing a polymeric foam parison, which can be microcellular, that varies in thickness, and/or varies in material density, along its length. Specifically, the preferred extruded polymeric foam parison has a first portion and a second portion spaced from the first potion in the parison machine direction, the first portion and the second portion differing in thickness by a factor of at least about 1.1. In other embodiments the first and second portions differ in thickness by factors of at least about 1.3, 1.5, or 1.7. The first and second portions can differ in material density by a factor of at least about 1.1, and in other embodiments by a factor of at least about 1.3, 1.5, or 1.7. The parison is suitable for blow-molding to produce an article including a first portion expanded to a first extent and a second portion expanded at least 1.5 times the first extent, the first and second portions, after expansion, differing in each of thickness, material density, and cellular density by no more than about 5%. In this technique, a polymeric extrusion die is provided that is constructed and arranged to subject a flowing, single-phase solution of molten polymeric material and physical blowing agent that is a gas under atmospheric conditions to a consistent pressure drop rate while varying the annular gap at the die exit to facilitate production of a microcellular polymeric foam parison that varies in thickness along its length. The die is effective in this task by providing the physical separation of nucleation from shaping. That is, nucleation occurs in a consistent manner (an essentially constant pressure drop rate) upstream of shaping, thus differential shaping does not effect cell size, cell density, or material density, substantially. Alternatively or in addition, the parison can be subjected, during extrusion, to differing temperature resulting in differential material density as a function of position in the machine direction. [0040]
  • Referring now to FIG. 1, an extrusion blow molding system [0041] 6 of the present invention is illustrated schematically. System 6 includes an extruder 8 fluidly connected to a blow-molding extrusion die 10, and a blow mold 11 positionable to receive a parison of microcellular material from the outlet of the die. Blow mold 11 can be a conventional mold, and is not described in detail here except to say that foam parisons of the invention can be blow molded without heating, thus mold 11 need not include auxiliary heating systems. That is, a foam parison of the invention, preferably a microcellular foam parison, can be extruded and then blow molded in mold 11 without applying heat to the parison in the mold. Extruder 8 includes a barrel 32 having a first, upstream end 34, and a second, downstream end 36 connected to die 10. Mounted for rotation within barrel 32 is a screw 38 operably connected, at its upstream end, to a drive motor 40. Although not shown in detail, screw 38 includes feed, transition, gas injection, mixing, and metering sections.
  • Positioned along [0042] barrel 32, optionally, are temperature control units 42. Control units 42 can be electrical heaters, can include passageways for temperature control fluid, and or the like. Units 42 can be used to heat a stream of pelletized or fluid polymeric material within the barrel to facilitate melting, and/or to cool the stream to control viscosity and, in some cases, blowing agent solubility. The temperature control units can operate differently at different locations along the barrel, that is, to heat at one or more locations, and to cool at one or more different locations. Any number of temperature control units can be provided.
  • [0043] Barrel 32 is constructed and arranged to receive a precursor of polymeric material. As used herein, “precursor of polymeric material” is meant to include all materials that are fluid, or can form a fluid and that subsequently can harden to form a microcellular polymeric article. Typically, the precursor is defined by thermoplastic polymer pellets, but can include other species. For example, in one embodiment the precursor can be defined by species that will react to form microcellular polymeric material as described, under a variety of conditions. The invention is meant to embrace production of microcellular material from any combination of species that together can react to form a polymer, typically monomers or low-molecular-weight polymeric precursors which are mixed and foamed as the reaction takes place. Preferably, a thermoplastic polymer or combination of thermoplastic polymers is selected from among amorphous, semicrystalline, and crystalline material including polyaromatics such as styrenic polymers including polystyrene, polyolefins such as polyethylene and polypropylene, fluoropolymers, crosslinkable polyolefins, and polyamides.
  • Typically, introduction of the pre-polymeric precursor utilizes a [0044] standard hopper 44 for containing pelletized polymeric material to be into the extruder barrel through orifice 46, although a precursor can be a fluid prepolymeric material injected through an orifice and polymerized within the barrel via, for example, auxiliary polymerization agents. In connection with the present invention, it is important only that a fluid stream of polymeric material be established in the system.
  • Immediately downstream of the [0045] downstream end 48 of screw 38 in FIG. 1 is a region 50 which can be a temperature adjustment and control region, auxiliary mixing region, auxiliary pumping region, or the like. For example, region 50 can include temperature control units to adjust the temperature of a fluid polymeric stream prior to nucleation, as described below. Region 50 can include instead, or in addition, additional, standard mixing units (not shown), or a flow-control unit such as a gear pump (not shown). In another embodiment, region 50 can be replaced by a second screw in tandem which can include a cooling region.
  • Microcellular material production according to the present invention preferably uses a physical blowing agent, that is, an agent that is a gas under ambient conditions. However, chemical blowing agents can be used and can be formulated with polymeric pellets introduced into [0046] hopper 44. Suitable chemical blowing agents include those typically relatively low molecular weight organic compounds that decompose at a critical temperature or another condition achievable in extrusion and release a gas or gases such as nitrogen, carbon dioxide, or carbon monoxide. Examples include azo compounds such as azo dicarbonamide.
  • In embodiments in which a physical blowing agent is used, along [0047] barrel 32 of extruder 30 is a port 54 in fluid communication with a source 56 of a physical blowing agent. Any of a wide variety of physical blowing agents known to those of ordinary skill in the art such as hydrocarbons, chlorofluorocarbons, nitrogen, carbon dioxide, and the like, and mixtures, can be used in connection with the invention and, according to a preferred embodiment, source 56 provides carbon dioxide, or nitrogen, or a mixture thereof as a blowing agent. Supercritical fluid blowing agents are preferred, particularly supercritical carbon dioxide and/or nitrogen. Where a supercritical fluid blowing agent is used, a single-phase solution of polymeric material and blowing agent is created having viscosity reduced to the extent that extrusion and blow-molding is readily accomplished even with material of melt flow no more than about 0.2 g/10 min. A pressure and metering device 58 typically is provided between blowing agent source 56 and port 54. Device 58 can be used to meter the blowing agent so as to control the amount of the blowing agent in the polymeric stream within the extruder to maintain a level of blowing agent at a level, according to one set of embodiments, between about 1% and 15% by weight, preferably between about 3% and 12% by weight, more preferably between about 5% and 10% by weight, more preferably still between about 7% and 9% by weight, based on the weight of the polymeric stream and blowing agent. In other embodiments very low levels of blowing agents are suitable, for example less than about 3%, less than about 2%, or less than about 1.5% by weight blowing agent. These blowing agent levels can find use, in some instances, where a nucleating agent is used.
  • The systems and methods of the invention allow formation of microcellular material without use of a nucleating agent. But such agents can be used and, in some embodiments, polymeric material including a nucleating agent such as talc is blow molded. It has been discovered, in accordance with the invention that polymeric material including a filler such as talc adds to the ability to make thicker parts at higher pressures, and improves cell structure. Although not wishing to be bound by any theory, it is believed that use of a nucleating agent such as talc reduces the amount of blowing agent such as carbon dioxide or nitrogen needed, thus the material will have a higher viscosity (since carbon dioxide or nitrogen reduces viscosity in such material). Therefore, the size of nucleating pathways and exit gaps can be increased while maintaining similar extrusion conditions otherwise, resulting in thicker parts. In addition, a nucleating agent such as talc adds to the viscosity of molten polymeric material inherently, allowing formation of thicker parts. In this embodiment of the invention nucleating agent such as talc can be added in an amount of at least 1%, or 2%, or 4%, 5.5% or even 7% or more. [0048]
  • In some embodiments carbon dioxide is used in combination with other blowing agents such as nitrogen, and in other embodiments carbon dioxide is used alone with no other blowing agents present. In other embodiments carbon dioxide can be used with other blowing agents so long as the other blowing agents do not materially alter the blowing process. When nitrogen is used, similarly it can be used alone, in combination with another blowing agent that adds to or changes the blowing agent properties, or in combination with another agent that does not materially change the blowing process. [0049]
  • The pressure and metering device can be connected to a controller (not shown) that also is connected to drive [0050] motor 40 and/or a drive mechanism of a gear pump (not shown) to control metering of blowing agent in relationship to low of polymeric material to very precisely control the weight percent blowing agent in the fluid polymeric mixture.
  • The described arrangement facilitates a method that is practiced according to several embodiments of the invention, in combination with blow molding. The method involves introducing, into fluid polymeric material flowing at a rate of at least about 10 lbs/hr., a blowing agent that is a gas under ambient conditions and, in a period of less than about 1 minute, creating a single-phase solution of the blowing agent fluid in the polymer. The blowing agent fluid is present in the solution in an amount of at least about 2.0% by weight based on the weight of the solution in this arrangement. In preferred embodiments, the rate of flow of the fluid polymeric material is at least about 40 or 60 lbs/hr., more preferably at least about 80 lbs/hr., and in a particularly preferred embodiment greater than at least about 100 lbs/hr., and the blowing agent fluid is added and a single-phase solution formed within one minute with blowing agent present in the solution in an amount of at least about 3% by weight, more preferably at least about 5% by weight, more preferably at least about 7%, and more preferably still at least about 10% (although, as mentioned, in a another set of preferred embodiments lower levels of blowing agent are used). In these arrangements, at least about 2.4 lbs per hour blowing agent, preferably CO[0051] 2, is introduced into the fluid stream and admixed therein to form a single-phase solution. The rate of introduction of blowing agent is matched with the rate of flow of polymer to achieve the optimum blowing agent concentration.
  • Although [0052] port 54 can be located at any of a variety of locations along the barrel, according to a preferred embodiment it is located just upstream from a mixing section 60 of the screw and at a location 62 of the screw where the screw includes unbroken flights.
  • Referring now to FIG. 2, a preferred embodiment of the blowing agent port is illustrated in greater detail and, in addition, two ports on opposing top and bottom sides of the barrel are shown. In this preferred embodiment, [0053] port 154 is located in the gas injection section of the screw at a region upstream from mixing section 60 of screw 38 (including highly-broken flights) at a distance upstream of the mixing section of no more than about 4 full flights, preferably no more than about 2 full flights, or no more than 1 full flight. Positioned as such, injected blowing agent is very rapidly and evenly mixed into a fluid polymeric stream to promote production of a single-phase solution of the foamed material precursor and the blowing agent.
  • [0054] Port 154, in the preferred embodiment illustrated, is a multi-hole port including a plurality of orifices 164 connecting the blowing agent source with the extruder barrel. As shown, in preferred embodiments a plurality of ports 154 are provided about the extruder barrel at various positions radially and can be in alignment longitudinally with each other. For example, a plurality of ports 154 can be placed at the 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock positions about the extruder barrel, each including multiple orifices 164. In this manner, where each orifice 164 is considered a blowing agent orifice, the invention includes extrusion apparatus having at least about 10, preferably at least about 40, more preferably at least about 100, more preferably at least about 300, more preferably at least about 500, and more preferably still at least about 700 blowing agent orifices in fluid communication with the extruder barrel, fluidly connecting the barrel with a source of blowing agent.
  • Also in preferred embodiments is an arrangement (as shown in FIG. 2) in which the blowing agent orifice or orifices are positioned along the extruder barrel at a location where, when a preferred screw is mounted in the barrel, the orifice or orifices are adjacent full, [0055] unbroken flights 165. In this manner, as the screw rotates, each flight, passes, or “wipes” each orifice periodically. This wiping increases rapid mixing of blowing agent and fluid foamed material precursor by, in one embodiment, essentially rapidly opening and closing each orifice by periodically blocking each orifice, when the flight is large enough relative to the orifice to completely block the orifice when in alignment therewith. The result is a distribution of relatively finely-divided, isolated regions of blowing agent in the fluid polymeric material immediately upon injection and prior to any mixing. In this arrangement, at a standard screw revolution speed of about 30 rpm, each orifice is passed by a flight at a rate of at least about 0.5 passes per second, more preferably at least about 1 pass per second, more preferably at least about 1.5 passes per second, and more preferably still at least about 2 passes per second. In preferred embodiments, orifices 154 are positioned at a distance of from about 15 to about 30 barrel diameters from the beginning of the screw (at upstream end 34).
  • Referring now to FIG. 3, a [0056] die 10 of the invention is illustrated schematically in cross-section and includes an annular outer die body 26 surrounding an inner die body 24 which, in turn, surrounds an inner mandrel 31. The die includes a fluid inlet 12, constructed and arranged to receive a single-phase, homogeneous solution of polymeric fluid and blowing agent that is a gas under ambient conditions, defined by the junction of the outlet of extruder 30 and a sidewall entrance of the die. Fluid inlet 12 communicates with an annular ring-like void 18 between the outer die body and inner die body that is in fluid communication with an annular channel 20 defined as a gap between the inner die body 24 and outer die body 26. Channel 20 fluidly communicates with an annular section 28 of the die that is of greater width than that of channel 20. Section 28 communicates, in turn, with narrowed annular portion 29 defining a nucleating pathway having a gap 22 that is of a dimension that creates a rapid pressure drop facilitating nucleation of the single-phase solution fed to the die. At its downstream end nucleating pathway 29 fluidly communicates with an exit 32 of the die having a gap 34. Nucleating pathway 29, as illustrated, has an essentially constant cross-sectional dimension along its length. The pathway can change in cross-sectional dimension along its length as well, for example decreasing in cross-sectional dimension in a downstream direction for particularly high pressure drop rates, as disclosed in U.S. patent application Ser. No. 08/777,709 and International patent application serial no. PCT/US97/15088, referenced above. Where the pathway decreases in cross-sectional dimension in a downstream direction, a single-phase solution can be continuously nucleated by experiencing continuously decreasing pressure within successive, continuous portions of the flowing, single-phase stream at a rate which increases.
  • [0057] Die 10 is constructed such that inner die body 24 can move axially relative to outer die body 26. Inner die body 24 can move from an upstream position as illustrated in FIG. 3 to a downstream position in which it almost fills a region indicated as 25. Thus, when inner die body 24 is positioned in an upstream position as illustrated in FIG. 3, region 25 defines an accumulator.
  • In operation, a single-[0058] phase solution 23 of polymeric material and blowing agent is fed from extruder 30 to the die 10, first into annular ring 18, then through channel 20, accumulator 25 (to the extent that inner die body 24 is positioned upstream) and section 28 of the die as a single-phase, non-nucleated solution, is nucleated through a rapid pressure drop occurring at nucleating pathway 29, and is extruded at exit 32 as a parison suitable for blow molding. When it is desired to use the accumulating feature of die 10, exit 32 can be closed (described below) and non-nucleated, single-phase solution 23 of polymeric material and blowing agent can be fed from extruder 30 into accumulator 25 while inner die body 24 moves in an upstream direction. A load can be applied to inner die body 24 in a downstream direction, during this procedure, to maintain in accumulator 25 an essentially constant pressure that maintains the polymer/blowing agent solution in a non-nucleated, single-phase condition. Then, exit 32 can be opened and inner die body 24 driven in a downstream direction to nucleate and extrude a microcellular parison. This feature allows for an extruder to be run continuously while parison extrusion occurs periodically.
  • While polymeric material nucleated in nucleating [0059] pathway 29 can include nucleating agent in some embodiments, in other embodiments no nucleating agent is used. In either case, the pathway is constructed so as to be able to create sites of nucleation in the absence of nucleating agent whether or not nucleating agent is present. In particular, the nucleating pathway has dimensions creating a desired pressure drop rate through the pathway. In one set of embodiments, the pressure drop rate is relatively high, and a wide range of pressure drop rates are achievable. A pressure drop rate can be created, through the pathway, of at least about 0.1 GPa/sec in molten polymeric material admixed homogeneously with about 6 wt % CO2 passing through the pathway of a rate of about 40 pounds fluid per hour. Preferably, the dimensions create a pressure drop rate through the pathway of at least about 0.3 GPa/sec under these conditions, more preferably at least about 1 GPa/sec, more preferably at least about 3 GPa/sec, more preferably at least about 5 GPa/sec, and more preferably still at least about 7, 10, or 15 GPa/sec. The nucleator is constructed and arranged to subject the flowing stream to a pressure drop at a rate sufficient to create sites of nucleation at a density of at least about 107 or, preferably, 108 sights/cm3. The apparatus is constructed and arranged to continuously nucleate a fluid stream of single-phase solution of polymeric material and flowing agent flowing at a rate of at least 20 lbs/hour, preferably at least about 40 lbs/hour, more preferably at least about 60 lbs/hour, more preferably at least about 80 lbs/hour, and more preferably still at least about 100, 200, or 400 lbs/hour.
  • [0060] Die 10 is constructed such that mandrel 31 can move axially relative to the remainder of the die. This allows for exit 32 to be closed, if desired, by moving mandrel 31 in an upstream direction so as to seal the inner die lip against the outer die lip.
  • Referring now to FIG. 4, die [0061] 10 is illustrated with mandrel 31 extended distally such that exit 32 includes a gap 33 that is significantly widened relative to gap 34 as illustrated in FIG. 3. This can be effected while maintaining a constant gap 22 in nucleating section 29 of the die. Thus, nucleation of the single-phase polymer/blowing agent fluid stream takes place at a constant pressure drop rate while the die can produce a parison that varies in thickness. A controller actuates the mandrel such that exit 32 widens and narrows to produce a parison having varied thickness as desired. A microcellular product varying in thickness in a machine direction while having essentially uniform microcellular structure as is produced using die 10 are described above.
  • The invention also allows co-extrusion of foam or microcellular foam articles. Although a die for extrusion of such an article with two or more layers is not illustrated, it can be clearly understood with reference to FIG. 3. A multi-layer extrusion die, in one embodiment, includes co-axial, separate, pathways defining nucleating sections that feed together into a [0062] single exit 32. That is, the die includes a nucleating section 29 as illustrated in FIG. 3, and an additional nucleating section spaced radially outwardly from nucleating section 29 and fed by a separate section similar to section 28. Simultaneous, separate nucleation of separate layers is followed by joining of the nucleated layers slightly before or at gap 32 where combination of the layers and shaping and ejection of the layers takes place.
  • According to another aspect of the invention a microcellular polymeric parison is extruded that differs in material density along its length. In this embodiment the parison can differ in thickness along its length, as well. This can be accomplished using the system illustrated in FIG. 5 in which the die portion of an [0063] extruder 70 is provided that is similar to extruder 30 of FIG. 1. Die portion of extruder 70 need not necessarily include a mandrel that is movable axially during extrusion to produce a parison of varying thickness, but includes an air ring 52 for subjecting the parison, during extrusion, to varying conditions of cooling. The air ring can subject different portions of the parison to different cooling conditions, thus reducing cell growth in certain portions of the parison relative to other portions. In a similar manner, selected sections of the internal surface of the parison can be cooled by passing air through a channel 60 formed in mandrel 31 between an inner mandrel part 61, and an outer mandrel part 62. Internal air cooling can be used alternately or in conjunction with external air cooling via air ring 52. The resulting parison can be blow molded and can be created such that some sections are relatively higher in material density than others. Sections subjected to different cooling immediately post-extrusion experience different cell growth and therefor different density.
  • The system of FIG. 5 can be used also to produce a blow-molded article having increased density at locations where greater strength is required. For example, in a plastic beverage container including a threaded mouth for receiving a screw-on cap, the threaded mouth might desirably be made of higher material density for added strength than the remainder of the bottle. [0064]
  • It is one feature of the present invention that the microcellular extruded parison of the invention is better able to withstand blowing conditions than many prior art foam parisons. This is because of the greater resistance of smaller cells the pressure exerted during blowing. Many prior art foams will exhibit cell collapse when exposed to blow molding conditions. However, as cell size decreases, greater pressure is required to cause cell collapse. [0065]
  • In one embodiment of the invention, microcellular parison is co-extruded with an auxiliary polymeric layer that can be internal of or external of the microcellular parison, or both. The auxiliary material can be foam or non-foam and can be added to create a particular appearance (for example when a colored article is desired, a microcellular foam core can be covered with a colored, co-extruded layer). Also, a co-extruded layer may be added to provide good printability on an article or to provide a particular surface texture. Other characteristics such as chemical compatibility, and the like are contemplated. In some cases, a co-extruded layer may be used, internally or externally of a microcellular parison core, to isolate the core from internal contents of the article, or external environment. This can be useful to increase the use of recycled material in the core. The auxiliary, co-extruded layer, in preferred embodiments, is not necessary for structural support. That is, the microcellular parison could be blow-molded and would provide adequate structural support on its own, and the co-extruded layer is for purposes of surface modification only. In one embodiment, an auxiliary non-foam, non-structurally-supporting layer is provided adjacent the foam article. This layer can be designed for specific barrier properties (for example, for compatibility with material to be contained in the article, Federal regulation requirements, etc.). [0066]
  • The production of blow-molded microcellular polymeric articles in accordance with the invention is surprising since desirable characteristics for polymers for blow molding are different from those characteristics desired in typical extrusion processes. For blow molding, typically high-molecular-weight, high-viscosity polymers are needed to withstand, successfully, blow molding conditions. In contrast, in standard extrusion it is desirable to use lower-molecular weight, lower-viscosity polymers for high throughput. Thus, extrusion blow molding includes an inherent dichotomy that adds even more complication when foams are used. For controlled foaming, higher-molecular weight, higher-viscosity polymers are favored to prevent uncontrolled foaming resulting in open-celled material. [0067]
  • The present invention provides successful high-throughput microcellular polymeric extrusion blow molding since higher-molecular weight polymers can be used while reducing viscosity via supercritical fluid blowing agent incorporation. Relatively high molecular weight polymers are reduced in viscosity via the supercritical fluid blowing agent for high-throughput extrusion, yet at extrusion and gasification of the blowing agent the high-molecular weight polymer provides the strength needed for well-controlled microcellular foaming. Therefore, as noted above, extrusion and blow molding of foam polymeric material, preferably microcellular foam polymeric material, can be accomplished with material of melt flow ono more than about 0.2 g/10 min, preferably no more than about 0.12 g/10 min, more preferably no more than about 0.1 g/10 min. [0068]
  • The function and advantage of these and other embodiments of the present invention will be more fully understood from the examples below. The following examples are intended to illustrate the benefits of the present invention, but do not exemplify the full scope of the invention. [0069]
  • EXAMPLE 1 System
  • A tandem extrusion line including a 2½ mm 32:1 L/D single screw primary extruder (Akron Extruders, Canal Fulton, Ohio) and a 3 36:1 L/D single screw secondary extruder (Akron Extruders, Canal Fulton, Ohio) was arranged in a right angle configuration. A volumetric feeder capable of supplying up to 30 lb/hr was mounted in the feed throat of the primary extruder such that compounded talc additive pellets could be metered into the primary extruder. An injection system for the injection of CO[0070] 2 into the secondary was placed at approximately 8 diameters from the inlet to the secondary. The injection system included 4 equally spaced circumferential, radially-positioned ports, each port including 176 orifices, each orifice of 0.02 inch diameter, for a total of 704 orifices. The injection system included an air actuated control valve to precisely meter a mass flow rate of blowing agent at rates from 0.2 to 12 lbs/hr at pressures up to 5500 psi.
  • The screw of the primary extruder was specially designed screw to provide feeding, melting and mixing of the polymer/talc concentrate followed by a mixing section for the dispersion of blowing agent in the polymer. The outlet of this primary extruder was connected to the inlet of the secondary extruder using a transfer pipe of about 24 inches in length. [0071]
  • The secondary extruder was equipped with specially designed deep channel, multi-flighted screw design to cool the polymer and maintain the pressure profile of the microcellular material precursor, between injection of blowing agent and entrance to a gear pump (LCI Corporation, Charlotte, N.C.) attached to the exit of the secondary. The gear pump was equipped with an integral jacket for heating/cooling and sized to operate at a maximum output of 250 lb/hr with a rated maximum discharge pressure of 10,000 psi. [0072]
  • The system was equipped, at exit from the gear pump, with a die adapter and a vertically mounted blow molding die (Magic Company, Monza, Italy). The die adapter was equipped with taps for measurement of melt temperature and pressure just prior to entry into the die. The blow molding head included a conventional spider type flow distribution channel and a die adjustment system that allowed movement of the die relative to the fixed position tip providing a variety of exit gaps depending on the chosen tooling. [0073]
  • A two-piece bottle mold was mounted in a fixture for the hand molding of sample bottles as a secondary process. One half of the mold, was mounted stationary in the fixture with the other half mounted on linear slides. Quick acting clamps mounted on the stationery half of the mold provided the mechanism to clap the mold shut. A short section of steel tubing sharpened to a point attached to a 0-50 psi regulator using a length of flexible hose provided the blow system. Mold diameter varied from approximately 1 inch in the cap area to 2 to 3 inches in the body of the bottle. The overall cavity length of the bottle mold was approximately 10 inches. [0074]
  • EXAMPLE 2 Parison and Bottle Formation
  • High density polyethylene (Equistar LR 5403) pellets were introduced into the main hopper of extrusion line described in example 1 and a precompounded talc concentrate (50% talc in a HDPE base) was introduced in the additive feeder hopper. The tooling attached to the blow molding head included a die with a 0.663 inch exit diameter and 6.2° taper angle and a tip of 0.633 inch exit diameter and 2° taper angle. The combination of this tip and die provides an 8.2° included convergence angle. [0075]
  • The extruder and gear pump rpm were adjusted to provide an output of approximately 210 lb/hr at speeds of approximately 78 rpm on the primary, 32 rpm on the secondary and 50 rpm of the gear pump. Secondary barrel temperatures were set to maintain a melt temperature of approximately 315° F. at entrance to the die. The additive feeder was set to provide an output of approximately 11 lb/hr resulting in a 2.7% by polymer weight talc in the material. CO[0076] 2 blowing agent was injected at a nominal rate of 3.3 lb/hr resulting in a 1.6% by polymer weight blowing agent in the material.
  • The above conditions produced a parison that was 0.045 inch thick by approximately 1.3 inches in diameter at a density of 0.74 gm/cc. Based on a nominal solid material density of 0.95 gm/cc, the achieved density reduction is 23%. [0077]
  • Sample bottles were produced in the following manner: A parison of approximately 16 inches in length was extruded, manually removed from the extruder and immediately positioned in the mold. The mold halves were quickly closed and clamped. With the air regulator set to 20 psi, the sharpened tube was then used to pierce the parison at the top of the mold and introduce the air into the ID of the parison now closed at end of the mold. [0078]
  • The above conditions produced a bottle of 0.015 inch thick by approximately 2.5 inches in diameter at a density of 0.70 gm/cc. [0079]
  • EXAMPLE 3 Parison and Bottle Formation
  • High density polyethylene (Equistar LR 5403) pellets were introduced into the main hopper of an extrusion line described in example 1 and a precompounded talc concentrate (50% talc in a HDPE base) was introduced in the additive feeder hopper. The tooling attached to the blow molding head included a die with a 0.675 exit diameter and 4.0° taper angle and a tip of 0.633 exit diameter and 2° taper angle. The combination of this tip and die provided a 6.0° included convergence angle. [0080]
  • The extruder and gear pump rpm were adjusted to provide an output of approximately 180 lb/hr at speeds of approximately 66 rpm on the primary, 30 rpm on the secondary and 40 rpm of the gear pump. Secondary barrel temperatures were set to maintain a melt temperature of approximately 310° F. at entrance to the die. The additive feeder was set to provide an output of approximately 18 lb/hr resulting in a 5.3% by polymer weight talc in the material. N[0081] 2 blowing agent was injected at a nominal rate of 0.6 lb/hr resulting in a 0.33% by polymer weight blowing agent in the material.
  • The above conditions produced a parison that was 0.080 inch thick by approximately 1.2 inches in diameter at a density of 0.69 gm/cc. Based on a nominal solid material density of 0.95 gm/cc, the achieved density reduction is 29%. [0082]
  • Sample bottles were produced in the following manner: A parison of approximately 16 inches in length was extruded, manually removed from the extruder and immediately positioned in the mold. The mold halves were quickly closed and clamped. With the air regulator set to 40 psi, the sharpened tube was then used to pierce the parison at the top of the mold and introduce the air into the ID of the parison now closed at end of the mold. [0083]
  • The above conditions produced a bottle of 0.037 inch thick by approximately 2.0 inches in diameter at a density of 0.79 gm/cc. [0084]
  • Those skilled in the art would readily appreciate that all parameters listed herein are meant to be exemplary and that actual parameters will depend upon the specific application for which the methods and apparatus of the present invention are used. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the invention may be practiced otherwise than as specifically described.[0085]

Claims (109)

What is claimed is:
1. An article comprising:
a blow molded, foam, microcellular, polymeric article.
2. An article comprising:
an extruded, microcellular parison suitable for blow molding.
3. An article as in claim 1, having a void volume of at least about 10%.
4. An article as in claim 1, having a void volume of at least about 20%.
5. An article as in claim 1, having a void volume of at least about 30%.
6. An article as in claim 1, having a void volume of at least about 50%.
7. An article as in claim 1, having the appearance of an essentially solid, white plastic article.
8. An article as in claim 1, constructed as a container for food.
9. An article as in claim 1, constructed as a container for milk.
10. An article as in claim 1, containing food.
11. An article as in claim 1, containing milk.
12. An article as in claim 1, constructed and arranged to contain food.
13. An article as in claim 1, including residual chemical blowing agent or reaction by-product of chemical blowing agent in an amount less than that inherently found in articles blown with about 0.1% by weight chemical blowing agent or more.
14. An article as in claim 1, including residual chemical blowing agent or reaction by-product of chemical blowing agent in an amount less than that inherently found in articles blown with 0.05% by weight chemical blowing agent or more.
15. An article as in claim 1, being essentially free of residual chemical blowing agent or free of reaction by-products of chemical blowing agent.
16. An article as in claim 1, having less than about 0.1 percent by weight auxiliary chromophore, constructed and arranged for containing material subject to destruction upon exposure to light.
17. An article as in claim 1, the article being free of a non-foam, structurally-supporting material positioned to support the foam article.
18. An article as in claim 1, comprising at least two blow-molded, foam, microcellular polymeric layers.
19. An article as in claim 18, comprising at least two co-extruded layers.
20. An article as in claim 1, comprising auxiliary non-foam, non-structurally-supporting layer adjacent the foam article.
21. An article as in claim 1, including at least one portion having a wall thickness of less than about 0.075 inch.
22. An article as in claim 1, wherein the article is a container and at least 50% of the container has a wall thickness of less than about 0.075 inch.
23. An article as in claim 1, wherein the article is a container and at least 50% of the container has a wall thickness of less than about 0.050 inch.
24. An article as in claim 1, wherein the article is a container and at least 50% of the container has a wall thickness of less than about 0.040 inch.
25. An article as in claim 1, formed of polymeric material having melt flow of no more than about 0.2 g/10 min.
26. An article as in claim 1, including a first portion expanded to a first extent and a second portion expanded at least 1.5 times the first extent, the first and second portions differing in each of thickness, material density, and cellular density by no more than about 5%.
27. An article as in claim 1, including less than about 10 percent by weight reinforcing agent.
28. An article as in claim 1, having an average cell size of less than about 50 microns.
29. An article as in claim 1, having an average cell size of less than about 30 microns.
30. An article as in claim 1, having an average cell size of less than about 20 microns.
31. An article as in claim 1, having a maximum cell size of about 75 microns.
32. An article as in claim 1, having a maximum cell size of about 50 microns.
33. An article as in claim 1, having a maximum cell size of about 35 microns.
34. An article as in claim 1, having an average cell size of less than about 30 microns and a maximum cell size of about 75 microns.
35. An article as in claim 1, having an average cell size of less than about 20 microns and a maximum cell size of about 50 microns.
36. An article as in claim 1, having an average cell size of less than about 10 microns and a maximum cell size of about 25 microns.
37. An article as in claim 1, wherein the microcellular material is essentially closed-cell.
38. An article as in claim 1, including at least about 1% by weight nucleating agent.
39. An article as in claim 38, wherein the nucleating agent is talc.
40. An article as in claim 2, formed as an extrucded parison suitable for blow molding, having a first portion and a second portion spaced from the first portion in a parison machine direction, the first portion and second portion differing in thickness by a factor of at least about 1.1.
41. An article as in claim 40, the first portion and second portion differing in thickness by a factor of at least about 1.3.
42. An article as in claim 40, the first portion and second portion differing in thickness by a factor of at least about 1.5.
43. An article as in claim 40, the first portion and second portion differing in thickness by a factor of at least about 1.7.
44. An article as in claim 40, the parison having a first portion and a second portion spaced from the first portion in a parison machine direction, the first portion and second portion differing in material density by a factor of at least about 1.1.
45. An article as in claim 44, the first portion and second portion differing in material density by a factor of at least about 1.3.
46. An article as in claim 44, the first portion and second portion differing in material density by a factor of at least about 1.5.
47. An article as in claim 44, the first portion and second portion differing in material density by a factor of at least about 1.7.
48. An article as in claim 44, the first portion and second portion differing in material density by a factor of at least about 2.0.
49. A system for microcellular blow molding, comprising:
extrusion apparatus including an extruder having an inlet designed to receive a precursor of polymeric microcellular material, constructed and arranged to provide a single-phase, non-nucleated solution of polymeric material and blowing agent, and a blow molding forming die fluidly connected to the extruder and having an outlet designed to release a parison of microcellular material, the apparatus including an enclosed passageway connecting the extruder inlet with the die outlet, the passageway including a nucleating pathway having length and cross-sectional dimensions selected to create in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material a pressure drop at a rate sufficient to cause microcellular nucleation; and
a blow mold positionable to receive a parison of microcellular material from the die outlet.
50. A system as in claim 49, the nucleating pathway having length and cross-sectional dimensions such that, when fluid polymer is passed through the pathway at a rate of about 40 lbs fluid per hour, a pressure drop rate in the fluid polymer of at least about 0.3 GPa/sec is created.
51. A system as in claim 49, the enclosed passageway connecting the inlet with the outlet constructed and arranged to receive a blowing agent that is a gas under ambient conditions and to mix the blowing agent with the precursor to form a single-phase, non-nucleated solution.
52. A system as in claim 49, wherein the nucleating pathway is constructed and arranged to nucleate microcellular material at a rate of at least about 60 lbs per hour.
53. A system as in claim 49, wherein the nucleating pathway is constructed and arranged to nucleate microcellular material at a rate of at least about 100 lbs per hour.
54. A system as in claim 49, wherein the nucleating pathway is constructed and arranged to nucleate microcellular material at a rate of at least about 400 lbs per hour.
55. A system as in claim 49, the die having an exit gap and being constructed and arranged to vary the size of the exit gap, during extrusion, to form an extrudate having a thickness that varies as a function of distance from the exit gap.
56. A system as in claim 49, the die constructed and arranged to vary the size of the exit gap without changing pressure drop rate to which a polymeric material/blowing agent mixture passing through the die is subjected.
57. A system as in claim 49, wherein the nucleating pathway has a cross sectional dimension that changes along its length.
58. A system as in claim 57, wherein the pathway decreases in cross section in a downstream direction.
59. A system as in claim 49, wherein the blow mold is constructed and arranged to form a blow molded, foam, microcellular, polymeric article.
60. A system comprising:
an extruder constructed an arranged to extrude polymeric foam precursor material;
an accumulator, associated with the extruder, able to receive polymeric foam precursor material from the extruder and to accumulate a charge of polymeric foam precursor material; and
blow molding apparatus positionable to receive a product of the accumulator, via a forming die, and constructed and arranged to blow mold the material to form a blow molded foam polymeric article.
61. A system as in claim 60, wherein the die includes a nucleating pathway having length and cross-sectional dimensions selected to create, in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material, a pressure drop at a rate sufficient to cause nucleation.
62. A system as in claim 60, wherein the die includes a nucleating pathway having length and cross-sectional dimensions selected to create, in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material, a pressure drop at a rate sufficient to cause microcellular nucleation.
63. A system as in claim 60, further comprising a die positionable to receive a product of the accumulator and to extrude a microcellular polymeric parison, and the blow molding apparatus is constructed and arranged to blow mold the parison to form a blow molded, foam, microcellular, polymeric article.
64. A system for microcellular blow molding, comprising:
an extruder having an inlet designed to receive a precursor of polymeric microcellular material, constructed and arranged to provide a single-phase, non-nucleated solution of polymeric material and blowing agent;
an accumulator positionable to receive polymeric foam precursor material from the extruder and to accumulate a charge of polymeric foam precursor material;
a blow molding forming die fluidly connected to the accumulator and having an outlet designed to release a parison of microcellular material; and
a blow mold positionable to receive a parison of microcellular material from the die outlet and constructed and arranged to form a blow molded, foam, microcellular, polymeric article,
the apparatus including an enclosed passageway connecting the extruder inlet with the die outlet, the passageway including a nucleating pathway having length and cross-sectional dimensions selected to create in a single-phase, non-nucleated solution of blowing agent and fluid polymeric material a pressure drop at a rate sufficient to cause microcellular nucleation.
65. A method comprising:
extruding microcellular polymeric foam extrudate from an extruder die while varying the thickness of the extrudate.
66. A method as in claim 65, comprising providing a single-phase, non-nucleated solution of polymeric material and a blowing agent that is a gas under ambient conditions, nucleating the single-phase solution by subjecting the solution to a high pressure drop rate, and extruding polymeric foam extrudate that is a product of the single-phase solution.
67. A method as in claim 66, comprising extruding a microcellular parison suitable for blow molding.
68. A method as in claim 67, further comprising blow molding the parison to form a microcellular, blow-molded article.
69. A method as in claim 68, the article having a void volume of at least about 10%.
70. A method as in claim 65, comprising establishing a stream of a fluid, single-phase non-nucleated solution of a precursor of foamed polymeric material and a blowing agent, continuously nucleating the solution to form a nucleated polymeric fluid, and extruding the polymeric foam extrudate from the nucleated polymeric fluid.
71. A method as in claim 70, the step of continuously nucleating involving creating sites of nucleation of the blowing agent in the stream by subjecting the stream to conditions of solubility change sufficient to create sites of nucleation in the solution in the absence of an auxiliary nucleating agent.
72. A method as in claim 65, comprising establishing a stream of a fluid, single-phase non-nucleated solution of a precursor of foamed polymeric material and a supercritical fluid blowing agent.
73. A method as in claim 70, involving creating sites of nucleation by subjecting the stream to a pressure drop at a pressure drop rate sufficient to create sites of nucleation.
74. A method as in claim 73, involving subjecting the stream to a pressure drop at a pressure drop rate sufficient to create sites of nucleation at a density of at least about 107 sites/cm3.
75. A method as in claim 73, involving subjecting the stream to a pressure drop at a pressure drop rate of at least about 0.3 GPa/sec to create sites of nucleation.
76. A method as in claim 65, comprising extruding polymeric foam extrudate into ambient conditions from an extruder die while varying the thickness of the extrudate.
77. A method as in claim 65, involving establishing the stream of fluid, single-phase non-nucleated solution of a precursor of foamed polymeric material and a blowing agent by introducing, into fluid polymeric material flowing at a rate of at least about 10 lbs./hr, a fluid that is a gas under ambient conditions and, in a period of less than about one minute, creating a single-phase solution of the fluid and the polymer, the fluid present in the solution in an amount of at least about 2% by weight based on the weight of the solution.
78. A method as in claim 77, comprising continuously nucleating the solution by continuously decreasing the pressure within successive, continuous portions of the flowing, single-phase stream at a rate which increases.
79. A method as in claim 78, wherein the concentration of the blowing agent in the homogeneous single-phase non-nucleated solution is at least about 5 percent, by weight, of the solution.
80. A method as in claim 65, wherein the concentration of the blowing agent in the homogeneous single-phase non-nucleated solution is at least about 7 percent, by weight, of the solution.
81. A method as in claim 65, wherein the concentration of the blowing agent in the homogeneous single-phase non-nucleated solution is at least about 10 percent, by weight, of the solution.
82. A method as in claim 65, wherein the blowing agent is supercritical carbon dioxide.
83. A method comprising:
providing a polymeric foam parison; and
subjecting the parison to blow molding conditions of at least about 15 psi thereby expanding at least a portion of the parison by at least about 50% in circumference and forming a blow-molded article, while maintaining a relatively unchanged density by increasing the density of the parison by no more than about 20% in going from the parison to the blow-molded article.
84. A method as in claim 83, wherein the foam parison is of void fraction of at least about 10%.
85. A method as in claim 83, wherein the parison is microcellular.
86. A method as in claim 83, wherein the parison has a pre-blown thickness of less than about 0.100 inch.
87. A method as in claims 83, further comprising extruding the parison from a mixture of polymeric material and blowing agent, the blowing agent present in the mixture in an amount less than about 3% by weight based on the weight of the mixture.
88. A method as in claim 87, comprising extruding the parison from a single-phase solution of polymeric material and supercritical blowing agent.
89. A method as in claim 88, wherein the blowing agent comprises carbon dioxide.
90. A method as in claim 88, wherein the blowing agent comprises nitrogen.
91. A method comprising:
providing an extruded polymeric microcellular foam parison; and
subjecting the parison to blow molding conditions.
92. A method as in claim 91, the subjecting step involving applying pressure of at least about 1.5 bar internal of the parison.
93. A method as in claim 91, involving applying pressure of at least about 3 bar internal of the parison.
94. A method as in claim 91, involving applying pressure of at least about 5 bar internal of the parison.
95. A method as in claim 91, involving applying pressure of at least 10 bar internal of the parison.
96. A method as in claim 91, involving forming a final blow-molded product that is essentially free of a supporting, non-foam structure, the article being essentially closed cell, having a wall thickness of less than about 0.075 inch.
97. A method as in claim 91, comprising continuously extruding polymeric foam extrudate and continuously subjecting the extrudate to blow molding conditions.
98. A method as in claim 91, comprising:
providing an extruded polymeric foam parison having a first portion and a second portion spaced from the first portion in the parison machine direction, the first portion and the second portion differing in thickness by a factor of at least about 1.1; and
subjecting the parison to blow molding conditions.
99. A method as in claim 98, the first portion and the second portion differing in thickness by a factor of at least about 1.3.
100. A method as in claim 98, the first portion and the second portion differing in thickness by a factor of at least about 1.5.
101. A method as in claim 98, the first portion and the second portion differing in thickness by a factor of at least about 1.7.
102. A method as in claim 98, comprising:
providing an extruded polymeric foam parison having a first portion and a second portion spaced from the first portion in the parison machine direction, the first portion and the second portion differing in material density by a factor of at least about 1.1; and
subjecting the parison to blow molding conditions.
103. A method as in claim 98, comprising:
providing an extruded parison of polymeric material of melt flow no more than about 0.2 g/10 min; and
subjecting the parison to blow molding conditions.
104. A method comprising:
providing a polymeric microcellular foam parison; and
without heating the parison subjecting the parison to blow molding conditions.
105. A method as in claim 104, wherein the parison is an extruded polymeric microcellular foam parison.
106. A method comprising:
extruding a polymeric foam extrudate from a extruder die in a machine direction while varying the temperature of the extrudate exiting the die thereby forming an extrudate having a first portion and a second portion spaced from the first-portion in the machine direction, the first portion and the second portion differing in material density by a factor of at least about 1.1.
107. A method as in claim 106, comprising successively varying the temperature of the extrudate exiting the die via a cold gas stream.
108. A device comprising:
a polymer forming die including an inlet at an upstream end thereof constructed and arranged to receive a single-phase, homogeneous solution of polymeric fluid and blowing agent that is a gas under ambient conditions, an outlet at a downstream end thereof, defining a die gap, for releasing foamed polymeric material, and a fluid pathway connecting the inlet with the outlet, the fluid pathway including a nucleating pathway, the die constructed and arranged to vary the width of the die gap during extrusion while maintaining a constant nucleating pathway gap.
109. A device as in claim 108, the nucleating pathway having length and cross-sectional dimensions that, when fluid polymer is passed through the pathway at a rate greater than 40 lbs fluid per hour, creates a pressure drop in the fluid polymer of at least about 0.3 GPa/sec.
US10/121,449 1997-12-19 2002-04-12 Microcellular extrusion/blow molding process and aricle made thereby Abandoned US20020172739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/121,449 US20020172739A1 (en) 1997-12-19 2002-04-12 Microcellular extrusion/blow molding process and aricle made thereby

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US6817397P 1997-12-19 1997-12-19
US10775498P 1998-11-10 1998-11-10
PCT/US1998/027118 WO1999032544A1 (en) 1997-12-19 1998-12-18 Microcellular foam extrusion/blow molding process and article made thereby
US24135299A 1999-02-02 1999-02-02
US10/121,449 US20020172739A1 (en) 1997-12-19 2002-04-12 Microcellular extrusion/blow molding process and aricle made thereby

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US24135299A Division 1997-12-19 1999-02-02

Publications (1)

Publication Number Publication Date
US20020172739A1 true US20020172739A1 (en) 2002-11-21

Family

ID=26748661

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/241,348 Expired - Lifetime US6169122B1 (en) 1997-12-19 1999-02-02 Microcellular articles and methods of their production
US09/241,350 Expired - Lifetime US6376059B1 (en) 1997-12-19 1999-02-02 Polyethylene foams and methods of their production
US09/564,264 Expired - Lifetime US6294115B1 (en) 1997-12-19 2000-05-04 Microcellular articles and methods of their production
US10/050,684 Abandoned US20020155272A1 (en) 1997-12-19 2002-01-16 Polyethylene foams and methods of their production
US10/121,449 Abandoned US20020172739A1 (en) 1997-12-19 2002-04-12 Microcellular extrusion/blow molding process and aricle made thereby

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/241,348 Expired - Lifetime US6169122B1 (en) 1997-12-19 1999-02-02 Microcellular articles and methods of their production
US09/241,350 Expired - Lifetime US6376059B1 (en) 1997-12-19 1999-02-02 Polyethylene foams and methods of their production
US09/564,264 Expired - Lifetime US6294115B1 (en) 1997-12-19 2000-05-04 Microcellular articles and methods of their production
US10/050,684 Abandoned US20020155272A1 (en) 1997-12-19 2002-01-16 Polyethylene foams and methods of their production

Country Status (9)

Country Link
US (5) US6169122B1 (en)
EP (1) EP1040158B2 (en)
JP (1) JP4778141B2 (en)
CN (1) CN1265955C (en)
AT (1) ATE290041T1 (en)
AU (1) AU1933799A (en)
CA (1) CA2315234A1 (en)
DE (1) DE69829208T3 (en)
WO (1) WO1999032544A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181161A1 (en) * 2004-02-17 2005-08-18 Semersky Frank E. Container having a foamed wall
US20080034666A1 (en) * 2005-02-15 2008-02-14 Jyawook Sam M Thermoplastic vehicle weather stripping
US20080251487A1 (en) * 2002-10-30 2008-10-16 Semersky Frank E Overmolded container having a foam layer
US20100227092A1 (en) * 2002-10-30 2010-09-09 Semersky Frank E Overmolded container having an inner foamed layer
US20100279087A1 (en) * 2009-05-01 2010-11-04 Jsp Corporation Polyethylene-based resin foamed blow molded article
US20110048571A1 (en) * 2008-03-31 2011-03-03 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
WO2015006772A1 (en) * 2013-07-12 2015-01-15 Berry Plastics Corporation Polymeric material for container
WO2016053987A3 (en) * 2014-09-29 2016-08-04 Mucell Extrusion, Llc Multi-layer thermoformed polymeric foam articles and methods
US9725202B2 (en) 2013-03-14 2017-08-08 Berry Plastics Corporation Container
US9889594B2 (en) 2013-08-30 2018-02-13 Berry Plastics Corporation Multi-layer tube and process of making the same
US9931781B2 (en) 2013-08-26 2018-04-03 Berry Plastics Corporation Polymeric material for container
US9937652B2 (en) 2015-03-04 2018-04-10 Berry Plastics Corporation Polymeric material for container

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884823B1 (en) * 1997-01-16 2005-04-26 Trexel, Inc. Injection molding of polymeric material
AU1262299A (en) 1997-11-28 1999-06-16 Jsp Corporation Blow-molded foam and process for producing the same
ATE290041T1 (en) * 1997-12-19 2005-03-15 Trexel Inc MICROCELLULAR FOAM EXTRUSION/BLOW MOLDING PROCESS AND ARTICLE MADE THEREFROM
US6706223B1 (en) * 1997-12-19 2004-03-16 Trexel, Inc. Microcelluar extrusion/blow molding process and article made thereby
US6514301B1 (en) * 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
US7718102B2 (en) * 1998-06-02 2010-05-18 Praxair S.T. Technology, Inc. Froth and method of producing froth
GB9902463D0 (en) * 1999-02-05 1999-03-24 Univ Cambridge Tech Manufacturing porous cross-linked polymer monoliths
US7172333B2 (en) * 1999-04-02 2007-02-06 Southco, Inc. Injection molding screw
US6613811B1 (en) 1999-06-03 2003-09-02 Trexel, Inc. Microcellular thermoplastic elastomeric structures
US6759004B1 (en) 1999-07-20 2004-07-06 Southco, Inc. Process for forming microporous metal parts
US6602064B1 (en) 1999-08-31 2003-08-05 Trexel, Inc. Polymer processing system and apparatus
US6926507B2 (en) 2000-03-07 2005-08-09 Trexel, Inc. Blowing agent delivery system
DE10020162C2 (en) * 2000-04-25 2002-04-25 Hennecke Gmbh Method and device for producing a flowable reaction mixture that forms a solid or foam
US6386992B1 (en) 2000-05-04 2002-05-14 Acushnet Company Golf ball compositions including microcellular materials and methods for making same
US6593384B2 (en) 2000-05-25 2003-07-15 Trexel, Inc. Polymer foam processing with low blowing agent levels
US20030077346A1 (en) * 2000-06-14 2003-04-24 Boyer Thomas D. Encapsulation using microcellular foamed materials
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
US6602063B1 (en) 2000-07-21 2003-08-05 Trexel, Inc. Discontinuous blowing agent delivery system and method
US6616434B1 (en) * 2000-08-10 2003-09-09 Trexel, Inc. Blowing agent metering system
EP1335827B1 (en) * 2000-09-29 2018-03-07 Trexel, Inc. Fiber-filler molded articles
AU2002211833A1 (en) * 2000-09-29 2002-04-08 Trexel, Inc. Thin wall injection molding
EP1333967B1 (en) * 2000-10-24 2008-03-12 Trexel, Inc. Valve for injection molding
US20020122838A1 (en) * 2001-01-04 2002-09-05 Anderson Jere R. Blow molding method and system
JP3425559B2 (en) * 2001-01-11 2003-07-14 積水化学工業株式会社 Injection molding equipment for thermoplastic resin molded products
AU2001276669B2 (en) * 2001-01-16 2006-04-27 Ardea Seal S.A.S. Closure in synthetic material for containers
US6652786B2 (en) 2001-02-13 2003-11-25 Ludlow Company Lp Method for manufacturing coaxial wire with foamed insulation
US20020147244A1 (en) * 2001-03-07 2002-10-10 Kishbaugh Levi A. Injection-molded crystalline/semicrystalline material
EP1390188A4 (en) * 2001-05-04 2007-08-15 Trexel Inc Injection molding systems and methods
US20030211310A1 (en) 2001-06-21 2003-11-13 Haas Christopher K. Foam and method of making
WO2003018284A1 (en) * 2001-08-22 2003-03-06 Green Tokai, Co., Ltd. Light weight plastic trim parts and methods of making same
US6942913B2 (en) 2001-09-24 2005-09-13 Habasit Ag Module for a modular conveyor belt having a microcellular structure
US6956068B2 (en) * 2001-11-05 2005-10-18 Radio Frequency Systems, Inc. Microcellular foam dielectric for use in transmission lines
US6688081B2 (en) 2001-12-18 2004-02-10 Schmalbach-Lubeca Ag Method for reducing headspace gas
FR2837741B1 (en) * 2002-03-29 2004-06-11 Valeo Vision METHOD FOR MANUFACTURING AN OPTICAL REFLECTOR
US20040171339A1 (en) * 2002-10-28 2004-09-02 Cabot Microelectronics Corporation Microporous polishing pads
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
US6913517B2 (en) * 2002-05-23 2005-07-05 Cabot Microelectronics Corporation Microporous polishing pads
US7166247B2 (en) * 2002-06-24 2007-01-23 Micron Technology, Inc. Foamed mechanical planarization pads made with supercritical fluid
US7951449B2 (en) * 2002-06-27 2011-05-31 Wenguang Ma Polyester core materials and structural sandwich composites thereof
US20040006146A1 (en) * 2002-07-06 2004-01-08 Evans Douglas G. Resorbable structure for treating and healing of tissue defects
US7049348B2 (en) * 2002-07-06 2006-05-23 Kensey Nash Corporation Resorbable structure for treating and healing of tissue defects
US7318713B2 (en) * 2002-07-18 2008-01-15 Trexel, Inc. Polymer processing systems including screws
US20040038018A1 (en) * 2002-08-22 2004-02-26 Trexel, Inc. Thermoplastic elastomeric foam materials and methods of forming the same
DE10242186B4 (en) * 2002-09-10 2013-05-29 Ticona Gmbh Moldings comprising polyacetals, process for the preparation of these moldings and their use
US7144532B2 (en) * 2002-10-28 2006-12-05 Trexel, Inc. Blowing agent introduction systems and methods
US7435165B2 (en) 2002-10-28 2008-10-14 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US7311862B2 (en) * 2002-10-28 2007-12-25 Cabot Microelectronics Corporation Method for manufacturing microporous CMP materials having controlled pore size
US7267607B2 (en) * 2002-10-28 2007-09-11 Cabot Microelectronics Corporation Transparent microporous materials for CMP
US7105112B2 (en) 2002-11-05 2006-09-12 L&L Products, Inc. Lightweight member for reinforcing, sealing or baffling
JP4084209B2 (en) 2003-02-21 2008-04-30 株式会社ジェイエスピー Foam molded body and method for producing the same
US20040166280A1 (en) 2003-02-21 2004-08-26 Xerox Corporation Precision molded gears for paper conveying mechanisms
US6958365B2 (en) * 2003-05-13 2005-10-25 Eastman Kodak Company Manufacturing process for open celled microcellular foam
US20040229966A1 (en) * 2003-05-13 2004-11-18 Eastman Kodak Company Manufacturing process and use for open celled microcellular foam
CA2526214A1 (en) * 2003-05-17 2004-12-02 Microgreen Polymers, Inc. Method of producing thermoformed articles from gas impregnated polymer
EP1484149A1 (en) * 2003-06-05 2004-12-08 Nmc S.A. Method for continuous production of solid, hollow or open profiles
US7407498B2 (en) * 2003-09-02 2008-08-05 Boston Scientific Scimed, Inc. Construction of medical components using gas assisted microcellular foaming
US20050205707A1 (en) * 2004-03-16 2005-09-22 Imation Corp. Tape reel assembly with microcellular foam hub
US20050208245A1 (en) * 2004-03-19 2005-09-22 Pepsico, Inc. Insulated label
US9920177B2 (en) 2004-06-04 2018-03-20 Nmc S.A. Continuous method for producing solid, hollow or open profiles
US8075372B2 (en) * 2004-09-01 2011-12-13 Cabot Microelectronics Corporation Polishing pad with microporous regions
JP4876385B2 (en) * 2004-11-01 2012-02-15 三菱化学株式会社 Resin hollow molded container and manufacturing method thereof
US7727606B2 (en) * 2004-11-02 2010-06-01 Jsp Corporation Polylactic acid resin foamed molding and process for manufacturing the same
DE102005014474A1 (en) * 2005-03-27 2006-10-05 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Process for producing a stretched plastic film
JP4853110B2 (en) * 2006-05-30 2012-01-11 東洋製罐株式会社 Manufacturing method of resin integrated molded body
US20070052124A1 (en) * 2005-09-02 2007-03-08 Park Chul B Apparatus and method for advanced structural foam molding
JP4867374B2 (en) * 2006-02-02 2012-02-01 マツダ株式会社 Fiber reinforced resin molded product molding equipment
US20100264052A1 (en) * 2006-03-20 2010-10-21 Semersky Frank E Foamed-wall container with foamed and unfoamed regions
US7790255B2 (en) * 2006-03-20 2010-09-07 Plastic Technologies, Inc. Foamed-wall container having a silvery appearance
DE102006014235A1 (en) * 2006-03-28 2007-10-04 Brugg Rohr Ag, Holding Sheath for heat-insulated pipes
US20070257410A1 (en) * 2006-05-04 2007-11-08 Seagate Technology Llc External shock absorber
US7479314B2 (en) * 2006-07-25 2009-01-20 Endres Machining Innovations Llc High-pressure, fluid storage tanks
JP5725124B2 (en) * 2006-09-12 2015-05-27 東洋製罐株式会社 Manufacturing method of light-shielding plastic container
JP5414162B2 (en) * 2006-09-12 2014-02-12 東洋製罐株式会社 Light-shielding plastic container
AT9902U1 (en) 2007-04-18 2008-05-15 Pollmann Internat Gmbh MANUFACTURE OF FORM PARTS
KR101427127B1 (en) * 2007-09-12 2014-08-07 가오 가부시키가이샤 Process for production of injection-molded article of polylactic acid resin
US9574064B2 (en) 2008-08-28 2017-02-21 Dow Global Technologies Llc Processes and compositions for injection blow molding
JP4923281B2 (en) * 2008-09-10 2012-04-25 道男 小松 Molded body and manufacturing method thereof
US20100198133A1 (en) * 2009-02-05 2010-08-05 Playtex Products, Inc. Microcellular injection molding processes for personal and consumer care products and packaging
JP5422246B2 (en) * 2009-04-01 2014-02-19 キョーラク株式会社 Foam blow molded article and method for producing the same
JP5286561B2 (en) * 2009-04-08 2013-09-11 東洋製罐株式会社 Polyester expanded foam container
US20120009420A1 (en) 2010-07-07 2012-01-12 Lifoam Industries Compostable or Biobased Foams
CA2810662C (en) * 2010-09-10 2023-01-17 Fisher & Paykel Healthcare Limited A component for conveying gases
US8962706B2 (en) 2010-09-10 2015-02-24 Lifoam Industries, Llc Process for enabling secondary expansion of expandable beads
US8696957B2 (en) * 2010-09-10 2014-04-15 Eveready Battery Company, Inc Methods for microcellular injection molding
ES2364263B2 (en) 2011-03-01 2012-03-15 Abn Pipe Systems, S.L.U. SYSTEM AND PROCEDURE OF MOLDING PARTS WITH SELF-MOLDING MOLDS.
US10464247B2 (en) * 2011-03-11 2019-11-05 Mucell Extrusion, Llc Method of forming blown polymeric foam film
WO2012174422A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Insulated container with molded brim
WO2012174568A2 (en) 2011-06-17 2012-12-20 Berry Plastics Corporation Process for forming an insulated container having artwork
WO2013101301A2 (en) 2011-06-17 2013-07-04 Berry Plastics Corporation Insulated sleeve for a cup
DE202012013293U1 (en) 2011-06-17 2016-01-15 Berry Plastics Corporation Isolated container
KR20140059255A (en) 2011-08-31 2014-05-15 베리 플라스틱스 코포레이션 Polymeric material for an insulated container
BR112015002581A2 (en) 2012-08-07 2018-05-22 Berry Plastics Corp cup forming machine and process.
WO2014066761A1 (en) 2012-10-26 2014-05-01 Berry Plastics Corporation Polymeric material for an insulated container
US9102098B2 (en) 2012-12-05 2015-08-11 Wobbleworks, Inc. Hand-held three-dimensional drawing device
US9840049B2 (en) 2012-12-14 2017-12-12 Berry Plastics Corporation Cellular polymeric material
AR093943A1 (en) 2012-12-14 2015-07-01 Berry Plastics Corp EDGE OF A THERMAL PACK
AR093944A1 (en) 2012-12-14 2015-07-01 Berry Plastics Corp PUNCHED FOR PACKAGING
US9957365B2 (en) * 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
US20140264993A1 (en) * 2013-03-14 2014-09-18 University Of Washington Through Its Center For Commercialization Methods for blow molding solid-state cellular thermoplastic articles
US9562140B2 (en) 2013-08-16 2017-02-07 Berry Plastics Corporation Polymeric material for an insulated container
CN104647679B (en) * 2013-11-22 2018-07-17 法国圣戈班玻璃公司 Form method, vehicle window and the mold of automobile glass encapsulation
DE102014004354A1 (en) * 2014-03-27 2015-10-01 Khs Corpoplast Gmbh Method and device for producing a container filled with filling material
ES2586155T3 (en) 2014-09-02 2016-10-11 Mondi Consumer Packaging Technologies Gmbh Multilayer plastic sheet
EP2815879A3 (en) 2014-09-02 2015-04-29 Mondi Consumer Packaging Technologies GmbH Polyethylene coextrusion film
US9758655B2 (en) 2014-09-18 2017-09-12 Berry Plastics Corporation Cellular polymeric material
CN105647040A (en) * 2014-11-10 2016-06-08 天津麦索节能科技有限公司 Formula for XPS plate with foam pore structure and preparation process thereof
US10040235B2 (en) 2014-12-30 2018-08-07 Wobbleworks, Inc. Extrusion device for three-dimensional drawing
US10513589B2 (en) 2015-01-23 2019-12-24 Berry Plastics Corporation Polymeric material for an insulated container
US20160257440A1 (en) 2015-03-05 2016-09-08 The Clorox Company Multilayer plastic bottles with mineral filler and foamed layer for improved recyclability
CN106257979A (en) 2015-04-17 2016-12-28 沃博沃克斯有限公司 The distribution driving pressure of the peripheral of silk thread in extrusion device
ES2884841T3 (en) 2015-04-30 2021-12-13 Sabic Global Technologies Bv High density polyethylene
WO2017097442A1 (en) 2015-12-10 2017-06-15 Sabic Global Technologies B.V. Foamed blow molded article
EP3390475A1 (en) 2015-12-15 2018-10-24 Dow Global Technologies, LLC Cross-linked foams made from interpolymers of ethylene/alpha-olefins
US20190023866A1 (en) 2016-01-12 2019-01-24 Sabic Global Technologies B.V. Foamed injection moulded article
EP3430066B1 (en) 2016-03-14 2023-02-22 Dow Global Technologies LLC Process for preparing foamed articles made from ethylene/alpha-olefin interpolymers
US20180111301A1 (en) * 2016-10-20 2018-04-26 Teng-Pu Lin Device for making foam pipes and method for making foam pipes
WO2018092845A1 (en) 2016-11-18 2018-05-24 住友化学株式会社 Liquid crystal polymer composition for foam molding, method for producing foam molded body, and foam molded body
CN106808671A (en) * 2017-03-02 2017-06-09 浙江峻和橡胶科技有限公司 One kind blowing foaming air channel technique and its process equipment
US11505668B2 (en) * 2017-04-05 2022-11-22 Qatar University Insulating plastic foams based on polyolefins
US11091311B2 (en) 2017-08-08 2021-08-17 Berry Global, Inc. Insulated container and method of making the same
WO2019226987A1 (en) 2018-05-25 2019-11-28 Samtec, Inc. Electrical cable with dielectric foam
CN109278271A (en) * 2018-08-28 2019-01-29 鼎浩(长兴)包装科技有限公司 A kind of foaming blow moulding machine and its fretting map hollow forming method
JP6651590B1 (en) * 2018-09-13 2020-02-19 東洋製罐グループホールディングス株式会社 Direct blow foam container
DE102018008127B4 (en) * 2018-10-13 2022-06-09 Hosokawa Alpine Aktiengesellschaft Die head and process for producing a multi-layer tubular film
US11318647B2 (en) * 2018-10-29 2022-05-03 Dongguan Hailex New Material Science And Technology Co., Ltd Method of microcellular foam molding
DE102018009632B4 (en) 2018-12-11 2021-12-09 Hosokawa Alpine Aktiengesellschaft Apparatus for winding and changing laps of web material and a method therefor
CN109776848B (en) * 2019-01-08 2020-06-30 恒天纤维集团有限公司 Method and device for directly preparing polylactic acid foamed product from polylactic acid polymerization melt
US20210347958A1 (en) 2019-06-27 2021-11-11 Moxietec, Llc Polymer foam articles and methods of making polymer foams
CN114174035A (en) 2019-06-27 2022-03-11 莫西埃特有限责任公司 Polymer foam article and method of making polymer foam
CN110216826B (en) * 2019-06-30 2020-09-15 浙江大学 Foamed polypropylene with oriented pores and capable of being used for piezoelectric material and preparation method thereof
DE102020119005A1 (en) 2020-07-17 2022-01-20 BWH-Spezialkoffer GmbH Case manufactured using the plastic injection molding process
CN111814353B (en) * 2020-07-23 2022-08-12 中国工程物理研究院总体工程研究所 Closed-cell foam microscopic structure construction method under given conditions
USD995629S1 (en) 2021-01-29 2023-08-15 Wobble Works, Inc. Drawing tool
US20230167259A1 (en) * 2021-10-04 2023-06-01 Trexel, Inc. Polymer foam processing methods and articles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244897A (en) * 1979-03-22 1981-01-13 Measurex Corporation Method and apparatus to control the density of products produced from an extrusion process
US6284810B1 (en) * 1996-08-27 2001-09-04 Trexel, Inc. Method and apparatus for microcellular polymer extrusion
US6376059B1 (en) * 1997-12-19 2002-04-23 Trexel, Inc. Polyethylene foams and methods of their production

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102865A (en) 1960-04-08 1963-09-03 Phillips Petroleum Co Method for foaming a crystalline olefin polymer containing a blowing agent and a heat sink
US3225127A (en) 1960-09-16 1965-12-21 Phillips Petroleum Co Blow molding foam bottles
US3384531A (en) 1961-12-07 1968-05-21 Du Pont Flattened ultra-microcellular structure and method for making same
US3227664A (en) 1961-12-07 1966-01-04 Du Pont Ultramicrocellular structures of crystalline organic polymer
US3375211A (en) 1963-08-16 1968-03-26 Du Pont Ultramicrocellular polymeric structures containing an inflatant
GB1062086A (en) 1963-08-16 1967-03-15 Du Pont Improvements in or relating to ultramicrocellular structures
GB1050197A (en) 1963-11-27
US3491032A (en) 1964-09-02 1970-01-20 Dow Chemical Co High density polyolefin foams
US3812225A (en) 1967-01-23 1974-05-21 Furukawa Electric Co Ltd Method of manufacturing foamed crosslinked polyolefin slabs involving multiple expansion techniques and direct gas pressure
US3375212A (en) 1967-02-14 1968-03-26 Du Pont Microcellular polymeric structure
US3637458A (en) 1968-12-27 1972-01-25 Du Pont Microcellular foam sheet
US3787543A (en) 1968-12-27 1974-01-22 Du Pont Process for the preparation of low density microcellular foam sheets exhibiting high work-to-tear values
US3721360A (en) 1970-03-02 1973-03-20 Phillips Petroleum Co Readily openable foamed polymer container
DE2341400C3 (en) * 1973-08-16 1979-01-18 Frupack-Plastic, Kunststoffverarbeitungswerk Ingeborg Luetten, 2000 Hamburg Method and device for producing a hollow body preferably filled with a liquid medium
AU8393475A (en) 1974-09-30 1977-02-17 Bakelite Xylonite Ltd Polymer films
JPS58208328A (en) 1982-05-31 1983-12-05 Asahi Chem Ind Co Ltd Novel cellular material
US4473665A (en) 1982-07-30 1984-09-25 Massachusetts Institute Of Technology Microcellular closed cell foams and their method of manufacture
DE3411319C2 (en) 1984-03-28 1986-12-04 Boehringer Ingelheim KG, 6507 Ingelheim Use of citric acid esters as blowing and / or nucleating agents for the production of thermoplastic plastic foams
US4627177A (en) * 1984-07-02 1986-12-09 Meyers Stuart R Insole structure
DE3524704A1 (en) 1985-07-11 1987-01-15 Boehringer Ingelheim Kg NUCLEATING AGENT (PORE REGULATOR) FOR THE PRODUCTION OF DIRECTLY BACTERIZED THERMOPLASTIC FOAMS
JPS61216836A (en) * 1986-03-20 1986-09-26 Sekisui Plastics Co Ltd Production of expanded blow molding for full mold having skin
CA1311886C (en) 1986-06-12 1992-12-29 Satoshi Nagou Microporous film and process for production thereof
US4761256A (en) 1987-01-27 1988-08-02 Eastman Kodak Company Method for producing microcellular foamed plastic material with smooth integral skin
DE3708006A1 (en) 1987-03-12 1988-09-22 Kautex Maschinenbau Gmbh METHOD FOR PRODUCING HOLLOW BODIES FROM THERMOPLASTIC PLASTIC WITH A MULTILAYERED WALL
JPS63288731A (en) 1987-05-21 1988-11-25 Furukawa Electric Co Ltd:The Preparation of polypropylene resin foamed sheet
JPH0825230B2 (en) * 1987-06-12 1996-03-13 エクセル株式会社 Hollow molded article in which foam cells on the inner peripheral surface are ruptured and method for producing the same
US4728559A (en) 1987-07-16 1988-03-01 Eastman Kodak Company Thermoformed plastic containers with transparent windows and method of making same
US5160674A (en) 1987-07-29 1992-11-03 Massachusetts Institute Of Technology Microcellular foams of semi-crystaline polymeric materials
WO1989000918A2 (en) 1987-07-29 1989-02-09 Massachusetts Institute Of Technology A method of producing microcellular foams and microcellular foams of semi-crystalline polymeric materials
JPH0725917B2 (en) 1988-10-24 1995-03-22 日本石油株式会社 Method for producing masterbatch composition
WO1990007546A1 (en) 1988-12-30 1990-07-12 The Dow Chemical Company Closed cell microcellular foams and their method of manufacture
US5034171A (en) 1989-11-30 1991-07-23 Air Products And Chemicals, Inc. Process for extruding thermoplastic materials using low pressure inert gases as foaming agents
US5110998A (en) 1990-02-07 1992-05-05 E. I. Du Pont De Nemours And Company High speed insulated conductors
US5116881A (en) 1990-03-14 1992-05-26 James River Corporation Of Virginia Polypropylene foam sheets
US5182307A (en) 1990-11-21 1993-01-26 Board Of Regents Of The University Of Washington Polyethylene terephthalate foams with integral crystalline skins
US5158986A (en) 1991-04-05 1992-10-27 Massachusetts Institute Of Technology Microcellular thermoplastic foamed with supercritical fluid
US5527573A (en) 1991-06-17 1996-06-18 The Dow Chemical Company Extruded closed-cell polypropylene foam
US5128382A (en) 1991-11-15 1992-07-07 The University Of Akron Microcellular foams
JPH05222235A (en) * 1992-02-07 1993-08-31 Asahi Glass Co Ltd Production of polyolefinic foam
US5358675A (en) 1992-05-13 1994-10-25 Mobil Oil Corporation Controlling heterogeneous nucleation and growth of foams
US5670102A (en) 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
JP2699137B2 (en) * 1993-03-16 1998-01-19 みのる化成株式会社 Soundproofing member made of blow-molded foam and method of manufacturing the same
JPH06312449A (en) 1993-04-28 1994-11-08 Showa Denko Kk Molding of internally foamed product
US5866053A (en) 1993-11-04 1999-02-02 Massachusetts Institute Of Technology Method for providing continuous processing of microcellular and supermicrocellular foamed materials
JP3212430B2 (en) * 1993-11-17 2001-09-25 昭和電工株式会社 Crosslinked foam and method for producing the same
DE4339509A1 (en) * 1993-11-22 1995-05-24 Basf Ag PPE / PA moldings for the production of moldings by means of blow molding, profile extrusion and pipe extrusion
JP3302806B2 (en) * 1993-12-03 2002-07-15 昭和電工株式会社 Foam molding material and method for producing foam molding
NZ282337A (en) 1994-03-11 1997-11-24 A C I Operations Thermoforming extruded polystyrene foam sheet immediately after leaving the exit die
DE4437860A1 (en) 1994-10-22 1996-04-25 Basf Ag Process for the production of microcellular foams
DE19525198C2 (en) 1994-12-09 2003-12-24 Geiger Technik Gmbh & Co Kg Process for the production of hollow bodies by blowing
US5684055A (en) 1994-12-13 1997-11-04 University Of Washington Semi-continuous production of solid state polymeric foams
US5571848A (en) 1995-01-20 1996-11-05 Massachusetts Institute Of Technology, A Ma Corp. Method for producing a microcellular foam
JP3594686B2 (en) * 1995-03-15 2004-12-02 昭和電工株式会社 Foam resin composition, foam molding material, and foam molded article
US5500450A (en) 1995-04-05 1996-03-19 The United States Of America As Represented By The Department Of Energy Ultra-low density microcellular polymer foam and method
DE19619813A1 (en) 1995-10-30 1997-11-20 Hoechst Ag Polymer foams
DE19603906A1 (en) 1996-02-03 1997-08-07 Wella Ag Bottle-like plastic container and process for its manufacture
US5997781A (en) 1996-04-04 1999-12-07 Mitsui Chemicals, Inc. Injection-expansion molded, thermoplastic resin product and production process thereof
US5830923A (en) * 1996-05-22 1998-11-03 E. I. Du Pont De Nemours And Company Foamed fluoropolymer
ES2129326B1 (en) 1996-05-30 2000-01-16 Barberan Sa HEAD FOR APPLICATION TO A REACTIVE POLYURETHANE GLUE ROLL.
US5851617A (en) * 1996-07-03 1998-12-22 Rexam Release, Inc. Articles including microcellular foam materials as components thereof
US5830393A (en) 1996-07-10 1998-11-03 Mitsui Chemicals, Inc. Process for preparing expanded product of thermoplastic resin
JP2922856B2 (en) * 1996-08-06 1999-07-26 大塚化学株式会社 Syndiotactic polystyrene foam, method for producing the same, and substrate for electric circuit using the foam
JP4460074B2 (en) 1997-01-16 2010-05-12 トレクセル・インコーポレーテッド Injection molding of microporous materials
US5955511A (en) 1998-08-31 1999-09-21 Handa; Y. Paul Manufacturing ultramicrocellular polymer foams at low pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244897A (en) * 1979-03-22 1981-01-13 Measurex Corporation Method and apparatus to control the density of products produced from an extrusion process
US6284810B1 (en) * 1996-08-27 2001-09-04 Trexel, Inc. Method and apparatus for microcellular polymer extrusion
US6376059B1 (en) * 1997-12-19 2002-04-23 Trexel, Inc. Polyethylene foams and methods of their production

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251487A1 (en) * 2002-10-30 2008-10-16 Semersky Frank E Overmolded container having a foam layer
US9694515B2 (en) 2002-10-30 2017-07-04 Plastic Technologies, Inc. Overmolded container having an inner foamed layer
US20100227092A1 (en) * 2002-10-30 2010-09-09 Semersky Frank E Overmolded container having an inner foamed layer
EP1727658B1 (en) * 2004-02-17 2014-10-22 Plastic Technologies, Inc. Process for preparing a container having a foamed wall
EP1727658A2 (en) * 2004-02-17 2006-12-06 Plastic Technologies, Inc. Container having a foamed wall
US20050181161A1 (en) * 2004-02-17 2005-08-18 Semersky Frank E. Container having a foamed wall
US20080034666A1 (en) * 2005-02-15 2008-02-14 Jyawook Sam M Thermoplastic vehicle weather stripping
US8517059B2 (en) * 2008-03-31 2013-08-27 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
US20130323448A1 (en) * 2008-03-31 2013-12-05 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
US10369727B2 (en) 2008-03-31 2019-08-06 Kyoraky Co., Ltd. Blow-molded foam and process for producing the same
US9186955B2 (en) 2008-03-31 2015-11-17 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
US9340091B2 (en) * 2008-03-31 2016-05-17 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
US11833723B2 (en) 2008-03-31 2023-12-05 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
US11045982B2 (en) 2008-03-31 2021-06-29 Kyoraku Co., Ltd. Blow-molded foam
US20110048571A1 (en) * 2008-03-31 2011-03-03 Kyoraku Co., Ltd. Blow-molded foam and process for producing the same
WO2009158397A1 (en) * 2008-06-24 2009-12-30 Plastic Technologies, Inc. Overmolded container having a foam layer
US20100279087A1 (en) * 2009-05-01 2010-11-04 Jsp Corporation Polyethylene-based resin foamed blow molded article
US9725202B2 (en) 2013-03-14 2017-08-08 Berry Plastics Corporation Container
US10633139B2 (en) 2013-03-14 2020-04-28 Berry Plastics Corporation Container
US9447248B2 (en) 2013-07-12 2016-09-20 Berry Plastics Corporation Polymeric material for container
WO2015006772A1 (en) * 2013-07-12 2015-01-15 Berry Plastics Corporation Polymeric material for container
US10266664B2 (en) 2013-07-12 2019-04-23 Berry Plastics Corporation Polymeric material for container
US9931781B2 (en) 2013-08-26 2018-04-03 Berry Plastics Corporation Polymeric material for container
US9969116B2 (en) 2013-08-30 2018-05-15 Berry Plastics Corporation Container and process for making the same
US9889594B2 (en) 2013-08-30 2018-02-13 Berry Plastics Corporation Multi-layer tube and process of making the same
WO2016053987A3 (en) * 2014-09-29 2016-08-04 Mucell Extrusion, Llc Multi-layer thermoformed polymeric foam articles and methods
US10265903B2 (en) 2015-03-04 2019-04-23 Berry Plastics Corporation Container and process for making the same
US10173359B2 (en) 2015-03-04 2019-01-08 Berry Plastics Corporation Multi-layer tube and process of making the same
US9937652B2 (en) 2015-03-04 2018-04-10 Berry Plastics Corporation Polymeric material for container

Also Published As

Publication number Publication date
US6376059B1 (en) 2002-04-23
JP4778141B2 (en) 2011-09-21
US6169122B1 (en) 2001-01-02
WO1999032544A1 (en) 1999-07-01
AU1933799A (en) 1999-07-12
CA2315234A1 (en) 1999-07-01
EP1040158B2 (en) 2012-04-18
EP1040158B1 (en) 2005-03-02
CN1285856A (en) 2001-02-28
JP2001527106A (en) 2001-12-25
ATE290041T1 (en) 2005-03-15
DE69829208T2 (en) 2006-04-06
DE69829208D1 (en) 2005-04-07
EP1040158A1 (en) 2000-10-04
CN1265955C (en) 2006-07-26
US6294115B1 (en) 2001-09-25
US20020155272A1 (en) 2002-10-24
DE69829208T3 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US6706223B1 (en) Microcelluar extrusion/blow molding process and article made thereby
US20020172739A1 (en) Microcellular extrusion/blow molding process and aricle made thereby
JP4240540B2 (en) Method and apparatus for extruding microporous polymer
US6231942B1 (en) Method and apparatus for microcellular polypropylene extrusion, and polypropylene articles produced thereby
US6593384B2 (en) Polymer foam processing with low blowing agent levels
US10464247B2 (en) Method of forming blown polymeric foam film
US6884377B1 (en) Method and apparatus for microcellular polymer extrusion
US4518557A (en) Process for skin foam
JP2007015398A (en) Injection molding of microcellular material
US20010018121A1 (en) Polymeric foam processing
CN105849165B (en) Foam molding
JPH04229235A (en) Molding of thermally plastic foamed resin product
WO2001036521A2 (en) Thermoformed polyolefin foams and methods of their production
CN1029316C (en) Process for production of cellular plastic
US20020122838A1 (en) Blow molding method and system
US4252755A (en) Co-extrusion method and apparatus
EP1283767A1 (en) Polymer foam processing with low blowing agent levels
JP2015074154A (en) Foam extruder, foam extrusion method, and method for producing foamed blow molded article
JP2002283436A (en) Method for extrusion-molding foamed vinyl chloride resin tube
GB1590381A (en) Extrusion apparatus and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION